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Boson stars represent a hypothetical exotic type of compact stellar object that may be observed from the
gravitational signal of coalescing binaries in current and future gravitational wave (GW) detectors. In this
work we show that the moment of inertia /, the (dimensionless) angular momentum y, and the quadrupole
moment Q of rotating boson stars obey a universal relation, valid for a wide set of boson star models.
Further, the obtained I — y — Q relation clearly differs from its famous neutron star counterpart, providing
us with an unequivocal diagnostic tool to distinguish boson stars from ordinary compact stars or other
celestial bodies in GW observations. Such universal (i.e., model-independent) relations also provide a
useful tool to probe the strong gravity regime of general relativity and to constrain the equation of state of

matter inside compact stars.
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I. INTRODUCTION

Boson stars (BSs) are localized solutions of a bosonic
field theory (in the simplest case just a complex scalar @)
coupled to gravity (for reviews see Refs. [1-3]). After the
first geons proposed by Wheeler [4], the original spherical
scalar BS was introduced by Kaup [5], Ruffini, Bonazzola,
and Pacini [6,7]. It is now well-understood that properties
of BSs strongly depend on the form of the Lagrangian,
i.e., the potential which encodes the self-interaction of
the complex scalar. Various kinds of potentials allowed to
model a large range of astrophysical objects. For example,
there are BSs with properties very similar to neutron stars
(NSs) or to black holes (BHs) (black hole mimickers [8]).
Some BSs are even candidates for dark matter galaxy
halos [9].

After the introduction of scalar boson stars, important BS
generalizations have been found like, e.g., the vector scalar
field solutions, called Proca stars [10]. They have also been
extended to generalized models of gravity like Einstein-
Gauss-Bonnet theory, scalar-tensor models [11] or Palatini
gravity [12]. Further, the stability of such self gravitating
scalar field solutions has been investigated, e.g., in [13—-17].

The interest in this topic has increased considerably in
the last decade. On the one hand, the discovery of the
fundamental scalar Higgs boson at CERN [18,19] provides
a convincing argument for the possible existence of further
scalar fields extending the Standard Model, such as the
axion [20,21] or other ultralight scalar or vector bosons [22]
postulated as potential dark matter particles. On the other
hand, gravitational wave (GW) astronomy provides a
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new tool for the search of exotic compact objects such as
BSs. Since LIGO and Virgo reported the first event
[23], where the GW signal from a BH binary merger was
measured, the current observatories, such as advanced LIGO,
advanced Virgo or KAGRA have reported more than forty
events [24,25], among which binary NS [26], binary BH, and
even NS-BH mergers have been identified. In this promising
scenario, a very particular GW signal was measured in 2020
by advanced LIGO-Virgo which could be potentially
explained as a head-on collision of two Proca stars [27].
Binary BS mergers are also being studied currently [28].

Unlike regular, perfect fluid stars, rotating BSs differ a
lot from their static counterparts. For example, it is not
possible to obtain slowly rotating BSs as a perturbation of
the static solution [29] within the standard Hartle-Thorne
formalism [30,31]. Still, rotating BS solutions do exist as
proved by Silveira and de Sousa [32], following work of
Ferrell and Gleiser [33], but they require a nonperturbative
treatment, and cannot be understood as a rigidly rotating
system. This makes analytical and numerical computations
more involved, if compared with other relativistic compact
objects such as NSs or BHs.

For rotating NSs, a very important and not yet fully
explained property is the existence of universal relations
which do not depend on their equations of state (EOS).
The most famous set of such relations are the so-called
I-Love-Q relations, proposed by Yagi and Yunes in [34],
involving the moment of inertia /, the tidal deformability
(Love number) [35,36], and the quadrupolar moment Q.

© 2022 American Physical Society
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It is quite challenging to test these relations and extract /,
0, and the spin from astrophysical data, but there exist
some promising possibilities. The double pulsar JO737-
3039 is expected to provide the first direct NS measurement
of the moment of inertia [37], and some estimations have
already been given using NICER measurements [38]. Other
methods for measuring the moment of inertia rely on GW
observations [39], glitches measurements [40-42], etc.
[43—-46]. The future oscillation mode measurements by
the GW community should allow us to obtain the quad-
rupolar moments Q [47], and there exist already some
current estimations for Q [38,48].

Since their discovery, these relations have been
extended to more realistic situations including a high-
spin velocity and magnetic fields [49], and to modified
gravity theories [50-52]. It is now well established that
they hold for realistic EOS in the slow rotation limit [53].
Following these results, other quasiuniversal relations,
involving higher multipoles and Love numbers [54,55],
the compactness, gravitational binding energies [56],
and oscillation frequencies of (quasi) normal modes
[57], both for slow- and fast-spinning NSs have been
studied [52,58].

These universal relations are very important for several
reasons. If the nature of a star is known, then multiple
observations would allow us to verify the validity of these
relations or, assuming their validity, to determine further
properties of that star which cannot be observed directly.

If the nature of a compact star is not known, on the other
hand, then universal relations which clearly distinguish
between different types of stars—Iike, e.g., NSs and
BSs—would, in principle, allow us to determine its nature
or to eliminate certain possibilities. This requires, however,
that multiple observations allow for an independent deter-
mination of different observables (different multipole
moments) with sufficient precision.

The aim of the current work is, therefore, to analyze
the existence of universal relations for rotating BSs. We
emphasize that, although certain BS models can mimick
NSs or BHs, they correspond to quite different types of
solutions. It is, therefore, an important open question as to
whether such universal relations exist for BSs and, if they
exist, whether they are identical to the relations found for
rotating NSs or whether these two types of compact objects
obey rather distinct universal laws.

We will use in what follows 2 = ¢ = 1.

II. THEORETICAL SETUP

We start with the Einstein-Klein-Gordon (EKG) action
describing a massive complex scalar field @ minimally
coupled to Einstein gravity [1],

S:/ <ﬁ1€+£¢>\/—_gd4x. (1)

Here g is the metric determinant, and R the Ricci scalar. The
Lagrangian governing the complex field dynamics reads,

1
Lo = =5 [¢"V® V@ + V(jO])], @)

where V(|®|?) is a potential that depends only on the
absolute value of the scalar field, respecting the global
U(1) invariance of the model. All potentials we consider
contain the quadratic mass term u?|®|?, whereas higher
self-interaction terms will vary significantly.

Varying the action (1) yields the EKG equations,

1
Raﬂ - ERg(lﬁ = 8”T(1/)"

av
gaﬂvavﬂd) =

—— O, 3
where R,z is the Ricci tensor and 7,4 is the canonical
stress-energy tensor of the scalar field,

Top =2V, @V ® = 29,5V (, @V, ® + V(|®?)].
(4)

Rotating compact objects lead in a natural way to axially
symmetric systems. Therefore, we assume the following
stationary, axially-symmetric ansatz for the metric [59,60],

w 2
ds®> = —e?dt* + e r’sin’0 <dl// - dt)
r
+ e2*(dr* + r’de?), (5)

where v, a, #, and W are functions dependent only on r, 6.
Furthermore, the consistent ansatz for the scalar field is

O(t,r,0,y) = ¢(r,0)e” v, (6)

Here, ¢(r,0) is the modulus of the complex field, usually
referred to as the profile of the star. Further, w € R is the
angular frequency of the field and n € Z is the azimuthal
harmonic index. All calculations in this work are done for
the fixed value n = 1, because this is the most paradig-
matic, most studied, and simplest case. Numerical calcu-
lations for higher n need the solutions for lower »n as initial
data. Nevertheless, we have performed some preliminary
higher-n calculations, and the results are that (i) for low
n > 1, each n defines its own universal surface in the 7, y,
Q space, (ii) a limiting universal surface is approached for
large n, and (iii) all these universal surfaces are clearly
different from the NS case. A full presentation and
discussion of more detailed higher-n calculations, as well
as several further results, will be provided in a forthcoming
publication.
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TABLE I. BS potentials analyzed in the current work.

Name V()

Mini-BS, BSy1a Vitass = 12?

BSQuartic VQuarlic = ,“2472 + /1/2454

BSHalo Vialo = ,Ll2¢72 - (I¢4

BShke Vikg = 2 * — ad* + pg°

BSso Vo = w2 (1 = (¢7/45))?

BSiog Vieg = [2u*In(¢?/f* 4+ 1)
BSLiouvile Viiowitle = f2u*(exp{¢?/f*} — 1)

BS xion Vasion = 25 (1= /1= 4B'sin*($/2f))

A. Boson star models

The properties of different BSs, i.e., solutions of the
EKG system, strongly depend on the potential. The scalar
potential for BS solutions plays an analogous role to the
EOS in the case of NSs.

As we are interested in obtaining universal properties of
BS solutions, in this paper we have selected a set of
potentials which (i) is physically well-motivated, i.e., the
resulting ranges of masses, radii, and compactness fit to
various astrophysical scenarios, like dark matter halos,
[61,62] or to BH and NS-like objects [63—67] and (ii) covers
a wide range of potentials considered in the literature with
rather different qualitative features, see Table I and Fig. 1
for details. Some of these models present instabilities (i.e.,
the so-called miniboson star [13,15-17]), but we also treat
them here because we want to find the most general
behavior in this work.

The simplest choice is just a mass term without any self-
interaction, the so-called miniboson star potential. This can

vy
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¢
FIG. 1. Form of the potentials V(¢), in the relevant field range

¢ €10,0.29] (in the numerical simulations the field always takes
values within this range). We can appreciate rather different
behaviors, resulting in rather different BSs. Each color denotes a
different model, and different symbols correspond to different
parameter values within a model. These parameter values are
given in Appendix A.

be further generalized with the inclusion of higher-order
self-interaction terms, e.g., |®|* and |®|® [3,67,68]. Finally,
potentials based on the logarithm, exponential and sine
functions (Axion potential) have also been considered
[63-65].

All of these potentials have been previously considered
in the case of spherical, nonrotating BSs, which was, in
some cases, further generalized to rotating solutions [16].

III. NUMERICAL IMPLEMENTATION

To perform the numerical integration of the EKG system
we first rescale the radial distance and angular frequency
by the mass u of the boson field, r - ru,w — w/u, thus
removing the explicit 4 dependence from the field equa-
tions. For simplicity, we also rescale the field ¢ — ¢/4x.

The mathematical problem we have to solve is a set
of five coupled, nonlinear, partial differential equations for
the metric functions and the scalar field, which follows
from (3). We also take into account the constraints,
E, =0,E; — Ej =0, where Ej = R} —1Rq} — 2T%.

To perform the numerical integration, we used the
FIDISOL/CADSOL solver [69-71], a professional package
developed at the Karlsruhe Institute of Technology in the
eighties. The package is built in Fortran 90 and solves
nonlinear, two- or three-dimensional, elliptic and parabolic
partial differential equations (PDEs). It is a Newton-
Raphson based finite difference code. It allows us to use
arbitrary boundary conditions and works on a rectangular
domain, with a self-adaptative grid and consistency order.
As a method based on finite differences, it finds the
function’s roots. Following [72], let us explain the basics:

(1) The system of equations has to be written as follows:

P(X, Y5 U, Uy, Uy, Uy Uy, Uyy) = 0, (7)

where x, y are the independent variables, u the set
of functions to be solved, and {u,, u,, u,,, .}
are the derivatives of u with respect to the given
subindices.

(2) The package needs also the Jacobi equations for all
the functions, i.e., the derivatives with respect
0 {1,y thy, Uy, Uy Uy )

(3) We need to provide the solver with an accurate initial
guess and boundary conditions.

(4) Finally, we have to choose the grid over which the
equations are discretized. The mesh for the variables
x,ylherex=r/(1+r)€[0,1]andy = 0 € [0, z/2]]
has a number of points N,, N,. We could make
variations of this number of points, and within a
reasonable margin of variation, we still should reach
the correct solution. This means that small changes
on the grid are not translated into instabilities. For
most of our calculations we used a 401 x 40 grid,
but we will comment on the effect of other grids for
the particular case of the miniboson star potential.
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Let us now explain the basics of the numerical approach of
the solver.

(a) To start, we have to provide the solver with an initial
guess u'!) for which P(u(")) # 0. This difference cannot
be too large, as we want the program to converge. It is
here where it is important have a good initial guess.

(b) The new, improved guess is introduced in the follow-
ing way,

u(z) = u(l) —+ SAM(I), (8)

where s is a relaxation parameter, usually set equal
tos=1.

(c) The next step is to expand P(u?)) up to first order in
the small parameter Au() and to assume that
P(u?) = 0 to this order,

p(u(2)) - p(u(l) + AMU))
oP

~ P (1) —
() +—

(uM)auV =0.  (9)

(d) Now we compute Au'!) through the above equation
and obtain a new improved approximation u(® by
using Eq. (8). As P(u")) and Aul") are vectors and
e (1)) is a matrix, the program solves a typical linear
system Ma = b.

(e) Then the process is repeated iteratively to get

u® = u® 4 Au?, u® = 43 L AL
and so on, until the Newton residual P(u")) reaches a
value lower than the desired tolerance.

After many iterations, the change of the Newton residuals

in consecutive iterations becomes lower than the tolerance,

meaning that the system is solved. The number of iterations
slightly varies, depending on the model and the frequency,
but is always of the order of 10*. Further, the package
provides an error estimation for each function, computed
through the discretized Newton residual and the errors of
the function’s derivatives. The discretization is done by
using the backward finite difference method [73], up to an
arbitrary consistency order, chosen by the user. We choose

the tolerance (an internal parameter of the code) in such a

way that the resulting errors for the metric potentials and

the scalar field are always lower than 1073,

The solver needs the equations in a specific form, so we
need to work with certain combinations of the Einstein
equations EY = G} — ZKZTZ =0 and the Klein-Gordon
equation, to find a set of five independent equations, such
that each equation only contains one field with second-
order derivatives (here “field” refers to the metric potentials
and the scalar field). We also multiply the equations by
suitable factors to get rid of numerical divergences like 1/r
or 1/sin(@), resulting in the generic form (i = 1,...5)

r’sin®0F; ., + sin’0F; g

+ Fi(r.0:F;(r.0);0F (r.0)) =0.  (10)

Here F;(r, ) are the different fields {v, a, , W, ¢}, and F;
is the sum of the remaining terms, containing only the fields
and their first derivatives with respect to r and 0. So our
EKG system is presented in the following form:

2
—eM%sinz(e)(—E; +El+Ey—E}) =0

2 2WE;5) 0

e2“%51n2 () (E; +El+ E)—E)+

r

t
2WE
r
2},e2u+2oz—2/3E;5 =0

20426102 (60 dv
e rs1n()q)*<D

5 —dmz)cp:o. (11)

Finally, we have to impose boundary conditions on the
field profile and the metric functions. Asymptotic flatness
implies that all of them must vanish at infinity. Axial
symmetry together with reflection on the rotation axis
implies that at @ = 0 and € = z, the metric functions and
the profile also go to 0.

Symmetry with respect to a reflection along the equa-
torial plane implies that these functions also have to vanish
at @ = z/2. Finally, regularity at the origin requires that
d,a=0,f=0v=W=¢=0 for r - 0, and regularity
in the symmetry axis further imposes a = f|,_ , [59].

It is important to remember that the field profiles of static
and rotating BSs are qualitatively very different. Indeed,
they have different topologies. While static BSs are spheri-
cally symmetric with the central value of the complex field
being a free parameter of the solution, rotating BSs have a
toroidal shape with vanishing scalar field on the rotation
axis, @ = 0. Near the axis, it behaves like

2
ez”%sinz(G) (—E§ +E+ E)— E) -

li_r)réqb(r, 0) = r'h,(0) + O(r+2), (12)

where h, are particular functions, different for each
harmonic index n.

IV. MULTIPOLAR STRUCTURE AND GLOBAL
PROPERTIES

In this section we derive the principal quantities which
constitute the universal relation, i.e., the moment of inertia
I and the quadrupole moment Q. This will require the
multipole expansion. Strictly speaking, however, BSs are
infinitely extended objects without any particular surface
[1]. Simply, the scalar field extends to arbitrarily large
distances. Following [65], we identify radii with the
perimetral radius that contains 99% of the BS matter.
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A. Multipole moments

In the derivation of multipole moments we follow the
procedure developed in [74,75] for NSs. We introduce a
new parametrization of the metric Eq. (5), defining the new
metric functions @ =%, B = ¢**/. The following expres-
sions provide a consistent asymptotic multipolar expansion
of the metric functions (see Refs. [75,76]),

&) B B S v
v= szz(r)Pzz(COS 0), by(r)= Z 2zilillk’
=0 =0
N - dPy_i(cosO) N D21k

o = ;wzz—l(r)w, @y (1) = ; 2Ttk
—a 1 = By

B=1+ ZBZI(V)TZI(COSQ)’ By(r) = 202 (13)
=0

where P;(cos€) and T%(COS @) are the Legendre and
Gegenbauer polynomials, respectively. Then, multipole
moments can be found as combinations of the expansion
coefficients in (13), see Ref. [77] for details. Specifically,
one can show that the mass monopole M, angular momen-
tum dipole J and quadrupole Q moments are

@10
M = —-v, J:T’

3
Yoo

4
0= 3301/0,0 + 3 L0 (14)

As these coefficients are crucial in our analysis, let us
explain how we obtain them. Instead of the full source
integration (see, e.g., Refs. [60,52]), we use the fact that we
already solved the EKG system numerically and, hence,
know the functions v, w, and B. The multipole coefficients
are then found by integrating over the angles after projec-

ting on the appropriate polynomial, and taking the pertinent
radial limits. We explicitly find,

1 1
Voo = 3 limr/1 v(r,0)d cos 0,

5 1 3cos?0 — 1
Lo = Erlgglol”% /1 y(r, 9)%d cos 0,

1 1
@10 =5 lim /1 w(r,0)d cos 6,

r—o00

1
By = lim r2/ (B(r,0) —1)sin 9\/§d cos 6. (15)
r—o0o 1

We focused on the observables related to the lowest
multipole moments, because the chances that they could be
determined by observations in the not-too-distant future are
higher. But in principle higher moments (like the octupole
moment) can be calculated without difficulties by our
methods, and the possible existence of further universal

relations can be investigated, similarly to what was done,
e.g., in [78] for the NS case.

We also compared the mass and angular momentum
obtained from Eq. (14) with those obtained from the Komar
integrals [79], and we found a good agreement with less
than 2% discrepancy.

B. Moments of inertia and differential rotation

Rotating NSs are often assumed to be rigidly rotating
objects, whose moment of inertia / is defined as

J dy  u”
1:5, where Q:EZV’ (16)

being u* the four-velocity of an observer comoving with
the fluid. For spinning BSs, instead, it is not obvious how to
obtain the four-velocity, as the corresponding stress energy
tensor [Eq. (4)] for a complex scalar cannot be rewritten in a
perfect fluid form. This differs from the real scalar field
case, where the stress-energy tensor can indeed be brought
to this form [80]. Moreover, under the strong-coupling
assumption proposed by Ryan in [60], in which 0,¢
and dy¢ can be neglected, the tensor (4) acquires a perfect
fluid form with a barotropic equation of state [60]. This
approximation was recently used in [66] to study the
multipolar structure of rotating BSs.

We shall use another strategy to find a well-defined
moment of inertia that does not rely on any approximation,
taking advantage of the fact that there is a natural four-
vector associated with the global U(1) symmetry of the
Lagrangian, i.e., the corresponding Noether current,

o
L reve-evel. ()

which gives rise to the conserved particle number
N = [ j°\/=gd’x. Now, we define the differential angular
velocity as

Vo owdht — n" W ne2w=>p)
=1 = it gr =—+ 2 W\ «in2 9’ (18)
wg' —ng¥ r  r*(w—"1%)sin" 6

===

J

Remarkably, the expression in Eq. (18) agrees with that
obtained by Ryan in [60] in the strong coupling approxi-
mation. This proves that our definition, which is completely
general, is consistent with Ryan’s formula.

As a consequence of the differential rotation law (18), Q
is a function of r and 6. This must be taken into account
when we compute the inertia tensor. Therefore, for a
differentially rotating system we use the following expres-
sion which generalizes Eq. (16),
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© J T 9 . v+2a+p
/ / o(r.0) r? sin fe drdd, (19)

where j(r,0) = T}, is the angular momentum density.

V. UNIVERSAL RELATIONS

Once the multipoles have been obtained, we may define
the standard dimensionless reduced multipole moments [81],

J
2 =L o
Mgy Mg,

= 0=
where Mg is 99% of the total mass, and y the dimensionless
spin parameter. Naively trying to find / — Q relations, as in
the slowly rotating NS case, we find that these relations are
not accurate, with a maximum difference of about 25%.

We can see in Fig. 2 that the curves for different models
diverge less if we use Q = Qy® where a € [0.51,0.75],
instead of Q. We tried with several y power laws, and for y*
with a in the interval given above, the behavior improves
with respect to the standard reduced dimensionless multi-
poles, but the differences for a global fitting are still too
high. Concretely, we improve from a 25% deviation in the
usual multipoles to a 13% using this new rescaling.

For a more substantial improvement, we should take into
account the spin frequency of the solutions, as in [78] (see
also Ref. [52]). We consider our BS data in a 3D parameter
space, where each point has coordinates P(I, Q,y). If we
represent our simulations in this 3D space, the moment of
inertia can be seen as a surface function of the spin
parameter and the quadrupole moment, i.e., I = F(Q.y).
This surface can be fitted as

logio I = Ag + Ay (logyo O — B)", (21)

with n =1, 2, 3, m =0, 1, 2, and the fitting coefficients
given in Table II. The difference between the fitted surface
and the real data is always less than 1%, see Figs. 3 and 4.
So the quadrupolar, angular and mass moments determine
the moment of inertia with a very high precision in a model-
independent fashion.

An interesting comparison can be made between our
fitted surface for rotating BSs and a similar result for
rapidly rotating NSs [78]. Indeed, the moments of inertia
and quadrupole moments of spinning NSs were shown to
follow a universal relation in the (1, Q, y) parameter space

TABLE II. Numerical values of the coefficients that fit the
universal BSs IyQ surface.

Coefficients Ay = 1.3067 B =-0.7413
A? = 0.0000 A% = 1.2793 A% = —-0.7413
Ag = —-0.3078 A; = —0.2426 = 0.2678
Ag = 0.0796 Aé = —0.0045 A% = —-0.0226

Mini BS
1031 = Quartic
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iou &
_ = Log
= Axion
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102
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n, =P
101 100 10! 102
Q

FIG. 2. In the upper plot we show the moment of inertia vs
quadrupole moment, for the usual reduced quadrupole moments
0. In the lower plot we show the plot for the rescaled quadrupole
moment Q = Qy°7

as well, which yields a different / — Q relation for fixed
spin parameter. The main difference between rotating NSs
and BSs is that in the first case we have enough freedom
to fix the mass and y independently, while in the second
case, one of the two fixes the other. This means that for a
concrete model, the inertia moment of NS solutions span a
surface parametrized by (y, Q) but for BSs they follow a
single curve. Universality then comes from the fact that all
data lie on the same surface, independently of the model or
the parameter values.

In Fig. 5, we compare our data set with several rapidly
rotating NS solutions, for various EOS and angular
velocities. Rapidly rotating NS data were obtained using
the RNS package [82]. The universal surface that the NS
data form is clearly different from that generated by BSs.

For similar quadrupole moments, the spin parameter
space is larger for BSs than for NSs, as expected, and the
moment of inertia of BSs is always higher. This can be
understood from their different shapes, because a toroidal
body typically has a higher moment of inertia than a
spherical one of the same mass and equatorial radius.
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FIG. 3. Universal I — y — Q surface for spinning BSs fitting the
data points obtained numerically (upper panel) and relative
difference between data and fitted value, in percent (lower panel).
Remarkably, the relation holds with an error of less than 1%.
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FIG. 4. We represent the same data as in Fig. 3, projected along
each axis. We can appreciate from the 2D projections that we
have to understand data in a 3D space parameter if we want to
find the universal behavior, as happens for rotating NSs [78].

Our results are interesting from a theoretical point of
view, as they confirm a particular universal behavior for
BSs. They could also become important for observations,
but this requires the simultaneous measurements of the
moment of inertia, spin, and quadrupole moments from

160Hz NSs e 700Hz NSs

e 200Hz NSs e 800Hz NSs

e 300Hz NSs e 900HzNSs |
500Hz NSs .

BSs \

\ong

FIG. 5. Blue dots correspond to BS data. Colored points are
NSs for different frequencies and several EOS, namely BCPM
[83], AGHV [84], BPAL [85], RNS-FPS [86], RNS-A [87], and
SLy [88].

GW observations alone, because standard BSs are not
expected to produce observable signals in other (e.g.,
electromagnetic) channels of astrophysical observations.
Such simultaneous GW observations of /, y, and Q are
beyond current possibilities, but with sufficient progress
both in the calculation of more detailed wave forms and in
the precision of GW observations they may become
possible in the future.

VI. DISCUSSION AND SUMMARY

In this work we present a universal relation between the
reduced moment of inertia, spin parameter, and reduced
quadrupolar moment for rotating scalar BSs that is satisfied
with a one percent accuracy for a great variety of bosonic
potentials. For horizonless objects, such universal relations
play a role similar to the no-hair theorem for black holes,
because they allow us to determine the external gravita-
tional field from a finite number of multipole moments with
a high precision. An interesting extension of our results
would be to study universal relations for solutions with
different values of the harmonic index and/or solutions in
the limit in which a horizon has formed inside the rotating
BS—hairy Kerr black holes—or the study of higher order
multipoles like the spin octupole and mass hexadecapole.
As for their NS counterparts, we expect that these universal
relations may become useful in the analysis of gravitational
waveforms of future binary-merger events, in the search
of possible bosonic self-coupling terms for dark matter
candidates and in the further understanding of the strong
gravity regime of General Relativity.

We would like to end with several remarks. First of all,
following [65], we use the perimetral radius rq9 which
contains 99% of the BS mass and the corresponding mass
My for our calculation of the reduced multipole moments.
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We checked, however, what happens if we use the full
masses M, instead, and found that our results are not
very sensitive to this change. Concretely, while the surface
in the I, y, QO space slightly changes, its universality is
maintained with the same, better than 1%, precision.

Secondly, we want to emphasize that in [66] some
multipolar moments for BSs for the quartic potential were
studied in the strong-coupling approximation of [60], and a
comparison with our results would certainly be interesting,
as we consider this potential, as well. The maximal value of
the coupling constant we consider is, however, 1/m? = 50,
whereas all results in [66] correspond to larger coupling
constants. Further, the extension of our calculations to
higher coupling constants requires some adaptions of our
numerical methods. A comparative study will, therefore, be
presented in a subsequent paper.

Thirdly, it is known [14] that some of the BSs considered
in this paper suffer from dynamical instabilities, such that
after a sufficiently long time the rotating BS will either
radiate away its angular momentum or collapse to a black
hole. This instability can be avoided, e.g., by a sufficiently
strong self-interaction of the boson field [15-17]. In other
words, some of the rotating BSs considered here will be
stable or long-lived, whereas others will have too short a
life span to be of physical interest. The important point for
us is that all these rotating BSs (i.e., for all models and all
values of the coupling constants) span exactly the same
universal surface in the / — y — Q parameter space. That is
to say, the universal relation is not affected by the (in)
stability of the corresponding BSs.

Finally, all calculations in this paper were done for the
harmonic index n = 1, which defines a genuine surface in
1, y, and Q space. As already explained, for low n > 1, each
n defines its own universal surface in this space, which
converges to a limiting surface in the limit n > 1. If n is
treated as a free (unknown) variable, therefore, we find a
whole set of surfaces and a whole set of values for 7, say, for
given y, Q. In this situation, the values of y, Q are no longer
sufficient to predict the value of 7, but the resulting region
in I, y, O space can still be clearly distinguished from the
values provided by other types of compact stars, like NSs
or BHs.
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APPENDIX A: NUMERICAL PARAMETERS
USED

Here we give the different numerical sets of values for
the parameters that we have used for our simulations. The
numerical values are given in rescaled units,

2 2
V axion = % (1 - \/1 - 4Bsin2<

f=07
f=0.5,

VLog :f21n<¢2/f2+1){

2

[
Viiouville = f2 (efz - 1) { f=0.8.

A=1
VQuaric = ¢2 +%¢4 A=10 (Al)
A =150,
o0 ) B
Vialo = ¢ ag {a ~ 12 (A2)
_ 42 4 6 a = 80, ﬂ =0.01
Vukg = ¢~ — ag™ + p¢ {a —2 p-1s. (A3)
PRWTIE
VSol = ¢2<1 — (?)) ¢0 =07 (A4)
’ ¢$o = 0.3,
¢ f=01, B=022 A5
ﬁ) {f — 005, B=022. (A3)
(A6)
(A7)
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APPENDIX B: PRECISION AND NUMERICAL

STABILITY 4.0e-06
The precision of our numerical calculations for a fixed, 2.06-06 5
given grid is controlled by the Newton residuals of the
different fields. For our standard 401 x 40 grid, we show 0-0e+00
these residuals in Fig. 6 for the particular case of the ; 1
rotating miniboson star (with the miniboson star potential). ; it °

It can be appreciated that for the metric potentials v, f, a
and the field ¢ the Newton Residuals behave quite
similarly. The maximum values for the residuals occur

forx =7=1and y = 0 = n/2. There is a second peak at
the same radius and € = 0 but with a lower value. In any
case, all residuals are much below the required tolerance. 20006 _
The W residuals, on the other hand, behave differently. At '
7 = 0 and for @ taking all the range [0, z/2], the values are 000200
much higher than for the rest of the grid. This is probably '
related to the fact that the boundary value W(r = 0,6) =0 0 1%

r o

is imposed exactly in our numerical integration, whereas

the other fields are allowed to take their boundary values (b) Residuals «
numerically. But even the higher residuals of W(r, @) are

always smaller than the required tolerance.

To check the physical reliability of our results we use
certain physical constraints which the system must obey. 5 0006
Indeed, in addition to the (second-order) equations s
Eq. (11), the following constraint equations must hold,
0.0e+00
Conl E/—Ej=0, ; 1
T 1 0 N

Con2 E;=0. (B1)

(a) Residuals v

(¢) Residuals 3
We plot the above equations for each point of the grid in

Fig. 7. We can observe that in the interior of the grid both

constraints hold with a precision of better than 107°. But 1.0e05
when we reach the border of the grid, the deviations increase 60006 ©
several orders of magnitude, in particular for Con2. We '
know, however, that this is due to border effects, where the 0.00400

derivatives of some of the metric potentials are increased,
therefore we can still be confident with our calculations. ;
There are many further physical checks, like the Virial r 1 0
integrals, or the differences of ADM vs Komar quantities, (d) Residuals ¢
but these go beyond the scope of the present paper.
Finally, to check the numerical stability of our calcu-
lations, we repeated them for different grid sizes for the
particular case of the miniboson star potential. Concretely,

1
Q

5.0e-05

we chose the grids shown in Table III. S
0.0e+00
TABLEIII.  Different grids, being N, the number of 0 1
radial points and N, the number of angular points. . 1.0 ®
N, 135 135 201 201 268 310 401 (e) Residuals W
Ny 3 40 30 40 40 40 40 FIG. 6. Newton residuals for the scalar field and for the metric
potentials.
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(a) Constraint equation
ET —Ej =o.

0.015

0.010

0.005

0.000

0.5
" 1.0 0.0 0

(b) Constraint equation Ef =0.

FIG. 7. Numerical precision of the constraint equations.

As is common in finite difference methods, the grid size
can be changed only within a certain range. For too large
grids, the memory allocation for the additional points is no
longer possible, and the treatment of such large grids would
require a significant rewriting of the code. We did the
simulations for several field frequencies, from close to the
minimum frequency in the main branch, w = 0.655, to
the usual Newtonian region w = 0.9. We did so because, as
we can see in Fig. 8, for different regions in w the residuals
will change, as happens for other quantities like the
computation time.

In Fig. 8 we show the maximum value of the residuals
for each field. For the first four fields, all the grids returned
maximal errors which are smaller than 10~*. Besides, if we
considered only those quantities, we would prefer the grids
N, =268, N, =40, or N, =310, N, =40, due to the
lesser errors and faster computation times. But the metric
potential that determines our choice of the grid is W, as it
is the most sensitive. As already mentioned, due to the
boundary conditions there exists a steep increase in the

123022-10
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errors when 7 = 0. For W, the grid that maintains the best
(smallest) residuals is N, = 401, N, = 40. If we ignored or
eliminated the rather large residuals of W at the boundary
7 = 0, then a better option for the grid would probably be
N, =268, N, = 40, because the simulation time would be
shorter and the residuals in general would be lower.

Finally, in Fig. 9 we plot the rotating miniboson star
masses as a function of the frequency, for the different grids
we used. In all cases, the relative differences to our standard
grid 401 x 40 are always less than 3 x 1073, The results for
other observables are similar. These differences are slightly
bigger than the errors for the fields (< 1073), because the
numerical integration needed for the calculation of the
observables from the fields and their derivatives introduces
some additional small errors.

135x35 201x40
0.004 135x40 ¢ 268x40
201x30 310x40
< 0002 ..
3
- * * * %
=
€ Wit gt 3 B0 et T
S 0000 gaaas’ latygte, Te Thessterete wee bhie Lug
| . P SN * 90 90 ¢
< trea, T e,
= *rean
-0.002 ..
+*
~0.004
0.65 0.70 0.75 0.80 0.85 0.90

w

FIG. 9. Relative mass differences for different grids as a function
of the frequency. Here My, is the mass of the corresponding
rotating miniboson star for our standard grid 401 x 40, whereas M,
are the masses for the other grids.
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