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Quasicircular binary black hole mergers are described by 15 parameters, of which gravitational wave
observations can typically constrain only ∼10 independent combinations to varying degree. In this work,
we devise coordinates that remove correlations, and disentangle well- and poorly-measured quantities.
Additionally, we identify approximate discrete symmetries in the posterior as the primary cause of
multimodality, and design a method to tackle this type of multimodality. The resulting posteriors have little
structure and can be sampled efficiently and robustly. We provide a PYTHON package for parameter
estimation, cogwheel, that implements these methods together with other algorithms for accelerating the
inference process. One of the coordinates we introduce is a spin azimuth that is measured remarkably well
in several events. We suggest this might be a sensitive indicator of orbital precession, and we anticipate that
it will shed light on the occurrence of spin-orbit misalignment in nature.
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I. INTRODUCTION

Gravitational wave astronomy is advancing at a rapid
pace, with over 100 signals from compact binary mergers
detected since the advanced LIGO [1] and advanced Virgo
[2] detectors became operational [3–13]. The rate of
detections will keep accelerating as planned and ongoing
hardware upgrades take place. The astrophysical interpre-
tation of these detections requires measuring their source
parameters, such as masses, spins, position and orientation.
At the same time, following recent developments in

waveform modeling, state-of-the-art models of compact
binary coalescences now incorporate higher-order harmonics
and generically oriented spins [14–17]. These improvements
have increased the diversity of waveform morphologies and
the parameter space dimensionality, rendering computational
cost a major hurdle for parameter estimation studies.

In this work we develop a new parametrization of the
source properties, tailor-made for compact binary mergers,
that removes most correlations and multimodalities
encountered in their posterior distributions. This coordinate
system emphasizes quantities that are best constrained by
the data, as opposed to the physically motivated parameters
used by external libraries to model waveforms. We derive
the set of analytic, invertible, nonlinear transformations
between the standard parameter space and this new
coordinate system. Expressed in these coordinates, the
posterior distributions exhibit much less structure, which
makes it easier to sample them efficiently and robustly.
In general, under a coordinate change x → y the prior

and posterior probability densities transform as

PðyÞ ¼ PðxÞjJj; ð1Þ
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jJj ¼ j∂x=∂yj ð2Þ

is the absolute value of the Jacobian determinant. This can
make coordinate changes cumbersome if their Jacobian
determinant is not easily computable. We define our
coordinate transformation as a series of simple transforma-
tions, affecting few variables at a time, that have tractable
Jacobian determinants. Wewill use the following properties
of the Jacobian. First, they multiply under composition of
transformations x → y → z,

���� ∂x
∂z

���� ¼
���� ∂x
∂y

����·
���� ∂y
∂z

����: ð3Þ

Second, transformations of the form

�
x1
x2

�
→

�
aðx2Þx1 þ bðx2Þ

x2

�
; ð4Þ

where x1, x2 may be multidimensional, have

jJj ¼ jaðx2Þj; ð5Þ

which frees us to use arbitrarily sophisticated bðx2Þ
functions. In particular, if aðx2Þ ¼ �1 the probability
density is unchanged by the coordinate transformation
in Eq. (4).
The remainder of the article is structured as follows. In

Sec. II we review the likelihood function of gravitational
wave source parameters. In Sec. III we introduce coor-
dinates that remove common correlations. In Sec. IV we
identify approximate symmetries responsible for discrete
degeneracies, and present a novelmethod to remove this type
of multimodality. In Sec. V we present our main results;
Sec. VA assesses the performance improvement brought by
our methods in terms of the accuracy of the recovered
posterior and the computational cost, and Sec. V B shows
that a particular spin azimuth can be measured surprisingly
well. We conclude in Sec. VI with a summary and outlook.
Appendix A discusses in further detail two of the approxi-
mate symmetries identified, and Appendix B acts as a
reference sheet in which we summarize the coordinate
system proposed.

II. LIKELIHOOD

In this section we briefly review the likelihood function
PðdjθÞ, through which the data d constrain source param-
eters θ. We cast its approximate dependence on extrinsic
parameters in terms of the signal’s amplitude, phase and
time of arrival at each detector, and we provide analytical
expressions for these.
Under the approximation that the noise is stationary and

Gaussian,

logPðdjθÞ ¼ −
1

2

X
k∈det

4

Z
∞

0

df
jd̃kðfÞ − h̃kðf; θÞj2

SkðfÞ
; ð6Þ

where d̃k, h̃k, and Sk are the frequency-domain data, strain
model, and one-sided noise power spectrum in the kth
detector, respectively [18].
For quasicircular binaries, the detector strains h̃k depend

on 15 parameters: eight intrinsic (two masses m1, m2 and
six components of the spin vectors χ 1, χ 2) and seven
extrinsic (luminosity distance dL, inclination ι, right
ascension α, declination δ, polarization ψ , orbital phase
ϕref , and coalescence time tc). We can understand the
approximate dependence on these parameters by consid-
ering the waveform under the quadrupole, stationary-phase
and post-Newtonian approximations,

h̃kðf;θÞ≈AðfÞM
5=6

dL
Rkðι; n̂;ψÞei½2ϕref−2πftkðn̂ÞþΨðf;θintÞ�; ð7Þ

where the chirp mass

M ¼ ðm1m2Þ3=5
ðm1 þm2Þ1=5

ð8Þ

controls the waveform amplitude and phase to leading post-
Newtonian order. The inclination, sky location and polari-
zation enter through the detector response [19]

Rk ¼
1þ cos2 ι

2
Fþ
k ðn̂;ψÞ − i cos ιF×

k ðn̂;ψÞ; ð9Þ

where n̂ is the line of sight and Fþ
k ; F

×
k are the antenna

factors of the kth detector [20]. The sky location addition-
ally introduces an arrival time delay in each detector due to
the finite speed c of gravitational waves, so there is a
separate arrival time tk at each detector k.
Altogether, to this level of approximation the extrinsic

parameters only affect the amplitude, phase and time in
each detector,

h̃kðf; θÞ ≈ akeiφke−i2πðf−f̄kÞtkAðfÞeiΨðf;θintÞ; ð10Þ

with

ak ¼
M5=6

dL
jRkðι; n̂;ψÞj; ð11Þ

φk ¼ argRkðι; n̂;ψÞ þ 2ϕref − 2πf̄ktk; ð12Þ

tk ¼ tc −
n̂ · rk
c

; ð13Þ

where rk is the detector location relative to the point of
reference time, e.g., the center of Earth, and f̄k is a
frequency scale defined below. In Eq. (12) we have
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included a term dependent on tk to make φk orthogonal to
tk: to linear order, it is possible to absorb a small shift in the
time of arrival tk (in the sense of leaving the observed
waveform almost unchanged) by simultaneously changing
the phase (via ϕref , say) by 2πf̄ktk [21,22], where f̄k is the
first frequency moment, i.e.,

fnk ≔
R
∞
0 dfA2ðfÞfn=SkðfÞR
∞
0 dfA2ðfÞ=SkðfÞ

ð14Þ

for n ¼ 1. This way, we expect the measurements of ak, φk,
tk in a detector to be uncorrelated. We can also estimate
the uncertainties in each of these parameters, which scale
inversely with the signal-to-noise ratio ρk,

Δak ∼
ak
ρk

; ð15Þ

Δφk ∼
1

ρk
; ð16Þ

Δtk ∼
1

2πσfρk
; ð17Þ

with σ2f ¼ f̄2 − f̄2 [19,21]. By convention, for each event
we will sort the detectors by their signal-to-noise ratio
(ρk0 > ρk1 > …), so the best measured quantities corre-
spond to the “reference detector” k0.

III. MITIGATING DEGENERACY

Oriented by the previous discussion, in this section we
introduce a system of coordinates in which some variables
separately control the observables ak0 , φk0 , tk0 , tk1 − tk0 ,
which will typically be well-measured, and others explore
degeneracies and will be poorly constrained. Some of these
coordinates are already known in the literature but we still
review them here for completeness. As we will see, the
posterior distribution expressed in these coordinates is
largely uncorrelated.

A. Amplitude at reference detector

We replace the luminosity distance by the so-called chirp
distance [23], which controls the amplitude at the reference
detector Eq. (11),

d̂ðdL;M; ι; α; δ;ψÞ ≔ 1

ak0

¼ dL
M5=6jRk0 j

: ð18Þ

This is proportional to the luminosity distance, with a scale
factor that depends on the response of the detector to the
given ι, α, δ, ψ , and the intrinsic amplitude of the source

∝ M5=6. Thus, d̂ avoids the correlations with these
variables that the luminosity distance suffers, as shown
in Fig. 1. A collateral benefit is that the observable values of
d̂ are similar for all mass ranges (in contrast, heavier events
can be observed at larger luminosity distances), so the
distance range to explore does not need to be tuned for
each event. From Eqs. (15) and (18) we expect that d̂ will
typically be measured to a precision Δd̂ ∼ d̂=ρk0 .
In the notation of Eq. (4), the transformation d̂ → dL has

x1 ¼ d̂, x2 ¼ ðM; ι;α; δ;ψÞ, aðx2Þ ¼ 1=M5=6jRk0 j and
b ¼ 0. The Jacobian determinant is

jJj ¼
���� ∂d̂
∂dL

���� ¼ 1

M5=6jRk0 j
¼ d̂

dL
: ð19Þ

A more elaborate solution is to marginalize the posterior
semianalytically over distance, altogether removing the
necessity to sample from it [25,26]. We include this
functionality as well in the software package we are
releasing along with this paper. In practice, this makes
the sampling process more robust against a particular
failure mode, in which the sampler occasionally explores
the distant Universe (favored by the prior) and misses a
nearby solution with high likelihood.

B. Time of arrival at reference detector

We use the time of arrival at the reference detector tk0 as
our arrival time parameter [26], as opposed to, for example,
the geocentric time of arrival.
From Eq. (17), the uncertainty in arrival time at the

detector is typically ≲1 ms [21]. On the other hand, unless
the sky location is particularly well-constrained, the uncer-
tainty in time of arrival at geocenter is on the order of the
gravitational wave Earth-crossing time (roughly 40 ms) due

FIG. 1. The luminosity distance dL is typically correlated with
the inclination and sky location (top row), while d̂ [Eq. (18)] is
less correlated and better measured (bottom row). Examples in
this section correspond to GW151226 [24], but the highlighted
qualitative features are generic.
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to the tight nonlinear correlation with sky location shown in
Fig. 2 for the case of GW151226.
From Eqs. (4), (5), and (13), the transformation tk0 → tc

has unit Jacobian determinant.

C. Time-of-arrival difference

When a signal is observed in multiple detectors, the
arrival time differences provide the dominant constraint on
its sky location. For each pair of detectors, the arrival time
difference determines the angle θkk0 between the source
location and an axis through both detectors according to
[see Eq. (13)]

tk − tk0 ¼ n̂ ·
rk0 − rk

c
¼ τkk0 cos θkk0 ; ð20Þ

where τkk0 is the gravitational wave travel time between
detectors k and k0.
Thus, a natural way of parametrizing the sky location

measurement is with a polar coordinate system ðθnet;ϕnetÞ
whose z-axis contains the two detectors with the largest
signal-to-noise ratios in the network [26,27], shown in Fig. 3.
This coordinate system rotateswith Earth and is related to the
(fixed) α, δ by a 3D rotation that depends on the pair of
detectors and the sidereal time at which the signal arrives.
The isotropic prior is uniform in cos θnet;ϕnet.
Figure 4 shows that, unlike α and δ, θnet is typically well-

measured and largely uncorrelated with ϕnet. In fact, from
Eqs. (17) and (20) its expected uncertainty is

Δ cos θnet ∼
1

2πσfτk0k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ−2k0 þ ρ−2k1

q

¼ 0.016 ·
100 Hz

σf
·
τHL
τk0k1

·
10

ρk1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2k1

ρ2k0

s
ð21Þ

FIG. 2. The arrival time at geocenter (top row) is worse
measured than at the reference detector (bottom row), because
the time delay introduces a large correlation with sky location.

FIG. 3. Coordinate system based on the dominant pair of
detectors in the network, in this example Hanford-Livingston.
The z-axis contains the two detectors and the y-axis points
perpendicularly upwards. The zenithal angle θnet of the line-of-
sight n̂ determines the time-of-arrival difference. (Detector sizes
are exaggerated but otherwise the figure is to scale.).

FIG. 4. Sky location of events in the first two observing runs,
expressed in terms of right ascension and declination (top) or
network-based angles θnet;ϕnet defined in Fig. 3 (bottom). θnet
is typically well constrained and largely uncorrelated with ϕnet.
The signals are clearly clustered near n̂ ¼ �ŷnet, at the two high-
sensitivity lobes of the network antenna pattern. Accordingly,
when two or less detectors dominate the information content, the
azimuthal angle ϕnet can be significantly informed by the
antenna-pattern dependent prior.
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for events observed in two detectors. Each pair of detectors
constrains the source location to a narrow ring in the
celestial sphere. This degeneracy is broken when the signal
is prominent in three or more detectors. The distribution of
ϕnet is often multimodal, and for this reason we will
ultimately use a modified azimuthal coordinate ϕ̂net instead
(see Sec. IVA).
For single-detector events, a coordinate system aligned

with the arms of the detector is more convenient.

D. Arrival phase

We now seek a parametrization of the form in Eq. (4) that
expresses the well-measured arrival phase φk0 in terms of
our new coordinates. As is clear from Eq. (12), such a
reparametrization must involve ι, n̂, ψ , ϕref , and tk0 . To
achieve this, we replace the coalescence phase ϕref by
another 2π-periodic coordinate

ϕ̂refðϕref ; ι; n̂;ψ ; tk0Þ

≔ ϕref þ
argRk0ðι; n̂;ψÞ − 2πf̄ML

k0
tk0 − φML

k0

2
ð22Þ

≡φk0 − φML
k0

2
; ð23Þ

where we choose the constants f̄ML
k0

and φML
k0

as the first
frequency moment and arrival phase at the dominant
detector for the (approximate) maximum likelihood source
configuration. ϕ̂ref can be interpreted as the deviation of the
coalescence phase ϕref from the value that would make the
arrival phase at the reference detector equal to φML

k0
.

Therefore, its posterior distribution should have a peak
near 0. The factor of 1=2 in Eq. (23) reflects the fact that the
phase of the dominant quadrupolar radiation advances by
twice the angle under an azimuthal rotation of the source.
We thus expect the ϕ̂ref posterior to have a second mode
near π. By virtue of Eqs. (16) and (23), these modes are
largely uncorrelated with all other parameters and have
widths ∼1=ð2ρk0Þ. Radiation harmonics with odd values of
m break the symmetry between these two modes. Figure 5
shows that ϕ̂ref is indeed much better measured and less
correlated than ϕref . The transformation ϕref → ϕ̂ref has
unit Jacobian.
Despite removing correlations, the definition of ϕ̂ref in

Eq. (22) has two undesirable properties for sampling: its
posterior is bimodal and, for waveforms with higher modes,
discontinuous at the branch cut of argRk0 . We will solve
both problems in Sec. IV B.

E. Reference frequency

Source parameters that are not conserved throughout the
inspiral and merger need to be specified at a reference point
in time, typically in terms of the instantaneous frequency

fref of the quadrupole radiation. Such parameters include
orbital phase and, for precessing binaries, spin components,
orbital inclination, and polarization. These are best con-
strained near frequencies where the signal is prominent;
specifying them at a far-removed fref may introduce large
correlations with other source parameters [28,29]. This
effect is most important for the orbital phase, which in turn
couples to the in-plane spin azimuths if they are defined
relative to the orbital separation vector (we revisit this in
Secs. III G andV B).Wewill choose the reference frequency
to be fref ¼ f̄ML

k0
; from Eq. (14), this is the frequency

weighted by the squared signal-to-noise ratio, and hence
it will naturally be within the detector band.

F. Aligned spin components

The effect of spins on the phase evolution of the
inspiraling binary is largely dominated by the effective
spin parameter

χeff ¼
χ1z þ qχ2z
1þ q

; ð24Þ

where χ1z; χ2z are the components of the constituent
(dimensionless) spins parallel to the orbital angular
momentum, and q ¼ m2=m1 ≤ 1 is the mass ratio. It is
therefore convenient to use χeff directly as a spin coor-
dinate. The Jacobian of the transformation to Cartesian spin
components is nontrivial [30], however, note that the prior
on spins is much less certain than that on extrinsic
parameters. Our approach is to specify the prior in terms
of χeff , which means we do not need to compute the
Jacobian. We choose a uniform prior between �1, which
has the advantage that it does not vanish for any value of the
observable χeff . In order to specify the two orbit-aligned

FIG. 5. Unlike the reference orbital phase ϕref (top), the
coordinate ϕ̂ref is well-measured (bottom), since it uniquely
determines the observable phase of arrival at the reference
detector φk0. There remains, however, a discrete degeneracy
between solutions separated by π that we treat in Sec. IV.
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spin components, we also sample over their (typically)
poorly measured difference, whose conditional prior we
choose to be uniform within the range allowed by the
cosmic censorship conjecture, jχ1;2j < 1 (see Appendix B).
The prior induced on individual spin components is shown
in [[31], Fig. 1].
For systems with well measured χeff , a common alter-

native description based on the spin magnitudes and tilts
can suffer from correlations between these four variables.
[32,33] proposed a different parametrization which also

removes the correlation of the aligned spins with the
masses. We intend to implement this in the future.

G. In-plane spin components

In Sec. III F we have argued that L defines one preferred
axis to parametrize the spins, as their aligned components
affect the evolution of the orbital phase. Describing the spin
azimuths requires us to define a second axis, for which two
choices are common in the literature: the orbital separation
vector at fref , or the direction of propagation N̂≡ −n̂. In
line with [28], here we will advocate the latter choice.
Misaligned spins cause the orbital angular momentum L,

as well as the spins S1, S2, to precess about the total angular
momentum J, whose direction is stable [34,35]. This
causes the inclination of the orbit seen from Earth,
determined by L̂ · N̂, to continuously change. As a conse-
quence, in addition to the usual cycles at twice the orbital
frequency, misaligned-spin waveforms exhibit amplitude
modulations at the slower precession rate. This separation
of timescales means that the precession dynamics can be
described using orbit-averaged equations, thereby decou-
pling it from the orbital phase.
Thus, the size and peak frequencies of the amplitude

modulations are governed by the orbital and spin angular
momenta at fref relative to N̂, as these determine the
evolution of the inclination. On the other hand, per Eq. (12)
the phase φk of the “carrier” wave is controlled by an
approximately degenerate combination of ϕref , ψ , ι, n̂, tc.
The practical consequence of this degeneracy is that ϕref ,
which defines the azimuth about L between the orbital
separation and the direction of propagation, is poorly
measured. In other words, a change in ϕref can be
compensated by adjusting e.g., ψ ; dL to keep ϕ̂ref , d̂ fixed,
but only if the spins are held constant relative to N̂. If,
instead, the spins are rigidly rotated with the binary, the
peak frequencies of the observed amplitude modulations
would shift in a way that cannot be compensated by
adjusting other parameters. Thus, using the orbital sepa-
ration to define the origin of spin azimuths would introduce
in the parametrization a spurious coupling between the
observable precession and orbital cycles. Following [28],
we will use the angles θJN , ϕJL, ϕ12 to describe the
inclination of the orbit and the spin azimuths. θJN and
ϕJL are illustrated in Fig. 6: they define the direction of

wave propagation N̂ given the total and orbital angular
momenta J, L and irrespective of the orbital separation
vector. ϕ12 is defined as the difference between the primary
and secondary spin azimuths about L. ϕJL posteriors are
often bimodal, and for this reason we will eventually
replace ϕJL by a modified spin azimuth ϕ̂JL in Sec. IVA.
Our parametrization of the spins is more akin to

cylindrical than spherical coordinates, in the sense that
we favor the orbit-aligned spin components over the
zenithal angles. The description of spins is completed by
specifying the in-plane spin magnitudes χ⊥1 , χ⊥2 .

IV. MITIGATING MULTIMODALITY

Oftentimes, the posterior distribution of gravitational
wave source parameters is multimodal. Such distributions
are more challenging for stochastic samplers, which might
occasionally misestimate the relative weights of the modes
or miss some of them altogether.
In Sec. IVA we identify four approximate discrete

symmetries that are responsible for frequent multimodality
in the orbital phase, polarization, inclination, and sky-
location parameters. In Sec. IV B we introduce “folding”; a
simple algorithm to exploit the knowledge of the under-
lying approximate symmetries in order to robustly sample
this type of multimodal probability distribution. Depending
on the source properties, the detector network and the
signal-to-noise ratio, this procedure can generically reduce
the number of disjoint modes by a factor of up to eight.

A. Approximate discrete symmetries

In Sec. III D we already encountered an approximate
discrete symmetry

FIG. 6. Angles describing relative orientation between angular
momenta and the direction of wave propagation [28]. In terms of
the observable precession cycles, changing N̂ ↦ −N̂ (i.e.
inverting cos θJN and adding π to ϕJL) is a symmetry that can
cause a discrete degeneracy. We return to this point in Sec. IVA.
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ϕ̂ref ↦ ϕ̂ref þ π; ð25Þ

(Fig. 5) which is exact for waveforms with only even values
of m, in particular the dominant mode ðl; jmjÞ ¼ ð2; 2Þ.
A similar symmetry exists for the polarization

ψ ↦ ψ þ π

2
ð26Þ

at constant ϕ̂ref , which [per Eq. (22)] entails a simultaneous
change by π=2 in ϕref . This symmetry arises because, under
the transformation (26), the antenna coefficients Fþ

k ; F
×
k

change sign [20]; meanwhile, the π=2 rotation of ϕref

inverts the sign of the waveforms hþlm; h
×
lm for modes with

jmj ¼ 2. These two sign flips cancel, leaving the measur-
able responses hk ¼ Fþ

k h
þ þ F×

k h
× invariant. The sym-

metry becomes exact for waveforms with jmj ¼ 2. Usually,
this discrete degeneracy does not produce disjoint modes in
the posterior, because the uncertainty in ψ is large enough
that the two solutions remain connected (as an extreme
example, ψ is a dummy parameter for face-on, aligned-spin
waveforms). Still, ψ posteriors generally do exhibit this
symmetry.
We identify two other approximate discrete symmetries.

In Secs. III A–III D we derived coordinates d̂, ϕ̂ref , tk0 , θnet,
which determine the amplitude, phase and time of arrival at
the leading detector, and arrival time at the second detector.
These variables typically capture most of the information
on extrinsic parameters from the likelihood, and conse-
quently tend to be tightly constrained. Conversely, the
remaining extrinsic parameters θJN , ϕnet, ψ have a smaller
effect on the likelihood. As a result, they can exhibit large
degeneracies—some of them discrete, leading to multiple
modes. Indeed, due to the geometry of the Hanford-
Livingston network, for these detectors both the prior
and likelihood are approximately symmetric under either
of the following discrete transformations (at fixed d̂, ϕ̂ref ,
tk0 , θnet),

ϕnet ↦ −ϕnet; ð27aÞ

ðϕnet; cos θJN;ϕJLÞ ↦ ðϕnet þ π;− cos θJN;ϕJL þ πÞ:
ð27bÞ

The manifestation of these symmetries in the posterior is
shown in Fig. 7. We can understand them intuitively as
follows. By design, the Hanford and Livingston detectors
are nearly coaligned (plus a π=2 rotation in the horizontal
plane, which simply adds a phase difference of π; see
Fig. 3). For perfectly coaligned detectors, the amplitude
and phase at the second detector are determined by those at
the first; in this sense their measurement does not provide
new constraints, and the likelihood is largely independent
of ϕnet, ι, ψ . These parameters are therefore significantly
informed by the prior. The prior has nontrivial structure in

these variables because the distance, and thereby the
observable volume, depends on ι, ϕnet, ψ at constant d̂,
θnet (which are fixed by the likelihood). For example, the
uniform prior in luminosity volume πðdLÞ ∝ d2L is [by
Eqs. (18) and (19)]

πðd̂jM; ι; θnet;ϕnet;ψÞ ∝ d̂2M5=2jRk0ðι; θnet;ϕnet;ψÞj3;
ð28Þ

proportional to the cube of the absolute value of the
reference detector response. This term has four peaks as
a function of ι;ϕnet near cos ι ¼ �1 [Eq. (9)] and ϕnet ¼
�π=2 (Fig. 4); see also Fig. 13. In other words, corre-
sponding to a source face-on or face-off, and above or
beneath the detector (constrained to the time-delay ring).
As a result, Hanford-Livingston posteriors typically exhibit
four modes at these configurations. We can see that both
transformations (27) map an overhead source to one
underfoot, i.e., they send n̂ · ŷnet ≡ ny ↦ −ny. The second
transformation, Eq. (27b), also flips the inclination. All four
configurations can be reached by applying combinations of
these two transformations.
The transformation cos θJN , ϕJL ↦ − cos θJN , ϕJL þ π

in Eq. (27b) corresponds to inverting the direction of
propagation N̂ ↦ −N̂ in the frame of the binary. In other
words, it can be interpreted as observing the system from
the antipodal direction. To the extent that the source can be
modeled as a precessing quadrupole, this simply reverses
the handedness of the gravitational wave and cannot be
distinguished with coaligned detectors. In reality, due to the
curvature of Earth the detectors are not perfectly coaligned.
As a result, the phase of arrival at the second detector is not
completely determined by that at the first detector and its
measurement has some constraining power. Whether it is

FIG. 7. Approximate discrete symmetries are frequently
responsible for multiple modes in the distribution, especially
for the Hanford-Livingston network due to its peculiar geometric
configuration. The plot shows examples of posteriors for the
cosine of the inclination and a coordinate ϕ̂net [Eq. (29)] that
describes the line-of-sight azimuth along a ring of constant time
delay. Additional detectors and higher modes can break these
symmetries, as for GW190412 [36].
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advanced or retarded depends on the handedness of the
elliptically polarized wave and the relative orientation of
the two detectors as viewed from the source (the “projected
detector tensors” [37]). For example, with the system
defined in Fig. 3, the projected Hanford detector appears
rotated counter-clockwise relative to Livingston when seen
from the xnet > 0 hemisphere, but clockwise from xnet < 0.
Thus, the phase at Hanford would be advanced relative to
Livingston for a right-polarized wave from nx < 0, or left-
polarized wave from nx > 0 (and vice versa), making these
solutions degenerate. Thus, nx has to be inverted simulta-
neously for the transformation N̂ ↦ −N̂ to be a good
symmetry of the likelihood. This is implemented by
sending ϕnet ↦ ϕnet þ π in Eq. (27b).
Incidentally, since the arrival phase difference also

involves the time delay, this effect induces an observable
correlation between θnet and ϕnet. We provide a more
quantitative treatment of all this in Appendix A.
In order to simplify the transformation (27b), we will

define two 2π-periodic coordinates

ϕ̂net ≔
�
ϕnet if cos θJN < 0

ϕnet þ π else
ð29Þ

ϕ̂JL ≔
�
ϕJL if cos θJN < 0

ϕJL þ π else
ð30Þ

to replace ϕnet and ϕJL in the characterization of the sky
location and spin azimuths, respectively. Both transforma-
tions have unit Jacobian. With these coordinates, the
approximate symmetries in Eq. (27) become one-parameter
reflections,

ϕ̂net ↦ −ϕ̂net; ð31aÞ

cos θJN ↦ − cos θJN: ð31bÞ

ϕ̂JL has a simple interpretation as the azimuth about J
between L and the unsigned direction of propagation, so
that N̂ ↦ −N̂ leaves ϕ̂JL invariant. In Sec. V B we will
show that this azimuth can be remarkably well-measured.
The Virgo detector does not have such special alignment.

If a signal is loud in Virgo and at least one LIGO detector,
the symmetries in Eq. (31) are typically broken and the
posterior distribution in these variables is unimodal.

B. Folding algorithm

Having identified the approximate discrete symmetries
responsible for multimodality, we now introduce “folding”,
an algorithm to exploit this structure when sampling. The
basic idea is illustrated in Fig. 8, beginning with sampling
from the probability distribution marginalized over the
discrete approximate-symmetry transformations, and then

sampling over the set of transformations in postprocessing
to undo the marginalization.
The four approximate symmetry transformations in

Eqs. (25), (26), (31a), and (31b) allow us to divide the
phase space into 24 ¼ 16 sectors in which the posterior has
similar behavior. This is illustrated in the left panel of Fig. 8
for the four quadrants of cos θJN; ϕ̂net space, which have
similar solutions by virtue of the approximate symmetries
in Eq. (31) (the other two folded dimensions ϕ̂ref , ψ are not
shown). We pick one of these sectors, as highlighted in the
right panel, which we call the “folded space”. The full
space can be recovered from the folded space via 24

discrete mappings fσ1;…; σ16g that either do or do not
apply each of the transformations (25), (26), (31a), and
(31b), respectively. If the symmetries were perfect, it would
suffice to draw samples on the folded space, then distribute
them evenly onto all sectors using these mappings. The
symmetries in Sec. IVA are only approximate, since the
detectors are not perfectly aligned, and general waveform
models have additional effects like orbital precession and
higher harmonics that are not modeled by Eq. (7). Hence
we generalize this idea to relax the requirement of perfect
symmetry, as follows:
(1) Define the folded distribution

P̃ðθ̃Þ ¼
X2N
i¼1

Pðσiðθ̃ÞÞ; ð32Þ

where θ̃ is a set of parameters in the folded space,
N ¼ 4 is the number of folded parameters, fσig are
the 2N discrete mappings and P is the posterior
distribution in the full space. The number of modes
of P̃ can be smaller than that of P, as shown in the
right panel of Fig. 8, by a factor of up to 2N .

FIG. 8. Folding algorithm. Left: the posterior has multiple
modes (shown in different colors) due to approximate symmetries
that are known in advance. Right: we can “fold” the distribution
(sum its appropriately transformed modes) to make it unimodal.
We sample the folded distribution and reconstruct the original in
postprocessing.

JAVIER ROULET et al. PHYS. REV. D 106, 123015 (2022)

123015-8



(2) Draw “folded” samples from this simpler distribu-
tion, fθ̃jg ∼ P̃, using a traditional sampler.

(3) Assign each folded sample to a sector: for each θ̃j,
draw θj from fσ1ðθ̃jÞ; σ2ðθ̃jÞ;…g with relative
probabilities fPðσ1ðθ̃jÞÞ; Pðσ2ðθ̃jÞÞ;…g. The set
fθjg is distributed according to PðθÞ.

At first glance, Eq. (32) suggests that each evaluation of
P̃ requires 2N evaluations of P and would therefore increase
the computational cost by that factor. However, since the
folded parameters are extrinsic, the expensive computation
of the waveform can be reused. In the case at hand,
changing the polarization and sky location requires recom-
puting antenna factors Fþ, F× and time delays, and
changing the phase requires recomputing spherical har-
monic phases eimϕref . Even in a general case, all 2N

evaluation points are known simultaneously, facilitating
vectorization and parallelization. These considerations
make the cost of computing P̃ similar to that of P.
Likewise, generating θj from θ̃j in step 3 above does
not require additional computations of P, because these
values can be stored along with θ̃j during the sampling
process, and the assignment itself is computationally very
cheap. In practice, the number of evaluations required for
convergence is much smaller for distributions with less
modes, making this method advantageous for both robust-
ness and efficiency.
We emphasize that the folding procedure is not an

approximation; it still gives the correct answer if the
distribution P is not symmetric at all (in that case, it just
does not provide any advantage).
In Sec. III D we had mentioned that the ϕ̂ref posterior is

bimodal and discontinuous. In contrast, per Eqs. (22), (25),
and (32) the folded posterior is unimodal and continuous,
because both sides of the branch cut are summed together.
In a similar way, the discontinuities introduced in Eqs. (29)
and (30) are absent in the folded posterior since they
happen at the fold cos θJN ¼ 0.
Finally, one might worry that Fig. 8 merely shows that

the marginalized 2-dimensional posterior is approximately
symmetric, while the folding algorithm is efficient only if
the full 15-dimensional posterior is symmetric. It could be
possible that, although this projection looks symmetric, the
mappings we proposed were incorrect descriptions of the
symmetry in the full space. In Fig. 9 we show histograms of
the unfolding probabilities pi ∝ Pðσiðθ̃ÞÞ used in step 3,
which have unit sum by construction. In the limit that the
transformations σi were perfect symmetries of P, these
probabilities would be 1=16. Conversely, if they were not
good symmetries, these probabilities would be very nearly
0 or 1. We find that they are near 1=16, confirming that the
transformations we identified are indeed approximate
symmetries of the full space. Whether all or some of the
modes are present for any particular event depends on the
source parameters, the network configuration and the
signal-to-noise ratio.

An alternative to the folding algorithm, which is similar
in spirit, is to specify custom jump proposals that follow the
approximate symmetry transformations and effectively
“connect” the modes in the sampling process. This
approach has been used to mitigate both degeneracy and
multimodality [38–40], albeit for a different set of sym-
metries [that includes the transformation in Eq. (25)]. The
choice of sampling proposal can significantly impact the
efficiency of Monte Carlo methods, see e.g., [41,42] and
references therein.

V. RESULTS

We implement the coordinate transformations described
in Sec. III and the folding algorithm introduced in Sec. IV
in a PYTHON package, which we make publicly available at
https://github.com/jroulet/cogwheel. Apart from those
improvements, the cogwheel code utilizes the relative-
binning algorithm [43–45] with higher-order modes [46] to
accelerate likelihood evaluations. It interfaces with third-
party routines for downloading public data (GWOSC [47],
GWpy [48]), generating waveforms (lalsuite [49])
and sampling distributions (PyMultiNest [50,51],
dynesty [52]).
In this sectionwe summarize the improvements brought by

the coordinate transformations and folding technique in terms
of efficiency and robustness of the inference. Throughout, we
model waveforms using IMRPhenomXPHM with next-to-
next-to-leading-order post-Newtonian precession [17], and
we sample distributions with PyMultiNest [50,51].
Figure 10 summarizes how our choice of coordinates,

combined with the folding method, naturally describes the
distribution of extrinsic parameters. The uncertainties
achieved in the one-dimensional marginal posteriors for
the parameters controlling distance, arrival phase and
arrival times are in much closer agreement with the
expectations from Eqs. (15)–(17) and (21), shown by

FIG. 9. Distribution of probabilities pi with which folded
samples are assigned to the 16 sectors during step 3, for
GW151012. All peak near 1=16, demonstrating that the trans-
formations (25), (26), (31a), and (31b) are approximate sym-
metries of the full 15-dimensional space.
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crimson bars. That being said, Eq. (17) significantly
underestimates the uncertainty of the arrival time tk0 .
This can be traced back to correlations with intrinsic
parameters, most significantly chirp mass and in-plane
spin magnitude (not shown). The definition of arrival time
for waveforms with different intrinsic parameters is some-
what arbitrary. The convention adopted by the LIGO
Algorithm Library is to define the reference time when
the amplitude of the strain is maximal [53]. In the
IMRPhenomX family of waveform models this is imple-
mented through parametric fits [54] that are accurate to
∼1 ms [55], which is consistent with the precision of the
arrival time measurement achieved in Fig. 10.

A. Performance of stochastic sampling

Wecompare the performance of parameter estimation runs
using the coordinate system presented in Sec. III (coupled to
the folding algorithmof Sec. IV B) against an “unoptimized”
system that uses ðcos θnet;ϕnet; tk0 ; cos θJN;ϕJL;ϕ12; cos θ1;
cos θ2; χ1; χ2; dL;ϕref ;ψ ;M; lnqÞ as sampling coordinates
and no folding. This comparison assesses the impact of the
methods new to this work within the cogwheel software,
note that other state-of-the-art codes for parameter inference
[38–40,56–58] use various other parametrizations and
optimizations (marginalization, custom jump proposals,
parallelization, etc.). We adopt an isotropic, uniform-in-
spin-magnitudes prior in both cases, and so for ease of

implementation in the optimized case we use the cumulative
of the prior on aligned spin components as sampling
coordinate instead of the effective spin (cf. Sec. III F). In
both examples we use PyMultiNest and vary the number
of live points in factors of two between 512 and 16384 (this is
an internal feature of nested samplers; a higher number of live
points typically achieves a better coverage of parameter
space and produces more independent samples at a propor-
tionally higher computational cost). In all cases, we use a
single computing core and identical environments to run each
configuration, thus, differences in runtime are due to the
algorithm. We use GW151226 as a test case.
We find that, despite nested sampling being generally

well suited for multimodal problems, and despite using
numerous live points, the sampler fails to find some modes
of the posterior when folding is not used. This is illustrated
in the top panel of Fig. 11; of the unoptimized runs, only
the one with 16384 live points found all modes, and even in
this case one of the modes was undersampled. Conversely,
all runs that used our coordinate system and folding
successfully found all the modes. To quantify the error
this induces, we compare each posterior distribution P to
a reference answer Pref, chosen as that with the largest
number of live points and using our coordinate system and
folding algorithm. Our measure of the error is the Jensen-
Shannon divergence between each marginal θJN;ϕnet
posterior and the reference distribution,

FIG. 10. Marginalized posterior for the extrinsic parameters of GW151226 in terms of standard coordinates (left) or the folded
coordinates advocated in this work (right), see Secs. III and IV. The complex structures on the left are largely absent on the right, making
the latter system better suited for sampling. Crimson bars show the standard deviation expected given the signal-to-noise ratio
[Eqs. (15)–(17), (21)], discrepancies with the realized uncertainties are due to correlations with the marginalized parameters.
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JSDθJN;ϕnet
ðPkPrefÞ

≔
1

2

ZZ
dθJNdϕnet

�
P log2

P
M

þ Pref log2
Pref

M

�
ð33Þ

with M ¼ ðPþ PrefÞ=2. We singled out θJN , ϕnet because
this projection of the unoptimized posteriors is most clearly
missingmodes. To evaluate Eq. (33), we obtainPðθJN;ϕnetÞ,
PrefðθJN;ϕnetÞ from the posterior samples with a kernel
density estimation and perform a double quadrature, using
scipy implementations [59]. We show this in the bottom
panel of Fig. 11: we see more than an order of magnitude
improvement in terms of this error measure when we use our
coordinate system and folding.
As expected, the runtime is approximately proportional

to the number of live points, however, the unoptimized runs
show larger fluctuations. We attribute these to the stochastic
nature of the sampling process, likely amplified by the fact

the distribution is multimodal: the runtime can be signifi-
cantly affected by whether, and when, a new mode is found
by the sampler, especially when using few live points, for
which the relative fluctuations are found to be largest.

B. Measurability of spin azimuth

From the astrophysics standpoint, the most interesting
result of this work is that the modified spin azimuth ϕ̂JL can
be measured remarkably well. Figure 12 shows its posterior
distribution for the 15 events in the GWTC-3 and Institute
for Advanced Study’s catalogs with tightest bounds. We see
that it is not uncommon for this parameter to be signifi-

cantly constrained. Recall that ϕ̂JL describes the azimuth
about J between the orbital angular momentum L and the
location of the detector [Eq. (30), Fig. 6]. Due to isotropy,
all possible directions N̂ towards the detector are equivalent
a priori, and thus the prior on ϕ̂JL is uniform. Moreover, for
aligned-spin configurations we have LkJ, so ϕ̂JL has no
effect on the waveform and therefore the likelihood is
independent of ϕ̂JL. It follows that any departure from a flat
posterior originates from the presence of misaligned spins
in the waveform model. Furthermore, if any particular
value of ϕ̂JL can be confidently ruled out for an event, then
the source is inconsistent with having aligned spins.
This can have far-reaching consequences for the astro-

physical interpretation of binary mergers. The degree of
spin-orbit alignment constrains the formation history of the
system—in particular, whether it likely formed in isolation
or in a dense environment [60]—and can inform astro-
physical processes such as tidal interactions and supernova

FIG. 11. Improvement brought by our methods in terms of
increased robustness to multimodality. We compare runs that do
not use the methods new to this work (“unoptimized”) to runs that
do (“folding and coordinates”). Within each setting, runs differ in
number of live points. Top: Without folding, the sampler fails to
find all modes of the posterior even when using a large number of
live points. Bottom: Error achieved in the posterior distribution
versus runtime, as the number of live points is iteratively doubled.
We use the Jensen-Shannon divergence with respect to the
highest-resolution “folding and coordinates” run as our error
measure, see Eq. (33) (the reference run is excluded from the
figure). The unoptimized runs have a higher error due to missing
or undersampled modes.

FIG. 12. Posterior distributions of modified spin azimuth ϕ̂JL
[Eq. (30)] for the 15 events with best constraints, under a prior
isotropic in spins. For aligned-spin configurations, ϕ̂JL becomes a
dummy parameter, and therefore events with well-measured ϕ̂JL
have spins misaligned with the orbit. Posteriors have been
artificially centered by subtracting their circular means, which
have no astrophysical importance.
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kicks [61]. For this reason, characterizing the imprints of
precession is a topic of intensive research. Indeed, beyond
the parametrization in terms of θJN , ϕJL, ϕ12 on which ours
is built [28], numerous other descriptions have been
studied, both physically and observationally motivated;
in terms of an effective precession spin χp [62] or
modifications thereof [63,64], a precessing signal-to-noise
ratio ρp [65], a taxonomy of phenomenological parameters
[66], or the spin azimuths [29].
The practical difference between ϕJL and ϕ̂JL is that ϕJL

posteriors typically have two modes separated by π, with
opposite inclinations. The reason for this bimodality is an
approximate discrete symmetry corresponding to observing
the same source from the antipodal direction, as discussed
in Sec. IVA. As a result, the marginal posterior on ϕJL is
not particularly well constrained. We solve this by applying
a shift of π depending on the sign of cos θJN per Eq. (30).
Recently, [29] found hints of precession in GWTC-2

by studying the azimuths ϕ1, ϕ2 about L between each
individual spin and the orbital separation vector, at a
reference time tref ¼ −100GM=c3 before merger. The
results in Fig. 12 are similar in spirit because, following
an argument analogous to the one opening this section, a
tight measurement of ϕ1 or ϕ2 would also rule out aligned
spins. In fact, we find that significantly tighter constraints
can be placed on ϕ̂JL than on ϕ1 or ϕ2. This is for two
reasons; first, the aforementioned symmetry leads to a
similar bimodality correlated with the source inclination,
and second, ϕ1 and ϕ2 define the spin azimuths relative to
the poorly measured orbital phase ϕref . Indeed, [29] report
that varying the reference time (or equivalently, frequency)
at which the source configuration is specified sensitively
affects the constraints on ϕ1, ϕ2. Interestingly, we find that
the width of the ϕref posterior depends on fref , but that of
ϕ̂JL does not, at least in the range 50 Hz < fref < 150 Hz.
This indicates that, at least in some cases, the uncertainty in
ϕref is the limiting factor in the measurement precision for
the angle between spin and orbital separation. We interpret
this observation as follows. First, while ϕ1;ϕ2 evolve at the
orbital timescale, the angle ϕ̂JL evolves at the slower
precession timescale. Moreover, the precession frequency
is well-constrained independently of directly observable
precession effects, because intrinsic parameters are mea-
sured from the evolution of the orbital phase (note that to
lowest post-Newtonian order, the precession frequency just
depends on the masses and the orbital frequency, not the
spins [28]). Since there are few precession cycles and their
frequency is determined, their phase can be specified
through ϕ̂JL similarly well over a broad range of reference
frequencies. This said, we observe a degradation in its
measurement if we adopt a reference frequency of 20 Hz.
The azimuth difference ϕ12 also evolves on the precession
timescale, however it has a subtler effect on the waveform
and, in agreement with previous work [29,67], we find it is
not as well-measured.

Reassuringly, the set of events with best measured ϕ̂JL
contains those for which precession signatures have been
reported before, namely GW200129_065458 [11,68],
GW190412 [36,69,70], GW151226 [71], GW170818
[29], and GW190521 [72,73], as shown in Fig. 12. That
being said, at this point we are unable to quantify the
significance of the measurability of ϕ̂JL as an indicator of
precession. This preliminary result motivates future work,
in which we will define a quantitative statistic involving
ϕ̂JL and calibrate its significance using synthetic data.

VI. CONCLUSIONS

We have introduced a coordinate system optimized for
characterization of compact binary mergers observed
through gravitational waves. It removes commonly encoun-
tered degeneracies andmultimodality, and the transformation
to standard coordinates has a simple Jacobian determinant
and an explicit inverse. These coordinates improve the
robustness and efficiency of parameter estimation algo-
rithms, and build intuition about gravitational wave
measurements.
In order to remove degeneracy, the coordinates are

designed to separately control the main observable features
of the signal. For the extrinsic parameters, these are the
amplitude, phase and time of arrival at the reference
(loudest) detector, and the time delay to the second-loudest
detector. For the spins, we single out the effective spin
parameter and the total spin azimuth, which affect the
orbital evolution and the peak frequencies of the amplitude
modulations induced by precession, respectively. We
reemphasize previous realizations that the reference fre-
quency at which the configuration of the binary is specified
should be inside the sensitive band of the detectors, and the
spin orientations should be defined relative to the direction
of wave propagation rather than the orbital separation.
Strikingly, the azimuth ϕ̂JL between the total spin and

the unsigned direction of wave propagation is well-
measured in several examples (Fig. 12), establishing a
novel observable signature of precession. We anticipate that
this parametrization will improve our understanding of
spin–orbit misalignment in nature. In future work we will
define a statistic based on this parameter to quantify the
significance of spin misalignment.
We identified four approximate symmetries as the

leading cause of multimodality in posterior distributions,
involving the orbital phase, polarization, sky location, and
inclination. Depending on the signal-to-noise ratio and the
network configuration, these can lead to up to 24 modes in
the posterior. The last two of these symmetries are
particularly good for the Hanford-Livingston network
due to its peculiar geometric configuration, and can lead
to four degenerate solutions roughly corresponding to a
source overhead or underfoot, and face-on or face-off.
We devised “folding”, an algorithm that turns a distri-

bution with this type of multimodality into an equivalent
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unimodal problem by marginalizing over the discrete
degeneracies. To facilitate its application, we adapted
our coordinates so that each of the four independent
approximate-symmetry transformations is achieved by a
one-parameter shift or reflection.
Using these algorithms, we were able to achieve robust

parameter inference while keeping the number of live
points, and thereby the computational cost, low
(Fig. 11). We make publicly available a parameter estima-
tion code that implements these features at https://github
.com/jroulet/cogwheel.
These methods greatly simplify the distribution, to the

point where a parametric approximation to the full dis-
tribution can be made based on the signal-to-noise ratio and
a few inputs specifying the location of the peak. Beyond the
applications shown here, we expect that this will have other
uses in gravitational wave data analysis. For example,
evidence integrals have application in search [13,74] and
parameter estimation [75], and knowledge of the distribu-
tion can be used to design efficient integration schemes,
e.g., through variance reduction methods. As another
example, a machine-learning approach based on normal-
izing flows was recently demonstrated to be accurate and
fast at estimating gravitational wave source parameters
[76]. In that approach, the posterior distribution is
described in terms of a system of coordinates in which
it has a standard form (e.g., Gaussian). This change of
coordinates is found automatically and contains the com-
plexity of the problem. The techniques introduced in this
paper can be regarded as an analytical approximation to a
normalizing flow. This suggests that applying a normaliz-
ing flow on the space of coordinates we developed here (or
similar) might require a simpler neural network architecture
and reduce the training cost.
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APPENDIX A: APPROXIMATE
SYMMETRIES, CONTINUED

In this appendix we provide a more quantitative dis-
cussion of the argument presented in Sec. IVA, regarding
how the measurement of the Hanford-Livingston phase
difference constrains the source azimuth along the time-
delay ring and the discrete degeneracies associated.
From Eqs. (12) and (20), the observable phase difference

between detectors k0 and k1 is

φk1 − φk0 ¼ argRk1 − argRk0 − 2πf̄k1τk0k1 cos θnet

− 2πðf̄k0 − f̄k1Þtk0 ; ðA1Þ
where the last term can be neglected if the detectors have
similar noise power spectrum shapes and thus f̄k. The
difference argRk1 − argRk0 does depend on the sky loca-
tion and inclination if the detectors are not coaligned, which
provides a joint constraint on θnet;ϕnet; ι. Likewise, the
relative amplitude at the detectors

ak1
ak0

¼
����Rk1

Rk0

���� ðA2Þ

is also measurable. Figure 13 shows how these terms depend
on ϕ̂net for various inclinations (holding fixed the values of
our other coordinates, and for an aligned-spin configuration
so ι ¼ θJN). Inverting cos ι at fixed ϕnet inverts the sign of
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argRk and adds π to ϕ̂net, by Eqs. (9) and (29). Therefore, in
the second panel blue and red curves are related by a vertical
reflection plus a horizontal shift. As a result of the geometry
of the Hanford-Livingston network, the relative phase
and amplitude of the detector responses are symmetric
under the transformations (31) to a good approximation,
especially near the configurations favored by the prior
ϕ̂net ≈�π=2, cos ι ≈�1.
The dependence of argRL − argRH on ϕ̂net seen in

Fig. 13 is responsible for the correlation between cos θnet

and ϕ̂net noticeable in Fig. 10; per Eq. (A1), in order to
match the observed φk1 − φk0 , cos θnet needs to change with
ϕ̂net to compensate the variation of argRL − argRH.

APPENDIX B: REFERENCE SHEET

In this appendix we provide a compact list of the
coordinates defined throughout the main text, as imple-
mented in the cogwheel package. The sequence of
transformations to a standard system is given in Table I,
together with their Jacobian determinants. Here, GMST
refers to the Greenwich Mean Sidereal Time of the event,
which determines the orientation of Earth, and k0, k1 index
the two detectors with highest signal-to-noise ratio.
We use χN1x; χ

N
1y; χ

N
2x; χ

N
2y as “standard” parameters to

describe the in-plane spins; we define these as the
Cartesian spins in a frame where ẑkL and N̂ is in the
yz-plane. This is related to the “radiation frame” used by
the LIGO algorithm library [49] (where ẑkL and x̂ is
parallel to the orbital separation vector) with a rotation by
ϕref around ẑ,

�
χ1x χ2x

χ1y χ2y

�
¼
�

cosϕref sinϕref

−sinϕref cosϕref

��
χN1x χN2x
χN1y χN2y

�
: ðB1Þ

Using this system has two advantageous properties: the
transformations in Table I get more decoupled since these
spins are independent of ϕref , and the coprecessing-frame
harmonic modes of a waveform transform under a change
by ϕref as hlmðfÞ → hlmeimϕref if these spin components
are held constant [17,77] which is useful for reusing
waveform computations, e.g., in folding.
We also introduced spin coordinates Cdiff ; C⊥

1 ; C
⊥
2 which

are the cumulatives of the prior on the aligned spin
difference and the in-plane spin magnitudes, respectively.
These have a uniform prior on (0,1) by definition, and their
relation to the physical spins depends on the choice of prior.

FIG. 13. Response of the Hanford-Livingston network along a
ring of constant time-delay, as a function of modified azimuth
ϕ̂net [Eq. (29)] for various inclinations. Top: prior probability, see
Eq. (28). Center: phase difference introduced by the relative
orientations of the detectors. Bottom: relative amplitude response.
In these plots, the transformation (31a) is a horizontal reflection
and (31b) inverts the color scale. Both are approximate sym-
metries of all three quantities.

TABLE I. Modular sequence of transformations from the sampling coordinates we propose to a standard system. Each transformation
involves few variables, is only conditioned on variables computed by the previous ones, and has a simple Jacobian determinant.

Conditioned on

Sampled Standard Variables Constants jJj Reference

M; ln q m1, m2 M cosh2=5 ð1
2
ln qÞ

χeff ; Cdiff χ1z; χ2z q a (24), (B2)
cos θJN; ϕ̂JL;ϕ12; C⊥

1 ; C
⊥
2

ι; χN1x; χ
N
1y; χ

N
2x; χ

N
2y χ1z; χ2z; m1; m2 fref

b [28], (30), (B4)
ψ ψ 1
cos θnet; ϕ̂net α; sin δ θJN GMST; k0; k1 1 Fig. 3, (29)
tk0 tc α, δ GMST; k0 1 (13)

ϕ̂ref ϕref tc; α; δ;ψ ; ι GMST; k0; f̄ML
k0

;φML
k0

1 (22)

d̂ dL M, α, δ, ψ , ι GMST; k0 d̂=dL (18)
aUnnecessary if the prior is chosen in terms of sampled parameters, e.g. uniform.
bUnnecessary since the prior is uniform on sampled parameters by isotropy and the definition of C⊥

1 ; C
⊥
2 .
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Our default choice is uniform in the aligned spin difference
conditional on χeff ; q, in which case

Cdiffðχ1z; χ2z; qÞ ≔
Z

χ1z

χmin
1z

dχ01zπðχ01zjχeff ; qÞ

¼ χ1z − χmin
1z

χmax
1z − χmin

1z

; ðB2Þ

where χmin
1z ðχ1z; χ2z; qÞ is the minimum possible χ1z con-

sistent with the value of effective spin χeffðχ1z; χ2z; qÞ
[given by Eq. (24)] subject to the Kerr bound jχ1zj < 1,
and similarly χmax

1z ðχ1z; χ2z; qÞ is the maximum possible
value,

χmin
1z ¼ maxðχ1z þ qχ2z − q;−1Þ;

χmax
1z ¼ minðχ1z þ qχ2z þ q; 1Þ: ðB3Þ

For the in-plane spins, our prior choice is uniform in the
disk given the aligned spin value, which yields

C⊥
1 ðχ⊥1 ; χ1zÞ ≔

Z
χ⊥
1

0

dχ⊥1 0πðχ⊥1 0jχ1zÞ

¼ ðχ⊥1 Þ2
1 − χ21z

; ðB4Þ

and similarly for the secondary in-plane spin.
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