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The Einstein Telescope (ET), a future third-generation gravitational wave detector, will have detection
sensitivity for gravitational wave signals down to 1 Hz. This improved low-frequency sensitivity of the ET
will allow the observation of low mass binaries for a longer period of time in the detection band before their
merger. Because of an improved sensitivity as compared to current and advanced 2G detectors, the
detection rate will also be greatly improved. Given the high detection rate of merging compact binaries with
the ET, it will be a useful instrument to conduct population studies. In this paper, we present an algorithm to
estimate the parameters of the low mass merging compact binary systems such as localization, chirp mass,
redshift, mass ratios, and total mass of the source, which are crucial in order to estimate the capability of the
ET to study various compact binary populations. For the compact binary population distributed uniformly
in comoving volume, we find that with single ET, ≈1% of binaries can be localized within 800 square
degrees. The values of chirp mass and total mass can be constrained within ≲5% error, while z and DL can
be estimated with an error of ≲15% for effective SNR≳ 50 using single ET.

DOI: 10.1103/PhysRevD.106.123014

I. INTRODUCTION

The second-generation gravitational wave (GW) detec-
tors initiated GW astronomy with the first detection of
merging compact objects GW150914 [1], which was the
direct detection of a binary black hole (BBH). Numerous
BBH detections in the next run since then have shown
the existence of a population of stellar-mass black holes
(BHs) undetected in previous observations which is much
heavier than those detected through the observation of x-
ray binaries [2–5]. The first detection of a binary neutron
star (BNS) inspiral [6] with simultaneous gamma-ray
burst observation and the subsequent detection of the
electromagnetic counterpart provided a better understand-
ing of the origin of short gamma-ray bursts [7–13]. The
observations of the associated kilonova proved that the
BNS mergers source the formation of the heaviest metals
through r-process nucleosynthesis. The joint detection of
GW and gamma-ray bursts proved the speed of GWs
and the speed of light to be equal with an accuracy of 1
in 1015 [9].
Detailed studies of GW sources in the Universe will be

continued with 3G detectors such as ET [14,15] or Cosmic

Explorer (CE) [16–18]. ET is planned to have a detection
sensitivity down to 1 Hz [19,20]. This is required so as
to have the ability to detect BBHs with components of
higher mass such as 102–104M⊙ [21–24] which are yet to
be detected.
Given the improvement in sensitivity by a factor of 10 in

the intermediate frequency range, and several orders of
magnitude improvement in the low-frequency band, as
compared to 2G detectors, ETwill be able to detect systems
such as BBH and neutron star–black hole (NSBH) binaries
of total mass in the range of 20–100M⊙, up to redshift
z ∼ 20; high mass BHs with masses of the order 103M⊙ up
to z ∼ ð1–5Þ; BNS binaries of total masses ∼3M⊙ up to
z ∼ ð2–3Þ [25,26]. The detection rate will also be greatly
improved as compared to the current and advanced 2G
detectors. The expected detection rates based on the ET-D
[14] design sensitivity are ∼105–106 BBH detections and
∼7 × 104 BNS detections in one year [27–29].
Because of an improved low-frequency sensitivity, ET

will observe lowmass binaries for a longer period of time in
the detection band before their merger. With the lowest
frequency detection sensitivity for ET-D being down to
1 Hz, the BNS signals can stay in the detectable band from
a few minutes to several days. Thus, it is necessary to take
into account the effect of rotation of Earth on the response
function. Zhao and Wen [30] and Chan et al. [31] have
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done such an analysis using a Fisher information matrix to
study the effects of the time-dependent detector response
due to Earth’s rotation on long-duration signals from
systems such as BNS and NSBH for estimating the
uncertainties in the measurement of signal parameters
using 3G detectors such as ET and CE. In the previous
work [32], we presented an algorithm to localize and
constrain the parameters of BBH coalescences such as
the chirp massM and redshift z or luminosity distance DL
using single ET. In this work, we continue to explore the
capability of ET as a single instrument to study longer-
duration signals from coalescing low mass compact binary
systems and present a simplified approach to estimate the
parameters of low mass merging compact binary systems.
Given the high detection rate of merging compact binaries
with ET, it will be a useful instrument for conducting
population studies. We present an algorithm to estimate the
angles describing the location of the source, the inclination,
and polarization of an inspiralling compact binary system
using the ratios of the signal to noise ratios (SNRs)
generated in each of the three detectors in single ET. We
also demonstrate that single ET can break the chirp mass–
redshift degeneracy and, thus, provide estimates of the
chirp mass, redshift, mass ratios, and total mass of the
source. These estimates are crucial in order to estimate
the capability of ET to study various compact binary
populations [33].

II. ET AS A SINGLE INSTRUMENT

The ET will comprise of three coplanar detectors of
equal arm length of 10 km, aligned in the form of an
equilateral triangle so that the opening angle will be 60°
and it will use Michelson interferometry. Multiple design
configurations have been studied over time. The first
basic design considered was ET-B [19]. It was based on a
single cryogenic interferometer and covered the full
frequency range of interest. It was then updated to a
xylophone design, resulting in the ET-C sensitivity [20]
in which each detector consisted of two interferometers,
each with an opening angle of 60°, with one optimized
for low frequencies and the other optimized for high
frequencies. ET-D [14] is a realistic version of ET-C,
since it considers an improved noise model. Each ET
detector will have two interferometers, one each for the
low and high frequencies. The final triangular design of
the ET will have three such detectors and so six
interferometers in total.
While observing a GW signal which stays in the

detection band of the detector for a long duration, one
has to take into account the change in the antenna response
with the rotation of Earth. Following the detailed treatment
given in Jaranowski, Królak, and Schutz [34], which takes
into account the motion of Earth, the time-dependent
antenna response function for a single detector in the
reference frame of the celestial sphere at time t is given as

FþðtÞ ¼ sin η½aðtÞ cos 2ψ þ bðtÞ sin 2ψ �; ð1aÞ

F×ðtÞ ¼ sin η½bðtÞ cos 2ψ − aðtÞ sin 2ψ �; ð1bÞ

where

aðtÞ ¼ 1

16
sin 2γð3 − cos 2λÞð3 − cos 2δÞ

× cos½2ðα − ϕr − ΩrtÞ�

−
1

4
cos 2γ sin λð3 − cos 2δÞ sin½2ðα − ϕr −ΩrtÞ�

þ 1

4
sin 2γ sin 2λ sin 2δ cos½α − ϕr −Ωrt�

−
1

2
cos 2γ cos λ sin 2δ sin½α − ϕr −Ωrt�

þ 3

4
sin 2γcos2λcos2δ ð2aÞ

and

bðtÞ ¼ cos 2γ sin λ sin δ cos½2ðα − ϕr −ΩrtÞ�

þ 1

4
sin 2γð3 − cos 2λÞ sin δ sin½2ðα − ϕr −ΩrtÞ�

þ cos 2γ cos λ cos δ cos½α − ϕr − Ωrt�

þ 1

2
sin 2γ sin 2λ cos δ sin½α − ϕr −Ωrt�; ð2bÞ

where α is the right ascension, δ is the declination of
the GW source, ψ is the polarization angle, and λ is the
latitude for the detector location. Ωr is Earth’s rotational
angular velocity, and ϕr is the phase defining the position
of Earth in its diurnal motion at t ¼ 0. The quantity ðϕr þ
ΩrtÞ is the local sidereal time at the detector site, measured
in radians, while γ determines the orientation of the
detector arms and is measured counterclockwise from
East to the bisector of the interferometer arms. Finally, η
is the angle between the interferometer arms. In the case of
ET, η ¼ 60°.
Using Eq. (1), the antenna response functions can be

calculated for any given instant of time t. We use the
currently planned design of ET-D [14], consisting of three
overlapping detectors, arranged in an equilateral configu-
ration with arm-opening angles of 60°. The location of ET
detector for our analysis is chosen to be at the Virgo
site [35,36].

III. SIGNAL CHARACTERISTICS OF
COALESCING COMPACT BINARY SYSTEMS

We consider ET as a single instrument rather than a
part of network to detect the gravitational radiation from
an inspiralling compact binary system in this work.
Inspiralling compact binary systems are also known as
chirping binaries. The two polarizations of the GW signal
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from such a system have a monotonically increasing
frequency and amplitude with the orbital motion radiating
away GW energy. If tc is the time of the termination of the
waveform, then the two polarizations hþ and h×, of the
waveform at time t < tc for a binary with the chirp mass
M, merging at a distance DL (described in Sec. III in
Ref. [37]) are given as

hþðtÞ ¼ −
1þ cos2ι

2

�
GM
c2DL

��
tc − t

5GM=c3

�
−1=4

× cos ½2Φc þ 2Φðt − tc;M; μÞ�; ð3aÞ

h×ðtÞ ¼ − cos ι

�
GM
c2DL

��
tc − t

5GM=c3

�
−1=4

× sin ½2Φc þ 2Φðt − tc;M; μÞ�; ð3bÞ

where c is the speed of light,G is the gravitational constant,
and ι is the angle of inclination of the orbital plane of the
binary system with respect to the observer. μ is the reduced
mass of the binary system. The angle Φðt − tc;M; μÞ gives
the orbital phase of the binary system. The chirp mass M
for a binary system composed of component massesm1 and
m2 is defined asM ¼ ðm1m2Þ3=5=M1=5, whereM ¼ m1 þ
m2 is the total mass and Φc is the phase of the termination
of the waveform [37]. The strain in the detector is given as

hðtÞ ¼ FþðtÞhþðtþ tc − t0Þ þ F×ðtÞh×ðtþ tc − t0Þ; ð4Þ

where Fþ and F× are the antenna response function of one
of the three detectors in ET, as defined in Eq. (1), t0 is the
time of coalescence in the detector frame, and ðt0 − tcÞ is
the travel of time from the source to the detector.
Substituting the values of the two polarizations from
Eq. (3) in Eq. (4) gives the value of strain

hðtÞ ¼ −
�
GM
c2

��
Θ

4DL

��
t0 − t

5GM=c3

�
−1=4

× cos ½2Φ0 þ 2Φðt − tc;M; μÞ�; ð5Þ
where

Θ≡ 2½F2þð1þ cos2 ιÞ2 þ 4F2
× cos2 ι�1=2 ð6Þ

and

2Φ0 ¼ 2Φc − arctan

�
2F× cos ι

Fþð1þ cos2 ιÞ
�

ð7Þ

with 0 < Θ < 4.
In a given duration, for which it can be assumed that the

time of the signal in the detector bandwidth is short enough
to ignore the change in the antenna response functions
of the detector due to rotation of Earth, the Fourier
transform of the GW signal amplitude hðtÞ in terms of
frequency f is [38–40]

jh̃ðfÞj ¼ 2c
DL

�
5Gμ
96c3

�
1=2

�
GM
π2c3

�
1=3

�
Θ
4

�
f−7=6: ð8Þ

The SNR ρj for j ¼ ð1; 2; 3Þ for each of the three ET
detectors, obtained using match-filtering assuming that
they have identical noise, is given as [39,41]

ρj ≈ 8Θj
r0
DL

�
Mz

MBNS

�
5=6 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζðfmaxÞ
p

; ð9Þ

where Mz ¼ ð1þ zÞM is the redshifted chirp mass.
MBNS ≈ 1.218M⊙ is the chirp mass of an equal mass
binary with each component mass being 1.4M⊙, while

ζðfmaxÞ ¼
1

x7=3

Z
2fmax

1

dfðπM⊙Þ2
ðπfM⊙Þ7=3ShðfÞ

; ð10Þ

where ShðfÞ is the power spectral density (PSD) for ET-D
configuration for the ET-D noise curve [14] and

x7=3 ¼
Z

∞

1 Hz

dfðπM⊙Þ2
ðπfM⊙Þ7=3ShðfÞ

: ð11Þ

The characteristic distance sensitivity r0 is

r20 ¼
5

192π

�
3G
20

�
5=3

x7=3
M2

⊙

c3
: ð12Þ

The frequency at the end of the inspiral phase fmax is given
as

fmax ¼ 785

�
MBNS

Mð1þ zÞ
�

Hz; ð13Þ

where MBNS ¼ 2.8M⊙ is the total mass of an equal mass
binary with each component mass of 1.4M⊙. We can define
the combined effective SNR for the combined signal from
three detectors as

ρeff ¼ 8Θeff
r0
DL

�
Mz

1.2M⊙

�
5=6 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζðfmaxÞ
p

; ð14Þ

where the effective antenna response function Θeff is

Θeff ¼ ðΘ2
1 þ Θ2

2 þ Θ2
3Þ1=2: ð15Þ

IV. THE PLAN OF THE ANALYSIS

We use the response functions given by Eq. (1), as
defined in Sec. II, in the celestial sphere frame of Ref. [34],
for this long-duration signal analysis. Assuming that the
response functions do not change much during 5 min, we
divide the inspiral signal into 5-min segments from the time
it enters the detection band at 1 Hz. The duration of the last
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segment will be ≤5 min, since it is limited by fmax, the
frequency at the end of the inspiral, given by Eq. (13).
We assume that, in the case of detection of a coalescing

low mass binary system, the observables D are as follows:
(a) The three SNRs ρij defined by Eq. (9) for each ith
segment of the signal. (b) The phase of the strain Φi

o;j for
j ¼ ð1; 2; 3Þ corresponding to three detectors, defined in
Eq. (7) for each ith segment of the signal. The quantity Φ0

is the best match phase obtained by maximizing the
matched-filter output over the phase of the strain hðtÞ.
The details are given in Ref. [37]. (c) The GW frequency at
the start and end of each segment of the detected signal.
(d) The redshifted chirp massMz. (e) The frequency at the
end of the inspiral, corresponding to the innermost stable
circular orbit, fmax.
The observed GW frequency fobsgw can be calculated using

Eq. (4.195) in Maggiore [42]:

fobsgw ¼ 1

π

�
5

256

1

τobs

�
3=8

�
GMz

c3

�
−5=8

; ð16Þ

where τobs is the time to coalescence measured in the
observer’s frame. The minimum frequency for the detection
sensitivity of the detector and the frequency fmax sets the
limit on τobs spent in the detection band.
If τi−1 and τi are the start and end values of τobs,

respectively, for the ith segment, then the corresponding
values fi−1 and fi of fobsgw will be

fi−1 ¼
1

π

�
5

256

1

τi−1

�
3=8

�
GMz

c3

�
−5=8

ð17Þ

and

fi ¼
1

π

�
5

256

1

τi

�
3=8

�
GMz

c3

�
−5=8

: ð18Þ

In order to constrain the angles defining the strain in the
detector, we use the ratios of SNR in each segment. The
SNR for the ith segment in the jth detector can be written
using Eq. (9) as

ρij ≈ 8Θi
j
r0
DL

�
Mz

MBNS

�
5=6 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζiðfi−1; fiÞ
q

; ð19Þ

where

ζiðfi−1; fiÞ ¼
1

x7=3

Z
fi

fi−1

dfðπM⊙Þ2
ðπfM⊙Þ7=3ShðfÞ

ð20Þ

and

Θi
j ≡ 2½ðFiþÞ2ð1þ cos2 ιÞ2 þ 4ðFi

×Þ2 cos2 ι�1=2j ; ð21Þ

where Fiþ and Fi
× are the antenna response functions for the

jth detector in the ith segment. The effective SNR for the
ith segment is

ρieff ¼ 8Θi
eff

r0
DL

�
Mz

1.2M⊙

�
5=6 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζiðfi−1; fiÞ
q

; ð22Þ

where

ðρieffÞ2 ¼ ðρi1Þ2 þ ðρi2Þ2 þ ðρi3Þ2 ð23Þ

and the function Θi
eff is

ðΘi
effÞ2 ¼ ðΘi

1Þ2 þ ðΘi
2Þ2 þ ðΘi

3Þ2: ð24Þ

Using Eq. (7), we can write for the ith segment in the jth
detector

2Φi
0;j ¼ 2Φc − arctan

�
2Fi

×j cos ι

Fi
þjð1þ cos2 ιÞ

�
: ð25Þ

The antenna response function for the detector is
dependent on (δ, α, ψ ) as seen from Eq. (1), where δ is
the declination, α is the right ascension for the location of
the binary on the celestial sphere, and ψ is the polarization
angle. Thus, the quantity Θ depends on the four angles (δ,
α, ι, ψ), as seen from Eq. (6), where ι is the inclination angle
of the binary with respect to the direction of observation.
We choose cos δ, α=π, cos ι, and ψ=π to be uncorrelated and
distributed uniformly over the range ½−1; 1�.
We use the SNRs in each segment for each of the three

detectors in the triangular configuration of ET, to constrain
the value of the effective antenna pattern. The value of the
ratios of the SNRs are denoted as ρi21 ≡ ρ2=ρ1, and ρi31 ≡
ρ3=ρ1 in the ith segment. We note that, using Eq. (19) for
each segment, these ratios are

ρi21 ¼
Θi

2

Θi
1

≡ Θi
21 and ρi31 ¼

Θi
3

Θi
1

≡ Θi
31: ð26Þ

The difference of the phase Φi
0 using Eq. (7) for the three

detectors in the ith segment is

Φi
21 ¼ Φi

0;2 −Φi
0;1 and Φi

31 ¼ Φi
0;3 −Φi

0;1: ð27Þ

The quantities ρi21, ρ
i
31, Φi

21, and Φi
31 depend only on the

position on the sky, polarization, and inclination angle of
the binary system. Thus, we have constraints on these four
angles from Eqs. (26) and (27) for each segment. In this
analysis, we assume that the measurement errors on the
SNRs is Gaussian with the standard deviations for ρij and
Φi

j being σρ ¼ 1, and σΦ ¼ π=ρ, respectively. Note that this
is a conservative assumption in comparison to the errors on
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the SNRs of the recent GW detections, mentioned in
GWTC-2 [2,43].
The probability densities of the measured SNR ratios

PðρikjÞ and difference between the orbital phase PðΦi
kjÞ

between the kth and jth detectors for the ith segment are

PðρikjÞ ¼
Z

dρikdρ
i
jδðρikj − ρik=ρ

i
jÞPðρikÞPðρijÞ ð28Þ

and

PðΦi
kjÞ ¼

Z
dΦi

kdΦi
jδðΦi

kj − ðΦi
k −Φi

jÞÞPðΦi
kÞPðΦi

jÞ:

ð29Þ
We start the analysis of the inspiral signal by con-

straining the angles in each of the ith segment of the signal.
In order to do so,we consider the first set of dataD1 for the ith
segment to be D1i ≡ ðρi21; ρi31;Φi

21Φi
31Þ. We use the Bayes

theorem in each segment to obtain the constraints on the
position in the sky and on the polarization and inclination
angles. For Ωsky ≡ ðδ; αÞ, Ωsource ≡ ðι;ψÞ, we have

PðΩeffjD1i; IÞ ¼
PðΩeff jIÞPðD1ijΩeff; IÞ

PðD1ijIÞ
; ð30Þ

where Ωeff ≡ ðΩsky;ΩsourceÞ. Since the prior probability
PðΩeffjIÞ is uniform on both the source and the detector
sphere, we can write the prior probability as

PðΩeff jIÞ ¼
1

ð4πÞ2 ð31Þ

and the likelihood as

PðD1ijΩeff ; IÞ ¼
Z

dρi21Pðρi21Þ
Z

dρi31Pðρi31Þ

×
Z

dΦi
21PðΦi

21Þ
Z

dΦi
31PðΦi

31Þ

× δðρi21 − ρi21ðΩeffÞÞδðρi31 − ρi31ðΩeffÞÞ
× δðΦi

21 −Φi
21ðΩeffÞÞδðΦi

31 −Φi
31ðΩeffÞÞ:

ð32Þ
Given the information on the sky localization and source
angles in the ith segment, we constrainΘi

eff bymarginalizing
over Ωeff as

PðΘi
effjD1i; IÞ ¼

Z
dΩeffPðΘi

eff;ΩeffjD1i; IÞ

¼
Z

dΩeffPðΩeffjD1i; IÞPðΘi
eff jΩeff ; D1i; IÞ

¼
Z

dΩeffPðΩeffjD1i; IÞPðΘi
effÞ

× δðΘi
eff − Θi

effðΩeffÞÞ: ð33Þ

We assume that

PðΘi
effÞ ¼

1

ΔΘmax
eff

; ð34Þ

where Θmax
eff ¼ 6. This is so because, for each of the three

detectors in the ET, the angle between the interferometer
arms is 60°. We can thus rewrite Eq. (33) as

PðΘi
effjD1i; IÞ ¼

1

ΔΘmax
eff

Z
dΩeffPðΩeff jD1i; IÞ

× δðΘi
eff − Θi

effðΩeffÞÞ: ð35Þ

Substituting Eq. (30) in Eq. (35) gives the probability density
for Θi

eff. Moving further, by rearranging Eq. (22), we notice
that

Θi
eff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζiðfi−1; fiÞ

p
ρieff

≈
�
8r0
DL

�
Mz

MBNS

�
5=6

�
−1
: ð36Þ

It is seen that, while the quantities Θi
eff , ζ

iðfi−1; fiÞ, and ρieff
on the lhs ofEq. (36) are individuallymeasureddepending on
the segment characteristic for each segment, the rhs is
characterized by the source. So we can define this as a
source-dependent quantity Λ. Then, for each segment,

Λ≡
�
8r0
DL

�
Mz

MBNS

�
5=6

�
−1

≈
Θi

eff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζiðfi−1; fiÞ

p
ρieff

: ð37Þ

Here, 0 < ζiðfi−1; fiÞ < 1 and 0 < Θi
eff < 6; therefore,

0 < Λi < 6=ρieff .
In order constrain this quantity Λ, we now take into

account the second set of observed data D2 for the ith
segment, D2i ≡ ðρieffÞ. Then the distribution of probability
for Λ in the ith segment can be written as

PðΛjD1i; D2i; IÞ ¼
Z

dΘeffPðΛ;Θeff jD1i; D2i; IÞ: ð38Þ

The integrand can be expanded as

PðΛ;Θeff jD1i; D2i; IÞ ¼ PðΘeff jD1i; D2i; IÞ
× PðΛjΘeff ; D1i; D2i; IÞ

¼ PðΘeff jD1i; IÞ
× PðΛjΘeff ; D1i; D2i; IÞ; ð39Þ

where the probability PðΘeff jD1i; IÞ is obtained in Eq. (35)
and

PðΛjΘeff ; D1i; D2i; IÞ ¼
Z

dρieffPðρieffÞ

× δðΛ − ΛðΘi
eff=ρ

i
effÞÞ; ð40Þ
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where

PðρieffÞ ¼
Z

dρi1

Z
dρi2

Z
dρi3Pðρi1ÞPðρi2ÞPðρi3Þ

× δ
�
ρieff −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρi1Þ2 þ ðρi2Þ2 þ ðρi3Þ2

q �
: ð41Þ

Equations (30) and (38) give the probability distributions
using information from the ith segment. Combining the
information for all n segments, we can write

PðΩeff jD1; IÞ ¼
1

NΩ

Yn
i¼1

PðΩeff jD1i; IÞ ð42Þ

and

PðΛjD1; D2; IÞ ¼
1

NΛ

Yn
i¼1

PðΛjD1i; D2i; IÞ; ð43Þ

where NΩ and NΛ are normalization constants and D2≡
ðρ1eff ; ρ2eff…ρneffÞ, for all the n segments.
We can now impose constraints on the chirp mass and

redshift of the source. We use the measured value of the
redshifted chirp mass Mz, and we assume that the
measured probability density of the quantity PðMzÞ is
Gaussian with the width of σMz

¼ Mz=ρeff . Note that the
justification of this assumption can be understood from
Fig. 1 in Singh and Bulik [32]. We assume the error on fmax
to be small enough to neglect it. In addition to Eqs. (13)
and (19), we use the constraint implied by the definition of
the chirp mass:

M
M

¼
�

q
ð1þ qÞ2

�
3=5

< 4−3=5: ð44Þ

The last inequality in the above equation comes from the
condition that qmax ¼ 1. Then the joint probability of M
and z given this information IQ is

PðM; zjIQ; IÞ ¼ PðMjIÞPðzjIÞPðIQjM; z; IÞ
PðIQjIÞ

; ð45Þ

where

PðIQjM; z; IÞ ¼H
�

M
2.8M⊙

fmaxð1þ zÞ
785 Hz

�

×H
�
4−3=5−

M
2.8M⊙

fmaxð1þ zÞ
785 Hz

�
; ð46Þ

where HðxÞ is the Heaviside function.
We assume a flat cosmologywithΩm¼0.3,ΩmþΩΛ¼1,

Ωk ¼ 0, and H0¼ 67.3 km s−1Mpc−1 [44]. The relation
between the luminosity distanceDL and redshift z is obtained
from the analytic approximation given by Adachi and
Kasai [45]. The variation of comoving volume V with
redshift z for this cosmology is

dV
dz

¼ 4πDH
D2

L

ð1þ zÞ2Ez
; ð47aÞ

where

DH ¼ c=H0 and Ez ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ð1 − ΩmÞ

q
:

ð47bÞ
We assume flat priors on chirp mass M, while the prior on
redshift z comes fromEq. (47a) assuming that the rate density

(a) (b)

FIG. 1. The plots show the fit generated for the neutron star masses and the distribution of chirp masses of the sources in the mock
catalog. (a) The probability distribution of neutron star masses mentioned in [49]. The green line is a summed Gaussian fit given in
Eq. (60) for this distribution. The primary masses m1 are drawn for using this fitting function and (b) The probability distribution forM
obtained for the low mass compact binary systems generated as mock sources using the distribution shown in (a).
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of mergers per unit comoving volume per unit time is
constant in the Universe. Therefore, we have

PðMjIÞ ¼ 1

ðMmax −MminÞ
ð48Þ

and

PðzjIÞ ¼ dV
dz

: ð49Þ

We can now include the information on the measurement of
the redshifted chirp mass and constraint on the quantity Λ to
impose further constraint on M and z. Taking into account
the next observable D3 ≡Mz, we can write

PðM; zjD1; D2; D3; IQ; IÞ ∝ PðM; zjIQ; IÞ
ZZ

dΛdMz

× PðΛjD1; D2; IÞPðMzÞ
× δðMz −Mð1þ zÞÞ
× δðΛ − ΛðM; zÞÞ; ð50Þ

wherewe have used the form ofΛ fromEq. (37) expressed in
terms of M and z, given as

Λ ¼
�

8r0
DLðzÞ

�
MzðM; zÞ
MBNS

�
5=6

�
−1
: ð51Þ

Substituting the prior PðM; zjIQ; IÞ required in the above
Eq. (50) from Eq. (45) as mentioned above, we obtain the
joint probability of M and z.
Taking D0 ≡ ðD1; D2; D3Þ and I0 ≡ IQ; I, the margin-

alized distribution for M and z using Eq. (50) is given as

PðzjD0; I0Þ ¼
Z

dMPðM; zjD0; I0Þ ð52Þ

and

PðMjD0; I0Þ ¼
Z

dzPðM; zjD0; I0Þ: ð53Þ

The probability distribution for luminosity distance is
obtained from the redshift using the cosmological assump-
tions described in Sec. IV:

dP
dDL

¼ dP
dz

dz
dDL

: ð54Þ

Then we constrain the mass ratio using Eqs. (13) and (44)
to express the mass ratio as a function of M and z:

qðM; zÞ ¼ ξ

2
− 1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2

4
− ξ

r
; ð55Þ

where

ξ ¼
�
785 Hz
fmax

2.8M⊙

Mz

�
5=3

: ð56Þ

Now we can write

PðqjD0; I0Þ ¼
ZZ

dMdzPðM; z; qjD0; I0Þ: ð57Þ

We assume a flat prior on the mass ratio PðqjI0Þ ¼ 1, so

PðqjD0; I0Þ ∝
ZZ

dMdzPðM; zjD0; I0Þδðq − qðM; zÞÞ:

ð58Þ
Substituting Eq. (50) in Eq. (58) gives the probability
density for mass ratio q. The total mass of the binary M is
obtained by using the observed value of the frequency fmax
and the probability distribution of redshift z. We can get the
probability density of M as

dP
dM

¼
Z

dP
dz

dP
dfmax

dzdfmaxδðM −Mðz; fmaxÞÞ: ð59Þ

Thus, using the observed SNRs, phases, redshifted chirp
mass, and fmax, we have constrained the astrophysical
parameters: chirp mass, redshift, and the luminosity dis-
tance as well as total mass and mass ratio for a compact
binary system.

V. MOCK SOURCE CATALOG

We generate a mock population of low mass compact
binaries for this analysis assuming that the distributions of
masses, distances, locations in the sky, and polarizations
are independent. The cosmological assumption are as
explained in the previous section. We assume that the
mass distribution is the same for all distances.
Such a population of compact binary sources, distributed

uniformly in comoving volume, is not a realistic one, since
it does not take into account the dependence of the star
formation rate on redshift and also neglects the delays
between formation and coalescence. The calculation using
this assumption of sources distributed uniformly in comov-
ing volume, is done for illustrative purposes so as to access
the quality of the method employed for data analysis. We
choose this simplified assumption for creating the mock
population of low mass compact binary sources to study the
biases, if any, seen in the recovery of the parameters and to
get an estimate of the accuracy of the recovered parameters.
We discuss the analysis of more realistic populations in the
next paper in this series [46].
The probability distributions of angular distribution

cos δ, α=π, cos ι, and ψ=π are assumed to be uncorrelated
and are distributed uniformly over the range ½−1; 1�. We
generate sources spread in redshift range [0.01, 1.0],
assuming that the rate density of mergers per unit comoving
volume per unit time is constant in the Universe.
ET will be able to detect BNS binaries of total masses

∼3M⊙ up to z ∼ ð2–3Þ [25], but we restrict the sources to
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redshift z < 1 so as to have a substantial number of sources
crossing the detection threshold we set for the analysis.
The SNR for a given binary source in the mock

population is calculated using the PSD ShðfÞ, for the
ET-D noise curve [14] obtained from Ref. [47]. We choose
the following criterion to define a detection: a threshold
value of accumulated effective SNR ρeff > 8 and the SNR
for the ith segment in the jth detector ρij > 3 in at least one
segment, for j ¼ ð1; 2; 3Þ corresponding to the three ET
detectors comprising single ET. The justification of choos-
ing only the segments with ρij > 3 and a comparison of
detection thresholds is described in the Appendix.
To get a mass distribution for the low mass binary mock

population, we use a summed Gaussian fit to the masses in
the catalog [48] to get the distribution of primary mass m1.
The fitting function is

pðm1Þ ∝ ðN ð1.5; 0.22Þ þ 0.35 ×N ð2.1; 0.12ÞÞ; ð60Þ

where N ðμ; σ2Þ denotes the normal distribution with the
meanμ and standard deviationσ. The fit is shown inFig. 1(a).
The minimum and maximum mass limits for the binary
components are restricted to m1; m2 > mNS

min ¼ 0.72M⊙ and
m1; m2 < 2.74M⊙ in agreement with the values in the
catalog. The mass ratio q ¼ m2=m1 is chosen uniformly
from the range [mNS

min=m1,1]. The values of m1 and m2 then
give the distribution of chirpmassM of themock population.
This distribution of M in this population is shown in
Fig. 1(b).

VI. RESULTS

In our analysis, we consider only the inspiral part of the
signal from coalescing low mass binaries. The sources
which cross the detection threshold are taken up for the
analysis. These are referred to as the detected sources in the
discussion hereafter, and their parameters are denoted by
subscript s. The signal from each detection is split into
5-min segments as described in Sec. IV, assuming that the
change in the antenna response functions is negligible
during that period. For each segment, we generate a four-
dimensional space of cos δ, α=π, cos ι, and ψ=π, randomly
distributed uniformly over the range ½−1; 1�. This 4D grid is
constrained using Eqs. (26) and (27) to get a distribution of
Ωeff from Eq. (30). This gives us the sky localization
of declination and right ascension ðδ; αÞ on the celestial
sphere and constraint on the source angles ðι;ψÞ. Since we

assumed that the antenna response functions remain
unchanged during 5 min, this introduces a systematic error
in the location which is smaller than 1.25°. In order to avoid
dealing with this potential contribution to the localization
error, we keep the bin size of the sphere to be 1.28 square
degrees.
We get the posterior distribution of Θi

eff from Eq. (35) for
each segment using the information obtained for Ωeff. Since
we assume that the effective SNR ρieff is known for each
segment in the three ET detectors, we use this information
about the measured values of ρieff and the distribution
of Θi

eff obtained in each segment to provide a constraint
on Λ, given by Eq. (38). The function Θi

eff varies for each
segment as the antenna response function changes with the
rotation of Earth. ζiðfi−1; fiÞ varies due to change in the limit
of integration as specified in Eq. (20). From Eq. (37), we see
that Λ, is a source-dependent quantity. This process is
repeated for all the segments, and the final distribution for
Ωeff and Λ is obtained by combining information obtained
from all the segments as given by Eqs. (42) and (43).
In order to estimate the other parameters of the binary

system, we construct a 2D grid for redshift z and chirp mass
M, with ranges from 0.005 ≤ z ≤ 1.5 and 0.6 ≤ M=
M⊙ ≤ 2.5. The limits of these ranges extend beyond the
limits of the mock sources so that the sources at the edge of
the mock population can be recovered correctly. The prior
on z is given by Eq. (49) with details given in Sec. IV. The
prior on M is assumed to be flat, given by Eq. (48).
Since we assume that the redshifted chirp mass is known

from match filtering, we use this information to select the
appropriate values from the 2D (z, M) grid. The observed
value of fmax, the frequency at the end of the inspiral, gives
the information about the mass ratio q which further limits
the valid grid points. Last, since we have a distribution ofΛ,
obtained by combining information from all the detected
segments, we use this distribution to get the joint proba-
bility of ðz;MÞ using Eq. (50). The distributions for
luminosity distance DL and mass ratio q are obtained
from Eqs. (54) and (58), respectively, and the distribution
for total mass M is obtained using Eq. (59). The subscript
“median” represents the median value of these distributions
obtained for the parameters of the binary system.

A. Analysis of particular cases

To demonstrate the method described above, we discuss
two cases. The details of the two cases are mentioned in
Table I. In case 1, we consider a low mass compact binary

TABLE I. Details of two cases discussed in Sec. VI A. The SNR values mentioned here are the accumulated SNRs in each of the three
detectors.

ρ1 ρ2 ρ3 ρeff M (M⊙) M (M⊙) z DL (Gpc) q ðcos δ; α; cos ι;ψÞ
Case 1 8.94 5.30 7.11 12.59 1.16 2.71 0.44 2.53 0.71 ð−0.76; 3.72;−0.73; 5.90Þ
Case 2 18.16 24.70 41.56 51.64 1.68 3.91 0.1 0.47 0.74 ð0.07; 1.29;−0.59; 4.35Þ
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FIG. 2. The final probability distribution for ðδ; αÞ (a) and ðι;ψÞ (b) obtained for Case 1. The signal is detectable in the band for only
one segment for a duration of 1.38 minutes. The blue star in the plots denotes the actual source parameters.

FIG. 3. Localization in each segment for case 2. Plots shown here are for the (a) first, (b) third, (c) fifth, and (d) last seventh segment
from the time the signal crosses the threshold of detection up till the last segment. There are seven segments, as the signal is 30.63 min
long in this case. Going from a → b → c → d shows the distributions obtained successively in time for the declination and right
ascension ðδ; αÞ. The SNR values ρj;seg denote the SNR generated in the particular segment of the jth detector. The blue star denote the
actual value of declination and right ascension ðδ; αÞ of the detected source on the celestial sphere.
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system with chirp mass M ¼ 1.16M⊙, total mass M ¼
2.71M⊙ located at redshift z ¼ 0.44. The inspiral signal
from this binary enters the ET band at 1 Hz but is detected
only at the start of the 924th segment. In this segment,
ðfi−1; fiÞ ∼ ð20.95; 1128.07Þ Hz. The SNR values in this
segment cross the detection threshold with ρ1;seg ¼ 8.94,
ρ2;seg ¼ 5.30, and ρ3;seg ¼ 7.11. Since this is the last
segment of the inspiral signal for this binary, we have
the information from this one segment only, which is
1.38 min long. The distributions for declination, right
ascension ðδ; αÞ and inclination, polarization angle ðι;ψÞ
are shown in Fig. 2. In the distribution for ðδ; αÞ, we see the
degeneracy in the recovered angles coming from the nature
of dependence of Θ function on the angles. In particular,
there is the symmetry about the equatorial plane, i.e.,
(θ → −θ), and also with respect to the rotation by 90° about
the longitude, i.e., (ϕ → ϕþ 90o), where ðθ;ϕÞ are the sky
coordinates in the detector frame (see Fig. 2 in Ref. [32] for
a better understanding). This results in eight images of
possible locations of the source. The plot shown in Fig. 2(a)
shows the localization of ðδ; αÞ is fairly well constrained,
while the constraint on ðι;ψÞ as seen in Fig. 2(b) is much
weaker. The area of 90% probability (A90) about the peak
for declination and right ascension ðδ; αÞ in this case is
2.02 × 104 square degrees.
Case 2 is a detected source with M ¼ 1.68M⊙, total

massM ¼ 3.91M⊙ located at redshift z ¼ 0.1. After enter-
ing the ET band at 1 Hz, the signal is detected in the 775th
segment. In this first detected segment, ρ1;seg ¼ 3.61,
ρ2;seg ¼ 3.57, and ρ3;seg ¼ 6.81 in the three ET detectors
and ðfi−1; fiÞ ∼ ð6.16; 6.58Þ Hz. For this case, the inspiral
signal stays for 30.63 min in the detectable range of ET,
with a total of seven segments. In the last segment,

ðfi−1; fiÞ ∼ ð26.47; 1023.35Þ Hz. The plots in Fig. 3 show
first, third, fifth, and the final seventh segment from
the time the signal crosses the threshold of detection.
Moving from 3ðaÞ→ 3ðbÞ → 3ðcÞ → 3ðdÞ, we can see
the reduction in the area of localization in each segment
with an increase in ρeff for each segment. We combine the
probabilities from all these segments to get the final
probability shown in Fig. 4. The main advantage of
combining the information from all the segments in this
manner is the breaking of the angular degeneracy. Now,
instead of a large spread of possible localization of the
source, we have a much smaller region left, spread over
only four images. The area of 90% probability about the
peak for declination and right ascension ðδ; αÞ in this case is
38.41 square degrees.
We use the observed value of redshifted chirp mass Mz

to limit the initial 2D grid of redshift z and chirp massM to
those which satisfy this observed value within the error of
measurement σMz

. The observable fmax, the frequency at
the end of the inspiral, gives the information about the mass
ratio q restricting the grid even more using Eq. (45). We get
the final distribution for the joint probability distribution for
z and M, using the distribution for Λ from Eq. (50).
The distributions obtained for M and z for case 1 and

case 2 are shown in left and right panels, respectively, in
Fig. 5. Figures 5(a) and 5(b) are the joint probabilities for
M and z obtained using Eq. (50). Figures 5(c) and 5(d)
show the marginalized probability distribution recovered
for the redshift z. The 90% error about the median of the
recovered redshift decreases from 0.36 for case 1 to 0.04
for case 2. Figures 5(e) and 5(f) show the marginalized
probability distribution forM for which the error about the
median reduces from 0.35M⊙ to 0.13M⊙. Figure 6 shows

FIG. 4. The (a) shows the final probability distribution for ðδ; αÞ obtained for case 2 by combining probabilities for all the segments
(some of which are shown in Fig. 3). The corresponding final probability of ðι;ψÞ is shown in the (b). The SNR values denote the
accumulated SNRs in each detector. The blue star denote the declination and right ascension ðδ; αÞ value of the detected source on the
celestial sphere.
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the corresponding distributions of luminosity distance DL

and mass ratio q and total mass M for case 1 and case 2.
The values of the error estimates for all the parameters are
mentioned in Table II.

B. Analysis of mock population

We generate a 2D grid of 80 000 points for (m1; q)
using Eq. (60) and choosing the mass ratio to be
uniformly distributed in the range [mNS

min=m1,1]. We then

FIG. 5. The distributions obtained forM and z for case 1 (left) and case 2 (right). The top panel shows the joint probability ofM and
z. The marginalized probabilities of these quantities are shown in the lower panels. The blue star in the top panel plots and red dot in the
middle and bottom panel plots denote the actual source value of the parameters.
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apply the limits on m1, m2 as discussed in Sec. V. After
applying these cuts, we are left with 42 514 binary sources
which are then randomly distributed in redshift using
Eq. (49). Each compact binary system is then assigned a
set of random values of the four angles: angle of declination
δ, right ascension α, polarization angle ψ , and inclination

angle ι of the binary with respect to the direction of
observation.
Out of these 42 514 sources, 17 994 compact binary

systems cross the detection threshold and are taken up for
the analysis. We discuss the localization and constraints on
the binary parameters in the following sections.

FIG. 6. The distribution of luminosity distance DL (a,b), mass ratio q (c,d), and total mass M (e,f), for case 1 (left) and case 2 (right).
The red dot denotes the actual source value of the parameter.

NEHA SINGH and TOMASZ BULIK PHYS. REV. D 106, 123014 (2022)

123014-12



1. Localization capability

The distribution of sky localization using a single ET is
shown in Fig. 7. The sources are assumed to be distributed
uniformly in comoving volume. It shows the cumulative
distribution of area of 90% probability, A90 of the sky
localization. The two dashed lines in this figure denote the
50% and 90% cumulative probability. 100% of the ana-
lyzed sources distributed uniformly in comoving volume
are localized within ∼2.90 × 104 square degrees which is
∼70% of the whole sky. 90% of the analyzed sources
are localized within ∼2.55 × 104 and 50% are within
∼2.23 × 104 square degrees. For the best case, we see that
using this method of analyzing the long-duration signal,
single ET in triangular configuration can constrain the
localization area for 90% probability region of ðδ; αÞ to a
minimum value of 7.68 square degrees, for ρeff ¼ 184.59,
but only ≈1% of binaries can be localized within 800
square degrees.
The dependence of sky localization on the effective SNR

is shown in Fig. 8(a). It shows that, for the sources which
have inclination ι < 70° or ι > 110°, the area of sky
localization decreases exponentially with the effective
SNR, while only a small fraction of sources having
70° < ι < 110° are detectable. We investigated different
cutoffs in the inclination angle and found that, given the

low SNR values, the sources with 70° < ι < 110° have
much poorer localization. No such dependence of sky
localization on angle of declination, right ascension, or
angle of polarization δ, α, ψ was seen. Figures 8(b) and 8(c)
show that in the mass range of the detected population,
irrespective of value of the inclination angle and the chirp
mass, only the sources located at z≲ 0.15 can be localized
within a 90% credible region of 1000 square degrees.

2. Mass and distance estimates

In this analysis, we recover the probability distributions for
chirp massM, redshift z, luminosity distance DL, and mass
ratio q for 17 994 detected sources in addition to their angular
distributions. The relative error on the parameters are esti-
mated from the spread of 90%probability about themedian of
the recovered distributions for the respective parameters.
Figure 9 shows the distribution of relative error on the

parameters of the detected compact binary system with the
accumulated effective SNR. We see that the relative error
drops with increasing ρeff . ForM it reduces from ∼20% at
ρeff ∼ 15 to ∼5% at ρeff ∼ 50. Figure 9(b) shows that the
relative error redshift goes down from ∼40% at ρeff ∼ 15 to
∼15% at ρeff ∼ 50. The respective errors for total mass M,
luminosity distance DL, and mass ratio q are shown in
Figs. 9(c), 9(d), and 9(e), respectively.

3. The effect of inclination on the recovery of parameters

The discussion in the previous section showed that sky
localization has a dependence on the inclination angle ι of
the detected compact binary system. It was shown in Fig. 8
that, for the detected compact binary sources located at
z≳ 0.15, the sources with 70° < ι < 110° have a poor
localization given the low SNR value. In addition to this,
Fig. 10 shows the distribution of relative errors onM and z
for all the detected sources with the sky localization. The
left panels in Figs. 10(a) and 10(b) show the sources with
ι < 70° or ι > 110°, and the right panels show the sources
with 70° < ι < 110°. It can be seen that, although only a
few sources with 70° < ι < 110° generate enough SNR to
be detected, the accuracy of recovered values of M and z
for these low-SNR cases, i.e., A90 > 23 × 103 square
degrees, is better than for those with ι < 70° or ι > 110°.
Most of the sources detectable with higher SNR and having
better localization are the sources with the inclination
angles ι < 70° or ι > 110°.

FIG. 7. Localization of the sources distributed uniformly in
comoving volume using single ET. The figure shows the
cumulative distribution of 90% probability about the peak for
ðδ; αÞ. The two dashed lines denote the 50% and 90% cumulative
probability.

TABLE II. Errors on the recovered values for the two cases mentioned in Table I. The error on the parameters is the estimate for the
spread of 90% probability about the median for the respective parameters. The area estimated for the localization of declination and right
ascension, ðδ; αÞ is the spread for 90% probability about the peak value of the ðδ; αÞ distribution.

ΔM (M⊙) ΔM (M⊙) Δz ΔDL (Gpc) Δq Area for ðδ; αÞ localization (A90) (sq deg)

Case 1 0.35 0.69 0.36 2.49 0.55 2.02 × 104

Case 2 0.13 0.16 0.04 0.20 0.37 38.41
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4. The effect of choice of site on the localization
capability of ET

We now proceed to test the localization capability of the
ET for different orientations and at different sites. In order
to see the affect of orientation of the detector on the sky
localization, we assume that the ET is located at the Virgo
site and repeat the analysis using the ET detector with three
different orientations. The orientation γ is measured
counterclockwise from East to the bisector of the interfer-
ometer arms. We assume the initial orientation to be γ ¼
84.84° and then analyze the same set of detected sources
with the ET detector orientated at γ1 ¼ γ þ 30° and
γ2 ¼ γ þ 60°. Figure 11(a) shows the cumulative distribu-
tion of sky localization for these three different cases of
orientation of the detector at the Virgo site. It can be

concluded that the change in orientation does not have
much effect on the sky localization.
We also investigate the change in the sky localization for

different site locations of ET. We assume the locations to be
in Maastricht and Sardinia in addition to the Virgo site. The
coordinates of the sites are mentioned in Table III. The site
locations are chosen keeping in mind that these are the
official candidate sites for the ET. The cumulative distri-
butions of sky localization for these locations are shown in
Fig. 11(b) and show no change in the effective sky
localization.

5. Biases in recovery of the parameters of the binary

In order to check the accuracy of the algorithm in
recovering the distributions of the binary parameters, we

FIG. 8. The dependence of sky localization on ρeff and redshift is shown in (a) and (b) for two sets of inclination angles, (ι < 70° or
ι > 110°) and ð70° < ι < 110°Þ. The dependence of sky localization on redshift and chirp mass for all the detected sources is
shown in (c).
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FIG. 9. Distribution of relative errors on (a) chirp mass M, (b) redshift z, (c) total mass M, (d) luminosity distance DL, and (e) mass
ratio q, for all the detected sources, with ρeff . The relative error on the parameters are estimated from the spread of 90% probability about
the median of the distribution of the respective parameters.
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show the recovered median values of the distributions with
respect to source values for chirp mass M, redshift z, and
total mass M in Fig. 12. The blue contour in the plots
encloses the 90% probability region.
Figure 12(a) shows the distribution of recovered median

values of the intrinsic chirp mass Mmedian with respect to
the actual source value Ms values. It is seen that the chirp
masses are recovered correctly over the whole range of
source values.
In the case of the median values of the redshift

distribution, shown in Fig. 12(b), we see that all cases
detected with z⪆ 0.6 are slightly underestimated. This can

FIG. 10. Distribution of relative errors on (a) chirp mass M and (b) redshift z for all the detected sources with respect to the sky
localization for two sets of inclination angles, (ι < 70° or ι > 110°) and ð70° < ι < 110°Þ.

FIG. 11. Plot showing the effect of different site coordinates on the sky localization. (a) The change in the recovered sky localization
with the change in the orientation of the ET detector located at the Virgo site. Assuming that the initial orientation of ET is γ, the plot
compares the localization with that obtained for γ þ 30° and γ þ 60°. (b) The recovered sky localization for Virgo, Maastricht, and
Sardinia sites.

TABLE III. The assumed coordinates of the sites for the ET in
this analysis. γ is measured counterclockwise from East to the
bisector of the interferometer arms, and η is the angle between the
interferometer arms.

Latitude Longitude Orientation Arm angle

Site for ET λ L γ η

Virgo 43.68° 10.49° 84.84° 60°
Sardinia 40.12° 9.01° 0° 60°
Maastricht 50.85° 5.69° 0° 60°
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be explained due to the low SNR generated by these sources
and, hence, the larger error associated with the SNR as per
our prior assumption. A more detailed explanation of the
origin of this bias is given in the Appendix.
Figure 12(c) shows the recovered median vs source value

for the total mass M. We see that the recovered median
values are overestimated over the whole range of source
values. As mentioned earlier, we assume that fmax, which
gives the value of redshifted total mass, is measured
accurately. Since redshift is underestimated, we see the
overestimation in the recovered total mass M values.

VII. CONCLUSION

In this analysis, we studied the ability of ET as a single
instrument to study longer-duration signals from coalescing
low mass compact binary systems. We assume the detector

to be located at the Virgo site and analyze the signal every
5 min, assuming that the response functions for the three
ET detectors do not change much within that period.
We show that, although one cannot use time of flight

delays to constrain the position in the sky of a given source
in case of three colocated detectors in single ET, combining
information from different antenna patterns for each of the
three detectors in each time segment provides good con-
straints on the parameters of a merging binary system.
We analyzed a mock population of compact binary

sources for which the signal will stay for a long duration
in the ET detection band. Assuming that the change in the
response functions is negligible within 5 min, we divided
the inspiral signal into 5-min segments from the time it
enters the detection band of ET at 1 Hz with the duration of
the last segment limited by fmax, the frequency at the end of
the inspiral.

FIG. 12. The density distribution of the recovered median values of (a)M, (b) z, and (c)M, with respect to the actual source values of
the respective parameters. The purple lines represents the source ¼ median reference line.
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We assumed the threshold of detection to be ρij > 3 for
the ith segment in the jth detector in at least one segment,
for j ¼ ð1; 2; 3Þ corresponding to the three ET detectors
comprising single ET and the accumulated effective
SNR ρeff > 8.
The angles describing the location of the source, its

inclination, and polarization are constrained using the ratios
of the SNRs generated in each signal segment of the three
detectors of the equilateral triangle configuration of ET.
This, in turn, provide constraints on the antenna response
function Θi

eff in the ith segment.
We then use the information about Θi

eff and ρieff and
initial and final GW frequency fi−1; fi in the ith segment to
estimate the parameterΛ. Combining the information about
the angles from each segment increases the accuracy of the
estimate of the angles and also gives a stricter constraint on
Λ. We then use the constraint on Λ to estimate intrinsic
chirp massM, redshift z, total massM, luminosity distance
DL, and mass ratio q of the merging binary system.
We conclude that the ET as a single instrument can

localize the low mass compact binary sources and break the
chirp mass–redshift degeneracy. The analysis presented
here allows us to estimate source frame masses and
redshifts of the coalescing compact binaries, which facil-
itates the population study of compact object binaries [46].
We find that the accuracy of determination of the redshift

and the source frame chirp mass with ET as a single
instrument is typically 40% and 20%, respectively, for
ρeff ∼ 15, and it is ∼15% and ∼5% for ρeff ∼ 50. In the best
case, we see that, using this method for analyzing a long-
duration signal, single ET in triangular configuration can
constrain the localization area for 90% probability region of
ðδ; αÞ to a minimum value of 7.68 square degrees, for
ρeff ¼ 184.58, although only ≈1% of binaries can be
localized with 90% credibility, within 800 square degrees.
It should be noted that the dominant error in the analysis is
the one on the SNRs and our assumption of σρ ¼ 1 is a
conservative one.
We also studied the effect of orientation of the detector

on the sky localization with three different orientations of
ET detector assumed to be located at the Virgo site and
found that the change in orientation has no effect on the sky
localization. In addition to this, we also investigated the
change in the sky localization for different site locations of
ET. We assumed the location of ET to be in Maastricht and
Sardinia in addition to Virgo and found no change in the
effective sky localization due to change in the ET site for
these sites.
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APPENDIX: EXPLANATION FOR THE BIAS IN
PARAMETER ESTIMATION

In Fig. 12(a), we see the deviation of the median value
of the parameter from the true value of that parameter.
This origin of this bias can be understood from Fig. 13,
which shows the distribution of Θ defined in Eq. (6),
assuming that the probability distributions of angular
distribution cos δ, α=π, cos ι, and ψ=π are uncorrelated
and are distributed uniformly over the range ½−1; 1�. We
see that this distribution of Θ is inherently biased toward
lower values. Therefore, for a given ρ, defined in Eq. (9),
the smaller Θ has to be compensated by larger chirp mass
M and smaller redshift z. Thus, there is an inherent bias
toward lower redshift and larger chirp mass.
One of the main building blocks of our analysis is that

we use the ratios of SNRs in each segment for each of
the three detectors in the triangular configuration of ET,
to constrain the value of the effective antenna pattern.
This is expressed in Eq. (26), assuming that the meas-
urement error on the SNRs is Gaussian with the standard
deviations for ρij being σρ ¼ 1. In Fig. 14, we show the
absolute value of bias as the function of the ratio of the
SNRs. We see that the estimate of parameters is likely to
be biased for ρ2=ρ1 ≈ 1 and ρ3=ρ1 ≈ 1. The reason for
this can be understood by Fig. 13. We see that the
distributions for Θ1, Θ2, and Θ3 are the same. So in the
case of ρ2=ρ1 ≈ 1 and ρ3=ρ1 ≈ 1, there is a much larger
number of lower values of Θ in the probability distri-
bution constrained by these ratios of the SNRs. This

FIG. 13. The plot shows the probability distributions for Θ2 for
each of the three ET detectors and the probability distribution of

Θ2
eff . The blue dot denotes the mean value Θ2

eff .
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results in smaller redshift and higher chirp mass in the
respective distributions recovered for these parameters as
explained above.
In order to see the variation in this bias due to the

inclusion of segments of lower SNRs, we repeated the
analysis for the following different detection criteria for
5-min segments.

(i) Criterion 1.—A threshold value of accumulated
effective SNR ρeff > 8 and the SNR for the ith
segment in the jth detector ρij > 3 in at least one
segment. This is the criteria which we have used in
our main analysis in this paper.

(ii) Criterion 2.—A threshold value of accumulated
effective SNR ρeff > 8 and the SNR for the ith
segment in the jth detector ρij > 2 in at least one
segment.

(iii) Criterion 3.—A threshold value of accumulated
effective SNR ρeff > 8 and the SNR for the ith
segment in the jth detector ρij > 1 in at least one
segment.

The recovered median values vs the actual source values
of chirp mass and redshift, using these three detection
criteria, are shown in Fig. 15. The left panel shows the
comparison for the chirp mass, and the right panel shows
the comparison for the redshift. The top panel shows the
comparison of the estimated median value with respect to

the actual value for criterion 1. When we repeat the analysis
while including segments with ρij > 2, shown in the middle
panel, we see that a few more sources cross the detection
threshold and are shown in blue. The red points are the
sources which were detectable with criterion 1, but their
analysis now includes the additional low-SNR segments.
The bottom row shows the subsequent inclusion of seg-
ments of ρij > 1, thus detecting a few more sources, shown
in blue. While lowering the detection threshold detects a
few more sources, there is also a slight worsening of the
bias as we include segments of lower SNRs in the analysis.
This can be clearly seen from the red points as we go from
the top panel to the bottom panel. The underestimation of
redshift and the overestimate of chirp are both slightly
worsened.
Although the inclusion of segments of lower SNR

worsens the bias, the error on the estimated parameters
is lowered due to the additional information from these
segments. The distribution of relative errors on chirp
mass and redshift estimated using criterion 2 and criterion
3 are shown in Fig. 16. Comparing these with the
error estimates obtained using criterion 1 shown in
Fig. 9, we see that the additional segments contribute
in reducing the relative errors, mainly for sources gen-
erating lower SNRs.

FIG. 14. The left panel shows the absolute value of bias in redshift as a function of ratios of SNRs, and the right panel shows the
absolute value of bias in chirp mass as a function of ratios of SNRs.
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FIG. 15. The recovered median values vs the actual source values of the chirp massM (a,c,d) and redshift z (b,d,f). Top row: sources
which are detectable using criterion 1. Middle row: The red point are the ones which were detectable with criterion 1 but were again
detected and analyzed using criterion 2. The blue points are the ones which were not detectable using criterion 1 but are detectable using
criterion 2. Bottom row: The red points are the ones which were detectable with criteria 1 but were again detected and analyzed using
criterion 3. The blue points are the ones which were not detectable using criterion 1 but are detectable using criterion 3.
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