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Nuclear recoils in germanium and silicon are shown to have much larger variance in electron-hole
production than their electron recoil counterparts for recoil energies between 10 and 200 keV. This effect—
owing primarily to deviations in the amount of energy given to the crystal lattice in response to a nuclear
recoil of a given energy—has been predicted by the Lindhard model. We parametrize the variance in terms
of an intrinsic nuclear recoil Fano factor that is 24.3� 0.2 and 26� 8 at around 25 keV for silicon and
germanium, respectively. The variance has important effects on the expected signal shapes for experiments
utilizing low-energy nuclear recoils such as direct dark matter searches and coherent neutrino-nucleus
scattering measurements.
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I. INTRODUCTION

One of the most intensely researched channels for direct
detection of dark matter is scattering off of a nucleus in a
target material [1–5]. While the ionization distribution for
these recoils has never been well understood in solids, the
Lindhard model [6] provides a benchmark. Experiments
that simultaneously measured two deposition channels
(such as ionization and heat) did not worry about the exact
ionization distributions in the past because they could
measure recoil energy directly [7,8] (without a model for
ionization production). With the two-channel measure-
ments (ionization and heat) the results of dark matter
searches was not systematically limited due to the lack
of knowledge on the ionization.
In recent years, there has been a dramatic improvement

in the detection energy threshold of many experiments
[9,10], due largely to improvements in the measurement
resolution for ionization or heat individually. The best
detectors of the new generation of low-mass dark-matter-
seeking experiments have single electron-hole pair sensi-
tivity [11,12]. These detectors have not yet been able to
achieve the ionization-yield insensitivity that their higher-
energy predecessors have, so the dark-matter signal
depends sensitively on the ionization yield and ionization
variance produced by a low-energy nuclear recoil. In fact, it
is often true that dominant systematic uncertainties in dark
matter limits come from the uncertainty in the ionization
yield [9]. For single electron-hole devices the ionization
variance also becomes a driving factor in the accuracy of

signal models for low-mass dark matter via nuclear
scattering.
While much of the literature has focused on the ioniza-

tion yield [13–16], there are existing published data that
constrain the ionization variance either directly or indirectly
[17–19]. And there are even more data still that might be
used to more precisely measure the ionization variance if a
resolution model was published [20].
We report here on the best such existing data to constrain

the ionization variance in silicon and germanium, and
provide a procedure by which such information can be
extracted from a dark matter detector that measures two
channels such as ionization and heat. While our constraints
are limited to the recoil energy region above about 24 keV,
the techniques give insight into how this information can be
extracted to lower energies in the future and the basic size
and trend of the ionization variance for nuclear recoils.
To analyze the silicon data we have taken note that two

previous publications have reported an “excess” ionization
variance beyond the expected instrumental variance. We
converted that variance into a Fano factor by using
σ2e=N̄ ¼ F, where σe is the excess width in the ionization
measurement.
We have used a similar method for a previous germa-

nium publication. There, we used electron recoils to
constrain the instrumental resolutions, obtaining an excel-
lent fit to the measured widths for electron recoils (see
Fig. 2). This instrumental resolution does not predict the
nuclear recoil widths, so we include an “excess” variance in
the form of a nuclear recoil Fano factor to obtain good fits.
The method is similar to that of scintillator references [21]
which have accounted for instrumental resolution in order
to obtain information on the intrinsic optical photon
production process. The key difference being that the
result in that publication shows sub-Poisson fluctuations
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in optical photon production where we see larger-than-
Poisson fluctuations in electron-hole pair production for
nuclear recoils.
Our results for the intrinsic nuclear recoil Fano factors of

silicon and germanium (see Figs. 1 and 6) are not in line
with a division of some theoretical predictions of the
electron recoil Fano factor [22] by the ionization yield;
this naive modification gives F ∼ 0.41. Those predictions,
however, assume an underlying phonon distribution that is
Poisson. Our results are roughly in line with the Lindhard
[6] predictions which do not make that assumption.

II. THE FANO FACTOR

The ionization variance for electron recoils is very
succinctly characterized in terms of the Fano factor, F [23].
Given an average number of electron-hole pairs produced,
N̄, the variance in this number of pairs is given simply by

σ2N ¼ FN̄: ð1Þ

While this specification does not give insight into
moments of the N distribution of higher order than the
variance, it emphasizes that F ¼ 1 corresponds to a
behavior that is qualitatively similar to a Poisson distribu-
tion in the lowest two moments. For these reasons we find it
simple and convenient to parametrize the nuclear recoil
ionization variance in the same way, but with a modified
intrinsic Fano factor, Fnr [24]. The Fano factor for electron
recoils seems to be in the range [25] 0.084–0.16 [26–28],
but may have a temperature and/or energy dependence [29].
It is even possible that the “true” intrinsic Fano factor has
not yet been measured directly and is lower than all the
above measurements [30].
In silicon there are two studies that we are aware of that

measured the ionization variance in addition to the ioniza-
tion yield for nuclear recoils. Both were done in the early

1990s with secondary neutron beams produced from
primary proton beams via the reaction 7Liðp; nÞ7Be
[17,18]. The measurement by Dougherty makes use of
neutron elastic-scattering resonances present in silicon. The
measurement of Gerbier et al. uses a fixed-angle secondary
neutron detector and a timing coincidence to constrain the
true recoil energy in the silicon scattering detector.
Both of these measurements report the “extra” ionization

variance after subtracting the expected variance due to
known sources of errors such as instrumental noise or
angular uncertainty in the secondary neutron scatters. The
extracted additional ionization variance can be compared
with the total recoil energy (inferred in the Dougherty
measurement and measured in the Gerbier measurement) to
give what we will define as the intrinsic fractional ioniza-
tion width, ξ. This fractional ionization width is defined as
the ionization width (in energy units) divided by the
ionization energy collected, so that ξ ¼ σN=N̄. With these
definitions the intrinsic nuclear recoil Fano factor, Fnr, is
given by

Fnr ¼ N̄ξ2 ¼ ErQ̄
ϵγ

ξ2; ð2Þ

where Er is the true recoil energy, Q̄ is the average
ionization yield (ratio of “collected” ionization energy to
total energy; unity for electron recoils), and ϵγ is the
average energy to produce one electron-hole pair for an
electron recoil.
Table I shows the resulting intrinsic nuclear recoil Fano

factors for the silicon nuclear recoils measured in the two
references we have been discussing. Even at low recoil
energies, around 3 keV, the intrinsic Fano factors show that
the ionization variance is such that the number of created
pairs have more variance than a Poisson process with the
same average number of pairs.

TABLE I. Data from the past publications constraining the intrinsic Fano factor in silicon [17,18]. The intrinsic Fano factor is
calculated from Eq. (2) in the text, using the measurements of the noninstrumental widths and the ionization efficiency (yield).

Recoil energy
(keV)

Ionization
efficiency (%)

Non-instrumental
width (eV)

Non-instrumental
width (%) Effective fano Reference

109.1� 0.7 51.4� 2 � � � 6.1� 1.2 208� 82 Dougherty [17]
75.7� 0.4 45.6� 0.5 � � � 5.3� 0.6 123� 28 Dougherty [17]
25.3� 0.3 35.5� 0.6 � � � 3.6� 0.3 24.3� 4.1 Dougherty [17]
7.50� 0.03 26.9� 0.4 � � � 2.8� 0.4 5.75� 1.65 Dougherty [17]
4.15� 0.15 22.5� 0.5 � � � 2.2� 0.9 2.35� 1.92 Dougherty [17]
21.7� 0.2 40.7� 0.5 1000� 59 � � � 29.80� 17.11 Gerbier [18]
19.5� 0.2 38.7� 0.7 1101� 108 � � � 42.27� 8.33 Gerbier [18]
13.5� 0.3 33.6� 0.7 601� 42 � � � 20.96� 2.96 Gerbier [18]
8.6� 0.1 31.1� 0.5 348� 13 � � � 11.91� 0.91 Gerbier [18]
4.7� 0.1 26.6� 0.8 185� 36 � � � 7.20� 2.81 Gerbier [18]
4.15� 0.1 27.4� 0.8 166� 39 � � � 6.38� 3.00 Gerbier [18]
3.9� 0.1 22.9� 2.0 241� 66 � � � 17.11� 9.49 Gerbier [18]
3.3� 0.1 25.9� 1.6 131� 55 � � � 5.28� 4.45 Gerbier [18]
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The model of Lindhard et al., articulated in the early
papers [6,31–33], contains predictions for the variance in
the production of electron-hole pairs in a solid medium in
addition to the average ionization (ionization yield). We
compare this theoretical ionization variance with “extra”
ionization variance extracted by Dougherty and Gerbier as
a possible explanation.
Figure 1 shows the ionization variance results of the

previous measurements by Dougherty and Gerbier cast in
terms of the intrinsic nuclear recoil Fano factor. Lindhard’s
predictions—shown in terms of the intrinsic Fano factor—
are also shown on the plot. The predictions shown employ
two different approximations used in the Lindhard work: the
approximate separability between electronic and nuclear
energy deposits (referred to as Approximation D); and the
additional assumption of forward-scattering dominance in
nuclear collisions (referred to as Approximation E).
Approximation E produces a lower ionization yield and a
larger ionization variance. The lower ionization yield for
Approximation E is expected because in that case nuclear
collisions are assumed to transfer small amounts of energy
and therefore contribute a smaller fraction of their energy to
ionization. Furthermore, the larger ionization variance is a
consequence of the approximate proportionality betweenFnr

and
ffiffiffi
ϵ

p
, where ϵ is the average energy needed to create a

single electron-hole pair [22]—a quantity that increases with
decreasing yield.
Despite clear evidence for a very large ionization

production variance for nuclear recoils, and the importance
of this variance for low-mass dark matter searches, studies
of this effect are scant. Dark matter collaborations like
SuperCDMS and EDELWEISS have excellent sensitivity

to this effect because of their direct measurements of
ionization yield. In the next sections we argue that the
large ionization variance expected in moderate-energy
nuclear recoils produces larger-than-expected measured
ionization yield widths in cryogenic semiconductor detec-
tors, and that this fact can be used to measure the ionization
variance for silicon or germanium.

III. PREVIOUS GERMANIUM IONIZATION
YIELD MEASUREMENT

While the previously discussed measurements of the
ionization variance in silicon came in the early 1990s, other
technologies that came later had excellent means to probe
the ionization variance in germanium. Two such similar
technologies came out of the cryogenic dark matter
searches of EDELWEISS and SuperCDMS [19,20].
EDELWEISS [19] was possibly the first to note in

published work that the nuclear recoil band in cryogenic
ionization/phonon devices is expected to be significantly
narrower than the electron recoil band if only the effects of
sensor resolution are included. Recently, the narrowness of
the nuclear recoil band when using empirical resolution
functions has also been noted in the SuperCDMS detectors
[34]. Thewidth of the nuclear recoil band is directly related to
the variance of the ionization yield (or what EDELWEISS
and some others call the “quenching”). In this workwe useQ
to denote the randomvariable corresponding to themeasured
ionization yield for an event, and Q̄ to denote the average of
that quantity, equivalent to the hQi of EDELWEISS.
At a given recoil energy the width of the quenching

measurement was estimated in the 2004 EDELWEISS
work [19] by [35]

ðσEDWNR Þ2 ¼ 1

E2
r

��
1þ V

ϵγ
Q̄
�

2

σ2I þ
�
1þ V

ϵγ

�
2

Q̄2σ2H

�
; ð3Þ

where σ2I is the variance in the ionization signal in energy
units and σ2H is the variance in the heat signal in energy
units. Since the quenching factor (less than unity for
nuclear recoils) decreases each term in the equation, it is
easy to see the variance in the event-by-event measured
quenching should be significantly less for nuclear recoils
than for electron recoils. In fact, this is not the case.
EDELWEISS measures the variance in the nuclear recoils
to be comparable to that of the electron recoils [19]. We
have reproduced the EDELWEISS analysis by first com-
puting the expected ionization yield width for electron
recoils and then doing a simple fit to constrain how much
larger the nuclear recoil width that EDELWEISS measures
is from the prediction in Eq. (3).
For the electron recoils the average ionization yield Q̄ is

taken to be unity. EDELWEISS parametrized the energy-
dependent sensor resolutions by the following functional
forms [19]:

FIG. 1. The measurements of Dougherty [17] and Gerbier [18]
converted into the intrinsic Fano factor for nuclear recoils. We
also show the predictions of Lindhard [6] in the so-called
Approximation D (solid) and Approximation E (dashed) curves
(see text for descriptions). The inset shows a zoom of the low-
energy region below 10 keV in recoil energy.
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σIðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ0I Þ2 þ ðaIEÞ2

q
;

σHðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ0HÞ2 þ ðaHEÞ2

q
; ð4Þ

where aI and aH are adjustable parameters used to “tune” the
ionization yield width. Using these resolutions we can
compute the exact ionization yield width as a function of
energy [36]. The resolutions can also be used to calculate the
nuclear recoil width given an intrinsic Fano factor for nuclear
recoils. The calculations are outlined in the Appendix.
Figure 2 shows the energy dependence of our exact

expression for the electron recoil width (see the Appendix)
with the EDELWEISS approximations [Eq. (3)]. Looking
at the electron recoil band of the EDELWEISS GGA3
detector, we tune the parameter aH to be 0.0381 in full
width at half-maximum (FWHM) units [37]. This value
gives the best fit to the EDELWEISS electron recoil yield
widths as a function of energy, as shown in Fig. 2. Also in
the figure we have displayed the widths resulting from a
simulation of these distributions given the tuned sensor
resolutions and our best expression for the electron recoil
yield width given in the Appendix. We see that the
EDELWEISS approximation to the yield width [Eq. (3)]
is lower by an amount that seems unimportant for this
analysis, given the precision of the electron recoil yield
width data, but the exact expression (see the Appendix)
matches the more precise simulation well. When we use
this exact numerical PYTHON routine for the nuclear-recoil

yield each call takes around 1 min. Since our fitting
routines need to call this function thousands of times we
use an approximation that is higher order than the
EDELWEISS approximation (so is more accurate, but
not exact) but has a smaller computation time, making it
usable for our purposes (see Sec. IV and the Appendix).

IV. ESTABLISHED GERMANIUM
IONIZATION YIELD WIDTH

In the EDELWEISS publication [19] it is clear that the
ionization yield width of nuclear-recoil events is system-
atically larger than expected. It is our goal to use a fitting
technique to quantify precisely how much larger the
measured ionization yield width for the EDELWEISS
GGA3 detector is than expected [see Eq. (3) for the
expectation] as a function of recoil energy.
It has been noted that the expected ionization yield width

for nuclear recoils given in Eq. (3) is derived from a lowest-
order “moment expansion” of the definition of the ioniza-
tion yield random variable, Q. While this approximation is
not bad for the electron-recoil ionization yield (see Fig. 2),
it is not as accurate for the nuclear recoil version because of
the smallness of Q̄. For that reason a moment expansion out
to order 1=E6

r—denoted by σSAINR—is used in our fitting for
both the electron and nuclear recoil ionization yield width
functions (see the Appendix for details).
In the EDELWEISS publication [19] the following

functional form for the ionization yield is used because
it fits the mean of the ionization data well:

Q̄ ¼ AEB
r : ð5Þ

We adopt this form of the average ionization yield in order
to extract the “additional” ionization yield width.
EDELWEISS has extracted this additional yield width
by assuming a constant, called C, needs to be added in
quadrature to the result of Eq. (3) and using the measured
ionization yield widths to fit for the value of that parameter.
We execute a similar fit, using the EDELWEISS measured
points for the detector GGA3, and the corresponding
resolutions but with a slightly more flexible function
that allows C to be a function of the recoil energy:
CðErÞ ¼ C0 þm · Er, with C0 and m parameters. In our
fit the more exact curve for the expectation of the ionization
yield width [derived from Eq. (A2)] is used. We use a
Markov chain Monte Carlo (MCMC) technique [38] to be
sure to populate the full posterior distribution in the
parameter space and account properly for parameter corre-
lations. To incorporate systematics the fit is taken over a
six-dimensional space: C0, m, A, B, aH, and η. The last
variable is a fractional multiplier applied to the detector
voltage to account for possible measurement deviations in
that detector setting.
The result of the fit is shown in Fig. 3 with the maximum

likelihood curve for the extracted nuclear recoil yield

FIG. 2. The measured ionization width for electron recoils. The
triangular data points are from the EDELWEISS [19] measure-
ment on detector GGA3, and the circular data points are our
simulation of that measurement with the “tuned” resolutions (see
text). The solid curve is our exact model (σER) for the ionization
width given the appropriate resolution, and the dashed curve is
the zeroth-order model (σEDWER ) used by EDELWEISS.
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bandwidth and several randomly sampled curves from the
correct posterior distribution. For the full reproducible code
for this fit see the public data release [39].
The nuclear recoil bandwidth is well-reproduced by

using the fitted CðErÞ added in quadrature to the base-
level estimate. The base-level estimate is given in the
Appendix and is symbolically referred to as σSAINR . Given
the flexibility of our exact model for the ionization yield
distribution, we proceeded to use this CðErÞ and its
associated error to obtain the variance on N as a function
of recoil energy, parametrized by the intrinsic nuclear recoil
Fano factor, Fnr.

V. MULTIPLE SCATTERING CORRECTION

For the EDELWEISS data the nuclear recoil ionization
yield information is generated via scattering of neutrons
from a 252Cf source. Because of the use of neutrons,
multiple scattering is an obvious effect that will increase
the measured ionization yield width. The EDELWEISS
study [19] accounted for this effect using a Monte Carlo
simulation and concluded:
Although multiple interactions tend to lower hQi; this

effect remains weak, and the Q distribution associated with
single interactions events is only slightly narrower and
completely included in the wider band.
the “wider band” being the band that encompasses the

measured nuclear recoils. In other words, multiple scattering
cannot account for the full observed ionization yield width.

We have resimulated the effect of multiple scattering in a
detector that matches the EDELWEISS GGA3 germanium
detector (approximately cylindrical with 70 mm diameter
and 20 mm thick). For this we have used a GEANT4 [40,41]
simulation where the geometry—aside from the germa-
nium detector—was not made identical to the EDELWEISS
setup, but where generic elements such as typical cryostat
materials and polyethylene shielding were included. Our
specific geometry (from inside to outside) included the
following: the germanium detector; an electronics “tower”
made mostly of copper with small amounts of insulating
carbon; an “inner vacuum chamber” wall made of stainless
steel; liquid helium; a stainless steel Dewar with vacuum
jacket; and a rectangular polyethylene shield and support-
ing structure (aluminum). The source is located between
the Dewar and polyethylene shield, 66 cm below the
detector at a radial distance of 35 cm from the cylindrical
axis of the Dewar and germanium detector.
Our simulation uses GEANT 4.10.1.p02 and the so-called

“Shielding” physics list [42]. The main attribute of this
physics list in the context of our analysis is the high-
precision neutron-scattering library for neutron energies
below 20 MeV. The use of this “NEUTRONHP” library
[43,44] gives more precise realizations of the nuclear
recoils because of the implementation of the detailed
low-energy neutron interaction library G4NDL. A small
drawback of the library is that it sacrifices strict energy-
momentum conservation on an event-by-event basis, but
that is not an important deterrent for this study since the
recoil spectrum is more correct.
While the simulation setup does not match the

EDELWEISS geometry, we point out that the geometry
will principally affect the energy distribution of the neutron
flux near the detector. The yield width is insensitive to that
distribution because all of our scattering neutrons lie above
20 keV where the elastic scattering cross section is away
from the resonance region, relatively flat, and well known
[45]. Therefore the distribution of multiple scatters within
the detector—which does affect the Q distribution—will
not depend strongly on the energy distribution of the
neutron flux or the geometry, but rather if the germanium
elastic cross sections used are close to reality. The elastic
cross sections used in our version of “NEUTRONHP” are in
an energy region that has been well measured and match
other evaluations such as the JENDL 5.0 evaluation [45].
We use these simulated data by applying the ionization

yield model used in Sec. III. More precisely, we “tune” the
sensor resolutions in the same way as produced the best
match to the electron recoil bandwidth, take the ionization
yield to be Q̄ ¼ 0.16E0.18

r , and take the intrinsic nuclear
recoil Fano factor to be zero.
The simulated ionization yield distributions in Fig. 4

show that the single-scatter contribution has a clearly
higher average yield than the distribution that includes
all scatters. However, the width of the distribution is only

FIG. 3. Our fit to the nuclear recoil ionization width using the
MCMC procedure. The solid curve is the maximum-likelihood
fit to the C function, and the dashed lines are the assessed
1σ statistical uncertainty bounds. The data points are the
EDELWEISS [19] measured values for detector GGA3, and
the transparent curves are a sampling of 100 realizations of
CðErÞ using parameters pulled from the posterior parameter
distributions.

INTRINSIC FANO FACTOR OF NUCLEAR RECOILS FOR DARK … PHYS. REV. D 106, 123009 (2022)

123009-5



modestly wider over the energy range shown (20–30 keV).
The empirical distribution (Fig. 4 black dashed histogram)
is clearly significantly wider than our simulation with
multiple scatters included—a feature that gets more sig-
nificant with increasing energy.
We have systematically fit the distribution widths from

the simulation as a function of energy and compared them
with the single-scatter width predictions discussed previ-
ously. Figure 5 shows the ionization widths that result for a
full simulated 252Cf dataset with multiple scattering
included. Of course, the resulting ionization widths are
larger than would result from a nuclear recoil sample
consisting only of single scatters. Since our ionization
yield model only makes predictions for single scatters, we
compare the multiple scatters to that prediction to see how
much wider the ionization yield distribution becomes. As in
the previous section we fit a function CmðErÞ ¼ C0m þ
mmEr that describes the quadrature addition necessary to
bring the single-scatter prediction in line with the simulated
multiple-scatter results. In this case we do not let A, B, aH,
or η vary but set them equal to their best fit values from the
MCMC in Sec. IV. The varying fit parameters are C0m

and mm.
It is clear from the fit displayed in Fig. 5 that the

quadrature addition needed to describe the effect of
multiple scattering is observable but significantly less than
what is required to describe the EDELWEISS ionization
yield width data. This multiple-scatter correction to the
yield widths will be used in Sec. VI to extract the required

additional correction needed to describe the EDELWEISS
data. We argue that this additional correction is related to
unaccounted uncertainty in the fundamental ionization
production by nuclear recoils, and can be described by
an intrinsic nuclear recoil Fano factor.

VI. EXTRACTING THE GERMANIUM
INTRINSIC FANO FACTOR

We posit that the reason the measured ionization variance
on EDELWEISS’ GGA3 detector is larger than the
expected when including multiple scattering (see Sec. V)
is an unaccounted intrinsic ionization variance in the
nuclear scattering process. We quantify this additional
variance by taking the quadrature subtraction of the
corrections extracted in Secs. III and V. The result is a
correction, C0ðErÞ, that is equal to the intrinsic ionization
variance. Equation (6) shows the relationship of the
intrinsic variance to the previous corrections,

C0ðErÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðErÞ2 − CmðErÞ2

q
: ð6Þ

Our intrinsic ionization variance is then converted into a
Fano factor for nuclear recoils, Fnr, as advocated in Sec. II.
The conversion to the nuclear recoil Fano factor is made by
assuming the intrinsic variance is produced by simply
increasing the nuclear recoil Fano factor from Fnr ¼ 0 to
some finite (positive) value within the framework of the

FIG. 4. Simulated ionization yield histograms of the single-
scatter distribution (blue) and all-scatter distribution (magenta)
for the energy range 20–30 keV. The black dashed histograms are
single scatters with an “extra” resolution applied to bring the
width of the distribution in line with what was measured by
EDELWEISS as discussed in their publication [19].

FIG. 5. A fit to the simulated multiple-scatter ionization width
using the GEANT4 recoil data, and our yield model. The points are
the ionization yield widths of the simulated data, and the
solid line is the maximum likelihood fit to the Cm function.
The dashed lines are the assessed 1σ statistical uncertainty
bounds. The transparent curves are a sampling of 100 realizations
of CmðErÞ using parameters pulled from the posterior parameter
distributions.
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model given in Eq. (A2) by setting the variance on the
independent random variable N taken to be σN ¼

ffiffiffiffiffiffiffiffiffiffi
FnrN̄

p
.

The actual value of FnrðErÞ is then simply given by

σSAINR ðEr;FnrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0ðErÞ2 þ σSAINR ðEr;Fnr ¼ 0Þ2

q
: ð7Þ

Figure 6 shows the extracted intrinsic Fano factor, Fnr as a
function of the recoil energy. The estimate for the uncer-
tainties on the resulting FnrðErÞ were obtained from the
MCMC posterior distribution of all of the parameters
(A; B; aH; η; C0; m) in the original fit and the posterior
distribution of the C0m and mm parameters in the multiples
fit. A single realization of FnrðErÞ is obtained by using a
sample of the original and multiples fit and then subtracting
them in quadrature to get C0ðErÞ. Each sample of C0 is
turned into a sample of Fnr through Eq. (7). The maximum
likelihood parameters are taken as the central value for Fnr,
and we obtain the approximate 1σ deviations by taking the
standard deviation of all samples at each energy—these are
plotted as the magenta band in Fig. 6.
These uncertainties include the systematic uncertainty on

the result with contributions from several parameters
which, while nominally fixed, are not known with certainty.
They are in order of decreasing importance: multi-
ple scattering; a finite-binning uncertainty on the
EDELWEISS ionization yield data; a possible departure
of the quantity V=ϵγ from the nominal 4=3 value (fit
parameter η); charge trapping (fit parameters A and B); and

the functional form of the average ionization yield. The
uncertainties are obtained by directly estimating the con-
tribution (in the case of the finite binning) or including
nuisance parameters in the six-parameter MCMC [38] fit to
the EDELWEISS ionization yield width data for GGA3 for
the extraction of CðErÞ. For each of the parameters
representing the systematic uncertainties, a prior was
chosen that was reflective of the state of knowledge on
the parameters. The total uncertainty is estimated in Fig. 6,
and the factional impact of each of the uncertainties or
corrections is given in Table II.

FIG. 6. The extracted nuclear recoil intrinsic Fano factor for germanium using the EDELWEISS [19] data. The black line is the best fit,
the magenta shaded region denotes the 1σ statistical uncertainty region, and the inset shows a zoom of the region between 7 and 30 keV.
The blue transparent curves are 1000 samples drawn from the MCMC posterior distribution—these give a sense for the presence of
outlying behaviors. The gray shaded region is the region in which there are EDELWEISS yield width data; in that region the
results are not an extrapolation. The Lindhard prediction for the nuclear recoil Fano factor are given in orange for Approximations D
(solid lines) and E (dashed lines). To produce those predictions we used a Lindhard model for the ionization yield with parameter
k ¼ 0.157 [46].

TABLE II. The uncertainties and correction sizes for the
extraction of the nuclear recoil intrinsic Fano factor for germa-
nium using the EDELWEISS [19] data. The first column lists
uncertainties with a (U) and corrections with a (C). The third
column are the parameters in the fit related to that category (if
any). The last column lists the fit parameters that have relevant
correlations with that particular category.

Classification Size (%) Parameters
Relevant

correlations

Statistical (U) 40–80 C0, m None
Multiple scattering (U) < 6 None None
Finite binning (U) 5 � � � � � �
V=ϵγ (U) < 20 η aH
Charge trapping (U) < 20 A, B C0, m
Yield variation (U) < 20 A, B C0, m
Multiple scattering (C) 60–70 None None
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VII. CONCLUSIONS

We have espoused the preference for quantifying the
inherent uncertainty on the number of electron-hole pairs
produced as an intrinsic Fano factor,Fnr, for nuclear recoils.
We have also presented constraints on such a parameter from
previous measurements on silicon and germanium–two
important target materials for precision low-mass dark
matter searches [47]. In the latter case we extracted mean-
ingful Fnr measurements by a technique that can be adapted
to low-threshold detectors measuring ionization and heat,
but that did not require a specialized neutron scattering
setup. We have used the Lindhard predictions as a guide,
with the hope that future experiments will be able to
distinguish between approximations in that work and/or
inspire the development of a more accurate framework.
Our results indicate that the intrinsic nuclear recoil

Fano factor is larger than expected for both silicon and
germanium–24.3� 0.2 and 26� 8, respectively, at 25 keV
recoil energy. The expectation in some literature is based on
the assumption that the number of phonons created is a
Poisson random variable [22]. In that case the electron
recoil Fano factor is around 0.13 for germanium [48] and
the intrinsic nuclear recoil Fano factor should be larger by
about a factor of 1=

ffiffiffiffi
Q̄

p
—still far lower than our suggested

values. In the authors’ view this would seem to indicate that
for nuclear recoils the number of created phonons is not
Poisson distributed and has a distribution that is signifi-
cantly wider than naively expected; this wider distribution
could then be imprinted on the electron-hole pairs in a way
similar to the derivation in [22]. The authors do not see any
reason why the number of phonons produced should have
a Poisson distribution; in fact, the Lindhard references
explicitly compute an ionization variance that is out of line
with that assumption [6]. The Lindhard predictions for the
intrinsic nuclear recoil Fano factor are shown in Fig. 6 for
germanium and have an Fnr at least as large as 8 at 25 keV
recoil energy. Those intrinsic nuclear recoil Fano predic-
tions are not inconsistent with our measurement above
around 50 keV but appear to be systematically lower than
our measurement below 50 keV—perhaps due to an
ionization yield that decreases more sharply toward lower
recoil energy than the Lindhard theory suggests.
Based on our ionization yield model, which can describe

EDELWEISS data well, the variance induced by the
intrinsic Fano factor is correlated in its effect on ionization
and heat resolutions. Roughly speaking, this means that the
widening of “nuclear recoil bands” in low-threshold dark
matter searches with discrimination capabilities (such as
SuperCDMS [20] and EDELWEISS [49]) may be smaller
than one would naively expect.
There is a lot of existing data that might be exploited

using our technique but it is often true that precise
resolution data are not published. If the sensor resolution
is carefully extracted, then our technique might serve to

extract Fnr more precisely for both silicon and germanium
in the low-energy region. Such information is invaluable to
low-mass nuclear recoil dark matter searches in silicon and
germanium that employ detectors without nuclear recoil
discrimination capabilities.
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APPENDIX: CALCULATION OF σNR
AND CROSS-CHECKS

1. Calculation of σNR
Both the EDELWEISS and SuperCDMS detectors can

be correctly modeled by assuming the measurements of the
ionization and heat depend on three (approximately)
independent random variables: the number of electron-hole
pairs created in a detectable interaction, N; the variation
(noise fluctuations) in the ionization sensor, δI; and the
variation in the heat detection δH. The distributions of δI
and δH have zero mean and are approximately normally
distributed with an energy-dependent standard deviation
given by the ionization and heat sensor resolutions. The
typical measured quantities in these experiments are
specific combinations of those random variables defined
thusly

Ẽr ≡ Er þ
�
1þ V

ϵγ

�
δH −

V
ϵγ
δI;

Q≡ ϵγN þ δI

Ẽr
: ðA1Þ

The variable Ẽr is the measured recoil energy, Q is the
measured ionization efficiency (yield), Er is the true recoil
energy, and V is the voltage across the cylindrical detector.
With this model if the sensor resolutions are published (or
otherwise known), the only remaining things needed to
predict exact distributions for all the measured quantities are
the true recoil energy distribution (which can be simulated)
and the distribution of the random variable N. The latter is
directly related to the Fano factor or the intrinsic nuclear
recoil Fano factor. Since N is rather high for recoil energies
above ∼10 keV, the distribution is taken to be approxi-
mately normal, with the mean given by the average ioniza-
tion yield at the particular recoil energy [Q̄ðErÞ] and the
width being given by the intrinsic Fano factor, Fnr.
We have done the exact calculation simply by recogniz-

ing the joint conditional probability distribution for Ẽr and
Q must have the following form:

PðQ; ẼrjδH; δI; N; ErÞ ¼ δ

�
Ẽr −

�
Er þ

�
1þ V

ϵγ

�
δH −

�
V
ϵγ

�
δI

��
δ

�
Q −

�
ϵγN þ δI

Er þ ð1þ V=ϵγÞδH − ðV=ϵγÞδI
��

: ðA2Þ
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Equation (A2) will correctly give the ionization yield (Q)
distribution at a single measured energy or over a range of
measured energies. The distribution may be close to normal
for a wide range of parameters but not exactly normal. The
distribution is especially far from normal when the heat or
ionization has a large enough variance so that the measured
recoil energy becomes consistent with zero. The ionization
yield standard deviation with this “exact” calculation is
referred to as σNR.
The procedure outlined above involves integrals that are

difficult to accomplish analytically. For that reason slower
numerical techniques are used and the computation time
makes it difficult to use (around 1 min for one calculation at
one energy and parameter-value point). In this work, as
discussed in Secs. III, V, and VI, the fitting requires many
evaluations of the function and so it must be approximated.
Part of the problem is not only the functional dependence

on Er, but the functional dependence on our nuisance

parameters A, B, aH, and η. In the general case—nuclear
recoils with average yield modeled by the A and B
parameters—we compute the “moment” expansion of Q
in Eq. (A1) to order 1=E6

r. We refer to this expression as
σSANR. For electron recoils, the agreement is quite good if
we simply take this expansion with A ¼ 1 and B ¼ 0

(see Fig. 2). The expansion to lower order (1=E2
r) is the

expression used by EDELWEISS–σEDWNR [see Eq. (3)].
For nuclear recoils, the agreement is not as good, so we

add a correction based on the preferred values of the
nuisance parameters from our fit to the EDELWEISS
data. Taking A0 ¼ 0.149, B0 ¼ 0.178, aH0 ¼ 0.038, and
η0 ¼ 1.000 we can use the exact function to create a static
correction for use in the nuclear recoil case. This is
the approximation we use to describe our nuclear recoil
ionization yield widths in our fitting procedure of
Sec. IV:

σSAINR ðEr; A; B; η; Fnr ¼ 0Þ2 ¼ σSANRðEr; A; B; η; Fnr ¼ 0Þ2
þ ½σNRðEr; A0; B0; η0; Fnr ¼ 0Þ2 − σSANRðEr; A0; B0; η0; Fnr ¼ 0Þ2�: ðA3Þ

The form shown in Eq. (A3) is much faster to compute
than the exact version, but gives ionization yield widths that
differ from the exact model by at most 7% over our
parameter space (Er plus nuisance parameters).

2. Cross-check with electron recoil Fano factor

One excellent check for consistency of our method is to
fit the electron recoil ionization yield band and extract the
electron recoil Fano factor, F. We cannot accomplish this
with the real EDELWEISS data [19] that we have used for
the majority of this paper because the data are not precise
enough (about 10% relative uncertainty) and the Fano
contribution to the ionization yield variance is expected

only to be around 0.1%. This is in contrast to the nuclear
recoil Fano contribution that we have measured to be at
least 10%.
Instead what we have done is simulate electron recoil

band data in a similar way as was done in Fig. 2, the high-
precision simulated data points. We selected a Fano factor
of F ¼ 0.15, adjusted the instrumental resolution so that
the Fano contribution was about 1% in yield variance, and
simulated the data with about 0.5% relative uncertainty on
each data point. With this fit–using the same MCMC fitting
method we used for nuclear recoils in this work—we
extracted a Fano factor of F ¼ 0.13� 0.08, consistent with
the Fano factor we set for the simulation (F ¼ 0.15).
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