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The concept of the modulation potential being utilized to describe the solar modulation of galactic
cosmic rays is calculated based on the full three-dimensional Parker transport equation. This is in sharp
contrast to the force-field approach, which is based on a series of approximations of this equation and
where traditionally all the physical processes are condensed into a single parameter without knowing their
relative contribution. In our comprehensive approach to the modulation potential, the contribution of all the
different physical processes is given explicitly as derived directly from the parameters of Parker’s transport
equation. We use the stochastic differential equations approach to study the effects of each of these different
physical modulation processes thoroughly and then also determine the rigidity and mass-to-charge-ratio
(A=Z) of these processes for the first time in the context of a modulation potential. It is found that: (1) This
comprehensive modulation potential for galactic cosmic particles with a given rigidity at the Earth is a
random variable, which can be fit by an inverse Gaussian distribution; (2) the rigidity and A=Z dependence
of this modulation potential can be divided into three categories based on the index value of power law
diffusion; (3) the modulation caused by convection becomes weaker with increased rigidity and eventually
dissipates, leading to a larger modulation potential for particles with a larger A=Z; (4) particle drift
significantly reduces this modulation potential and its variation with changes in the tilt angle of the
heliospheric current sheet has a distinct pattern for each of the two solar magnetic field polarities.
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I. INTRODUCTION

Galactic cosmic rays (GCRs), when entering the helio-
sphere, are modulated by the disturbed solar wind and its
embedded magnetic field so that their fluxes and spectral
shapes change with the variation of solar activity, generally
called solar modulation; for reviews, see Refs. [1–4]. It is
known that these charged particles may cause radiation
damage to spacecraft and even threaten the safety of
astronauts in outer space [5]. The modulation processes
are described by the well-known Parker transport equation
[TPE; [6]]:

∂f
∂t

¼ −ðVswþVdÞ ·∇fþ∇ · ðKs ·∇fÞþ1

3
ð∇ ·VswÞ

∂f
∂ lnp

;

ð1Þ

where fðr; p; tÞ is the GCR phase space density (PSD), r is
heliocentric position, p is the momentum of these particles,
and t is time. Here, fðr; p; tÞ is related to the differential
intensity by jðTÞ ¼ p2f, where T is a particle’s kinetic
energy per nucleon; Vsw is the solar wind velocity, Vd is the
pitch angle averaged drift velocity, and Ks denotes the
diffusion tensor. The terms on the right-hand side of Eq. (1)
describe the four main physical processes: solar wind
convection, particle drift in the global heliospheric mag-
netic field (HMF), diffusion because of irregularities in the
HMF, and adiabatic energy losses caused by the expansion
of the solar wind.
The widely used force-field approach for calculating a

modulation potential [e.g., [7,8]] is based on several serious
simplifications to the transport equation given above: (1) a
steady state so that ∂f=∂t ¼ 0; (2) an adiabatic energy loss
rate dR=dt ¼ ðR=3ÞVsw ·∇f=f ¼ 0 with R ¼ pc=Ze the
particle’s rigidity in terms of momentum p, the speed of*xi.luo@iat.cn
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light c, the particle’s charge Zwith e the elementary charge;
(3) no particle drifts; (4) a spherical symmetry which means
the modulation process is essentially one-dimensional. This
leads to:

VswR
3

∂f
∂R

þ Ks
∂f
∂r

¼ 0; ð2Þ

which is a first-order partial differential equation with
solution

f0ðR0Þ ¼ fbðRbÞ ð3Þ

along contours of the characteristic equation

dR=dr ¼ RVsw=ð3KsÞ ð4Þ

in ðr; RÞ space. The parameters with subscripts 0; b
represent values at the position of the Earth and at the
outer boundary of the modulation region, respectively. For
convenience, in this paper, R0 is called the start rigidity, and
Rb the end rigidity. Thus, Rb − R0 determines the GCR
particles’ rigidity loss due to the solar modulation process.
Additionally, when it is assumed that the diffusion coef-
ficient Ks has the form Ks ¼ βk1ðrÞ · k2ðRÞ, and with
k2 ∝ R, a straightforward solution for Eq. (4) is obtained:

ϕ≡ A
Z

Z
Tb

T0

dT ¼
Z

Rb

R0

βdR ¼
Z

rb

r0

Vsw

3k1
dr; ð5Þ

where A, T, R is the particle’s mass, kinetic energy and
rigidity; β is the ratio between the speed of the particle and
that of light. Here, ϕ is called the solar modulation potential
which denotes energy changes of GCRs from the helio-
pause (modulation boundary) to the Earth; the last part
which contains the solar wind velocity, is the simplified
form used as the so-called force-field parameter.
In the original force-field approach, ϕ was assumed to

have the same value for different GCR species with a
different start rigidity, and ϕ only changes with the solar
activity [e.g., [9]]. Because of the assumption made in the
derivation process, as mentioned above, the force-field
approach can be used only in very limited circumstances.
However, in applications these limitations have soon
become neglected, so that all the physical processes in
the heliosphere have been assumed to be condensed in this
single parameter, without a detailed demonstration of what
it actually means, especially in the literature of an exper-
imental nature, probably because of its simplicity. In
practice, the parameter ϕ is calculated by an intricate
inversion process using Eq. (3). For example, with the
PSD of observational GCR data and their local interstellar
spectra (LIS’s), the value of Rb is obtained and related to ϕ
by [refer to Eq. (5)]:

Rb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 þ ϕ2 þ 2R0ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
Ae0
ZR0

�
2

svuut ; ð6Þ

where e0 is the nucleon rest energy. Here, ϕ is an intrinsic
property of solar modulation conditions in the heliosphere
and should only relate to the heliospheric environment,
but this inversion process includes uncertainties in obser-
vational GCR data and in their corresponding LIS’s.
Reference [10] found that the ϕ calculated by using various
LIS’s [e.g., [11–14]] differ with each other significantly and
seems inadequate to use for such purposes. In recent years,
a number of authors presented a rigidity dependence of ϕ to
phenomenologically fit the observational data at the Earth
[e.g., [15–17]]. In addition, Refs. [18,19] incorporated the
effects of particle drift into ϕ. All these modifications allow
for some additional freedom in reproducing observed GCR
spectra at the Earth while attempting to maintain the
simplicity of the force-field model. However, they do
not address the physical mechanism in terms of helio-
spheric modulation processes underneath this type of
required freedom.
It is evident from what we describe above that several

questions about this approach come forward (some may
even be seen as objections to the force-field approach and
the way it has been applied lately) e.g., what becomes of the
expression for a modulation potential without any simpli-
fication? And, is there any rigidity and A=Z dependence of
the modulation potential? What are the effects of the three
major and quite different physical processes on such a
modulation potential? What we present below, is a detailed
study of these questions in an effort to resolve them and to
understand what the implications are for solar modulation
in terms of a modulation potential. We start off with a set of
stochastic differential equations (SDE) that are equivalent
to the TPE, similar to what we had used before and then
make some modifications in order to numerically calculate
what may be called a comprehensive modulation potential
as is shown in Sec. II. The influences of the various
physical processes on this modulation potential and their
rigidity and A=Z dependence are presented and discussed
in Sec. III. We consider these results in the context of a
modulation potential as new, not obtainable through the
force-field approach as it based on too many simplifying
assumptions. In conclusion, a summary and discussions are
given in Sec. IV.

II. A COMPREHENSIVE MODULATION
POTENTIAL

For a pseudoparticle with rigidity R at position r, the
SDE equivalent to the TPE has the form:

dr ¼ ð∇ · Ks − Vsw − VdÞdsþ
ffiffiffiffiffiffiffiffi
2Ks

p
· dWðdsÞ; ð7Þ
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dR ¼ 1

3
Rð∇ · VswÞds; ð8Þ

where s is the backward time and ds ¼ −dt, each elements
in dW satisfy a Gaussian distribution of zero mean and a
variance of ds. By comparing with the characteristic
equation of the force-field approach [Eq. (4)], Eq. (7) is
regarded as the characteristic equation of the TPE without
any simplification. For detailed discussions of this
approach to solar modulation, see Ref. [e.g., [20–23]].
Adopting that dϕ ¼ A=ZdT ¼ βdR and utilizing

Eq. (8), it is obtained that dϕ ¼ βR∇ · Vswds=3, which
is then used to substitute the independent variable ds in
Eq. (7):

dr ¼ 3ð∇ · Ks − Vsw − VdÞ
βR∇ · Vsw

dϕ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6Ks

βR∇ · Vsw

s
· dWðdϕÞ: ð9Þ

This equation describes typical Brownian motion with three
“drift” terms:

Vϕ;diff ¼
3∇ · Ks

βR∇ · Vsw
; ð10Þ

Vϕ;conv ¼ −
3Vsw

βR∇ · Vsw
; ð11Þ

Vϕ;drift ¼ −
3Vd

βR∇ · Vsw
: ð12Þ

Note that Vϕ;diff ;Vϕ;conv, and Vϕ;drift are not real velocities,
the actual units are AU=GV. They represent the “drift”
terms in the modified SDE [Eq. (9)] and relate to diffusion,
convection and drift in Parker’s original TPE.
In Eq. (9), with the increase of ϕ in the SDE approach

that we utilized, the pseudo-particle moves toward the
heliopause from the Earth. The modulation potential can be
considered as the value of ϕ when a pseudoparticle first hit
the heliopause, to be called the first hitting potential. The
stochastic term, dW, causes each particle to have a different
trajectory and the first hitting potential is path dependent,
especially in 3D, see Ref. [24]. So that the first hitting
potential is not a definite value, but a random variable,
e.g., considering GCR protons with a certain rigidity under
the same heliospheric environment, the energy loss for
different pseudoparticles may be distinct from each other
[e.g., [25,26]].
Mathematically, the first hitting time for these particles,

which undergo simple (one-dimension, constant drift
and diffusion) Brownian motion, should obey an inverse
Gaussian function [e.g., [27] and referring to the Appendix].
In the next section, it is shown that the distribution of the first

hitting potential in Eq. (9) calculated numerically in 3D can
also be well fitted by an inverse Gaussian function:

IGðϕ;Λ;ϕavgÞ ¼
ffiffiffiffiffiffiffiffiffiffi
Λ

2πϕ3

s
exp

�
−Λðϕ − ϕavgÞ2

2ϕ2
avgϕ

�
; ð13Þ

where ϕavg is the mean value of ϕ; Λ determines the
distribution of ϕ on both sides of ϕavg. By comparing with
the solution given in the Appendix,ϕavg should be inversely
proportional to the first part on the right hand side of Eq. (9)
(“drift” term) and Λ is determined by the second term of
Eq. (9) (stochastic term).

A. Heliospheric parameters

Based on observational facts, the solar wind velocity Vsw
is (1) radially accelerating from zero to a steady value
within 0.3 AU from the Sun [28]; (2) during solar minimum
period, Vsw increases from ∼ 400 km=s in the equatorial
plane to ∼ 800 km=s at high heliolatitude [29]; (3) there
is no clear latitude dependency during solar maximum
period [e.g., [1], and references there in]. The solar wind
velocity in the whole heliosphere can be expressed as
[e.g., [1,2,30,31]]:

Vsw ¼ V0

�
1 − exp

�
40

3

�
rs − r
r0

���

×

�
1.475 ∓ 0.4 tanh

�
6.8

�
θ −

π

2
� ξ

���
er; ð14Þ

where V0 is related to the solar wind speed observed
near the Earth, rs ¼ 0.005 AU is the radius of the Sun,
r0 ¼ 1 AU, ξ ¼ αþ 15π=180, and α is the tilt angle of the
wavy heliospheric current sheet (HCS). The top and bottom
signs correspond to the northern and southern hemisphere,
respectively.
The heliospheric magnetic field (HMF) exhibits an

archimedean spiral shape [32], which results from the
rotation of the Sun. However, excessive GCR drift effects
in the polar regions of the heliosphere will be caused by the
standard Parker HMF, so that some efforts have been made
to modify the classical Parker HMF [e.g., [1,33–35]]. In
this context, Ref. [36] suggested a small latitudinal com-
ponent to the standard Parker HMF in order to keep the
magnetic field divergence free, and this simple modifica-
tion can be expressed as:

B ¼ AsB0

r2
ðer þ ξeθ −ΨeφÞ × ½1 − 2Hðθ − θ0Þ�;

ξ ¼ rδm
rs sin θ

;

Ψ ¼ ðr − rsÞ sin θΩ
Vsw

; ð15Þ
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where B0 is related to the HMF observed near the Earth, As
denotes the polarity of HMF with positive (negative) sign
representing the HMF points outward (inward) in the
northern hemisphere of the Sun, Ω ¼ 2.66 × 10−6 rad=s
is the rotation speed of the Sun, and H is the Heaviside
function. δm is set to be 2 × 10−5 [e.g., [4,35]]. To avoid a
singularity, δm= sin θ is set equal to the value δm= sinð1°Þ
when θ < 1° or θ > 179°.
The HCS latitudinal extent θ0 introduced by Ref. [37,38]

can be written as

θ0 ¼ π

2
− arctan

�
tan α sin

�
φþΩðr − rsÞ

Vsw

��
: ð16Þ

See also the related discussions by Ref. [2,39].

B. Diffusion and Drift Coefficients

It is assumed that the diffusion of GCRs is caused by
irregularities in the HMF on a small scale. Several theories
have been developed over the years to describe the
fundamental properties of diffusion [e.g., [40–45]].
However, there are still some obstacles to overcome for
directly adapting these complicated theories into numerical
models. In this work, for a clear description, the widely
used empirical formula [30,46,47] is changed to:

Kk ¼ K0βk1ðrÞk2ðRÞ;
k1 ¼ Beq=B;

k2 ¼
� ðR=RkÞb R < Rk

ðR=RkÞc R ≥ Rk

ð17Þ

whereK0 is a constant in units of 1020 cm2 s−1, and with the
rest of the equation written to be dimensionless. Here Beq is
the magnitude of the HMF measured near the Earth. This
equation consists of two power laws; the slope of the rigidity
dependence is determined by b and c when the particle’s
rigidity is below or above turnover point, Rk, respectively.
As for the two perpendicular diffusion coefficients, they are
scaled to the parallel diffusion coefficient byK⊥;r ¼ 0.02Kk
and K⊥;θ ¼ f2þ tanh½8ðjθ − 90°j − 35°Þ�gK⊥;r, which
comes from Refs. [30,48]. Though some uncertainty exist
in these simplified scaling relations [47,49], it is enough to
study their influence on the rigidity and A/Z dependence of
modulation.
The drift velocity of charged particles caused by the

curvatures, gradients and a current sheet in the large scale
HMF can be expressed as:

Vd ¼ KA0
qRβ
3

∇ ×

�
B
B2

�
; ð18Þ

where KA0 is a constant, ranging from 0 to 1, with KA0 ¼ 1
describing full drift; q is the particles’ charge-sign; see also
the discussion by Ref. [30].

C. Numerical solutions

As a sample, the numerical result of Eq. (9) for a particle
with A=Z ¼ 1 is shown in Fig. 1 under the condition of
V0¼ 400 km=s, B0 ¼ 5 nT, As > 0, and α ¼ 20°.
Following recent numerical simulation studies [e.g.,
[49,50]], the diffusion and drift parameters are set to be
b ¼ 0.7; c ¼ 2.0; Rk ¼ 4 GV, K0 ¼ 400, and KA0 ¼ 1.
The top left panel shows the colored contour plot of the
probability distribution function (PDF) of the first hitting
potential, ϕ, with a different start rigidity, R0. The histo-
grams in the other three panels are the cross section at
R0 ¼ 0.1; 1, and 10 GV, respectively. It is evident from
Figs. 1(b)–1(d) that the PDF of ϕ is not symmetrical, it
drops rapidly near 0 and drops slowly when approaching a
large value, forming a long right-hand tail. The black
dashed lines are the best fit to the PDF using the inverse
Gaussian function as described in Eq. (13), the best-fit
parameters are labeled in each panel. With the increase of
R0, the average value of ϕavg decreases sharply when
R0 < 0.1 GV, decreases slowly or remains unchanged in
the range of 0.1 GV < R0 < 4 GV, and decreases sharply
again to nearly 0 when R0 > 4 GV; the variation of Λ
(denoting the dispersion of ϕ on both sides of ϕavg) is
mainly similar to that of ϕavg. The upper abscissa (red
fonts) in Fig. 1(b)–1(d) shows the end rigidity, Rb,
corresponding to the value of ϕ in the lower abscissa
one-by-one through Eq. (6). It can be seen that, with the
increase of ϕ from 0 GV to 1 GV, Rb changes from 0.1 GV
to 1.7 GV (∼ 170%) when R0 ¼ 0.1 GV; but when
R0 ¼ 10 GV, Rb merely increases from 10 GV to
11 GV (∼10%). Thus, the same variation of ϕ corresponds
relative large change of Rb as the start rigidity of R0 is low.
The right Yaxis shows the phase space density (PSD) of the
GCR proton LIS [49] at different Rb. The large relative
change of Rb at low R0 leads to the fast decrease of
the PSD.
Based on the SDE approach, the observational PSD is an

average of the LIS PSD with a different modulation
potential, which can be described by the first two terms
in the following formula:

Z
fbðRbÞIGðϕÞdϕ ¼ f0ðR0Þ ¼ fbðRb;effÞ; ð19Þ

where IGðϕÞ denotes the inverse Gaussian distribution of ϕ
[Eq. (13)]. The last two terms are usually used to calculate
the conventional modulation potential ϕeff (as described in
Sec. I), which is related to Rb;eff by Eq. (6). Considering
only the first and last terms, ϕeff can be derived from the
distribution of ϕ and the LIS directly without observational
data. The red curve in Fig. 1(a) and red vertical lines in
Figs. 1(b)–1(d) show ϕeff calculated by using the above
method. It follows that, when R0 is large enough (> 4 GV),
ϕeff and ϕavg are almost equal to each other; when R0 is
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small (< 4 GV), as the PSD of the LIS at low ϕ is much
higher than that at large ϕ, ϕeff is less than ϕavg.

III. CONTRIBUTIONS OF VARIOUS PHYSICAL
PROCESSES

The distribution of ϕ is determined by Λ and ϕavg; with
Λ controlling the dispersion of ϕ and relying solely on the
diffusion process. And ϕavg is the average value of ϕ and
relies on the three main physical processes (diffusion,
convection, drift), it changes greatly with solar activity.
Also, as shown in Fig. 1, ϕavg is the main factor in
determining the GCR fluxes at the Earth. The influence
of the three main physical processes on the rigidity and

A=Z dependence of ϕavg is studied in this section. See

Sec. II C for the parameters’ setup in our numerical model.

A. The diffusion effect

As shown in Eq. (17), the diffusion tensor is considered
to have separable terms, see also [e.g., [50,51]]. Therefore
Eq. (10) can be rewritten as:

Vϕ;diff ¼ K0

3∇ · k1
∇ · Vsw

k2
R
: ð20Þ

Since k1 and Vsw is not related to the particle’s rigidity,
considering only the diffusion process, the rigidity and A=Z

(a) (b)

(c) (d)

FIG. 1. The numerical result of Eq. (9) under the conditions as described in Sec. II C for GCR particles with A=Z ¼ 1. Panel (a):
Probability distribution function (PDF) of ϕ with a different start rigidity R0. The black (red) line is the average value (effective value,
refer to Sec. II C) of ϕ. Panels (b,c,d): Histograms of ϕ when R0 ¼ 0.1, 1, 10 GV, respectively; black dashed lines are the best fit to
histogram using the inverse Gaussian function with best-fit parameters labeled in each panel. The upper axes (in red) show the end
rigidity, Rb, which corresponding to ϕ one-by-one. The red curves show the phase space density (PSD) of the LIS at different end
rigidity.
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dependence of ϕavg only relate to the power law index of
the rigidity variable contained in function k2.
Figures 2(a) and 2(c) show the mean free paths (MFP) λ,

in units of AU, of GCR particles and relate to the diffusion
coefficient (DC) by Ks ¼ λβc=3. The slope of the MFP
indicates the power law index of k2 as a function of rigidity.
The black lines are plotted using the same parameters as
described in Sec. II C. Figures 2(a) and 2(c) focus on the
power index at low and high rigidity, respectively, with the
other parameters unchanged. Figures 2(b) and 2(d) show
the corresponding ϕavg for A=Z ¼ 2 (dashed lines) and
A=Z ¼ 1 (solid lines) with the corresponding color coded
MFPs shown in Figs. 2(a) and 2(c). The blue lines in all
four panels are the equivalent of what is usually applied in

the force-field approach. The general trends in this figure
are discussed as follows:
(1) The larger the MFP (or DC) becomes, the smaller the

value of ϕavg. As shown in Eq. (20), a larger DC
leads to a larger Vϕ;diff. Correspondingly, the modu-
lation potential for a particle approaching the helio-
pause in Eq. (9) is reduced. In Figs. 2(a) and 2(b), the
MFP with b ¼ 0.5 (red line) is larger than that with
b ¼ 1.5 (yellow line), whereas ϕavg with b ¼ 0.5 is
less than that with b ¼ 1.5. (However, note how ϕavg
levels off at low rigidity despite that the MFP is
systematically decreasing, which will be discussed
next). Similarly, in Figs. 2(c) and 2(d), the MFP with
c ¼ 0.5 (red line) is lower than that with c ¼ 2

(a) (b)

(c) (d)

FIG. 2. The effect of the SDE diffusion term∇ · Ks on the ϕavg. Panel (a): MFPs calculated with four different rigidity power indices b
[in Eq. (17)] below 4 GVwith other parameters unchanged (refer to Sec. II C). Panel (b): Corresponding ϕavg for A=Z ¼ 2 (dashed lines)
and A=Z ¼ 1 (solid lines); the lower part shows the corresponding color coded ratios. Panels (c,d) are similar to panels (a,b) but with
results focused on four different power indices c above 4 GV.
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(black line), whereas ϕavg with c ¼ 0.5 is larger than
that with c ¼ 2.

(2) The rigidity dependence of ϕavg becomes insignifi-
cant for all cases when R0 < 0.1 GV. It follows from
Eq. (6) that when R0 ≪ ϕavg; e0, the rigidity of the
considered GCR particles moving through the helio-
sphere is almost independent on R0. So, for particles
with a different start rigidity, they have the nearly
same Vϕ;diff , and eventually the same ϕavg, as shown
in the left side of Fig. 2(b).

(3) The rigidity dependence of ϕavg when R0 > 0.1 GV
clearly depends on the power law index of the MFPs.
If the power index is equal to 1 in Eq. (20), Vϕ;diff

becomes independent of the particle’s rigidity,
which leads to the independence of ϕavg on R0

[the blue lines in Figs. 2(b) and 2(d)]. Note that the
end rigidity of some particles with R0 ¼ 1 GV may
exceed the turn over rigidity Rk; the large power
index at higher rigidity range (R > Rk) leads to the
decrease of the blue line in Fig. 2(b) as R0 > 1 GV.
If the power index is smaller than 1, Vϕ;diff is anti
correlated with the particle’s rigidity, which leads to
the positive correlation between ϕavg and R0 [the red
lines in Figs. 2(b) and 2(d)]; if the power index is
bigger than 1, Vϕ;diff is positively correlated with the
particle’s rigidity, which leads to the anti correlation
between ϕavg and R0 [the yellow line in Fig. 2(b) and
black line in Fig. 2(d)].

(4) There is hardly any A=Z dependence of ϕavg when
R0 > 4 GV. It follows from Eq. (6) that if R0 ≫ e0,
the rigidity of particles moving through the helio-
sphere is almost no longer changing with A=Z.
Particles with different A=Z have the same Vϕ;diff ,
and eventually the same averaged solar modulation
potential [as shown on the right side of Fig. 2(d)].

(5) The A=Z dependence of ϕavg when R0 < 4 GV
depends on the power law index of the MFPs.
If the power index is equal to 1, Vϕ;diff becomes

independent of rigidity and A=Z. The blue line in
lower panel of Fig. 2(b) remains almost along the
line with Ratioϕ ¼ 1. The rigidity of particles with
the same R0 and ϕ is positively correlated with A=Z.
If the power index is smaller than 1, Vϕ;diff is anti
correlated with the particle’s rigidity, so, bigger A=Z
leads to larger ϕavg [the red lines in Fig. 2(b)]; If the
power index is more than 1, Vϕ;diff is positively
correlated with the particle’s rigidity, larger A=Z
leads to smaller ϕavg [the yellow line in Fig. 2(b)].

B. The convection effect

In order to study this aspect, based on the adapted solar
wind model [Eq. (14)], Eq. (11) can be rewritten as follows:

Vϕ;conv ¼ −
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðAe0=ZÞ2

p
R2

r: ð21Þ

This expression contains R and A=Z explicitly, which
means that the convection related SDE term [Eq. (11)]
also contributes to the rigidity and A=Z dependence of ϕavg.
The black lines in Fig. 3 show ϕavg calculated solely
considering diffusion whereas the red lines exhibit the
addition of convection. It follows that:
(1) The convection term modifies the modulation

potential.
The value of Vϕ;conv is negative, which means that

the convection process hinders the motion of GCRs
into the heliosphere differently than the diffusion
process. The pseudoparticles in our SDE approach
need a larger modulation potential to propagate
between the heliopause and the Earth.

(2) The modification decreases with increasing R0, and
dissipates around R0 ¼ 4 GV. Since Vϕ;conv is anti-
correlated with rigidity, its effect is weakened with
higher rigidity. On the other hand, in our numerical
model the diffusion process becomes stronger as the
rigidity increases. Therefore, the effect of convection
dissipates and becomes insignificant when compar-
ing with the diffusion effect.

(3) Themodification is larger as values ofA=Z increases.
The lower panel of Fig. 3 shows the difference

between ϕavg calculated for A=Z ¼ 2 (dashed lines)
and for A=Z ¼ 1 (solid lines). It can be seen that the
convection process significantly enhances the modu-
lation potential for particles with larger A=Z. This
effect can be explained by the correlation between
Vϕ;conv and A=Z.

FIG. 3. The influence of the SDE convection term on ϕavg. As a
comparison, the black lines show the result of Eq. (9) containing
only the diffusion term whereas the red lines show the results with
the convection term added. Dashed and solid lines are the results
for A=Z ¼ 2 and A=Z ¼ 1, respectively, with their differences
shown in the lower panel.
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C. The effect of drift

Equation (12) can be rewritten to be

Vϕ;drift ¼ −KA0
q∇ × ðB=B2Þ

∇ · Vsw
: ð22Þ

In this equation the described effect is charge-sign depen-
dent but independent of R, and as such only relates to the
heliospheric environment, e.g., the HCS tilt angle α, the
solar magnetic field and its polarity As. This means that
the SDE drift term does not contribute to the rigidity or A=Z
dependence of ϕavg.
Figure 4(a) shows the comparison of ϕavg calculated

without (black line) and with (colored lines) this drift term
for GCR particles with A=Z ¼ 1. To study the effect of the
drift term, the simulation is carried out under a positive
solar magnetic polarity (As > 0) and using different HCS

tilt angles (α) (colored lines). As it is demonstrated, the
colored lines are all below the black line, which means that
this drift term effectively promotes the motion of GCRs
in the heliosphere. At high enough rigidity, drift effect
becomes insignificant when comparing with the diffusion
effect, so that all lines converge.
In order to illustrate the impact of α on ϕavg, Fig. 4(b)

shows the variation of ϕavg with the increase of α for
particles with R0 ¼ 1 GV. It follows that when α ¼ 0
(solar minimum activity), the contribution of this term to
ϕavg is significantly smaller than without it whereas an
increasing α systematically increases ϕavg to become closer
to the value without drift. Figures 4(c) and 4(d) are similar
to Figs. 4(a) and 4(b) but for a negative magnetic polarity
(As < 0). Evidently, the drift term also reduces the modu-
lation potential but differently and less compared with
when As > 0. In Fig. 4(d) it is shown how the increase rate

(a) (b)

(c) (d)

FIG. 4. The influence of the SDE drift term on ϕavg. Panel (a): Black line shows the result of Eq. (9) without this drift term; the colored
lines show the results with the drift term using increasing tilt angles of the HCS when the magnetic polarity is As > 0. Panel (b):
Variation of ϕavg with increasing tilt angles for particles with R0 ¼ 1 GV when As > 0. Panels (c,d): Similar to (a,b) but for As < 0.
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of ϕavg with increasing α is getting smaller to eventually
levels off and even showing a slight decline.

IV. DISCUSSION, SUMMARY AND CONCLUSION

Traditionally, the simplified modulation potential, last part
in Eq. (5), has been considered to condense all physical
processes in the heliosphere into a single parameter, see e.g.
Ref. [19], a controversial assumptionbecause itwas unknown
what the relative contributions of these physical processes
really were. A real drawback was that its rigidity and A=Z
dependence, two crucial features of the solar modulation of
GCRs, were undetermined. In fact, the simplifiedmodulation
potential as applied over the years has almost never been
related to any specific underlying modulation processes [8].
In this work, the widely used SDE approach to solar
modulation is applied to address these shortcomings by
performing a thorough investigation on what we called a
comprehensive modulation potential for GCRs.
The numerical results show that the modulation potential

ϕ for particles with a given rigidity at 1 AU (at Earth) is not a
definite value, but a random variable and its distribution can
be fitted by an inverse Gaussian function. This result is not
new, it is consistent to how it has been understood and
reported in most publications on solar modulation. The
traditional one-parametermodulation potential describes not
the effect on the energy change of every single particle but
the effective energy change out of a distribution of values for
that energy change. As the PSD of this LIS at low rigidity is
much larger than it is at high rigidity, there are some
differences between ϕeff and ϕavg (the average value of ϕ)
at a low start rigidity, but the difference becomes negligible
at a high start rigidity. The essential expressions on how the
modulation processes are described in this SDEapproach are
given by Eqs. (9)–(12), which should be kept in mind in the
discussion that follows. Of course, our discussion will show
that the main features of this comprehensive modulation
potential relate quite well to what is known from other and
our own numerical studies when the TPE is solved in 3D,
that is, not considering any kind of modulation potential.
It follows that how exactly diffusion is treated can be

considered as the main determining factor that governs the
transport of GCRs in the heliosphere; Fig. 2 illustrates how
crucial its assumed rigidity power law index is for the
rigidity and A=Z dependence of ϕavg. In this context,
turbulence theory [see e.g., [43,44,52,53]] indicates that
the power index increases from less than 1 at low rigidity to
more than 1 at high rigidity. Several numerical simulations
[e.g., [46,49,50,54]] report that the power law index at low
and high rigidity can change from less than 1 to more than 1
under different levels of solar activity. In principle, different
preset rigidity dependence may be used to determine ϕeff
and all may fit the measurements at Earth quite well when
utilizing the uncertainty of the LIS’s and in observational
GCR spectra. Reference [16] reported how ϕeff systemati-
cally decreases between 1 GV and 10 GV, a pattern that

relates to the blue and yellow lines in Fig. 2(b), corre-
sponding to a power law index in diffusion of
b ≥ 1 & c > 1. Reference [17] reported ϕeff increasing
slightly at first and then decreasing sharply between
1 GV and 10 GV, a pattern that relates to the black and
red lines in Fig. 2(b), which corresponds to a power law
index for diffusion of b < 1 & c > 1.
It follows that how convection is handled in determining

ϕavg can change it significantly for low rigidity particles
and enhancing it for particles with larger A=Z, an effect that
could not been studied in detail in the simplified potential
approach or for other empirical expressions of ϕeff .
Including particle drift in determining ϕavg reduces this

modulation potential for both magnetic field polarities,
significantly more so for a positive than a negative polarity.
It seems that the results of the phenomenological fitting
equation for ϕeff given by Ref. [18] is basically consistent
to our result, as the fitting process was design to be.
It is well known since the late 1980s [e.g., [55,56]] that the

observed GCR flux at the Earth decreases progressively
slower with an increasing HCS tilt angle α under As < 0
polarity conditions. See also the discussions of these effects
done with SDE models by Refs. [39,57]. It is expected that
the modulation potential should exhibit the same features,
which in fact is the case as shown in Fig. 4(d). UnderAs > 0
polarity conditions, the decrease rate of GCR flux at the
Earth is expected to systematically increase with increasing
α, corresponding to our results shown in Fig. 4(b). In our
work, to show the drift effect explicitly, we assumeKA0 ¼ 1
(maximum drifts) for all α. In most numerical simulations
it is assumed that KA0 should decrease to 0 when α
approaches very large values during solar maximum con-
ditions [e.g., [46,47,58]]. This means that ϕavg should also
approach the valuewithout drift for larger HCS tilt angles as
follows from Fig. 4.
In summary, by utilizing the stochastic differential

equation approach to solar modulation based on Parker’s
full transport equation, we calculated a generalized and
comprehensive modulation potential for the heliospheric
environment and found that: (1) This modulation potential
for particles with a given rigidity at the Earth is a random
variable which can be fit by an inverse gaussian distribu-
tion. (2) The rigidity and A=Z dependence of this
modulation potential can be divided into three categories
related to the index value of power law diffusion. (3) The
modification caused by convection becomes weaker with
increased rigidity and eventually dissipates; this leads to a
larger modulation potential for particles with a larger A=Z.
(4) Including particle drift significantly reduce the modu-
lation potential; how this changes with the tilt angle of the
heliospheric current sheet has distinct different patterns for
the two solar magnetic field polarity epochs.
A final remark: It is evident that the main features of this

computed comprehensive modulation potential relate quite
well to what is known from comprehensive numerical
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studies when the full TPE is solved (not the potential
approach) using similar heliospheric parameters. We do not
propose that our approach as presented here can replace the
latter but as such it does connect the complicated TPE and
easy understanding modulation potential concept. Our
results complement the force-field approach, not just in
terms of the actual values of ϕ but also in the interpretations
of what they actually mean in the context of solar
modulation. Perhaps, this can be taken as a warning against
the use of the force-field approach to interpret high quality
observations. It surely allows for a direct comparison with
simplified modulation potential approaches, in particular
the force-field approach as related to what was shown in
Fig. 2, let alone what are presented in Figs. 3 and 4. The
results in these two figures are beyond what the force-field
approach can offer in terms of a modulation potential.
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APPENDIX: FIRST HITTING TIME PROBLEM

The one-dimension Brownian motion process xðtÞ with
constant drift (μ) and diffusion (σ) is defined by the
following SDE:

dxðtÞ ¼ μdtþ σdWðdtÞ; ðA1Þ

with initial value x0. Set Hxb ¼ infðtjxðtÞ ¼ xbÞ denotes
the first hitting time for the boundary xb > x0.
The corresponding partial differential equation to

Eq. (A1) is

∂pðx; tÞ
∂t

¼ −μ
∂pðx; tÞ

∂x
þ 1

2
σ2

∂
2pðx; tÞ
∂x2

; ðA2Þ

with the following initial and boundary value conditions:

pðx; 0Þ ¼ δðx − x0Þ; pðxb; tÞ ¼ 0; ðA3Þ

where pðx; tÞ is the probability density for the stochastic
variable xðtÞ to have a value x at time t.
This boundary value problem can be solved using the

standard method of images technique and the solution is
described by:

pðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2t

p
�
exp

�
−
½x − μt − x0�2

2σ2t

�
− exp

�
−
2μðx0 − xbÞ

σ2

�
exp

�
−
½x − μt − 2xb þ x0�2

2σ2t

��
; ðA4Þ

the probability that the particle does not cross the boundary at time t can be obtained as:

SðtÞ ¼
Z

xb

−∞
pðx; tÞdx;

¼ 1

2

�
erfc

�
−xb þ x0 þ μtffiffiffiffi

2t
p

σ

�
− exp

�
2μðxb − x0Þ

σ2

�
erfc

�
xb − x0 þ μtffiffiffiffi

2t
p

σ

��
; ðA5Þ

where erfc denotes the complementary error function. Finally, the first hitting time distribution can now be obtained as:

fHxb
ðtÞ ¼ −

dSðtÞ
dt

;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxb − x0Þ2
2πσ2t3

s
exp

�
−
ðμt − xb þ x0Þ2

2σ2t

�
;

∼ IG

�
xb − x0

μ
;
ðxb − x0Þ2

σ2

�
ðA6Þ
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