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The quantum phase-space approach allows one to define relativistic spatial distributions inside a
target with arbitrary spin and arbitrary average momentum. We apply this quasiprobabilistic
formalism to the whole electromagnetic four-current operator in the case of spin-0 and spin-1

2

targets, study in detail the frame dependence of the corresponding spatial distributions, and compare
our results with those from the light-front formalism. While former works focused on the charge
distributions, we extend here the investigations to the current distributions. We clarify the role
played by the Wigner rotation and argue that electromagnetic properties are most naturally
understood in terms of Sachs form factors, contrary to what the light-front formalism previously
suggested. Finally, we illustrate our results using the pion and nucleon electromagnetic form factors
extracted from experimental data.

DOI: 10.1103/PhysRevD.106.116024

I. INTRODUCTION

Pions and nucleons are key systems to study for
understanding quantum chromodynamics (QCD). Pions,
the lightest bound states in QCD, play a special role
since they are the (pseudo) Nambu-Goldstone bosons
associated with the dynamical breakdown of chiral
symmetry [1]. Nucleons are by far the most abundant
(known) hadrons in nature, responsible for more than
99% of the visible matter in the universe [2]. Pions
and nucleons have very different masses originating
from their different, rich and complicated internal
structures, which constitutes a fundamental puzzle for
modern physics.
The electromagnetic structure of hadrons is encoded in

Lorentz-invariant functions known as form factors (FFs).

They have been measured with extreme precision in various
scattering experiments over the past decades [3–23]. On the
theory side, lattice QCD calculations of these FFs have
witnessed tremendous progress in the last few years
[24–36]. Recent reviews on the extraction and the physics
associated with electromagnetic FFs can be found in
Refs. [2,15,37–39].
According to textbooks, electromagnetic FFs can

be interpreted as 3D Fourier transforms of charge and
magnetization densities in the Breit frame (BF) [40,41].
However, relativistic recoil corrections spoil their
interpretation as probabilistic distributions [42–47].
Switching to the light-front formalism allows one to
define alternative 2D charge densities free of these issues
[48–56], but there is a price to pay. Besides losing one
spatial dimension these light-front distributions also
display various distortions, which are sometimes hard
to reconcile with an intuitive picture of the system
at rest.
The concept of relativistic spatial distribution has

recently been revisited in several works with the goal of
clarifying the relation between 3D Breit frame and 2D
light-front definitions; see, e.g. [57–65]. In this paper, we
adopt the quantum phase-space approach where the
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physical interpretation is relaxed to a quasiprobabilistic1

one, allowing one to define relativistic spatial distributions
inside a target with arbitrary spin and arbitrary average
momentum [68–73]. This formalism is particularly appeal-
ing since it provides a natural and smooth connection
between the Breit frame and the infinite-momentum frame
pictures, and allows one to understand the distortions in the
light-front distributions in terms of relativistic kinematical
effects. While the discussions in the literature have essen-
tially focused on the charge distributions, we extend here
the study to the whole electromagnetic four-current and
demonstrate the consistency of the phase-space picture.
This paper is organized as follows. In Sec. II, we quickly

review the concept of generic elastic frame distributions
within the quantum phase-space approach. We start our
analysis in Sec. III with a spin-0 target, introducing
relativistic electromagnetic four-current distributions and
studying their frame dependence. Then we compare with
the corresponding light-front distributions and illustrate our
findings using the pion (πþ) electromagnetic form factor
extracted from experimental data. We proceed in Sec. IV
with a spin-1

2
target. We discuss in detail the nontrivial role

played by the Wigner spin rotation and show that electro-
magnetic properties are most naturally understood in terms
of the Sachs form factors. Here we also compare with the
light-front formalism and illustrate our results using the
nucleon electromagnetic form factors extracted from exper-
imental data. Finally, we summarize our findings in Sec. V,
and provide further discussions and details in three
Appendices.

II. ELASTIC FRAME DISTRIBUTIONS

Two-dimensional spatial distributions in a generic elastic
frame (EF) have been introduced in [68] to study the
angular momentum inside the nucleon. They are fully
relativistic objects that can be interpreted as the internal
distributions associated with a target localized in phase-
space (i.e. with definite average momentum and position)
in the Wigner sense [69,70,74]. Although they have in
general only a quasiprobabilistic interpretation, they pro-
vide a natural connection between spatial distributions
defined in the BF and in the infinite-momentum frame
(IMF) [75].

For convenience, we choose the z-axis along the average
total momentum of the target P ¼ 1

2
ðp0 þ pÞ ¼ ð0⊥; PzÞ.

The spatial distributions of the electromagnetic four-current
are then defined within the phase-space formalism as [71]

JμEFðb⊥;PzÞ≡
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ hp0; s0jĵμð0Þjp; si
2P0

����
Δz¼0

;

ð1Þ

where ĵμðxÞ is the electromagnetic four-current operator,
Δ ¼ p0 − p is the four-momentum transfer, and b⊥ is the
transverse position relative to the average center of the
target. The four-momentum eigenstates are normalized as
hp0; s0jp; si ¼ 2p0ð2πÞ3δð3Þðp0 − pÞδs0s with s and s0 the
usual canonical spin labels. The elastic condition Δ0 ¼
P · Δ=P0 ¼ 0 is automatically ensured by the restriction2

Δz ¼ 0 and implies that the resulting distribution does not
depend on time [68]. Note that the factor 2P0 in the
denominator of Eq. (1) appears naturally in the phase-space
formalism and ensures that the total electric charge

q ¼
Z

d2b⊥J0EFðb⊥;PzÞjs0¼s ¼
hp; sjĵ0ð0Þjp; si

2p0
ð2Þ

transforms as a Lorentz scalar [71,76]. One can also
formally write

hp; sjĵ0ð0Þjp; si
2p0

¼ hp; sj R d3rĵ0ðrÞjp; si
hp; sjp; si ; ð3Þ

indicating that the total charge does not depend on the
particular choice made for the normalization of the four-
momentum eigenstates.
Using Poincaré and discrete spacetime symmetries, the

off-forward matrix elements hp0; s0jĵμð0Þjp; si for a spin-j
target can be parametrized in terms of (2jþ 1) Lorentz-
invariant electromagnetic FFs [77–80]. Different sets of
FFs for a given spin value j have been considered in the
literature. These sets are all physically equivalent since they
simply correspond to different choices for the basis of
Lorentz tensors, and hence are linearly related to each other.
A particularly convenient and physically transparent basis
is provided by the multipole expansion in the BF, i.e. for
P ¼ 0. In that frame, the multipole structure appears to
be the same as in the nonrelativistic theory: the charge
distribution consists of a tower of electric multipoles of
even order, while the electric current can be expressed in
terms of a tower of magnetic multipoles of odd order
[79,81,82].

1In the probabilistic picture, the state is perfectly localized in
position space and the expectation value of an operatorO is written
as hOi ¼ R

d3RjΨðRÞj2OðRÞ with ΨðRÞ the position space wave
packet. In the quasiprobabilistic picture, the same expectation value
is expressed as hOi ¼ R

d3P
ð2πÞ3 d

3RρΨðR;PÞOðR;PÞ with ρΨðR;PÞ
the Wigner distribution, a real-valued function constructed from
ΨðRÞ and describing the localization of the system in phase space
[66,67]. Due to Heisenberg’s uncertainty principle, Wigner distri-
butions are negative in some regions and cannot therefore be
interpreted as strict probability densities.

2In the BF there is no need to set Δz ¼ 0 since by definition
P ¼ 0, and so one can define in that case a static three-
dimensional spatial distribution.
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Poincaré symmetry can also be used to determine how
matrix elements of the electromagnetic four-current oper-
ator in different Lorentz frames are related to each other.
One can write in general [77,83]

hp0; s0jĵμð0Þjp; si ¼
X
s0B;sB

D�ðjÞ
s0Bs

0 ðp0
B;ΛÞDðjÞ

sBsðpB;ΛÞ

× Λμ
νhp0

B; s
0
Bjĵνð0ÞjpB; sBi; ð4Þ

where hp0
B; s

0
Bjĵνð0ÞjpB; sBi is the BF matrix element, Λμ

ν

is the Lorentz boost from the BF to a generic Lorentz frame,
andDðjÞ is the Wigner rotation matrix for spin-j targets, see
Appendix C. Since temporal and spatial components of the
electromagnetic four-current get mixed under a Lorentz
boost, the odd magnetic multipoles in the BF will induce
odd electric multipoles in a generic Lorentz frame.
Similarly, even electric multipoles in the BF will induce
even magnetic multipoles in a generic Lorentz frame. These
odd electric and even magnetic multipoles do not break
parity (P) nor time-reversal (T) symmetries, and should
therefore not be confused with the P- and T-breaking ones
which are not considered in this work. Wigner rotations
complicate further the relation (4) by reorganizing the
multipole weights. Namely, any particular multipole in the
BF will usually generate a contribution to all3 multipoles in
a generic Lorentz frame [71].
In the following we will focus on the spin-0 and spin-1

2

targets, and apply our formalism to map the electromag-
netic four-current distributions inside a pion and a nucleon
using the electromagnetic FFs extracted from experimental
data. While the EF charge distributions J0EF have already
been discussed in Refs. [59,71], the EF currents JEF will be
studied here for the first time.

III. SPIN-0 TARGET

Let us start with the simplest case, namely a spin-0
target. The matrix elements of the electromagnetic four-
current operator are parametrized in terms of a single FF

hp0jĵμð0Þjpi ¼ e2PμFðQ2Þ ð5Þ
with Q2 ¼ −Δ2 and e the electric charge of a proton.

A. Breit frame distributions

The BF electromagnetic four-current distributions are
defined as

JμBðrÞ≡
Z

d3Δ
ð2πÞ3 e

−iΔ·r hp0
Bjĵμð0ÞjpBi
2P0

B
ð6Þ

with p0B ¼ −pB ¼ Δ=2 and p00
B ¼ p0

B ¼ P0
B ¼ M

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
.

We introduced for convenience the Lorentz invariant
quantity τ ¼ Q2=4M2 ¼ Δ2=4M2 which measures the
magnitude of relativistic effects.
The BF charge distribution is obtained by considering

the μ ¼ 0 component in Eq. (6). Like in the nonrelativistic
theory, it corresponds simply to the 3D Fourier transform
of the electromagnetic FF [86]

J0BðrÞ ¼ e
Z

d3Δ
ð2πÞ3 e

−iΔ·rFðΔ2Þ: ð7Þ

It is spherically symmetric since there is no preferred
spatial direction when P ¼ 0.
The BF current distribution for a spin-0 target is directly

proportional to P and hence vanishes in the BF

JBðrÞ ¼ 0; ð8Þ

which is consistent with the interpretation of the BF as
the average rest frame of the system within the quantum
phase-space approach [69–71].
The BF picture agrees with our naive expectation for a

spin-0 system at rest. In order to see what happens when the
system has nonzero average momentum, we need to switch
to the concept of EF distributions.

B. Elastic frame distributions

Applying the definition (1) to the case of a spin-0 target,
we find that the EF electromagnetic four-current distribu-
tions can be expressed as

JμEFðb⊥;PzÞ ¼ e
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ P
μ

P0
FðΔ2⊥Þ: ð9Þ

They are axially symmetric since there is no preferred
transverse direction. At Pz ¼ 0, they coincide with the
projection of the BF electromagnetic four-current distribu-
tions onto the transverse plane

JμEFðb⊥; 0Þ ¼
Z

drzJ
μ
BðrÞ ð10Þ

with r ¼ ðb⊥; rzÞ.
As noted in Ref. [71], the EF charge distribution

J0EFðb⊥;PzÞ ¼ e
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥FðΔ2⊥Þ ð11Þ

does not depend on the target momentum Pz. This indicates
in particular that the denominator in Eq. (1) properly
accounts for Lorentz contraction effects. Indeed, the
restriction Δz ¼ 0 used to define the EF distributions
corresponds in position space to an integration over
the longitudinal coordinate

R
drz. Contrary to its 3D

3A similar mechanism explains why relations between
transverse-momentum dependent parton distributions and
orbital angular momentum appear in various models of the
nucleon [84,85].
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counterpart, the 2D EF charge distribution does not get
multiplied by a Lorentz factor γ under a longitudinal
boost because it is compensated by the Lorentz contraction
factor 1=γ coming from the longitudinal measure drz. The
Pz-independence implies in particular that the same EF
charge distribution is found in the IMF, i.e. when Pz → ∞.
In Fig. 1, we compare the BF and EF radial charge
distributions for various parametrizations of the pion
electromagnetic FF, see Appendix A for more details.
For the EF current distributions, we obtain

JEFðb⊥;PzÞ ¼ e
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ P
P0

FðΔ2⊥Þ: ð12Þ

Since the average four-momentum Pμ is a timelike four-
vector, we can interpret the quantity P=P0 as a velocity.
For a target of mass M, the EF inertia P0 ¼ p0 ¼ p00 is
given by

P0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ð1þ τÞ þ P2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ð1þ τÞ þ P2

z

q
: ð13Þ

As a result of the τ-dependence of P0, the velocity P=P0

cannot be pulled out of the integral in Eq. (12). Note
however that in the IMF the longitudinal current distribu-
tion becomes equal to the charge distribution

Jz;EFðb⊥;∞Þ ¼ J0EFðb⊥;∞Þ ð14Þ

because the velocity Pz=P0 tends to 1 (i.e. the speed of
light) for all values of the momentum transfer. In Fig. 2, we
show how the longitudinal EF current distribution for the
pion changes with Pz.
The indefiniteness of inertia (i.e. the τ-dependence of P0)

is a major impediment for the physical interpretation of
relativistic spatial distributions. We observed at least three
main responses to this problem in the literature. The first
one consists in focusing only on those (“good”) compo-
nents that do not involve P0 explicitly, and ignoring the

FIG. 2. Momentum dependence of the 2D (left panel) and radial (right panel) longitudinal EF current distribution for a pion (πþ),
based on the pion electromagnetic FF from modified dispersion relation (A7).

FIG. 1. Comparison between the BF (left panel) and EF (right panel) radial charge distributions for a pion (πþ), based on the pion
electromagnetic FFs from simple dipole (solid line) and monopole (dashed line) models in (A1) and (A3), and modified dispersion
relation (dotted line) in (A7).
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other (“bad”) components. The second response is to
invoke “relativistic corrections” and introduce by hand
some factors, like P0=M or P0=EP with EP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ P2

p
,

usually in an ambiguous and model-dependent way. The
third option is to consider a particular limit, like e.g. the
nonrelativistic (or static) limit where P0 ≈M or the IMF
where P0 ≈ Pz ≫ M. All these responses aimed at provid-
ing the most realistic representation of the system within a
probabilistic density picture, even if it meant sacrificing
part of the Lorentz covariance. By contrast, the phase-space
approach adopted in this work provides a less restrictive
quasiprobabilistic picture, allowing one to maintain a fully
relativistic definition of spatial distributions for arbitrary
values of the average target momentum. In particular, if we
want to provide a physical interpretation of all the compo-
nents of the electromagnetic four-current, treated in the
same consistent way without considering a particular frame
nor making assumptions about the dynamics of the system,
then we are forced to accept that the EF distributions
provide a picture of the target with definite average
momentum P but indefinite inertia (whence indefinite
average velocity). As a result the analogy with a classical
current should always be considered with a grain of salt
(see Appendix B for some discussions), which was already
the case because of the quasiprobabilistic nature of JμEF.

C. Light-front distributions

In the light-front (LF) formalism, four-momentum
eigenstates are normalized according to LFhp0; λ0jp; λiLF ¼
2pþð2πÞ3δðp0þ − pþÞδð2Þðp0⊥ − p⊥Þδλ0λ, where a� ¼
ða0 � a3Þ= ffiffiffi

2
p

are the LF components, and λ0 and λ are
LF helicities. As a result, similarly to Eq. (1), the 2D LF
four-current distributions are defined as

JμLFðb⊥;PþÞ≡
Z

d2Δ⊥
ð2πÞ2e

−iΔ⊥·b⊥ LFhp0;λ0jĵμð0Þjp;λiLF
2Pþ

����
Δþ¼0

:

ð15Þ

In particular, for a spin-0 target we can write

JμLFðb⊥;PþÞ ¼ e
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ Pμ

Pþ FðΔ2⊥Þ: ð16Þ

In the literature, one has essentially focused on the
μ ¼ þ component

JþLFðb⊥;PþÞ ¼ e
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥FðΔ2⊥Þ; ð17Þ

which is usually interpreted as the LF charge distribution,
and which also allows a strict probabilistic interpretation
thanks to the Galilean symmetry in the LF transverse plane
[48,55,87,88]. Although JþLFðb⊥;PþÞ and J0EFðb⊥;PzÞ

correspond strictly speaking to different matrix elements
and hence to different physical quantities, they lead to
the same 2D spatial distribution. The reason is that when
Pz → ∞ we can write Pz ≈ P0 ≈ Pþ=

ffiffiffi
2

p
, leading in

general to JþLFðb⊥;∞Þ ¼ J0EFðb⊥;∞Þ. Then, since neither
JþLF nor J

0
EF in the spin-0 case depends actually on the target

momentum, we must have JþLFðb⊥;PþÞ ¼ J0EFðb⊥;PzÞ. We
will see later that the situation gets more complicated for
spinning targets.
Similarly to the EF current distributions, the transverse

LF current distributions always vanish, while the longi-
tudinal LF current distribution depends on the target
momentum

J−LFðb⊥;PþÞ ¼ e
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ P
−

Pþ FðΔ2⊥Þ: ð18Þ

Since P2 ¼ 2PþP− (remember that we chose our axes such
that P⊥ ¼ 0⊥), we find that the Pþ-dependence can be
factored out

J−LFðb⊥;PþÞ ¼ e
M2

ðPþÞ2
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ 1þ τ

2
FðΔ2⊥Þ:

ð19Þ

This is clearly a technical advantage of the LF formalism
associated with the fact that LF boosts are kinematical
operations. The drawback is that a system with definite
average Pþ usually does not have definite average Pz [89],
and hence is harder to picture physically unless one goes
to the IMF (where the technical advantage over the usual
instant-form formalism fades away). Note also that
although Pþ (which plays the role of LF inertia) is treated
as an independent kinematical variable in the LF formal-
ism, the off-shellness of Pμ is transferred to P− and remains
as a τ-dependent kinematical factor under the integral in
Eq. (19). This kinematical factor unfortunately makes the
Fourier transform in Eq. (19) ill-defined for the monopole
and DR parametrizations of the pion electromagnetic FF.
We therefore use in Fig. 3 the dipole parametrization to
make comparison between the LF charge and longitudinal
current distributions.

IV. SPIN-12 TARGET

As usual, including spin will increase the complexity of a
system [52,54,79]. This is the reason why we started with a
spin-0 target. We are now ready to move on to the next
simplest case, namely a spin-1

2
target.

The matrix elements of the electromagnetic four-current
operator for a spin-1

2
target

hp0; s0jĵμð0Þjp; si ¼ eūðp0; s0ÞΓμðP;ΔÞuðp; sÞ ð20Þ
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can be parametrized in terms of the traditional Dirac and
Pauli FFs

ΓμðP;ΔÞ ¼ γμF1ðQ2Þ þ iσμνΔν

2M
F2ðQ2Þ; ð21Þ

or in terms of the electric and magnetic Sachs FFs [71]

ΓμðP;ΔÞ¼MPμ

P2
GEðQ2Þþ iϵμαβλΔαPβγλγ5

2P2
GMðQ2Þ ð22Þ

with ϵ0123 ¼ þ1. These two sets of FFs are related
via [40,41]

GEðQ2Þ ¼ F1ðQ2Þ − τF2ðQ2Þ;
GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ: ð23Þ

We consider that the parametrization (22) in terms of
the Sachs FFs is physically more transparent,4 since its
structure in momentum space is reminiscent of a classical
current in a polarized medium [42,63,90]. More specifi-
cally, the first term is directly proportional to the four-
momentum and has therefore the structure of a convective
current, while the second term involves the axial-vector
Dirac current and hence can be interpreted as a polarization
(or spin) current [71].

A. Breit frame distributions

It has been noticed long ago that the matrix elements of
the electromagnetic four-current for a spin-1

2
target in the

BF take the simple form [40–42]

hp0
B; s

0jĵ0ð0ÞjpB; si ¼ e2Mδs0sGEðQ2Þ;
hp0

B; s
0j ĵð0ÞjpB; si ¼ eðσs0s × iΔÞGMðQ2Þ; ð24Þ

with σ the Pauli matrices. The BF charge distribution
depends only on GE and hence is purely convective.
Similarly, the BF current depends only on GM and has
indeed the form of a spin current. The corresponding
relativistic 3D spatial distributions are given by [42,71,76]

J0BðrÞ ¼ eδs0s

Z
d3Δ
ð2πÞ3 e

−iΔ·r M
P0
B
GEðΔ2Þ;

JBðrÞ ¼ e
∇ × σs0s
2M

Z
d3Δ
ð2πÞ3 e

−iΔ·r M
P0
B
GMðΔ2Þ; ð25Þ

with P0
B ¼ M

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
. We stress here that these relativistic

distributions differ from the conventional ones introduced
by Sachs [40,41], where the Lorentz contraction factor
M=P0

B ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
has been removed by hand for closer

analogy with the nonrelativistic expressions.5

The BF charge distribution inside the nucleon has
already been presented in Fig. 1 of Ref. [71]. We show
in Fig. 4 the distribution of the BF current in the plane
defined by rz ¼ 0 for a nucleon polarized in the z-direction,
based on the parametrization for the nucleon electromag-
netic FFs given in Ref. [91]. The current swirls around
the polarization axis in opposite directions for proton and
neutron, in agreement with the sign of their magnetic
moment.

FIG. 3. Comparison between the 2D (left panel) [or radial (right panel)] LF charge (solid line) and longitudinal current (dashed line)
distributions for a pion (πþ), based on the dipole parametrization (A1) of the pion electromagnetic FF. Factors of Pþ=M have been
introduced so as to make the distributions Pþ-independent.

4An even better parametrization would be in terms of
ḠE;MðQ2Þ≡ Mffiffiffiffi

P2
p GE;MðQ2Þ ¼ 1ffiffiffiffiffiffi

1þτ
p GE;MðQ2Þ, but for historical

reasons we stick to the traditional Sachs FFs.

5The expressions in Eq. (25) suggest in fact that the genuine
electromagnetic FFs are given by ḠE;MðQ2Þ ¼ Mffiffiffiffi

P2
p GE;MðQ2Þ ¼

1ffiffiffiffiffiffi
1þτ

p GE;MðQ2Þ.
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B. Elastic frame distributions

Contrary to the 3D BF distributions, the 2D EF dis-
tributions are defined for arbitrary values of Pz. Evaluating
explicitly the Dirac bilinears in the parametrization (20),
e.g. with the aid of the results in Ref. [92], the EF charge
amplitudes in momentum space can be put in the following
form:

hp0; s0jĵ0ð0Þjp; si ¼ e2P0

�
δs0sAU þ ðσs0s × iΔÞz

2M
AT

�
;

ð26Þ

where the spin-independent amplitude,

AU ¼ P0 þMð1þ τÞ
ðP0 þMÞð1þ τÞGEðQ2Þ

þ τP2
z

P0ðP0 þMÞð1þ τÞGMðQ2Þ; ð27Þ

was obtained in [71], and the spin-dependent amplitude,

AT ¼ −
Pz

ðP0 þMÞð1þ τÞGEðQ2Þ

þ PzðP0 þMð1þ τÞÞ
P0ðP0 þMÞð1þ τÞGMðQ2Þ; ð28Þ

was derived in [59]. Similarly, we find that the longitudinal
EF current amplitudes take the following form

hp0; s0jĵzð0Þjp; si ¼ e2P0

�
δs0sBU þ ðσs0s × iΔÞz

2M
BT

�
;

ð29Þ

with

BU ¼ PzðP0 þMð1þ τÞÞ
P0ðP0 þMÞð1þ τÞGEðQ2Þ

þ τPz

ðP0 þMÞð1þ τÞGMðQ2Þ;

BT ¼ −
P2
z

P0ðP0 þMÞð1þ τÞGEðQ2Þ

þ P0 þMð1þ τÞ
ðP0 þMÞð1þ τÞGMðQ2Þ: ð30Þ

For the transverse EF current amplitudes, we get

hp0; s0j ĵ⊥ð0Þjp; si ¼ eðσzÞs0sðez × iΔÞ⊥GMðQ2Þ: ð31Þ

Contrary to the transverse EF current amplitudes, the spin
structures of the EF charge and longitudinal current
amplitudes have two contributions and depend on the
average momentum. The simplest form is obtained when
Pz ¼ 0, which is a strong incentive for considering the
Sachs FFs as the natural basis for studying the electro-
magnetic properties.
The results above are fully consistent with the generic

Lorentz transformation (4) of the BF amplitudes (24).

Indeed, noting that the Wigner rotation matrix Dðpð0Þ
B ;ΛÞ

FIG. 4. BF current distributions JBðrÞ in the transverse plane (rz ¼ 0) for a proton (left panel) and a neutron (right panel) polarized
along the z-axis, based on the parametrization for the nucleon electromagnetic FFs given in Ref. [91]. The color bar and the arrow length
indicate the magnitude of the current density.
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describes a spin rotation by an angle θ in the ðP;ΔÞ-plane, we can write the EF amplitudes (4) more explicitly in the spin-1
2

case as

hp0; s0jĵ0ð0Þjp; si ¼ e2Mγ

�
δs0sðcos θGEðQ2Þ − β sin θ

ffiffiffi
τ

p
GMðQ2ÞÞ þ ðσs0s × iΔÞz

2M
ffiffiffi
τ

p ðsin θGEðQ2Þ þ β cos θ
ffiffiffi
τ

p
GMðQ2ÞÞ

�
;

hp0; s0jĵzð0Þjp; si ¼ e2Mγ

�
δs0sðβ cos θGEðQ2Þ − sin θ

ffiffiffi
τ

p
GMðQ2ÞÞ þ ðσs0s × iΔÞz

2M
ffiffiffi
τ

p ðβ sin θGEðQ2Þ þ cos θ
ffiffiffi
τ

p
GMðQ2ÞÞ

�
;

hp0; s0j ĵ⊥ð0Þjp; si ¼ eðσzÞs0sðez × iΔÞ⊥GMðQ2Þ: ð32Þ

First of all, we notice that the transverse current amplitudes
remain invariant under a longitudinal boost, as confirmed
by a comparison between Eqs. (24) and (31). Also,
comparing Eq. (32) with Eqs. (26)–(30), we find that the
Lorentz boost parameters are given by

γ ¼ P0ffiffiffiffiffiffi
P2

p ¼ P0

P0
B
¼ P0

M
ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p ; β ¼ Pz

P0
; ð33Þ

as one would have expected, and we conclude that the
Wigner rotation angle θ satisfies

cos θ ¼ P0 þMð1þ τÞ
ðP0 þMÞ ffiffiffiffiffiffiffiffiffiffiffi

1þ τ
p ;

sin θ ¼ −
ffiffiffi
τ

p
Pz

ðP0 þMÞ ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p : ð34Þ

It is straightforward to check that cos2 θ þ sin2 θ ¼ 1
thanks to Eq. (13). Note that θ should not depend on
the spin of the target. We indeed find that

tan θ ¼ −
ffiffiffi
τ

p
Pz

P0 þMð1þ τÞ ð35Þ

agrees with the result derived from the general angular
condition for a spin-1 target [72]. In Fig. 5, we show the
dependence of the Wigner rotation angle θ on Pz and Q ¼
jΔj for a proton with mass Mp ≈ 0.938 GeV. We also
present theQ-dependence of cos θ at different values of Pz.
For fixed value of Pz > 0, the minimum value of this cosine
is given by

cos θmin ¼
1þ 2τmin

ð1þ τminÞ3=2
; τmin ¼

1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
z

M2
þ 5

4

r
; ð36Þ

represented by the gray lines in Fig. 5. Since − π
2
≤ θ ≤ 0,

θmin actually corresponds to the largest Wigner spin
rotation angle at a given Pz > 0. For Pz ¼ 0, there is by
definition no Wigner rotation.
We are now ready to discuss the EF distributions. We

find that the EF charge distribution can be expressed as

FIG. 5. Wigner rotation angle θ (left panel) and cos θ (right panel) for the proton as a function of the proton’s average momentum Pz
and the magnitude of momentum transfer Q.
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J0EFðb⊥;PzÞ ¼ e
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥
�
δs0s cos θ þ

ðσs0s × iΔÞz
2M

ffiffiffi
τ

p sin θ

�
GEðΔ2⊥Þffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p

þ e
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ Pz

P0

�
−δs0s sin θ þ

ðσs0s × iΔÞz
2M

ffiffiffi
τ

p cos θ

� ffiffiffi
τ

p
GMðΔ2⊥Þffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p : ð37Þ

The first line corresponds to the convective part, and the second line to the polarization part of the charge distribution.
Similarly, the longitudinal EF current distribution reads

Jz;EFðb⊥;PzÞ ¼ e
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ Pz

P0

�
δs0s cos θ þ

ðσs0s × iΔÞz
2M

ffiffiffi
τ

p sin θ

�
GEðΔ2⊥Þffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p

þ e
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥
�
−δs0s sin θ þ

ðσs0s × iΔÞz
2M

ffiffiffi
τ

p cos θ

� ffiffiffi
τ

p
GMðΔ2⊥Þffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p : ð38Þ

For the transverse EF current distributions, we obtain the simpler expression

J⊥;EFðb⊥;PzÞ ¼ eðσzÞs0s
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ ðez × iΔÞ⊥
2P0

GMðΔ2⊥Þ: ð39Þ

Just like in the spin-0 case, the spin-1
2
EF four-current

distribution reduces at Pz ¼ 0 to the projection of the 3D
BF four-current distribution onto the transverse plane; see,
e.g. Eq. (10).
For an unpolarized target, only the terms proportional to

δs0s do contribute. Like in the spin-0 case, the transverse EF
current distributions vanish and both the EF charge and
longitudinal current distributions are axially symmetric.
The difference is that the latter two distributions are now
driven by Pz-dependent linear combinations ofGE andGM.
While the GE contribution associated with the convective
part of the current is expected, the GM contribution may be
surprising. It is in fact a consequence of the Wigner
rotation, which disappears if one sets θ ¼ 0 by hand in
these expressions. When the target is polarized, dipolar
distortions correlated with the target polarization arise.
These dipolar distortions are naturally attributed to the
polarization part of the current driven by GM, but their
magnitude also depends on GE as a result of the Wigner

rotation. We observe that the magnitude of J⊥;EF decreases
for increasing values of Pz owing to the factor P0 in the
denominator of Eq. (39), while J0EF and Jz;EF tend toward
the same distribution as Pz → ∞ like in the spin-0 case in
Eq. (14). In Fig. 6, we show some components of the EF
four-current distributions for different polarizations and
momentum values of the nucleon.

C. Infinite-momentum limit and light-front
distributions

The 2D EF distributions being defined for arbitrary
values of Pz, they provide a natural interpolation between
the 3D BF distributions projected onto the transverse plane
and the 2D IMF distributions. Since longitudinal boosts
simply rescale the LF components of a Lorentz four-vector,
we can decouple the four-vector boost from the Wigner
rotation in Eq. (32) by considering the following combi-
nations of amplitudes

hp0; s0jĵþð0Þjp; si ¼ e
2MPþffiffiffiffiffiffi

P2
p

�
δs0sðcos θGEðQ2Þ − sin θ

ffiffiffi
τ

p
GMðQ2ÞÞ þ ðσs0s × iΔÞz

2M
ffiffiffi
τ

p ðsin θGEðQ2Þ þ cos θ
ffiffiffi
τ

p
GMðQ2ÞÞ

�
;

hp0; s0jĵ−ð0Þjp; si ¼ e
2MP−ffiffiffiffiffiffi

P2
p

�
δs0sðcos θGEðQ2Þ þ sin θ

ffiffiffi
τ

p
GMðQ2ÞÞ þ ðσs0s × iΔÞz

2M
ffiffiffi
τ

p ðsin θGEðQ2Þ − cos θ
ffiffiffi
τ

p
GMðQ2ÞÞ

�
:

ð40Þ
Note that these are not proper LF amplitudes since they are defined in terms of the usual (or instant-form) polarization states
instead of the LF helicity states.
In the IMF (i.e. Pz → ∞), the amplitude hp0; s0jĵþð0Þjp; si is enhanced while the amplitude hp0; s0jĵ−ð0Þjp; si is

suppressed, owing to the global factor of Pþ and P−, respectively. We can also clearly see how the Wigner rotation mixes
GE with

ffiffiffi
τ

p
GM. Using the formulas (34) and (35) for the Wigner rotation angle θ, we find
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lim
Pz→∞

cos θ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p ; lim
Pz→∞

sin θ ¼ −
ffiffiffi
τ

pffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p ; lim
Pz→∞

tan θ ¼ −
1ffiffiffi
τ

p ; ð41Þ

see, e.g. the lowest solid line for cos θ with Pz → ∞ in the right panel of Fig. 5. The spin-independent contribution to
hp0; s0jĵþð0Þjp; si is then driven in the IMF by the Dirac FF,

lim
Pz→∞

cos θGEðQ2Þ − sin θ
ffiffiffi
τ

p
GMðQ2Þffiffiffiffiffiffiffiffiffiffiffi

1þ τ
p ¼ GEðQ2Þ þ τGMðQ2Þ

1þ τ
¼ F1ðQ2Þ; ð42Þ

FIG. 6. Momentum dependence of the 2D EF four-current distributions at bx ¼ 0 for a proton (left panels) and a neutron (right panels),
based on the parametrization for the nucleon electromagnetic FFs given in Ref. [91]. The EF charge (first row) and longitudinal current
(second row) distribution are shown for a transversely polarized nucleon, while the transverse EF current distribution (third row) is
shown for a longitudinally polarized nucleon.
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while the spin-dependent contribution is driven by the
Pauli FF,

lim
Pz→∞

sin θGEðQ2Þ þ cos θ
ffiffiffi
τ

p
GMðQ2Þffiffiffi

τ
p ffiffiffiffiffiffiffiffiffiffiffi

1þ τ
p

¼ GMðQ2Þ −GEðQ2Þ
1þ τ

¼ F2ðQ2Þ; ð43Þ

as observed in Refs. [59,71,93]. Interestingly, the same
structure also appears in the LF formalism [48–50,94],

LFhp0; λ0jĵþð0Þjp; λiLFjΔþ¼0

¼ e2Pþ
�
δλ0λF1ðQ2Þ þ ðσλ0λ × iΔÞz

2M
F2ðQ2Þ

�
; ð44Þ

without having recourse to the IMF. The reason is that the
Melosh rotation [84,95] relating the LF polarization states
jp; λiLF to the usual canonical spin states jp; si precisely
coincides in the BF for Δz ¼ 0 with the IMF Wigner
rotation, see Appendix C.
Owing to Eq. (44), the Dirac and Pauli FFs are often

considered in the LF formalism as the “physical” electric
and magnetic FFs. We observe however that the matrix
elements of the longitudinal LF current density operator ĵ−

are usually not discussed. We find from Eq. (40) that the

spin-independent contribution to hp0; s0jĵ−ð0Þjp; si is
driven by

lim
Pz→∞

cos θGEðQ2Þ þ sin θ
ffiffiffi
τ

p
GMðQ2Þffiffiffiffiffiffiffiffiffiffiffi

1þ τ
p

¼ ð1 − τÞF1ðQ2Þ − 2τF2ðQ2Þ
1þ τ

≡ G1ðQ2Þ; ð45Þ

and the spin-dependent contribution is driven by

lim
Pz→∞

sin θGEðQ2Þ − cos θ
ffiffiffi
τ

p
GMðQ2Þffiffiffi

τ
p ffiffiffiffiffiffiffiffiffiffiffi

1þ τ
p

¼ −
2F1ðQ2Þ þ ð1 − τÞF2ðQ2Þ

1þ τ
≡G2ðQ2Þ: ð46Þ

From the standard LF perspective, these combinations of
F1 and F2 do not seem to have any clear physical meaning.
This is usually not considered as a problem since only the
“good” LF component ĵþ allows a probabilistic interpre-
tation [48,55,96], while the “bad” LF component ĵ− is
regarded as a complicated object without clear physical
interpretation, and is therefore often just ignored. From a
covariant perspective, we find however this situation
unsatisfactory.
Applying the general definition (15) for the LF four-

current distributions to the case of a spin-1
2
target, we obtain

JþLFðb⊥;PþÞ ¼ e
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥
�
δλ0λF1ðΔ2⊥Þ þ

ðσλ0λ × iΔÞz
2M

F2ðΔ2⊥Þ
�
;

J−LFðb⊥;PþÞ ¼ e
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ P
−

Pþ

�
δλ0λG1ðΔ2⊥Þ þ

ðσλ0λ × iΔÞz
2M

G2ðΔ2⊥Þ
�
;

J⊥;LFðb⊥;PþÞ ¼ eðσzÞλ0λ
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ ðez × iΔÞ⊥
2Pþ GMðΔ2⊥Þ: ð47Þ

Like in the spin-0 case (19), we can use the relation P2 ¼
2PþP− to factor out the Pþ-dependence in J−LFðb⊥;PþÞ.
We also observe that the transverse LF current distributions
differ from the transverse EF current distributions (39),
though both of them vanish in the IMF. Finally, the LF
charge distribution is independent of Pþ and coincides with
the IMF charge and longitudinal current distributions

JþLFðb⊥;PþÞ ¼ J0EFðb⊥;∞Þ ¼ Jz;EFðb⊥;∞Þ: ð48Þ

In Fig. 7, we show some components of LF four-current
distributions for different polarizations of the nucleon.
As a final remark, we point out that the spin structure of

the LF distributions (47) does not depend on the average
momentum, a feature achieved thanks to the Melosh

rotation which converts canonical polarization into LF
helicity, see Appendix C. While this may a priori be
considered as an advantage, it comes with the price that the
electromagnetic four-current is now described in terms of
five linearly dependent FFs, viz. F1;2ðQ2Þ, G1;2ðQ2Þ and
GMðQ2Þ. This is to be contrasted with the EF distributions
(37)–(39), where the spin structure requires only GE;MðQ2Þ
and a Pz-dependent Wigner rotation. In particular, the spin
structure of the EF distributions becomes simple in the BF,
while it remains complicated in the same frame for the LF
distributions. Hence, contrary to the traditional LF picture
which focuses only on the LF component ĵþ, a more
general perspective based on the full electromagnetic four-
current indicates that it is the Sachs FFs that should be
considered as the physical FFs.
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V. SUMMARY

In this paper, we extended the study of the relativistic
charge distributions within the quantum phase-space for-
malism to the whole electromagnetic four-current. We
treated in detail the spin-0 and spin-1

2
cases, discussed their

frame dependence and compared with the corresponding
light-front distributions. We confirm that all the relativistic
distortions arising for a target with nonvanishing momen-
tum can be understood as a combination of the familiar
Lorentz four-vector transformation of the current and the
Wigner spin rotation.
In the spin-0 case, the situation is simple since there is no

Wigner rotation. We found that the charge and transverse
current distributions are the same in both phase-space and
light-front formalisms. They differ however for the longi-
tudinal current distribution, which is the only component
that depends on the target average momentum. We noted in
particular that the elastic frame distributions (i.e. those
defined within the quantum phase-space approach) should
be interpreted as giving a picture of the target with definite
average momentum, and not with definite average velocity.
The reason is that the mass-shell constraint implies that the
various Fourier components contributing to an elastic frame
distribution have different inertias, and hence different
velocities for a given momentum.
The picture gets more complicated for a spin-1

2
target

because of the polarization contribution to the current and
the Wigner rotation. Of all the possible elastic frames, the
Breit frame (interpreted from the phase-space perspective
as the average rest frame) leads to the simplest multipole
structure, and hence strongly suggests that the Sachs form
factors should be interpreted as the physical electric and
magnetic form factors. This contrasts with the light-front
formalism where the Dirac and Pauli form factors are often

presented as the physical ones. While the latter appear in a
natural way when studying the light-front density, they do
not provide a clear interpretation for the structure of the
other components of the current. In this work, we dem-
onstrated explicitly that keeping track of the spin rotation
clarifies the general multipole structure of the full electro-
magnetic four-current in any frame. In the phase-space
formalism, the spin rotation arises from boosting a spinning
system from the Breit frame to another frame, whereas in
the light-front formalism it arises from switching from
canonical polarization to light-front helicity states.
Relativistic charge and three-current distributions are in

general frame-dependent. To illustrate our results, we used
convenient parametrizations of the pion (πþ) and nucleon
electromagnetic form factors fitted to the experimental data.
Like in the relativistic charge distributions, we observe
significant distortions in the other components of the four-
current distributions. We emphasize that our results and
physical interpretations are of course applicable to any
physical spin-0 or spin-1

2
target (including their antipar-

ticles), e.g. p̄, n̄, K�, Λ, Δð1750Þ, Σ0, Ξ−, etc., as long as
their electromagnetic form factors are available. Moreover,
our analysis can easily be generalized to higher-spin
targets.
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APPENDIX A: PION ELECTROMAGNETIC
FORM FACTORS

As a simple ansatz, one can use the following dipole
model for the spacelike pion (πþ) FF,

FðDÞ
π ðQ2Þ ¼ 1

ð1þQ2R2=12Þ2 ; ðA1Þ

where the pion root-mean-square charge radius R ¼ffiffiffiffiffiffiffiffi
hr2πi

p
¼ ð0.672� 0.008Þ fm has been extracted from a

fit to the world data [97,98]. From (A1), one can easily
obtain the corresponding 3D BF and 2D EF charge
distributions (with r ¼ jrj and b ¼ jb⊥j)

J0;ðDÞ
B ðrÞ ¼ 3

ffiffiffi
3

p

πR3
exp

�
−
2

ffiffiffi
3

p
r

R

�
;

J0;ðDÞ
EF ðbÞ ¼ 6

ffiffiffi
3

p
b

πR3
K1

�
2

ffiffiffi
3

p
b

R

�
; ðA2Þ

where KνðzÞ is the νth order modified Bessel function of
the second kind. Likewise, one can use the monopole
model,

FðMÞ
π ðQ2Þ ¼ 1

1þQ2R2=6
; ðA3Þ

where R is the same as in (A1) and the corresponding 3D
BF and 2D EF charge distributions now respectively read

J0;ðMÞ
B ðrÞ ¼ 3

2πrR2
exp

�
−

ffiffiffi
6

p
r

R

�
;

J0;ðMÞ
EF ðbÞ ¼ 3

πR2
K0

� ffiffiffi
6

p
b

R

�
: ðA4Þ

Note in particular the manifest singular behaviors of

J0;ðMÞ
B ðrÞ as r → 0 and J0;ðMÞ

EF ðbÞ as b → 0, if a monopole
FF like (A3) is involved [98,99].
The pion FF in the timelike region (s ¼ q2 > 4m2

π with
mπ the pion mass) over a large q2 range has been precisely
measured by the BABAR Collaboration [13], using the
initial-state radiation method. Thanks to the dispersion
theory, one can in principle obtain the corresponding pion
FF in the spacelike region, especially for large Q2 regions.

The modular square of the timelike pion FF jFπðq2Þj2 is
given by [13]

jFπðsÞj2¼
σππðsÞ
σpointðsÞ

; σππðsÞ¼
σ0ππðγÞðsÞ

1þδππFSRðsÞ
�
αEMðsÞ
αEMð0Þ

�
2

;

ðA5Þ

where
ffiffiffi
s

p
is the net center-of-mass energy of the

produced πþπ− pair with each particle moving at speed
βπðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π=s
p

, αEMð0Þ ¼ e2=ð4πÞ ≈ 1=137 is the
vacuum fine structure constant in the low-energy limit. Note
that the lowest-order spin-0 pointlike charged particle pair-
production cross section is σpointðsÞ ¼ πα2EMð0Þβ3πðsÞ=ð3sÞ,
and σππðsÞ is the total dressed cross section, which differs
from the experimentally measured bare cross section
σ0ππðγÞðsÞ by two corrections: one is the final-state radiation

correction 1=ð1þ δππFSRðsÞÞ, and the other is the vacuum
polarization correction ðαEMðsÞ=αEMð0ÞÞ2.
In dispersion theory, the standard dispersion relation

(DR) for the pion electromagnetic FF reads

FðDRÞ
π ðQ2Þ ¼ 1

π

Z
∞

s0

ds
ImFπðsÞ
s − q2 − iϵ

; ðA6Þ

which connects the spacelike pion FF FðDRÞ
π ðQ2Þ at

Q2 ¼ −q2 > 0 with the imaginary part of the timelike
FF FπðsÞ integrated over s above the two-pion threshold
energy

ffiffiffiffiffi
s0

p ¼ 2mπ [indicated by a vertical dashed red
line in the left panel of Fig. 8]. It has also been suggested to
use the following modified DR for the spacelike pion FF

FðDRÞ
π ðQ2Þ [100–102],

FðDRÞ
π ðQ2Þ

¼ exp

�
−
Q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 þQ2

p
2π

Z
∞

s0

ds
2 ln jFπðsÞj

sðsþQ2Þ ffiffiffiffiffiffiffiffiffiffiffiffi
s − s0

p
�
;

ðA7Þ

which automatically ensures FðDRÞ
π ð0Þ ¼ 1 for the total

charge of a πþ meson in units of e.
It has been known for quite long time from a perturbative

QCD (pQCD) analysis in the Q2 → ∞ limit that the
leading asymptotic behavior of the spacelike pion FF
FπðQ2Þ reads [103–112]

FπðQ2Þ ≈
Q2→∞

4πCF

Q2
αsðQ2Þ

����a0
�
ln

Q2

Λ2
QCD

�−γ0
����2

≈
8π

Q2
αsðQ2Þf2π ∝

1

Q2

1

lnðQ2=Λ2
QCDÞ

; ðA8Þ
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where CF ¼ ðN2
c − 1Þ=ð2NcÞ ¼ 4=3 is the Casimir oper-

ator for the fundamental representation of the SUð3Þc
gauge field theory with Nc ¼ 3 quark colors, fπ ≈
ð130.2� 1.7Þ MeV is the pion decay constant for the
πþ → μþνμ reaction channel [113], ΛQCD ≈ 200 MeV is
the QCD energy scale, γ0 ¼ 0 is the leading anomalous
dimension, and a0 is related to the pion decay constant fπ

via a0 ¼ 3fπ=
ffiffiffiffiffiffiffiffi
2Nc

p ¼
ffiffi
3
2

q
fπ . At one-loop order, the

QCD normalized strong coupling constant αsðQ2Þ ¼
g2sðQ2Þ=ð4πÞ is explicitly given by

αsðQ2Þ ¼ 4π

β0 lnðQ2=Λ2
QCDÞ

; ðA9Þ

where β0 ¼ 11 − 2Nf=3 with Nf the number of quark
flavors. It was noted in Ref. [106] that the leading short-
distance interactions are reflected through 8παsðQ2Þ=Q2

in (A8), whereas all long-distance effects are absorbed
in f2π . Moreover, we should remember that Eq. (A8)
actually predicts the same positive sign as that from the
usual vector-meson dominance models (VDMs). Explicitly,
we see from Eq. (A8) that the asymptotic leading behavior
of FπðQ2Þ indeed appears like FπðQ2Þ ∼Q−2, well
consistent with the prediction of asymptotic scaling law
[114–116], which is modulated by the logarithmic behavior
inherited from the QCD running coupling constant αsðQ2Þ
in the pQCD analysis.

To ensure that the asymptotic behavior of FðDRÞ
π ðQ2Þ

agrees with the pQCD prediction (A8), we follow the
method in Refs. [101,117,118] by using a large-Nc infinite
set of equidistant ρ resonances for the timelike pion FF
FπðsÞ in the region s ≥ smax ≡ ð2.95 GeVÞ2, and using
the ρ-resonance VDM parametrization (including ρ − ω

interference) of BABAR data [13,101] in the region
s0 ≤ s ≤ smax, with the charge normalization condition
Fπð0Þ ¼ 1 automatically ensured. We eventually obtained

the full spacelike pion FF FðDRÞ
π ðQ2Þ via (A7); see the green

dotted line in the right panel of Fig. 8.

APPENDIX B: EFFECTIVE VELOCITY AND
CHARGE DISTRIBUTIONS

By analogy with a classical current JðxÞ ¼ J0ðxÞvðxÞ,
one can define an effective EF charge velocity
distribution as

veffEFðb⊥;PzÞ≡ JEFðb⊥;PzÞ
J0EFðb⊥;PzÞ

: ðB1Þ

For a spin-0 target, this effective velocity distribution is
purely along the z-axis and is usually nonuniform in the
transverse plane, suggesting that there is some dispersion
in the charge distribution along the z-direction when
Pz ≠ 0. This dispersion does not show up however in
the EF charge distribution since the longitudinal coordinate
is integrated over.
Alternatively, one can use the average center-of-mass

velocity vCM ¼ P=EP with EP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ P2

p
and define a

nondispersive effective charge distribution in the EF for a
spin-0 target

ρeffEFðb⊥;PzÞ≡ e
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥ EP

P0
FðΔ2⊥Þ; ðB2Þ

such that JEFðb⊥;PzÞ ¼ ρeffEFðb⊥;PzÞvCM. Since integrating
over b⊥ amounts to setting Δ⊥ ¼ 0⊥ in momentum space,
the total electric charge is given by

FIG. 8. A VDM fit of the timelike pion (πþ) FF measured by BABAR [13] (left panel) and comparison between pion FFs in the
spacelike region from three different approaches (right panel): simple dipole (A1) and monopole (A3) models, and modified dispersion
relation (A7), along with the NA7 [3] and Jefferson Lab (JLAB) measurements [8].
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q ¼
Z

d2b⊥J0EFðb⊥;PzÞ ¼
Z

d2b⊥ρeffEFðb⊥;PzÞ ¼ eFð0Þ:

ðB3Þ

Contrary to J0EF, the effective charge distribution does
depend on Pz. Interestingly, it becomes equal to J0EF when
Pz → ∞:

ρeffEFðb⊥;∞Þ ¼ J0EFðb⊥;∞Þ; ðB4Þ

which is to be expected since in this case all Fourier
components of the effective charge distribution have the
same velocity close to the speed of light.
In Fig. 9, we show the radial effective velocity and

charge distributions for various values of Pz, using the pion
electromagnetic FF obtained within the dispersion relation
framework. When 0 < Pz < ∞, we observe that there is a
critical value for b ¼ jb⊥j above which the effective
velocity becomes superluminal. As Pz increases, this
critical value decreases toward 0. In the IMF, the effective
velocity becomes however equal to 1 for all values of b.
Superluminal effective velocities do not seem to be an
artifact resulting from a poor choice of parametrization for
the pion electromagnetic FF. We think it has in fact to do
with the phase-space formalism itself. Indeed, position
eigenstates are constructed following the Newton-Wigner
approach [119]. While at the initial time they correspond to
perfectly localized states in position space, they will spread
outside the light cone at later times. This is usually
considered as a problematic feature, but as stressed in
Ref. [120] there is no actual information carried by this
superluminal spreading, and hence no fundamental clash
with the relativistic causality (a similar argument as for
entangled states in the EPR paradox). In any case, we
remind that the effective velocity was simply constructed
by analogy with a classical four-current. While the analogy

may be valid for the expectation value hΨjĵμðxÞjΨi, it
should be considered with a grain of salt in the case of
JμEFðb⊥;PzÞ since wave-packets have been factored out
[69,70,74]. The same precaution applies to the effective
charge distribution, since a genuine spin-0 charge distri-
bution projected onto the transverse plane should in
principle not depend on the target momentum, according
to Special Relativity.

APPENDIX C: WIGNER AND MELOSH
ROTATIONS

Let us consider a Lorentz transformation such that
p0μ ¼ Λμ

νpν. The Wigner rotation describes how the
canonical polarization gets rotated6

UðΛÞjp; si ¼
X
s0
jp0; s0iD�

ss0 ðp;ΛÞ

⇒ jp0; s0i ¼
X
s

UðΛÞjp; siDss0 ðp;ΛÞ; ðC1Þ

where UðΛÞ is the unitary operator implementing the
Lorentz transformation in Hilbert space. For a spin-1

2
system

and a pure boost along the z-direction, we can write

Dss0 ðp;ΛÞ ¼ cos
θ

2
δss0 þ i sin

θ

2

ðp × σss0 Þz
jp⊥j

: ðC2Þ

Using now the expressions we found for cos θ and sin θ in
Eq. (34), we conclude from the half-angle formulas that

FIG. 9. Momentum dependence of the longitudinal effective velocity distribution (left panel) and radial effective charge distribution
(right panel) for a pion (πþ), based on the pion electromagnetic FF from modified dispersion relation (A7).

6In the literature, the Wigner rotation matrix is often denoted as
Ds0s ¼ ðD†Þs0s ¼ D�

ss0 .
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cos
θ

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0 þM

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p Þð ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p þ 1Þ
2ðp0 þMÞ ffiffiffiffiffiffiffiffiffiffiffi

1þ τ
p

s
;

sin
θ

2
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0 −M

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p Þð ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
− 1Þ

2ðp0 þMÞ ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
s

: ðC3Þ

In particular, these expressions reduce in the IMF to

lim
pz→∞

cos
θ

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p þ 1

2
ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
s

;

lim
pz→∞

sin
θ

2
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
− 1

2
ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
s

: ðC4Þ

The Melosh rotation relates the LF helicity states to the
canonical spin states as follows

jp; λiLF ¼
X
s

jp; siMsλ; ðC5Þ

with

Msλ ¼
ð ffiffiffi

2
p

pþ þMÞδsλ − iðp⊥ × σsλÞzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

p
pþðp0 þMÞ

q : ðC6Þ

Introducing a Melosh rotation angle θM similarly to
Eq. (C2), we get

cos
θM
2

¼
ffiffiffi
2

p
pþ þMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ffiffiffi
2

p
pþðp0 þMÞ

q ;

sin
θM
2

¼ −
jp⊥jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ffiffiffi
2

p
pþðp0 þMÞ

q : ðC7Þ

Since ð ffiffiffi
2

p
pþ þMÞ2 þ p2⊥ ¼ 2

ffiffiffi
2

p
pþðp0 þMÞ it is easy to

see that cos2 θM
2
þ sin2 θM

2
¼ 1. If we now consider a BF

with a purely transverse momentum transfer, the initial
four-momentum reads pμ

B ¼ ðM ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
;− Δ⊥

2
; 0Þ and

Eq. (C7) reduces to

cos
θM
2

����
B
¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p ð ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p þ 1Þ
q ;

sin
θM
2

����
B
¼ −

ffiffiffi
τ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p ð ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p þ 1Þ
q : ðC8Þ

Comparing this with Eq. (C4), we conclude that the
Melosh rotation in the BF with Δz ¼ 0 is equal to the
IMF Wigner rotation. In other words, switching to the LF
formalism amounts in some sense to using the IMF
canonical polarization basis without having to consider
the limit pz → ∞.
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Lorcé, J. W. Negele, V. Pascalutsa, A. Tsapalis, and M.
Vanderhaeghen, Phys. Rev. D 79, 014507 (2009).

[52] C. Alexandrou, T. Korzec, G. Koutsou, C. Lorcé, J. W.
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[69] C. Lorcé, Eur. Phys. J. C 78, 785 (2018).
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