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The effect of the anomalous magnetic moment (AMM) on the chiral restoration is investigated at zero
temperature in the strong magnetic fields with the vacuum magnetic regularization scheme. It is shown that
the chiral restoration diagram sensitively depends on the AMM in the ultrastrong magnetic fields. In our
work, the parametrization of AMM is employed as proportional to the square of the chiral condensate. The
critical chemical potential is found to decrease linearly by the increasing coefficient in the AMM scale. At a
smaller scale of the AMM, the critical chemical potential could go down and then grow up as the magnetic
field increases. But at a larger scale, the magnetic catalysis on the critical chemical potential would not
happen anymore.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is a basic theory to
study the strong interaction between quarks and gluons. It
has two main striking features; asymptotic freedom and
color confinement [1]. The study of the QCD phase
diagram in the temperature-density plane is a topic that
has attracted much attention over many years. Additionally,
the QCD phase diagram also depends on external param-
eters, such as the presence of strong magnetic fields and
high densities, which are interesting to investigate from
both experimental and theoretical points of view. It is well
known that, heavy ion collisions can produce a very strong
magnetic field and the order of magnitude is up to about
eB ∼ 1019 Gauss. In the astrophysical environment, strong
magnetic fields still exist in the interior of magnetars [2,3].
In the peripheral collisions of nuclei, extremely larger
magnetic field up to 1018 or higher value can be generated
[4–6]. Theoretically, the maximum strengths of the order
1020 Gauss in the interior of stars are proposed by an
application of the virial theorem [7,8], and even higher
fields could be generated during the electroweak phase
transition in the early Universe [9,10].
In recent studies, the chiral phase transition and the

equation of state of dense matter were explored in the
strong magnetic field [11–17]. Especially, it is known that

the magnetic catalysis (MC) plays as an important phe-
nomenon, where a magnetic field enhances the sponta-
neous chiral symmetry breakdown. The more general
results state that a constant magnetic field leads to the
generation of a fermion dynamical mass [18–20]. However,
in the region close to the (pseudo) critical temperature, the
inverse magnetic catalysis effect (IMC) is proposed by the
lattice QCD result [21]. The finite background magnetic
field leads to the breaking of the chiral symmetry and
triggers the production of quark anomalous magnetic
moments (AMM) [22,23]. In literature, the AMM is
originally found in the weak-field region, and the
Schwinger linear-in-B ansatz for the AMM of quarks is
widely considered [24]. In the strong magnetic field region,
the AMM from the one-loop fermion self-energy depends
on the Landau level and decreases with it [25]. The fact of
the dynamic generation of AMM is mainly suggested due
to the lowest Landau level (LLL) effect [26]. Recently, a
quark AMM proportional to the square of chiral condensate
(κu ¼ κd ¼ υσ2) was suggested to produce results of chiral
condensate as functions of the temperature and the mag-
netic field in good agreement with the lattice result [27].
The AMMwas expected to play an important role to induce
the IMC effect around the critical temperature [17,28].
The Nambu-Jona-Lasinio (NJL) model was first pro-

posed as a low energy effective theory for QCD to describe
nucleons and mesons. It was successfully developed to
investigate the QCD chiral symmetry and vacuum sponta-
neous breakdown at finite density and/or temperature in a
strong magnetic field. However, the four-fermion interac-
tion in the model leads to the nonrenormalization of the
NJL model, so a proper regularization scheme is needed to
avoid ultraviolet divergences. The familiar regularization
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schemes are Pauli-Villars scheme [29–31], the vacuum
magnetic regularization scheme (VMR) [32–34], the mag-
netic field independent regularization scheme (MFIR) [35],
and non-MFIR scheme. Unfortunately, the non-MFIR
schemes will produce nonphysical oscillation behavior
in chiral quark condensate or tachyonic neutral pion
masses [36]. The MFIR scheme and the VMR scheme
are helpful to extract physical content from the vacuum of
the strong interaction affected by a magnetic field. In this
work, we will employ the VMR scheme to deal with the
divergencies in the thermodynamic potential and discuss
the influence of AMM on the chiral phase transition at
finite densities. The effect of AMM on the chiral restoration
at finite temperature has been studied by the VMR scheme
with convincing results [34]. Our aim focuses on the
possible AMM scale dependent on the chiral quark con-
densate and its effect on the critical chemical potential in a
strong magnetic field.
The paper is organized as follows. In Sec. II, we present

the thermodynamics of the two-flavor NJL model with
nonzero AMM in a strong magnetic field. In Sec. III, the
numerical results are shown with a detailed investigation on
the influence of AMM on chiral phase transition. The last
section is a short summary.

II. THERMODYNAMICS OF THE SU(2) NJL
MODEL AT ZERO TEMPERATURE

In the SU(2) version of the NJL model under a strong
magnetic field, the Lagrangian density of the two-flavor
NJL model is given by

LNJL ¼ ψ̄

�
i=D −mþ 1

2
âσμνFμν

�
ψ

þG½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2�; ð1Þ

where ψ represents a flavor isodoublet (u and d quarks) and
τ⃗ is the isospin Pauli matrix. The coupling of the quarks to
the electromagnetic field is introduced by the covariant
derivative =D ∼ γμDμ and Dμ ¼ ∂μ − ieQ̂Aμ. The charge
matrix is given by Q̂≡ diagðqu; qdÞ ¼ diagð2=3;−1=3Þ.
The Abelian gauge field Aμ stands for the external magnetic
field B aligned along the z-direction. The AMM is
introduced by the σμν ¼ i½γμ; γν�=2 coupling with electro-
magnetic field strength Fμν ¼ ∂

μAν − ∂
νAμ. The matrix

tensor used in this work is gμν ¼ diagð1;−1;−1;−1Þ.
The factor â ¼ Q̂ κ̂, where κ̂ ¼ diagðκu; κdÞ, is a 2 × 2
matrix in the flavor space; here κi are AMM of the quarks,
The more recent results suggested that the proper form of
AMM would change with the chiral condensate, since it
involves the behavior related to the condensate [27].
By expanding ψ̄ψ around the quark condensate hψ̄ψi

and dropping the quadratic term of the fluctuation, one can
get the mean-field approximation ðψ̄ψÞ2 ≈ 2hψ̄ψiðψ̄ψÞ−
hψ̄ψi2. The dynamical quark mass is given by

Mi ¼ m − 2Ghψ̄ψi; ð2Þ

where the quark condensates include u and d quark
contributions as hψ̄ψi≡ σ ¼Pi¼u;d σi. The dynamical
mass depends on both flavors condensates. Therefore,
the same mass Mu ¼ Md ¼ M is available for u and d
quarks. The contribution from the i flavor quark is [34]

σi ¼ σvaci þ σfieldi þ σmag
i þ σmed

i : ð3Þ

The terms σvaci , σfieldi , and σmag
i represent the vacuum, the

field, and the magnetic field to the quark condensation,
respectively. The regularized vacuum contribution reads

σvaci ¼ −
MNc

2π2

�
ΛϵiðΛÞ − K2

0i ln

�
Λþ ϵiðΛÞ

K0i

��
; ð4Þ

where a 3D sharp cutoff Λ of the momentum is employed.
The definitions K0i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ κ2i B

2
i

p
and ϵ2i ðΛÞ ¼ K2

0i þ Λ2

are adopted to include the AMM with the parameter Bi
defined as Bi ¼ qieB [34]. The finite magnetic field-
dependent contributions are given by

σfieldi ¼ −
MNcB2

i

24π2
½3ðαi þ 1Þ2 − 1�

K2
0i

; ð5Þ

σmag
i ¼ −

MNc

4π2

Z
∞

0

ds
s2

e−sK
2
0i ×

�
Bis cosh½ðαi þ 1ÞBis�

sinhðBisÞ

− 1 −
1

6
½3ðαi þ 1Þ2 − 1�ðBisÞ2

�
ð6Þ

with the notation αi ¼ 2Mκi. σmed
i is contribution ofmedium

at zero temperature, given by the following expression

σmed
i ¼ MNcjBij

2π2
Xnmax

n¼0

X
s¼�1

�
1 −

sTi

Mnis

�
ln

�
μi þ pF

Mnis − sTi

�
;

ð7Þ

where we have adopted the Landau-level induced energy
eigenvalue

Mnis ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2nþ 1 − s

qi
jqij
�
jBij þM2

s
; ð8Þ

and the longitudinal Fermi momentum

pF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2i −

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2nþ 1 − s

qi
jqij
�
jBij þM2

s
− sTi

!
2

vuut ;

ð9Þ
Due to the requirement pF ≥ 0, one can get the maximum
Landau-level number
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nmax ¼ Floor

�
1

2

�ðsTi þ μiÞ2 −M2

jBij
þ s

qi
jqij

− 1

��
; ð10Þ

where Ti ¼ κiBi includes the AMM according to the
Schwinger linear ansatz [26], and s ¼ �1 stands for the
spin of the quark. The AMM separates the energies of the up
and down spins in the LLs (n ≠ 0), in addition to the
LLL (n ¼ 0).
In the VMR scheme, the NJL thermodynamic potential

density can be written as [34]

Ωi ¼
ðM −mÞ2

4G
þ
X
i¼u;d

Ωvac
i þΩfield

i þ Ωmag
i þ Ωmed

i : ð11Þ

The contributions Ωvac
i and Ωfield

i must be regularized and
the following expressions are given by

Ωvac
i ¼−

Nc

8π2

�
Λ½Λ2þ ϵ2i ðΛÞ�ϵiðΛÞ−K4

0i ln

�
Λþ ϵiðΛÞ

K0i

��
;

ð12Þ

Ωfield
i ¼ −

NcB2
i

48π2
½3ðαi þ 1Þ2 − 1� lnK

2
0i

Λ2
; ð13Þ

Because of the ultraviolet divergence, we still use the 3D
sharp cutoff scheme to regularize the vacuum term. The
Ωmag

i is the magnetic field contributions [34],

Ωmag
i ¼ Nc

8π2

Z
∞

0

ds
s3

e−sK
2
0i

�
Bis cosh½ðαi þ 1ÞBis�

sinhðBisÞ

− 1 −
1

6
½3ðαi þ 1Þ2 − 1�ðBisÞ2

�
: ð14Þ

The contribution of the medium at zero temperatureΩmed
i is

Ωmed
i ¼ −

NcjBij
4π2

Xnmax

n¼0

X
s¼�1

�
pFμi − ðMnis − sTiÞ2

× ln

�
μi þ pF

Mnis − sTi

��
: ð15Þ

From the thermodynamic potential, the quark number
density is easily evaluated as follows:

ρi ¼
NcjBij
2π2

Xnmax

n¼0

X
s¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2i − ðMnis − sTiÞ2

q
: ð16Þ

For completeness, at the zero AMM, the replacements
of K0i → M, αi → 0, and Ti → 0 should be done in
Eqs. (4)–(7) to get the gap equation. It has been verified
that the thermodynamic potential ΩVMR can be taken as a
modification of the potential ΩMFIR by an additional term,
which is independent on the effective mass M [32]. As a

consequence, the gap equation in VMR scheme is com-
patible with the result from MFIR scheme in Ref. [37].
Specially, the vacuum effective mass M without AMM is
still given by

M −m
2G

¼ −
MNcNf

2π2

�
ΛϵiðΛÞ −M2 ln

�
Λþ ϵiðΛÞ

M

��

þ
X
i¼u;d

MNcjBij
2π2

�
ln½ΓðxiÞ� −

1

2
lnð2πÞ þ xi

−
1

2
ð2xi − 1Þ lnðxiÞ

�
; ð17Þ

where xi ¼ M2=j2Bij is defined [37]. The detailed deriva-
tion of the equivalence of the gap equations in two schemes
can be found in Ref. [32].

III. NUMERICAL RESULT AND DISCUSSION

In this section, the AMM effect at high densities is
studied in terms of the chiral phase transition in the
strong magnetic field. In the present calculation, the
following parameters are adopted; mu¼md¼4.548MeV,
Λ ¼ 719.23 MeV, and G ¼ 1.954=Λ2. In Ref. [27], the
three forms of the AMM (κ ¼ constant, κ ¼ υσ, and
κ ¼ υσ2) were compared and discussed. The scale propor-
tional to the square of the condensate was considered as the
practicable effective form to describe the thermomagnetic
properties of QCD. The AMMs for u and d quarks in our
work are adopted as κu ¼ κd ¼ υσ2. The opposite signs
κu ¼ −κd ¼ υσ2 for possible negative contribution of d
quarks are considered for comparison. The quark dynami-
cal mass as a function of the chemical potential in different
magnetic fields can be obtained by solving the gap equation
Eq. (2), Then we can analyze the effect of AMM on the
critical chemical potential for the first-order phase tran-
sition. In the calculations, we assume the isospin symmetric
case meaning that the chemical potentials are equal
μu ¼ μd ¼ μ for u and d quarks.
In Fig. 1, the vacuum mass is shown as a function of

the magnetic field intensity. The three AMMs κ ¼ 0,
κu ¼ κd ¼ 0.9σ2, and κu ¼ −κd ¼ 0.9σ2 are marked by
the black solid, the red dotted, and the blue dashed lines
respectively. The behavior of the effective quark mass
enhanced by the magnetic field is consistent with the result
pointed in Ref. [37]. From the figure, it is clearly seen that
the growing behavior of the effective mass is relatively
slightly enhanced by the nonzero AMM, where the larger
magnitude of the magnetic field facilitates the binding of
the quark and antiquark.
In Fig. 2 we show the dynamical quark effective mass

as functions of the chemical potential at the different
AMMs in four panels. The magnetic fields are adopted
from 0.1 GeV2 to 0.5 GeV2, which are clearly marked
by the curves from bottom to top in the vacuum state.
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The descending behavior of quark mass occurs in the chiral
restoration process, which is not a smooth slope but a
sudden drop denoting the first-order transition. In the
magnetic field of 0.2 GeV2 or even higher order, the
quarks only occupy the LLL to give rise to a single
first-order phase transition. For the weaker magnetic field
eB ¼ 0.1 GeV2 marked by the solid lines, the maximum
Landau levels for u and d quarks are mismatched [38]. In
Table I, the quantum number of maximum Landau levels
nu;max and nd;max is listed in the chemical potential μ range
from vacuum to the chiral restoration. At μ > 267 MeV for
κ ¼ 0 or μ > 263 MeV for κ ¼ 0.5σ2, the LLL (n ¼ 0)
occurs for u- and d-quarks. When the chemical potential
increases up to about 302 MeV, the energy level is excited
to a higher level for d quarks, while the u quarks still lie
in the LLL. The quarks occupation would influence the

condensate of quark and antiquarks. As a consequence,
there are two first-order transitions in the region of
densities. Comparing the panels (a) (b), and (d) in
Fig. 2, it can be found that the AMM would result
in the critical chemical potential moving to larger value
with the increasing magnetic field in the region of
eB > 0.2 GeV2. It is characterized by the so-called MC
effect and is compatible to the conclusion in the absence of
AMM [38,39]. On the contrary in panel (c) in Fig. 2, the
larger coefficient with the same sign of κu and κd would
always produce the IMC effect, which is characterized by
the decrease of the critical chemical potential as the
magnetic field increases. By comparing the vertical axis
on four panels, it can be found that the AMM has poor
impact on the vacuum mass of quarks in the weak magnetic
field. When the magnetic field becomes strong enough, the
enhancement of the vacuum chiral condensate by the AMM
becomes more evident. The effect of AMM is agreement
with those obtained at finite temperature in Ref. [34]. It is
concluded that the scale and sign of AMM would have
significant effect on the realization of the MC and IMC.

FIG. 2. The quark effective mass as a function of chemical
potentials for different magnetic fields at the AMMs
(a) κu ¼ κd ¼ 0, (b) κu ¼ κd ¼ 0.5σ2, (c) κu ¼ κd ¼ 1.1σ2,
and (d) κu ¼ −κd ¼ 1.1σ2.

TABLE I. The quantum number of Landau Levels occupied by
quarks for the magnetic field eB ¼ 0.1 GeV2 at different AMMs.
The number “0” means the LLL.

AMM (κ=σ2) μ (MeV) nu;max nd;max

0 0 ∼ 267 No No
267 ∼ 303 0 0
303 ∼ 369 0 1

0.5 0 ∼ 263 No No
263 ∼ 302 0 0
302 ∼ 369 0 1

FIG. 1. The behavior of the effective quark mass in vacuum
state with and without AMMs as a function of the magnetic field.

FIG. 3. The quark number density with and without AMMs as a
function of the chemical potential.
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In the strong magnetic field, the charged quark would be
restricted in the Landau levels. The u and d quarks will
have different densities with the same chemical potential
due to their different electric chargers. In Fig. 3, the quark
density ρu and ρd are shown at the magnetic field
eB ¼ 0.5 GeV2. The presence of the AMM marked by
the dashed lines affects not the number density but the
position of the occurrence of quarks. The degenerate factor
proportional to jqiBj is responsible for the relation ρu > ρd,
where the absolute value of the electric charge of u quarks
is larger than that of d quarks.
In Fig. 4, the critical chemical potential for the chiral

restoration is shown as a function of the magnetic field at
the AMMs: κu ¼ κd on left panel and κu ¼ −κd on right
panel. The different coefficients of the AMM proportional
to the square of the chiral condensate are marked on the
lines. For the κu ¼ κd < 1.0σ2 on left panel, one would see
the behavior of the critical chemical potential μc going
down and up with the increase of the magnetic field. On
these nonmonotonously curves, there exists a special value
for the magnetic field eBc, above which the MC effect is
revealed by the increase of μc with the increase of eB.
While for the magnetic fields below the value, the IMC
effect would operate slightly in a short range. But as the
coefficient of AMM increases up to 1.0, the nonmonoto-
nous behavior disappears and the IMC effect would be
always realized in the whole range of the magnetic field.
If the sign of the AMM for u and d quarks is opposite,
namely, κu ¼ −κd ¼ υσ2, a similar behavior of μc is
obtained in addition to that the much larger coefficient is
available at the same μc on right panel. Generally speaking,
for two cases at any fixed magnetic field, it can be
concluded that the larger coefficient of AMM would lead
to the smaller μc for the chiral transition.
In Fig. 5, the critical chemical potential μc is shown as a

function of the coefficient of AMM at the magnetic field

eB ¼ 0.3 GeV2. It is interestingly found that the μc is
nearly a linearly decreasing function of the coefficient of
AMM. The gray part below the critical line denotes the
chiral symmetry breaking (χSB). At the chemical potential
larger than μc, the chiral symmetry restoration (χSR) is
expected to take place in the upper blank region. The AMM
with the coefficient larger than 1.0 will result in a decrease
of μc close to 10% of the original value without AMM.
The scale of AMM could have a significant impact on the

role of the magnetic field in the chiral restoration. As was
discussed above, there is a critical magnetic field separating
the region of MC and IMC discovered in Fig. 4. Now one
can continuously change the coefficient of AMM propor-
tional to the square of chiral condensate and get the whole
diagram of MC and IMC in the eB-υ plane in Fig. 6.

FIG. 4. The behavior of the critical chemical potential for
different AMM scales as a function of the magnetic field.

FIG. 5. The critical chemical potential as a function of the
coefficient υ and the region of χSR and χSB is separated for the
magnetic field eB ¼ 0.3 GeV2.

FIG. 6. The regions of MC and IMC are shown in the eB-υ
plane.

EFFECT OF ANOMALOUS MAGNETIC MOMENT ON THE … PHYS. REV. D 106, 116023 (2022)

116023-5



The boundary between the MC and IMC is described by a
solid line. For a given scale of the AMM, the IMC effect
can always be realized in a weaker magnetic field marked
by the gray area and the MC effect in a stronger magnetic
field marked by the empty region. But for the coefficient of
the AMM increasing up to 1.0, the larger value of the AMM
κ ¼ 1.0σ2 is obtained and the IMC region would expand to
the whole area. On the other hand, for a given magnetic
field, the increase of the coefficient of the AMM could
make the possibility for the MC turning to the IMC effect.
It can be concluded that the scale of AMM is crucial to
account for the happening of IMC and MC effects in the
chiral restoration.

IV. SUMMARY

In this paper, we have explored the effect of the AMM
on the chiral restoration at zero temperature to the strong
magnetic fields. The VMR scheme has been used to avoid
UV divergence. The chiral restoration happens with a
sudden drop to indicate a first-order transition at larger
densities. We found that the AMM proportional to the
square of the chiral condensate, i.e., κ ¼ υσ2, has a crucial
impact on the chiral restoration. Even though the effect of
the AMM can be negligible in the region of the weak
magnetic field, the enhancement of the dynamical vacuum
mass is very sensitive to the AMM as the magnetic field

becomes stronger. The critical chemical potential would
slightly decrease with the increasing coefficient in the scale
of the AMM κ ¼ υσ2. The AMM of κ > 1.0σ2 would give
rise to a decrease of the critical chemical potential up to
10% of the original value without AMM.
In the case of small scale of AMM, the critical chemical

potential is a nonmonotonous function of the magnetic
field. In the convex behavior, it is seen that the IMC effect
occurs in weaker magnetic fields and the MC effect occurs
in stronger magnetic fields. The increase of the coefficient υ
would turn the MC effect into IMC effect. For the larger
scale near to κ ¼ 1.0σ2, the inverse magnetic catalysis
region would expand to the whole area in the eB-υ plane.
So it is concluded that the occurrence of the MC effect,
namely, the decrease of the critical chemical potential
with the magnetic field, would constrain an upper limit
on the scale of the AMM. It is expected that our result
is instructive for the investigation on AMM in future
experiments.
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