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We revisit the derivation of the nonlocal collision term in the Boltzmann equation for spin-1/2 particles,
using both the Wigner-function approach by de Groot, van Leeuwen, and van Weert, and the Kadanoff-
Baym equation in 7-matrix approximation. Contrary to previous calculations, our results maintain full

Lorentz covariance of the nonlocal collision term.
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I. INTRODUCTION AND SUMMARY

The observation of polarization phenomena in relativistic
heavy-ion collisions [1-8] motivated a plethora of theo-
retical developments [9-33] in recent years, which aim at
describing the dynamics of spin polarization in relativistic
fluids. Analogous to the nonrelativistic Barnett effect [34],
a rotating relativistic fluid with spin degrees of freedom can
be polarized along the vorticity direction through the
mutual conversion of orbital and spin angular momentum.
In order to understand this process within a theoretical
framework and to calculate the resulting spin polarization
in a quantitatively reliable manner, considerable efforts
have been made to derive a theory of relativistic spin
hydrodynamics [35-72].

|

Itis convenient to first derive a kinetic theory from quantum
field theory, which in turn serves as the starting point for the
derivation of spin hydrodynamics, e.g., by a Chapman-Enskog
expansion [40,44] or by the method of moments [66,71]. [t was
found in previous works [41,73] (see also Refs. [74-82] for
related studies) that, in spin kinetic theory, a nonlocal collision
term is responsible for the mutual conversion of orbital and
spin angular momentum, and therefore polarizes the fluid
along the vorticity when equilibrium is approached.

In Refs. [41,73], we derived the Boltzmann equation to
order O(h) for massive spin-1/2 particles in the approach
of Ref. [83], termed the “GLW approach” in this paper. For
Dirac particles with spin 1/2 and for binary elastic
collisions, it assumes the form

1 )
p-o.f(x,p,8) =G[f] = Z/dFlszdF’dS(p)(Zﬂh)“é(“)(p +p' = pi—pa)

X W[f(x—i_Al - A7plv§1)f(x+A2 - Avp27§2) _f(x’p’g)f<x+ A,_Avp/7§,>]' (1)

Here, WV is the transition probability for the scattering process
and f(x, p, 8) is the spin-dependent single-particle distribu-
tion function in extended phase space, i.e., ordinary phase
space extended by spin degrees of freedom. We also defined
dl':=dPdS(p) as the integration measure over on-shell
momentum space dP and spin space dS(p), see Egs. (6)
and (7). Note that in Eq. (1) there is in principle also a
contribution from collisions which exchange only spin but
not momentum, cf., e.g., Eq. (24) in Ref. [41]. It can be shown
that such a contribution corresponds to corrections to the drift
term, as well as an additional Vlasov term, on the left-hand
side of the Boltzmann equation. We defer a detailed dis-
cussion to a subsequent work [84] and, for the sake of
simplicity, omit such a contribution in this paper. We also note
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that the collision term (1) agrees with the one given in
Refs. [41,73] only when replacing x — A by x. The form
given in Eq. (1) is actually the more accurate one. The overall
shift of all positions by —A was neglected in Refs. [41,73]
by an argument assuming an expansion around local ther-
modynamical equilibrium, for details see Appendix D of
Ref. [73].

The nonlocality of the collision term (1) manifests
itself in the fact that the distribution functions of the
collision partners are taken at space-time points shifted
from position x* by A" — A#, A — A¥, and A5 — AF,
respectively. These shifts were calculated in Ref. [73]
and are of the order of the Compton wavelength of the
particles, e.g.,
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and similarly for A%, A, and A%, replacing (p%, 8”) by
(p'*, 8%, (p?,%lf), and (pg,ﬁg), respectively. In Eq. (2),
= (1,0) is a timelike unit vector defining the frame
where p® is measured. The nonlocality of the collision term
allows for the conversion of orbital into spin angular
momentum. We remark that the expression (2) is identical
with the so-called Berry curvature, cf., e.g., Ref. [85].

However, a serious shortcoming of the previous work
[41,73] is that the Berry curvature violates Lorentz covari-
ance, since it explicitly depends on the frame vector #,
which does not transform under Lorentz transformations.
The technical reason for the occurrence of the Berry
curvature is that at some point of the calculation one has
to take momentum derivatives of the Dirac spinors appear-
ing in the Wigner functions. At the same time, momentum
derivatives of the scattering matrix elements are neglected,
arguing that these derivatives should be small if the
interaction is sufficiently localized. However, in doing so
one neglects momentum derivatives of the Dirac spinors
appearing in the matrix elements, which otherwise would
lead to similar Berry-curvature terms, which, if kept, restore
Lorentz covariance.

In this paper, we improve on the previously made
approximation and derive a nonlocal collision term which
manifestly respects Lorentz covariance. The form of this
term is similar to Eq. (1), but the space-time shift (2) is
replaced by a (much more complicated, but) Lorentz-
covariant expression. For a current-current interaction as
in the time-honored Nambu-Jona-Lasinio (NJL) model
[86,87], i.e., an interaction which couples the fermion
current Ty with itself with coupling strength G.., where
') is a Dirac matrix and the index ¢ characterizes the
particular interaction channel (for details see Sec. III), we
obtain

h 4G, Gym* . ¢

AY =y Im m{Tr[AT @) h, ()] Tr [T T ]
— Tr[A0@ hy T T T O]}, (3a)
fl 4G de

AY = — e WI m{Tr [T by T T[T hy T 1
— Tr[A0 @y TR TE pyyrT()]}, (3b)
h4G.Gym*

A = —Im{Tr[AT@ h, T )| Tr [T, T byt
oy T T Tr [l 7]
— Tr[A0@ hy T R T T}, (3¢)
h4G G,m*

AF = — dWI {Tr[hy"F< )hzr(@]Tr[F(d)h]F(c)h’}

— Tr[hy*T @ oy T RTE p, 1]}, (3d)

where
W= 4G"Gd16R Tr[hDT@D by T ) T[T g T B
=mt =t e{Tr| 2 | Tr| 1 ]
— Tr[AT @ T T T O R]}. (4)
Here,
1
h=h(p,8) =~ (1+7rsf) (7 +m), (5)

and similarly for /', hy, h,, and h, with (p, 8) replaced by
(P'.8),(p1.81), (p2.82), and (p,8), respectively.
Equations (3) are the main result of this work. Note that
they pertain to the special case of a pointlike interaction, but
can be readily generalized to the case where the interaction is
mediated over a nonvanishing distance, see, e.g., Egs. (100),
which are also valid for more general interactions.

The paper is organized as follows. In Sec. II we recall
some facts about the Wigner function. In Sec. III we define
the Lagrangian underlying our investigations. In Sec. IV
we carefully repeat the calculation of the collision term via
the GLW approach [83] performed in Refs. [41,73], but
now paying attention to maintaining full Lorentz covari-
ance throughout the calculation. For the purpose of making
our calculations more concise, various definitions and
conventions differ from those of Ref. [83] and used
previously in Refs. [41,73]. This also facilitates compari-
son with other works, which adhere to more commonly
used notations. Our result is the nonlocal Boltzmann
equation (1) with the space-time shifts (2) replaced by
the expressions (3). In Sec. V we then confirm our results
by repeating the calculation in the Kadanoff-Baym (KB)
approach (see, e.g., Refs. [88,89]), showing that the results
coincide for an interaction of NJL-type. The KB approach
was previously used by some of us (N.-W., D.H.R.) in
Ref. [81], where the nonlocal collision term was derived in
T-matrix approximation. However, the use of the matrix-
valued spin distribution functions in that work prevented a
direct comparison with that of the GLW approach of
Refs. [41,73]. In this paper, we complete the derivation
of the nonlocal collision term in the KB approach, using
the scalar distribution function f(x,p,8) in extended
phase space that was used in the GLW approach. We note
that a similar study in the nonrelativistic limit has been
performed in a recent paper [90]. Finally, in Sec. VI, we
conclude our work with an outlook for future studies.

We define the Lorentz-invariant measure in momentum
space as

d’p

dPi=———
(27h)’ p°

(6)

The Lorentz-invariant measure in spin space for particles
with spin 1/2 is defined as [41,73]
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ds(p) = \/;p?zd“éé(é -8+ 3)5(p - 8). (7)

This measure implies the following relations for integration
over the spin 4-vector 8*:

/dS(p) _2, /dS(p)Q»” ~o,
/ dS(p)8rs’ — —2 (g’”’ - ”;f”). (8)

The measure (7) is chosen in such a way that integrating
over the whole spin space gives the number of spin degrees
of freedom, see the first relation in Eq. (8).

We adopt the following conventions: the metric tensor is
G = diag(+,—,—,—) and the four-dimensional unit
matrix in Dirac space is denoted as 1, while the Dirac
matrices are denoted as y*. The four-dimensional Levi-
Civita symbol is €1 = —¢;;,3 = 1, and summation over
repeated indices is implied if not stated explicitly. The
scalar product of two four-vectors a* and b* is
a-b:=a"b,. Furthermore, we define ¢ :=y*a,. (Anti-)
symmetrization in Lorentz indices is denoted as ayb,) =
a,b, —a,b, and a\,b, := a,b, + a,b,. We choose natural
Heaviside-Lorentz units, ¢ = ey = ug = kg = 1, but the
reduced Planck constant % is kept explicitly in order to
perform the power counting. Lorentz indices are denoted
by Greek indices, except for a, f, y and &, which are used
for Dirac indices (if necessary with appropriate sub-indices,
e.g., &,a;,a,...). Spin indices are denoted by the let-
ters r, s, ....

II. WIGNER FUNCTION

In this section, we collect some well-known facts about
the Wigner function, which will be used in the calculation
of the collision term in the GLW as well as the KB
approach. We start with a discussion of the two-particle
correlation function in the closed-time path formalism and
then focus on the definition of the Wigner function, its
Clifford decomposition, as well as its equation of motion.
We then establish a relation between the Wigner function
and the single-particle distribution function in extended
phase space.

A. Two-particle correlation function in closed-time
path formalism

On the closed-time path (see, e.g., Ref. [88]), the two-
particle correlation function assumes the following matrix
form,

- G++(xl’x2) G+_(.X'],XZ)
G(x,x) = <G_+(X1,X2) G——(xl,x2)>
(GF(XI’)Q) Gf(xl,x2)>
G7(x1.%) GF(x.x))

©)

where G"(x,x,) (with i, j = +,—) means that the first
time argument #; = x{ lives on the time branch i and the
second time argument ¢, = xg lives on the time branch j.
The definitions of the various Green’s functions are

Gup(x1.22) 5= (T (x1) i (x2)). (10a)
Ghy(x1.x2) = (Tay(x)y(x2)).  (10b)
Gop(x1,x2) = (Wp(x2)wa(x1)). (10¢)
Gop(x1,x2) = (o (x1)W(x2)), (10d)

where T and 7, denote the time-ordering and anti-time-
ordering operators, respectively, and angular brackets
denote averages computed with respect to some initial
state. Note that we define G= with opposite sign as in
Ref. [81], but with the same sign as in Ref. [80].

Not all components of the correlation function (9) are
independent. In fact, one may express G and G" by G<
and G~ using the definition of the time-ordering and anti-
time-ordering operators, respectively,

Ggﬂ(xlvx2) = 0(t1 — 12)Gy(x1. x2)

=01y — 1,)Gp(x1, x2), (11a)
Ggp’(xhxz) = —0(t; — )G 4(x1. x3)
+0(12 — 11)Gop(x1.x2).  (11b)

B. Wigner function

The Wigner function G=(x, p) in the KB approach is
defined as the Fourier transform of the two-point function
(10c) with respect to the difference y := x; — x, of the two
space-time points x; and x,,

G@umw=/h®awﬁ6;uh@>

o (oo o). o

where x := (x; + x,)/2 is the arithmetic mean (or center) of
the two space-time points x; and x,. Similarly,
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Gos(x.p) ’=/d4yeip'y/hG;ﬁ(x1,x2)

E/d4y€ip'y/h<l//a<x+§>lpﬂ(x_%>>' (13)

On the other hand, in the GLW approach [83], the
Wigner function is defined as

Wap(x, p) = / d“ye‘%”"’< 17y (x + %) Ve (x - %) : >

(14)

i.e., similar as in Eq. (12) when substituting y — —y (in
order to facilitate the comparison with previous work, we
do not perform this substitution explicitly), but with an
additional normal-ordering operation on the field operators.
This bears no further consequences, since we will neglect
antiparticles anyway.

Note that compared to Refs. [39,41,73,83] the factor
(2zh)~* in the integration measure in Eq. (14) is absent,
because we choose to absorb such factor into the four-
dimensional momentum-space measure d*p/(2zh)*. A
further consequence is that the single-particle distribution
function does not have a prefactor (2z7)73 as, e.g., in
Eq. (85) of Ref. [41]. This facilitates the expression for
Pauli-blocking factors, which simply read 1 — f, instead of
1 — (2zh)*f in the notation of Ref. [83].

C. Clifford decomposition
We can expand G=(x, p) (or W(x, p)) in terms of the 16

independent generators of the Clifford algebra, I',,
a=1,...,16, with

T, e {1y =iy’ ry' o}, (15)
where ¢ := £ [y#, "], such that
G=(x.p)=W(x.p)

1
<J’: +ipPPP + YV, + 75}/’64,4 + EGWS’“’> )

=

(16)

Similarly,

1/ - _ - - 1 _
G (x,p) = 3 <f + PP+ YV, + }/Sy”Aﬂ + 56"”8,,,,).
(17)

The real-valued coefficient functions F, F, P, P, Vs 17,,,
A, A, S

>
axial-vector, and tensor components of GS(x,p) (or

W(x, p)), respectively, which can be obtained by taking

and Sﬂ,, are the scalar, pseudoscalar, vector,

the trace of G5(x, p) (or W(x, p)), multiplied with the
appropriate generator I', of the Clifford algebra.

D. Equation of motion

The equation of motion for the Wigner function
G<(x,p) can be derived from the Dyson-Schwinger
equation for the two-particle correlation function. In the
quasi-particle approximation one obtains [81]

(K_m)G<(x7p) :Icolla (18)
where m is the mass of the particles and

h
K* = pt +%a§. (19)

The collision term [ is given by

Feo 5= 5 (255, )G (x.p) = 3 (5. P)G(x. )]

hZ
#2700, G (5 p) b
—{Z7(x.p). G=(x. p) }e]- (20)

Note the change of sign in the collision term as compared to
Ref. [81], which is due to the opposite sign in the definition
of G=. In Eq. (20), £=(x, p) are the Wigner transforms of
the self-energies £=(x;, x,) on the closed-time path and we
introduced the Poisson bracket

{A,B}pp = (0,A) - (9,B) = (9,A) - (9:B).  (21)

By multiplying Eq. (18) with the generators of the
Clifford algebra and taking the trace, we can derive a
system of equations of motion for the Clifford components
of the Wigner function. The real parts of these equations
read

PV, —mF = ReTr(I o), (22a)
n .
mpP + Edux.Aﬂ = ReTr(iy’ Ieon)s (22b)
h v
puF —mV, + EOXSW = ReTr(y,Icon)- (22¢)
1 v Qpo h 5
Eeﬂvpo-p &+ mAy - Eax.ﬂp = RCTI'(]/ 7/;4[5011)’ (22d)
2 (o2 h
e;w/mp/A + mS;w - 5 x[yvu] = _ReTr(U;wIcoll)! (226)

while the imaginary parts are
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h
Ea‘;VM = ImTr(ICOH), (22f)
pﬂ-A/,t = ImTr(_i}'Slcoll)v (22g)
B h
p SIJ/l + Eax,ﬂf = ImTr(nycoll)’ (22h)
h S’ = ImTr(py, 1 22i
pﬂP+Z€yypa X = Im I‘(}/ 7;1 c011)1 ( 1)
h 3 .
p[yvv] + Ee/,w/ma)afA = _ImTr(Gﬂvlcoll)' (22J)

Acting with the operator K+ m onto Eq. (18) and
combining the resulting equation with its Hermitian con-
jugate, multiplied from the left- and the right-hand side
with y°, we can derive a mass-shell constraint and a
Boltzmann equation for the Wigner function G=(x, p),

h2
<p2 —m? = Za?c) G=(x.p)

= K+ mlr+ K+ mlal ) (230)

hp0.G=(x.p) = =5 (K +m)lean = [(K +m)l]'7"),
(23b)

where we have used y°(G<)"y? = G=, which follows from
Eq. (16). Taking the trace with the appropriate basis
elements of the Clifford algebra, we obtain for the
components of the Wigner function

<p2 —m2— hzza§> Tr([,G<) = ReTr[[,(K + m)I o],
(24a)

hp - axTr(FaG<) = ImTr{r‘a (K + m)lcollL (24b)
where we have used y°I'l,y® = I',. It was shown in Ref. [81]
that off-shell contributions in Eq. (24b) are of higher order,
O(G?Y), in the coupling constant. They are therefore
neglected in the following. In this approximation, we will
also show by an explicit computation that, at least to order
O(h), all propagators are on the mass shell.

Similarly, in the GLW approach the equations of motion
for the Wigner function (14) read [73,83]

2
(p2 —m?— %0%) W(x, p) = héM (x, p), (25a)

p- 0, W(x.p) =C(x. p). (25b)

Here we defined

Mgl p) =5 [ et o) ind+ )

+yp(x)[(=ifde + m)p(x2)],: ), (26a)

i

Capliv.p) =5 [ dye 2 p(oxy) (=i + m)]ax2)
—wp(x)[(ihd, + m)p(x2)],1), (26b)
where
1 aﬁint
p(x) = —gal/_/(x) ’ (27)

with the interaction Lagrangian L;, of the theory under
consideration, and where 7 (x) =y’ (x)y°, p(x) = p'(x)y°
are the Dirac adjoints of the fermion field w(x) and the
source term p(x). Note the formal similarity between
Egs. (23) and (25).

Similar to Egs. (23a) and (23b), Eq. (25a) is a mass-shell
equation for the Wigner function, while Eq. (25b) repre-
sents a Boltzmann-type equation. Again, off-shell terms in
Eq. (25b) can be shown to cancel [73], such that we have

P axWon—shell (x, P) = Con—shell(x7 P), (28)

where the Wigner function and collision terms are decom-
posed as

VV(X7 P) = 4ﬂmh5(p2 - mz)Won—shell (x’ p) + Woff»shell (x7 p) ’
(29a)

C(x, p) = 4xmhd(p* — m?)Cop shenn (X, P) + Coft_shen (X, P)-
(29b)

Note that the prefactor is chosen such that the usual
momentum-space measure is recovered for the on-shell
terms, as is discussed in Appendix A. This also implies that
the 7 in the prefactor of Eqgs. (29a), (29b) does not
participate in the A-power counting.

E. Single-particle distribution function
in extended phase space

Our goal is to derive a Boltzmann equation for the single-
particle distribution function f(x, p,8) in extended phase
space from the Boltzmann-type equations (23b) and (25b),
respectively. To this end, we need to establish a relation
between f(x, p,8) and G=(x, p) or W(x, p), respectively.
Since we work in the semiclassical expansion, we can do
this order by order in . We work up to order O(%?) in the
equation of motion (18) for the Wigner function. Since the
collision term Iy is already of order O(#), cf. Eq. (20), for
the computation of the latter we only need to determine
f(x,p,8) and G=(x, p) or W(x, p) up to first order in 7.
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First of all, following Refs. [41,73] we introduce a scalar
single-particle distribution function in extended phase
space,

f(x.p.8) = 5 [F(v.p) =8 Avp)l. (30)
and analogously
(. p.8) = [F(e.p) =8 Alep)l. (1)

Note that f(x, p,8) and f(x, p,8) are distribution-valued
and thus not identical, but proportional, to f(x, p, 8) and

f(x, p,8), respectively.
We now expand all quantities in powers of 7, e.g.,

f(x. p.8) =0 (x, p) + AV (x, p.8) + 1> (x, p.8)
+O(R%)..., (32)

and similarly for all other quantities. Here we have assumed
that spin effects enter f first at order O(#), cf. the discussion
in Refs. [41,73].

1. Zeroth order in h

Since the collision term [ is already of first order
in h, cf. Eq. (20), at zeroth order in # we obtain from
Egs. (22a)-(22d)

PV - mFO = o, (33a)
PO =0, (33b)
FO—mV? =0 33
py mVy ’ ( C)
1
Eeuv/)ﬂpys(o)pﬁ + m.A;gO) =0. (33(31)

In order to proceed, we make the additional assumption that
A, = nAY + Or?), ie., that AL = 0, see Refs. [41,73].
This can be justified by assuming that polarization effects
are at most generated dynamically within the system, but

are not induced already from the outset by, e.g., external
fields. In this case, Egs. (33b)—(33d) imply that

pO =0, VO=Lrro A0—o sU=0, (34)
m

and the only independent Lorentz component of the Wigner

function at order O(A°) is F(©). Analogous relations hold

for the Clifford components PO, 1_);,0), .,Zl,(,o), and S,(,(l),) of the

Wigner function G~.

Furthermore, we conclude by combining Egs. (33a) and
(33c¢) that

prFO) = mp”Vf,O) = m2FO), (35)

i.e., F is on-shell, and thus also V,(,O) is on-shell. Similar

arguments apply to F(© and 17,(,0).
Inserting Eq. (34) into Eq. (16), we immediately derive

G<(O) (_x, p) = W(O) (x’ p) = M}“(O) (x’ p)
4m
1
= S A (P)FOx. ), (36)
and, similarly,
1 -
G*O(x,p) =5 A (D) FO(x.p),  (37)
where we used the projector
7+m
AT (p) =="—— 38
(=" (38)

onto positive-energy states. On the other hand, because
A =0, to order O(A°), Eq. (30) reads

1
O, p) = 57O (x. p), (39)
and similarly Eq. (31) reads

FO(x. p). (40)

| =

fO(x, p) =

Since F© and F©) are on-shell, we can factor out a mass-
shell delta function from §©) and §©),

i (x, p) = 4zmhs(p* — m?) fO (x, p),
fO(x, p) = 4zmhs(p* — m*) fO (x, p). (41)

where the prefactor 4zm# is introduced to make f(©) and
£© dimensionless and to ensure that f(©) converges to the
Fermi distribution function in the thermodynamical limit
(see Appendix A), while f(*) becomes a Pauli-blocking
factor 1 — f(). Note that the factor 277 in the prefactor in
Eq. (41) does not contribute to the power counting, since it
does not appear with either a gradient or a spin-related
quantity. It merely serves to cancel a (2z7)~! from the four-
dimensional momentum-space measure, cf. Appendix A.
We thus obtain the final expressions for GS(©) and W(©) in
terms of f© and £,

G<O(x, p) = WO (x, p)

= 4xmhd(p? - mz)A+(P)f(0> (x,p), (42a)

G>(x, p) = 4zmhs(p* — m*)A* (p)fO(x.p).  (42b)
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Following the discussion in Sec. V of Ref. [81], we expect
F =1 — £O (note the sign difference in our definition of
G= with respect to that reference), i.e., it is sufficient to
know f(© to reconstruct both G<(©) and G>.

2. First order in h

To first order in 7, we employ Egs. (22a)—(22e), as well
as Eq. (22¢g), which read

PV = mFO = ReTr(11), (43a)
1
Ea‘;A,ﬁ‘” +mPW = ReTr(iysI'})).  (43b)
LS _ ) 70 4 ) — _ReT 43
E xOup —Pﬂ +m noo— € r(Yﬂ coll) ( C)
1 v e(l)ps (1) 5. (1)
5 Cupol S +mA,’ =ReTr(ry, ), (43d)

1

Eaxblvi?) - eﬂvﬂapp-Ama - me(ty = ReTr(o-ﬂVIg)il)’ (43e)

prAY = ImTe(=ip 1)), (43)

Because G~(1) ——G< [81] we have ]—' )=-—FD
PO =—p), P = Pl A0 = 4D ang S =

—S,(}J, respectively. We also have f(1) = — (),
With Eq. (34) we conclude from Eq. (43b) that

1
P = —ReTr(zySI( 1) =

coll O(Gz) (44)
Since we are ultimately interested in computing the
collision term, we may make further approximations.
Namely, when using the Clifford decomposition for
G<M in the collision term, a term such as in Eq. (44)
gives an overall contribution of order O(G?), which can be
neglected. We can therefore safely assume that P(!)
Equation (43c) together with Eq. (34) yields
1

W = B - ReTe(r,d () = T F 0. (45)
In the last step, we have again neglected the contribution of
order O(G?) from the collision term, since this gives rise to
an overall contribution of order O(G#) when inserting the

Clifford decomposition for G<(!) into the collision term.
Finally, Eq. (43e) together with Eq. (34) gives

m_ 1 ) Ao, L o 1 (1)
Sy = —Zeﬂwﬂp’A(l) +%0x,[ﬂvy __ReTr(o-,ul/Icoll)
1 1
S = — g pr Ao 57 Poxy FO. (46)

By the same arguments as above, the contribution from the
collision term can be neglected.

Furthermore, combining Eqs. (43a) and (43c) and using
Eq. (34), we conclude that

PPFY = m2FO 4 ReTr(pr+ m)ly] = m>FO), - (47)
ie., FU is on-shell up to collisional contributions, which

can be neglected when inserting the Clifford decomposition
for G<(!) into the collision term.

We can also derive a mass-shell condition for A,(,l). To
this end, multiply Eq. (43e) by p,e#*** and insert Egs. (43d)
and (43f). Using Eq. (34), this results in

p? AT = m2 AT — ReTrlysy™ (p + m)lﬁim
~m? AT, (48)

1.e., A,(,l) is on-shell up to collisional contributions, which
can be neglected when inserting the Clifford decomposition
for G<(!) into the collision term. On account of Eqs. (30)
and (31), also f!) and §!) are on-shell up to collisional
contributions.

We can now insert Egs. (44)—(46) into the Clifford
decomposition (16) of the Wigner function G<()(x, p) =
W) (x, p) and obtain up to collisional contributions

G (x,p) =W (x,p) 2 God (x, p) + G5 (x.p). (49)

with

= A () FD () 177 AV ()], (50)

<(1
Gqc( )(X’P) 3

<(1 1 v
Gy (x.p) = g 50" Lo F O (x. p). (50b)
where in the terminology of Ref. [81] the subscript “qc”
denotes the so-called quasiclassical contribution, while the

subscript “V” denotes the gradient contribution. The

gradient contribution Gé(l) can be immediately expressed

in terms of f((x, p) using Egs. (39) and (41),

h
G5 (x. p) = —=5(p? = m?)o* p,0if O (x. p).  (51)

and similarly

G (x, p) (x,p).  (52)

rh _
= ;5(192 —m?)o" p, 0% fO)

Both the quasiclassical and the gradient parts are
“quasiparticle” contributions in the sense that they are
on the mass shell. Since ¢} f(©) = -0 f(©), we confirm that

Gé(l) = —G;m.
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In order to express the quasiclassical contribution G;C(])

in terms of (1), we need to invert Eq. (30). This can be
done with the relations [41,73]

Flr.p) = / aS(p)f(x. p. 9).

A, (x.p) = / 4S(p)3,i(x. p.3). (53)

Using the definition (30) of f(x, p, 8) and the identities (8),
one proves that the first relation is strictly valid to all orders
in 71, while the second relation is strictly valid up to order
O(7®) and valid up to order O(h) if collisional contribu-
tions are disregarded, such that p - A ~0, cf. Eq. (43f).

Inserting the first-order expressions (1) and A,(tl) into
Eq. (50a), and factoring out a mass-shell delta function
from f(l)(x, p,9),

iV (x, p.8) = dxmhd(p> — m?)fV (x, p.8). (54)

we then obtain

G2 (x. p) = dmms(p? —m?) / aS(p)h(p.8)f D (x.p.3).

(55)

where we have used Eq. (5) and the relation

(T+75/)AT(p) = AT (p)(1 +759). (56)

which holds since p - 8 = 0. Similarly,

3 (x. p) = damhs(p? - ) / aS(p)h(p.8)F D (x.p.8).

(57)

Since f() = —f(1), we confirm that also ch(l) = —GCTC(U.

To summarize the results of this subsection, we have
expressed the Wigner functions G5 (x, p) and W(x, p) up to
first order in # in terms of f©, fO_ £ and f),
cf. Egs. (42) and (49) with Egs. (51), (52), (55), and
(57). For further use, we note that, because of Eq. (8), up to
first order in 7 we may write

G=(x,p) = W(x, p) = damhs(p> — m?)

x [ as(p)n(p. )1 (x.p.8) + G5l ). (58)

III. INTERACTION LAGRANGIAN

For the interaction L;,; between fermions we consider
one-boson exchange. Assuming the interaction range to be
much smaller than all other scales in the problem, we can
integrate out the boson fields and reduce the interaction to a
four-fermion vertex, similar to the NJL model [86,87].
Thus, the interaction Lagrangian reads

Lo =Y G )T w(0)lg o ()T w(x)].  (59)

c a,b

The sum over ¢ runs over all possible interaction channels,
e.g., scalar (¢ = §), pseudoscalar (¢ = P), vector (¢ = V),
axial-vector (¢ = A), and tensor (¢ = T) channel. The

matrices F?,Fgf) represent the corresponding elements

of the Clifford algebra: ng) =1,T EIP) = —iys, F,(IV) = yH,
F((,A) = y5y*, and FEZT) = ¢, In the scalar and pseudoscalar
channels, the sum over a and b only contains one element
and g%’ p) = 1. In the vector and axial-vector channels, a

and b are Lorentz indices, which are summed over with

gE“’;’ 4= g**. In the tensor channel, a and b represent pairs

of (unequal) Lorentz indices, say a = (uv), b = (po) and

gE‘]‘Z) = ¢"’¢*°. Finally, G, denotes the four-fermion cou-

pling in channel (c).

In order to simplify the notation, in the remainder of this
work we will omit the indices a, b and the metric g“f , and
just indicate the particular interaction channel ¢ at the
element I'®) of the Clifford algebra, i.e., an appropriate
summation over (a, b) is implied,

> T ()] gt [ () ()]
a,b

= [Ty ()] ()T Op (). (60)

IV. THE NONLOCAL COLLISION TERM
IN THE GLW APPROACH

In this section, we rederive the collision term in the GLW
approach using slightly different and more commonly used
conventions than in Refs. [41,73], in order to facilitate
comparison with results from the KB approach. We first
repeat parts of the derivation of the collision term as
presented in Ref. [73] and then focus separately on the
local and the nonlocal parts of the collision term. Finally,
we summarize our results.

A. The collision term revisited

In the following we restrict ourselves to the particle
sector, i.e., p® > 0 for all on-shell momenta p”; the anti-
particle sector can be derived analogously. The positive-
frequency “in” fields are given by
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Win(x Je PR, (61)

Z/dPuS(p

where p* is on shell, dP was defined in Eq. (6), and d,(p)
annihilates a particle with momentum p and spin s. In our
convention (which differs from that of Ref. [83]) the
nonzero anticommutation relations for the creation and
annihilation operators are

{a,(p).ai(p")} = (2zh)*2p°3) (p — p')5,,. (62)

while the orthogonality and completeness relation of the
basis spinors read

Zu p(p) = (7 +m)j.

Note that, from now on, we will not distinguish between
upper and lower Dirac indices. When evaluating the
expressions, it is implied that the Dirac indices are on
their natural position, e.g., upper (lower) indices for spinors
(adjoint spinors), and repeated indices are simply summed
over (without additional sign change). Following Ref. [83],
we may cast the collision term (26b) in the following form:

1 1
_ 4.2 4.2 4.2
o) = oz 22 | 4 ¢ [
2 2
2 us
X H efi™ lzsj’aj <p it ?])
j=1

u.
x Waib; (x+ Xj, Pj)”r,-.ﬁj (pf h El) '

(63)

(Daﬁ (p)

2
2 uw 2 )
p ;17| @ys(p) | P +,s>
in< 2 K 2 in
l
Z/d (p+ 1 —pi—p2)

ll/(l

Lo
< ;41+142

v+ :p(/(o):

[
> <p ' r
ad out

2 2
u u

+—;s2> <p2——;r2
2 inin 2

2 2

L) L)

p +,s> <p ——=7r
2 inin 2

Note that the different prefactor as compared to Eq. (11) of
Ref. [73] is due to the different definition of the momen-
tum-space measure. Here, for the sake of brevity we used
the notation of Ref. [83] for sums, integrals, and two-
particle states,

The operator ® in Eq. (64) reads

oo { o] ()
ool
o)

where P, denotes the momentum operator. The calcu-
lation needed to compute the matrix element in Eq. (64)
has been discussed in Refs. [73,83], but we will none-
theless show the main steps. After the insertion of a
complete set of “out” states and performing the y
integration, one arrives at

q)aﬂ(p):

(66)

e (0):

p’;r’> (ﬂ——ﬂl er e m>
out ap

).
out

wp(0) (67)

Next we evaluate the matrix elements of the fields y, . These fields can be written in terms of the “in” fields as

w(0) = yn(0) + / &S (~0)p().

(68)
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where Sy is the retarded fermion propagator, whose Fourier transform is given by Sg(p) = —(1/4)(p + m)G(p), with the
scalar propagator G(p) := —h>/(p* — m* + iep®). Using the orthogonality relation of the momentum eigenstates,

(D% 2P )0 = [2270) 2 Y p[61%) (py = 1)8,, 1 8 (P2 — PA)6,, — 8 (D1 — P5)Sy, 6 (P2 = P1)S,, 0], (69)

“ ”

in conjunction with the fact that for one-particle states

-
<p ' r
out

and “out” states are identical, we find

2
P>+ %;s2>. = 2(2zh)*p" [u (pl +%>5<3) <p’ P2 >5m (1 2)}

~ u u
+SR<p1 +31+p2+72—p’) <p’;r’ :
out

Employing this relation and using the projector A™(p) defined in Eq. (38), we can rewrite Eq. (67) as
2
in<pz_u2;r2 p2+u2;sz>in
. u u
= zm({um,a<p1 +71)5<3) (p—p1 +72>5 P+ \/(P2+ 2) +m? = pi - p‘é]
x < ? Pz+%;S2> A;ﬂ( u1+u2> 1<—>2}
in out
— u u
_{urlsﬂ(pl_?1> (><p p1_7)5p +\/<P2_72> +m2_pl pg]
2
<AL (p452) (=il 0|+ i)+ (1)
2 out 2 2 in
m 4 M1+M2 . M1+M2 + M1+M2
N L O I e e R e | I (R

u? u? u, +u
x <p’;r —|—7 s2>. ' <p2—?;r2 p’;r’> A%(p— ! 5 2)) (71)
out mnin out

Here we used that |py, py; s, $2) = —| P2, P15 52, 51). Next, we have to make use of the relation between the source terms
and scattering-matrix elements, which is given by [83]

w(0)

2
(I)a/f(p)

2

|
| S,

;%) 1P (0):

Po (0) :p_[)” (0) :

Q2rh)*sW (p + p' = p1 = P2)w(p. P r P p% ) = =i (P, Pl P [(S = 1) p% 72,
—(2xn)*8® (p 4+ p' = pi = P2)i,(P)ou(P's 7' 1P(0) | P%: P )in. (72)

where S is the scattering matrix. We now split the transfer matrix into real and imaginary parts and make use of the optical
theorem [83],

(2zh)*
16

2>in ==

i o . N
Sinlp phrr|(E=1) 5‘4)(p+p’—p1—pz)Z/dQldep,p’;r, P17 5%)inin (@ 8717 | P37 i
(73)

In the remainder of this paper, we will neglect the real parts of the transfer matrix and defer a more detailed discussion of the
latter to a subsequent work [84].
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We now employ the optical theorem and the following expression of the transfer-matrix elements

. 1
(p.p'sr.rlip% ) = 2 (P, p's s ] Lind(0): %5 72)
= ”_‘ru(p)ﬁr’,a’ (p/)”rl ,a) (p1>ur2,a2 (PZ)Maa/alaz (P, Pl7 Pis Pz)’ (74&)
- 1
(32| |p, plsr ') = 2 (P75 2| L3 (0): ], p's )
(74b)

=iy, 0, (P1)ily, 0, (P2)Ura(P)tty o (P ) MO (1, py. p. p').

where M is the tree-level vertex function of the theory in momentum space, i.e., the Fourier transform of the fourth
functional derivative of the classical action with respect to the fields, and M*1%% .= vosrY /},yg s M *PPBP2 . With these
171 2P2

we are able to rewrite the source terms in the second and fourth lines of Eq. (71) as

M2
Zpaf(()): p2 +?;S2>.
in

uy + up Uy
AL, ‘ -
w(prt38) (-
= —£m2(2ﬂh>4 / dQldQ25<4) (p +p,+ % -q; — q2>MalazﬁlﬂzM}’]}’zﬁllSzA;'al <p + #)
— u u u
X A/;y] (‘11)/\/J;;],Z(Clz)urz,a2 <P2 - 22> Ug, 5 <P1 + 21> U, 5, <P2 + ;) (75a)
and
2

2 _ U ol . U, + Uy + up

pT—is -p/(O)-pz+—,rz> Ay (p— )

out< 2 ! 2 in «h 2

i u _ Uy +u

= Zm2<2n-h)4 / dQldQ25(4) (p +py— 71 -q, — q2>Mala2ﬁlﬁzM7172515zA;]ﬁ (p — %)

U\ up\ U
x A(;Llal (g1 )Ag;az (QZ)UrZ,ﬁZ (Pz + ?> Us, iy, (Pl - ?> Us)ra <P2 - 7) ) (75b)
respectively. On the other hand, the source terms in the last line can be written as
+ u +up 1| o2 w 2 2 uw 20. ot + Uy +up
AN\ P+=75) (P37 2pa0):|P? + s ) (P2 =372 1Dy (0): P57 ) Ayl ==
v out nin out
— 2mMa1a2ﬂ1ﬂ2My1y25162Aga] <p + Uj ;‘ M2>A2_lﬂ (p W ;‘ u2>A;Sta2 (p/)
(75¢)

Uy U\ _ up\ _ U
X Ug, p, P1+7 Uy, g, P2+? Urn \ P1 =% )l P2 =5 |-

Furthermore, in the Boltzmann equation only on-shell terms contribute, i.e., it has to hold that p> = m? [73,81]. For this

reason we may use the relation
1 ;L ”2> ~G <p _a er ”2) = 2mil?8(p? — m?) (76)

G<p+

in Eq. (71), since the neglected terms are all off-shell contributions.
Inserting Eqgs. (75) and (76) into Eq. (71) and the result into Eq. (64), we arrive with the definition of the on-shell

quantities (29) at the following result for the collision term,
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4
Con—shell,a[)’(x’p) — (2ﬂfl)4m7/ dPldPZdP/ / d4u2Ma|az/}]ﬂZMylyzél(szA;raj (p + up + l/l2> A;/ﬁ< U ‘|2‘ MZ)

2

o Uy

u
x AL <p1 —?>A5,77 (p2 ——) H {(w
Ui\ a+ AV Up = Ur )+
_pz_z)Aﬁzr’2<p + 2>A5’r1 (er ) )A(S’zrz

1 ;o
3%, (P R dad

J// /
on-shell X p])a( ( j)

()W (. p )}

¢

— ihlof, 6@

/5/ u . /5/ u
x A(;a, (pl)A;;az(pZ){ngn—;hell (x, D+ 72) 5<4)(”1> - lh[a";|5(4)(”1)}0;w£}1-;hell (x, P+ 72) }

X {chﬁl ihell(x p )5( )( 2) - lh[agzé( (

c’)"Wﬁ zhell( P}

1 u Uy —u u
~5o o (o = p o 2 ) (- 2 ) (0 52 )8, (v +2)

/s

s u ) u
x At;al (pl)At;rzaz(p2){WQ1—;hell <x,p —22> 5(4)(”1) - lh[auuﬁ( (u )}axwfm lheu <x p - 2)}

X {ch)ﬁ zhell( ,P’)5( )( 2) —

Here we used the completeness relation of the basis spinors
multiple times, assumed that M = M, and took M to be
independent of momentum. Furthermore, we expanded the
Wigner function to first order around x; = 0 and consid-
ered only the on-shell part of the collision term, cf. Eq. (28).
The first terms in curly brackets in Eq. (77) provide the
local contributions, while the respective second terms,
|

local
Con—shell af ()C p )

in[0f, 6 (uy)]

axWO?l zhell( aP/)}>- (77)

[

which are proportional to space-time derivatives of the
Wigner functions, constitute the nonlocal parts of the
collision term.

B. Local collisions

From Eq. (77) we can read off the local collision term as

- / 4P, dP,P (27h)*6) (p + p' = py = pa) MAwh PN AT (DAY (p)

y.5.
x { 4 N ()N (PN (PAS, (P, (P2) H W)
j=

2A;zyz( /)A‘;‘;72(p/)A;_lal (pl)A(;;az( 2)[5?{5//;[\;271(17)4_5?15/3 A[Jfryl( )]ngl;hell( P>Wz;ihell(x’l7/)}' (78)

Next we show how to translate this expression into
extended phase space. To this end, we first note that all
Wigner functions in Eq. (78) are sandwiched between
energy projectors. Because of the relation

At (p)op,At(p) =0 (79)

this has the consequence that the gradient part of the
Wigner function vanishes, cf. Eqs. (50b) and (58),
such that

[
AT (P)Wonshen (x, p)AT (p) = / dS(p)h(p,8)f(x, p.3).
(80)

One may wonder whether this introduces a discrepancy
to the KB approach (where no such cancellation occurs).
However, in the GLW approach another gradient con-
tribution is generated at order O(#) by an integration by
parts, so that in the end both approaches yield the same
result.

Inserting Eq. (80) into Eq. (78), the local collision term
becomes
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local
Con—shell,a//’ (x’ P)

4
_ mT/drldrzdrldg(p)<2ﬂh)45(4)(p + p/ —p - pz)MalazﬁlﬂZMYI}'Z‘sl‘SZ

x {A\da, (P)A
- f(x’ P, g)f(x’ p/7 é/)hélal (pl ’

where we used that

;ﬂ(l?)hazaz(l?'7 8" )hg,y (P12 81)hp,y, (P2, 82) (X, p1.81)f (X, P2, 82)
81) hs,0, (P20 82) My, (P 3)AS 5(P) + Ay, (P) g p(p, 8)hg,,, (P 8)}, (81)

/ aS(p)h(p.8) = A*(p). (82)

Lastly, we employ that €, gep =

11+ 7s) /,acgf_shen, which then gives

4
Clnthen (¥, P, 8) = mT/drldrzdF/dS(P)(Z”h)45(4)(17 + ' = pi = pa) MO P70

X hﬂlh <p1 ’

X [f(x7p1’ l)f(x’p27§2)

where we also made use of the relation

/ 43(p) s (- 8) s, (9. 3) + b (P B) g, (9 3)]
= 2hs,4 (P, 8). (84)

Note that the dependence on & in Eq. (83) can be
eliminated employing a so-called “weak equivalence prin-
ciple” [41,73]. This then gives a clearer interpretation of the
last term in Eq. (83) as a loss term corresponding to
particles with momentum p and spin 8. The new collision
term then has the form

(Son she]l(x P, 5)
- / 4T, dTdD W (. py. 81/ (x. pa. 82)
- f(x.p'.8)f(x. p.8)]. (85)

with

4
~ m
W === (27h)*6" (p + p' = p1 = p2)
X Mmazﬂlﬂsz'z&]5zhﬂm (Pl .8 )hﬂzh (sz ;32)
S hﬁzaz(p/’ 6/)h(5|011 (pv 3) (86)

This agrees with the local collision term derived in
Refs. [41,73] up to the part corresponding to collisions
without momentum exchange.

If we employ an NJL-type interaction according to
Eq. (59), we obtain

D,y (P22 82)Rs,0, (P 8) s, 5 (P 8) g, (P2 8) + hs 5(Ps8) pa, (P, 8)]
- f(x,p,8)f(x,p', 8], (83)

Mauxbifr — ch (r‘(c)alﬂl ()b — F(C)alﬂzr<c)a2ﬂl), (87)

from which it follows that

]\40'10!2,51,52[\4}’1}’25152hﬂ1y1 (p1, gl)hﬁzh (P2, %))

X Ry, (P’ 8 )V hs (P2 8)hgq, (P, B)
_8G.G,
h?

{Te[h, T RT ) Tr [ T hAT(€)]
— Tr[h, T RAT ) T T}, (88)

where we abbreviated h; := h(p;,8;) and likewise for
hy, W  h, and h. Here, the symbol “=" means that the
expressions are equal under the respective integrals where
they appear. This allowed us to use the symmetry under
exchanging the integrations over (p;,8;) and (p,,3,),
which is reflected in an additional factor of two in Eq. (88).
Taking the complex conjugate of Eq. (88) and using that
It = yOhy0 as well as y'T (%0 =T we find

[Mala2ﬂlﬁ2M71725152hﬂ171 (pl’ gl)hﬂz}’z (P27 Q’Z)

X h5207 (p/’ gl)h(s]ﬂ(p’ g)hﬂal (p’ g)]*
SG Gd

{Tr[h, TR T Tr [, T R AT ()]
—Tr[hzl“ )AL p T R'TE)] ), (89)
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This allows us to bring Eq. (83) into the following form,

4G.G <
Glocal (x p.8) = = Y 4 / dr,dr,drd3(p) (2zh)*s@ (p + p' = py = pa)

on-shell
x Re{Tr[h, TR TE | Tr [, T D RAT ()] — Tr[h, T RATE) h T BT}
X [f(x. p1.81)f (x, p2. 82) — f(x. p'.8) f(x. p. &')]. (90)

C. Nonlocal collisions

In order to obtain the nonlocal contribution to the collision term, we have to integrate by parts in the variables u;, u, in
Eq. (77). Fortunately, the derivatives acting on the projectors are straightforwardly evaluated, e.g.,

+ u
G\ <p+2>

We split the effect of the u;, u, derivatives into four contributions (enumerated by capital Roman numbers): First, the
derivatives act on the projectors A™(p + u;/2 4+ u,/2) in front of everything, giving

1
— M, 1
It (91)

in m*

4m 2
x [J’aa//\;{/ﬁ(l’) —Am,( )y/}’/}]{aaalaﬂﬁlA;az( /)ax[ onshel (X Pl) onahell (Xs P2)]

1
2 At;rlal ( )A;;az (pZ) [50/7/1 6ﬁ|/}/55/171 + 50/% 55/1ﬁ/6ﬁ|}’/] ]ax[Woln éhell( )Wonyszhell(x’ pl)]}7 (92)

Conineit ap(X.p) = dPdP,dP' (2zh)*6W) (p + p' — py — pa)MO®PP2 priraon:

where we already simplified some contractions of energy projectors and Wigner functions. Translating this expression into
extended phase space, we find

inhm
am 4
X [h'(p’g)’yﬂ][)”a/{éa’a]éﬁ'{?] h52(12 (p/’ gl)hﬁl}/l (p17 Q’l)hﬂzyz (p2’ QZ)(}xﬂ[f(x’pl’ §l)f(x’ P2, 62)]
= h5,0,(P1:81) 15,0, (P22 82) B,y (P, 8) [Nty (D2 8) 5, + sy (P.8) iy, 105 f (x. p,8) f (. p'.8')]}. (93)

Gnonlocal (X 12 Q,)

on-shell,I

dr,d,dIYdS(p) (27h)* 8@ (p + p' = p1 — pa) MA@ P2 1720102

Since the parts of f(x, p, 8) that are proportional to 8" are at least of order O(#), we may perform the dS(p) integral trivially
to obtain

ih m*
4m 2

X ho,a, (P8 )b,y (P1s 81)hp,y, (P2, 82) (P, 8), 75,0, Gulf (X, 1) (%, p2) = %f(x, p)f(x.p)l. (94)

Consheiia (x. . 8) = / d0,d0dE (227)* 69 (p + p' = py = pa) Ml P2 M71729%:

Here we used that {[A(p. 8),7*]. AT (p)} = [h(p, 8).y"] since h(p,8)(p —m) = 0.
As a second nonlocal contribution, after integration by parts the u;, u, derivatives in Eq. (77) act on the remaining
projectors. Performing the same steps that led to Eq. (94), we find

.h 4
Gttty (v, p.8) = = - [ A0 AT )60 (p 4 p = py = pa) Ml P prreons

X{f(x’Pz)[axﬂf(%l?l)]hazaz(P"§/)h/32y2(172,§2)h6]a1( P, )[ (P1.81).7 }ﬂm
+f(x, p0)[04f (x. P2)]hsya, (P8 ) hg y (P15 81) s a, (P-8) (P25 82) V"],

= f(x, p)[onf (x, p)hg,, (P1:81)hg,y, (P2: 82)hs 0y (P2 8) (D', 8'), 15,0,
1

—Q[f(x,p’)aif(x, p) = f(x,p)oif (x,p")|hg,,, (P1,81) kg, (P2,82) hsya, (P's8) [A(P22), V)50, - (95)
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716}

Third, a u, derivative acts on the Wigner functions W \ .

(x, p £ u,/2) in the loss term, yielding

.h 4 _
Saantesily (x. p.8) = =1~ [ A0 dLATAS(p) (220) 50 (p + p' = py = pa) M baprreon:

X [0 f (x. P)I[OLS (x. P)] By, (P12 81) gy, (P22 82) 50, (P 8)[1(p. 8). B(p.8) 5.4, (96)
Note that, after performing the dS(p) integration trivially, this term vanishes as a consequence of our assumptions that
polarization effects enter at order O(#) and that M = M.

Lastly, there are u; derivatives acting on the momentum-conserving delta function in the loss term, which can be
rewritten as derivatives with respect to p’ and then act both on projectors and the Wigner function, giving

fl 4 ~
@ronlocal (x, p,8) = — i—mT / dr,dI,dl'dS(p) (27h)*6™) (p + p' — p1 — pa) MO PP prir20%:
’ m

X hgy (P12 81)hg,,, (P2, 82)[00f (x. P)|[s,a, (P 8)0 f (x, ) +{1(P'.8). V"' }5,0,f (x. P)]
x [1(p,8), h(p. 9)]5,q,- (97)

Like Eq. (96), this contribution vanishes due to our assumptions.

D. Summary
Collecting both the local and the nonvanishing nonlocal contributions, we find

1 _
p- 0 f(x,p,8) = Z/dFldI“ZdF’dS(p)(2ﬂh)45(4>(p +p' = p1 = p)W
X [f(x + A1 - A? P, gl)f(x + AZ - A? P2, 52) —f(X, P> g)f(x + A/ - A’ pl’ Q’/)]’ (98)
where we defined the local transition rate
W = m4Mala2ﬁlﬁ2My1y25152h’ﬂ]}’] (pl’ gl)hﬂz}’z (pZ’ §2)h520{2 (p,7 gl){h(p’ g)’ h(p’ g) }5101 ’ (99)

and the nonlocal shifts read

ih m*
A = — EWMa'aZﬁ'/}ZMymﬁ]ﬁzh/}zyz (P2:82) 5,0, (D', 8 ) 5,0, (P B) [h(p1,81), Vﬂ]/}m ] (100a)
u ih m* atfrfp 55 ;o
A = _4_m—WM 1P Moy (Do, 81) s, (P8 s, (25 8)[R(P2.82). 775, (100b)
Iy _ih_m4 a1 1B N 7172010 I gl yH
A'H = _4mWM 106102 \fr17201 2hﬂ]yl(p1,§1)h/3272(p2,§2)h51a1 (p,é)[h(p , 9 ),7 ]52{12, (1OOC)
ih m4 a (Xﬂﬂ 5,8 / /
AH = _EWM ol Bty (pr sy, (P2, 82) s, (P 8)[A(P.8). 7150, (100d)

At this point, two remarks are in order. First, the factor m* in the local transition rate (99) does not necessarily imply that W
vanishes in the massless limit, since it cancels with appropriate inverse factors in the energy projectors A™(p). Indeed,
considering the case where the distribution functions do not depend on spin, it is apparent that the spin-integrated transition
rate becomes in the massless limit

_ 1
/dSl(Pl)dsz(Pz)dS/(P/)dS(P)W = 1—6Ma‘%ﬂlﬂzMy‘”ﬁlazﬁLﬂlylﬁz,ﬂzyzﬂﬁszaz[(ﬂ +759) P50, (101)
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which is (assuming that the vertices M do not diverge)
manifestly finite. Nevertheless, in order to properly assess
the collision term in the massless limit, the calculation in
the GLW approach should be repeated taking into account
the different equations of motion for W(x, p) in this case,
which is beyond the scope of this work.

Second, it is reassuring to see how Eq. (98) agrees with
the known expression for binary elastic scattering in the
limit of local collisions and distribution functions inde-
pendent of spin [83]. In this case, the integration over dS(p)
in the first line of Eq. (98) will produce a factor of 2, similar
to the other spin-space integrals. Finally, there is a factor of
1/2 on the right-hand side of Eq. (98), which can be
interpreted as a symmetry factor due to the indistinguish-
able nature of the particles.

Upon inserting the explicit NJL-type interaction (87), we
arrive at the main result of this work, i.e., Egs. (3) with
Eq. (4). Note that, in order to arrive at the precise form of
those equations, we switched the index pairs f; <> f,,

71 <> 72, and used the symmetries of the vertices,
i.e., Muxbbr — _pfawpfy — _ proaifibs

V. THE NONLOCAL COLLISION TERM
IN THE KB APPROACH

In this section, we derive the collision term within the
KB approach. We first discuss the mass-shell constraint and
the Boltzmann-type equation in the semiclassical expan-
sion, i.e., order by order in 7. We then compute the various
collision terms in 7-matrix approximation. The advantage
of the KB approach as compared to the GLW approach is
that full quantum statistics is retained.

A. Equations of motion in semiclassical expansion

We first derive a mass-shell constraint and a Boltzmann-
type equation for the single-particle distribution function
f(x, p, 8) in extended phase space. Taking Eqgs. (24a), (24b)
forI'; = 1 and I', = y5y*, multiplying the latter with 8*,
and adding them, we obtain with Eq. (30)

hZ
LI

:%ReTr[(]]+y5,{)(K+m)Icon], (102a)

hp - 04§ (x. p.8) = S ITH((1 + 7s)(K + m)lea]. (1020

We now expand Eqgs. (102) up to second order in 7, i.e., we
need f(x, p,8) up to second order in A, cf. Eq. (32).
Furthermore, the collision term (20) is already of order
O(h), ie.,

Leon = hlglil + hzlgﬁ +0(n). (103)

The Wigner functions G5 and the self-energies X< entering
the collision term are therefore only required up to order
O(n),

G5(x, p) = G5O (x, p) + hGZW(x, p), (104a)
22 (x, p) = 22O (x, p) + AZ=D) (x, p). (104b)

Inserting this into Eq. (20), we obtain
14 =2 (2060~ x-0G=0), (105

2 1) 0
Y Eoil = Al £oll +1 coil,PB’ (105b)
where
Al = % (2G>0 _ 3>1)G=<0) 4 $<0)G>0)

- x> G=<), (106a)

0 1 < > > <
1) g = 7 ({250, 67O}y — {270, GO} ). (106b)

B~

1. Zeroth order in h
At O(hY), the collision term (20) vanishes, 1'% =0,

coll —
since it is at least of order O(%). Equation (102b) is trivially
fulfilled, while Eq. (102a) becomes
O(h): (p* = m*)f% (x, p) = 0. (107)
This confirms that §° (x, p)
shell, cf. Eq. (42).

~&(p? —m?), ie., it is on

2. First order in h
At O(h), Egs. (102a) and (102b) become

1
(p? = m2)iD (x, p, 8) = =7 I Trl(V+759) (7 + m)
x (<G>0 — x>0 G=O)),
(108a)

P00 (x, p) = yRETH(1 + 75)(pr+ m)

x (2<0G>0) — x>0 G=)].  (108b)

3. Second order in h

At O(h?), we also need to take into account the O(h)
contribution to the operator K*, cf. Eq. (19), when
computing the right-hand sides of Egs. (102a) and
(102b). We thus obtain
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1 1
(p? = m2)i®(x, . 8) = 1O (x. p) = = GRETH{(T + 75 (0G0 5~
— (1 4 7)(r + m) (E00G0)

+GRETH((1 4 75f) (r + m) ({20, G0

1
POV (x. p.8) =~ ImTr[(1 + ysf)g, (250G~

1
+ ZReTr[(ﬂ +y50) (7 + m) (<G> O

+ %ImTr[(]] +758) (4 m) ({Z<O)

(0>G<(0))]

>N G=<0) 1 3<0)G>1) 2>(0>G<(1))}
)}PB -{z"0,G (0)}PB)]’ (109a)
- >0 G=0)]
—_y>>()G=) L y<0)G>(1) _ z>(0)(;<(1))]
O} pp = {Z70, G=O}pp)]. (109b)

B. Collision terms

1. Self-energies in T-matrix approximation

For binary elastic scattering, the self-energies = (x, p) will be taken in T-matrix approximation, where they are given by

the Feynman diagrams shown in Fig. 1,

- d4 d4 /
23 (x. p) L

x {Tr[r(

The first term in the second line of Eq. (110) corresponds to
the “direct diagrams” of Figs. 1(a) and 1(b), while the last
term corresponds to the “exchange diagrams” of Figs. 1(c)
and 1(d). The coupling constants G, and G, are associated
with the one-boson-exchange interactions in channel (c¢) or
channel (d), respectively. Each vertex carries a factor 27!,
giving rise to the factor 2= [which was missed in Eq. (131)
of Ref. [81]].

2. First order in h

To first order in A, we need to compute the real and
imaginary part of

T s=TH{(1 + 157+ m) (2060 - 2=01G=0),

(111)

cf. Egs. (108a), (108b). The self-energies Z5(©) are given by
Eq. (110), with all Wigner functions taken at zeroth order in
h, i.e., by Eq. (42). Inserting these expressions into X5(©)
and the result into the trace (111), we obtain with the
cyclicity property of the trace, with Eq. (56), as well as
using the idempotency of A*(p) the result

DG (x. p TG (x. p) MG (x. o)1) =T GZ(x,py )G (x, p IO G (x. p)1}.

=4— 2rh)4s@ B
n? / (2zh)* (2zh)* (2,;;,)4( xh)*6 (p+p' = p1—p2)

(110)

G.G
T, = 8m* ;12 L 4xmhs(p* — m?)

X /dPlszdP’(znh)45(4)(p +p' = pi—p2)

< Tol " f OO — FOFD OO (112)
where we introduced the abbreviations
A =00 p). Y = O py),
f/(()) = f(O) (x’ p/), f(()) = f( )(X, p), (113)

and similarly for ]—050)7 f§°>, F1o
also defined

), and f(), respectively. We

T :=Tr[(1+ 7’5f)A+(P) DA*(py)T)]
X Tr[TOAT (p)TEOAT(p)]
—Tr[(1 +7s) AT (p)TDAT(p))

LAY (p")DDAT (py)L]. (114)

In App. B 1 we prove that, because of the symmetry of the
integrand in Eq. (112) under the exchange p} <> p5, only

the real part of 7 contributes, therefore in the following
we will set Im7; = 0 under the integral.
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G<

(©)

FIG. 1.

(d)

Feynman diagrams for (a),(c) £~ (x, p) and (b),(d) = (x, p). Solid lines represent fermion propagators, dashed lines represent

the one-boson-exchange interaction of coupling strength G, or G, respectively. Vertices denote elements '), T'(9) of the Clifford
algebra corresponding to the interaction channels (c) or (d), respectively.

Inserting Eq. (112) into Egs. (108a) and (108b), we
obtain with Eq. (41) for the mass-shell constraint and the
Boltzmann equation at order O(#),

(p* =m*)iV(x, p,8) =0, (115a)

G.G
p-0. SO (x.p) :2m4;l—2d / dPdP,dP'(2zh)*

x8W (p+p'—pi1—pa)
xReT o[\ £y O FO — 77 72 10 £ 01,
(115b)

The right-hand side of Eq. (115) vanishes because
Im7 , = 0. This has the consequence that f!) is on shell,
which is consistent with Eq. (54), see also Ref. [79].

In order to facilitate comparison with the result from
the GLW approach, we extend the integration on the
right-hand side of Eq. (115b) to extended phase space,
dP,dP,dP’' — dI',dI’,d["dS(p), using the relations (8).
Since the integrand does not depend on any of the spin
variables 8, 84, 8%, and 8/, we may also extend the
definition of 7 under the integral,

To =T = 32{Tr[Al@ h, T B Tr [T T 1]

— Tr[AT D p TR T D, T ]}, (116)

where we used Eq. (5). With this, we obtain from
Eq. (115b)

1 _
p-ofOxp) = [ Ardraras(p) 2en)
x 8W(p+p' - pi - p)
x WA fO o 7o) — FOI70 o) pon,
(117)

where

m4 Gch
_ hz

w

ReT, (118)

cf. Eq. (4).

3. Second order in h

At order O(h?), we need to compute three different
traces, cf. Eqs. (109a) and (109b). The first one is
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o o additional y, matrix in ¢, and the fact that the partial
I, =Tr[(1 + N)%(F 1G>0 — x> (OG= ))] (119) derivative in this term acts on all distribution functions
appearing in the self-energies 5(°) and in the Wigner

The last term in parentheses under the trace is the same . . .
p functions GZ(¥), we readily obtain

which already occurred in Eq. (111). Accounting for the
|

I, =4m} G;lZGd 4xmhé(p* — m?) / dPdP,dP'(2zh)*6") (p + p' = p1 = p2)
< TSV OO = @ fOVS FOLO + OGO O = 700 1O £
+ A LSOO = £ @ O)FO 4 £ FD OO = £ £O (0O (120)

where

T = Tr[(1 +75¢)AT (P)r, <d>A+<p2> OIT DAY (p) )TN (p')]
—Tr[(1+ 759)A* (p)7, TOA* (p)TEOA* (p/ )T A* (py)TE]. (121)

The second trace we need to compute is
T, =Tr[(1 + ys¢) (g + m)(Z<VNG>O) - 2> G=<O0) L <O G>() — x>O)G=<)], (122)

Here,

4 4 4.
22(])(x’p) _4Gch/ (d p1 d'p, d'p

h? 2zh)* (2zh)* (2zh)*
x {TrT @G0 (x, p )T GEO) (x, p) LD GO (x, py)T(E)
ragza )(X,POF( )GS )(x,p )r( )G=Z0 >(x, pz)r( c)
+ Tr[r(d>(;2(0) (x,pl)F(C)G§<1)(x, p')]r(d>(;2(0) (x,pz)F(C)
— T G=0) (x, pl)F(C)G§(1)(x, p/)r<d>GZ(0) (x pz)r(C)
+ Tr[[DGO (x, p )TOGEO) (x, p) TG (x, py)T©)
— T G=0) (x,pl)F(C)G§(O) (x, p/)r<d>(; = )(x )T (C)} (123)

(27h)*8®) (p + p' — p1 — p2)

According to Eq. (49), each of the Wigner functions GZ(!) contains two terms, a quasiclassical contribution and a gradient
contribution. Since G=(!) appears linearly in all terms in the trace (122), the latter also splits into two parts,

Iz Ezzqc—f—zzv. (124)

The first part, Z,,., contains the qua51class1cal parts Gqc( ), and the second part, Z,y, contains the gradient parts G<( )

Let us first focus on Z,y.. Inserting G;c( ) from Egs. (55) and (57) as well as G5O from Eq. (42), we obtain

m_ G Gd
2

x AT [V 0 PO 70— F0FD p10) 0] o7, [0 £D 710) F0) _ O 7 £1(0) (0]

+ T [AOfDFO RO — FOF ) O] 4 T D FO p) - FOF 10 p(0]y (125)

Ich =

damhd(p* — m?) / dr',dILdI’dS(p) (2zh)* 6™ (p 4+ p' — py — p2)

where we defined
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T, = Trl(1 + 7sf)A* (PTOAH (po)TOTTAT (1 4 5y DA* (py)TOA* (p)]

= Tr[(1 4+ 75¢)AT (P)TD (T + y5d))AT (p))TOAT (p )TDAT (pr)I], (126a)
T =Tr[(1 + 75¥)A+(P)F<d>(“ + 75¥2)A+(Pz)r‘(C)]Tr[F(d)AﬂPl)F(C)/ﬁ(l’/)]
= Tr[(V 4 s ) AT (p)TOAT (p )TEOAT (P )T (T + y582) AT (po)T], (126b)

T = Tr[(1 + ysf)A* ()T OAT (p) TOITRCOAT (p )T + 759 )AT (p')]

= Tr[(1 4 ysf) AT (p)TDAT (p )T (1 + ys¢ )AT (p )TDAT (p,y)I ], (126¢)
T = Tr[(1 + ysf) AT (p)TDOAT (po)T (T + y59) | TTDAT (py )TEAT(p')]
= Tr[(T + y59)AT (p)TOAY (p )TEOAT (p')TDAF (py)T (1 + y54)). (126d)

and introduced the abbreviations

fgl) = fW(x, p1.8), fgl) = f(x, pa. 85). f W= fD(x, p' 8", fW = fW(x, p, 8), (127)

and similarly for f(ll), fgl), 7'M and £, respectively. Note that, in Eq. (125), we extended the phase-space integration from
dP,dP,dP’ to dI",dI",dI"dS(p)/16. Because of Eq. (8), this merely inserts a factor of 1 in all terms which do not depend on
the respective spin vector. Because of this, we may also extend the definition of the quantities (126) so that, under the
extended phase-space integration, all become identical,

T,=T,=T'=T=T, (128)
where we used Eq. (116). Consequently,

m* GG
2

T| f(11) fgﬁ) J-u(()) J-c<0) _ ]-f(ll) ]_cgo) f/(O) f(o> + fgo) fgl) J‘c/(()) j‘(o) _ ]-0(10) J-cgl) f’<°) f<0)
+FOLFOFO < FOF 00 1 50 OO F - FOFD 0 ) (129)
We now consider the gradient part Z,y. Inserting Gé(l) from Egs. (51) and (52) as well as G5() from Eq. (42), we obtain

I2qc = d477mh5(172 - mz) / dFldFZdl"’dS(p)(Zzzh)“é(“) (P +p' =pi- Pz)

G.G
Ty = 2m? ;12 L4zmhs(p? — m?) / dPdP,dP'(2h)*6") (p + p' = p1 — p2)

) AT DALV L FOFO — (A FONVFY O O 4T, s £ (s )f' V7O~ O (a7
+ T p [ f (O FO — PO F (@ O) fO] - T, pr [ 1) PO FO) = 7O 7Y 1O (0 O], (130)
where we defined
Ty = Tr[(1 +750) AT ()T A+<p2> N Tr[M e, DA (p')]
—Te[(1 + 759 )A* (p)T e, TOAT (p)TOAT (p,)T)], (131a)
Tow = Tr[(1+ 7sf) AT (p)T Do, TOTTHTO AT (p )T AT (p')]
—Tr[(1 + ys§)AT (p)TDAH (p))TOAT (p)T g, )], (131b)
T}, = Tr[(1 +750) AT (p)TOAT (py) IO THTOAT (p) )T, ]
—Tr[(1 + ys§)AT (P)TDAY (p) )T 0, TOAF (py)TE)], (131c)

T = Tr[(1+ 75/ )AT (p)TDAT (p2)T 0, Tr[COAT (p)TOAT (p')]
= Tr[(T + ysf)A* (P)TDAY (p)TOAT (P )TDAT (po)T 6, . (131d)
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The third trace we need to compute is

Iy = Tr[(1 + ysf) (7 + m) ({20, G= O}y — {Z70, G=O}pp)]. (132)

For the Poisson-bracket terms, we need

W
dG<O) = dzmnd(p? — m*)A*(p)difO), d,G<O) = dzmns(p* — m?) [23/—
m

_ "
GO = dzmns(p? — m*)A* (p)dif©), d,G> ) = dgzmhs(p* — m?) [2}/—
m

FAE] 0 s

A TAIEE

where we neglected off-shell terms ~&' (p? — m?) in the equalities on the right-hand side. We also need

G.Gy
<O (x, p) = 4m?

7 /dP dP,dP'(2zh)*s™) (p + p' — p1 — p>)

X {TeCOAT (p )TN (p")TDAF (py)T) = TDAT (p )TN (p")I

< (@O + f @O + S @O,

F5>0)(x, p) = dPldP2dP'(2nh)45<4>(p +p' = pi—p2)

DAF(py)T}
(134a)

X {Tr[[ @At (py)T€ (p LDAT (py)T) = TUOA* (p )TOAT (p)TDAT (py)T O}

x [T 11O + FO@F) O + 7T (@O,
2,20 (x, p) = —4m3%/ dP,dP,dP'(2zh)*sW (p + p' — p1 — p2)
X (Tr{]"(d)/\+(p1>r(c) {% =+ A’L(p’)a’;,} }F(d)A+(p2)r(c)

"
— LA (py)r [Zy—erA*(p’)J;] TAOAT (py)T )f e

G.G
92" O(x, p) = —4m* =54 [ dP,dP,dP' (2zh)*sY (p + p' — py — p»)

d) A+ o |7 + dAT ¢
x (Tr{F( A (pl)r<>{2m+/\ (p’)fﬁl }1"( AT (py)T

—T@OA*(p,)r [%+A+(P/)a‘;]r( AT (py)I >f fz f/

In Egs. (134c) and (134d), we used the fact that, because of the energy-momentum conserving delta function, o, = 9",

(134b)

(134c)

(134d)

p

and then integrated by parts. In the course of the latter, we have neglected off-shell terms ~&'(p’? — m?). Inserting

Egs. (133a)—(134d) into Eq. (132), we arrive at

G.G
I5 = 4m® — d4ﬂmh5(p2 - m?) / dP,dP,dP'(2zh)*s™ (p + p’' — p1 — p2)

x{zmm( N7 (Opf) (AFOVFY £ (08 00 4 1 (0 £ 1O (0”f
I T )(af: ) PO @O0 O) + 117 £ (0, 10 )(&‘f@)

D FOFO — (N FY 1O O 4 O (@) PO 7 (a”fz )f

+ £ fé( PO FO — FOFD (g 100 0] O[O 0 710) (g O )—f, V7
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where we have used Eq. (114) and defined

T = Te[(1 + 75 ) AT (p)TD A (py) Ty, | THT@AT (p )TEOA* (p)]
—Tr[(1+ 75 /) A+ (p)TOAF (p )T A+ (p )T A+ (py)T Dy, ), (136a)

Ti o= T[(1 + ps$) A (p)TOAT (o) TR TOAT (p )Ty,
= Tr|(1 + 7s)AT (P)TDAT (py )Ty, DDA (py)TE). (136b)

In Appendix B 2 we prove that, under an integral of the same type as in Eq. (135), ’T,(f> = T,(f>*, while in Appendix B 3 we

prove that under the same type of integral the imaginary part of 7 ,(f) vanishes.
Inserting Egs. (120), (124) with (129) and (130), and (135) into Egs. (109a) and (109b), and using the identities of
Appendix B, we obtain

(p? = m?)i?(x, p.8) — zmhs(p* — m*)2f O (x, p)

G G _
= Gl ho(p? — m?) / 4, dT,dTdS(p) (220)'69 (p + p' — 1 — pa)

16 n?
x {[2mImT f1" + ReX, , (dhF)] 5 FOFO — RmImT 7 + ReX ()7 1@ O
+ 7 2mImT £+ ReX,, (43P OFO = PO 2mImT 7Y + ReX,, (947310 £
+ A £ 2mImT PO + ReX), (3] 7O — f“”fé” 2mImT £ 4 ReX;, (91 f"®)] £
+f§°’f§°>f’<0>[2mlm7f< +ReX, (O] = PV 7Y O RmImT £ + ReX,, (0 )]
- mReT (ot POV FOGLFO) — (TN £ O fO) + £ (S FO R FO) = PO LT ) F1O 0k £ )
+ AT O) 0 FO) = FVFY (@ O) @l ) + £ (0 F O i O) - FU 7Y < 4O @O} (137a)

m?G.G -
16030 [ AridndriaS(p) 2an) 6+ = pi - )

x {[2mReT f{") —1mX, , (k) FOFO — 2mReT 71 — X, , (94775 10 fO)

+ £V 2mReT £y —1mX, (943" FOFO — 7 2mReT 7Y — ImX, , (475”)] '@ £©)

+ V£ 2mReT PO — ImX, (04 7'@)] 7O f 7 2mReT £/ — ImX], (3% )] f©

+AV 1Y FORmReT F U — 1mX,, (97 O)] - 7V 7Y f O 2mReT f) — ImX,, (94 £©)]}. (137b)

p 'axf(l)<x’p’§) =

where we have used Eq. (54), employed Im7 (, = 0 under the dP,dP, integral, and defined

| R a) i L a 1 B
Xiy= 5[7;(4 ) - ’T,(, ) ] _%Tl.ﬂvpl = l[ImT/(t ) —%71.;”171], (138a)
@) playeg _ 1 P @ _ 1 y
X2./4 = 5 [Tﬂ - Ty } - %TZINJPZ =1 ImT,, - %TZWJPZ s (138b)
X! = l [T(a) _ T<a> |- T/ w_ ImT _ 1 T (138¢)
M 2 H H I./p H Im /u/p ’
1 a c i v a 1 c p
X, = 5[7}, )T ~ 5 T = ReT ") —57},) -5 T, (1384)

In Egs. (138a)—(138d), we used the fact that ’T[(th) = ’T}(fl)* under the dI';dI";, integral. For the second equality in Eq. (138d)
we employed Eq. (B19). Note that X, is purely real under the dI';dI'; integral.
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In the following, we focus on the Boltzmann equation (137b) and define

- Ile’ 1 1 v (a) 1
Al’” = - sze,’]l, = JmReT ﬁReTl,ﬂl/p] - ImT,, :| = % (Alaﬂ - Aﬂ)’ (1393.)
) ImX, 1 T1 , w] 1
Az’ﬂ = — 2mRe§_ = 2mReT %RGTZ,/JVPZ - Im']',, :| = % (Az’” - Aﬂ), (139b)
) ImX’ 1 [1 1
Al = — - — ReT!, p" —ImT V| == (A, — A). 139
H T T amReT = 2mReT | e wP" T IMTuT ) =5 (A = A) (135¢)
A WX _ (139d)
T 2mReT

All identities right after the definitions hold under the integral. The final identities, which relate the barred A’s on the left-
hand sides to the space-time shifts (3) on the right-hand sides are proven in Appendix B35, using identities from
Appendix B 4.

Then, with Eq. (118) the Boltzmann equation (137b) reads

1 _
p- axf(l)(%l?’ ) = Z/drldrzdF/dS(P)(2”71)45(4)(17 +p' = p1—p)W

LAY + Ay (] O FO)

+ O Ry () PO FO)
+ AV FDFD 4 R (O] FO
)

— [ By (7Y £ £O)
— PO 4 By (B F) O £
f§ fz ('O 4 Ay (")) O

AV PO + B 06O = FVFY £ OO + B (@O} (140)
C. Summary
Expanding f(x + AA, p,8) in powers of # around ) (x, p),
fx+nA,p,8) = fOx, p) + afV(x, p,8) + hd, 0 fO(x, p) + O(n?), (141)

and similarly for f1, f5, f', f. f1. f. and f’, we now combine the results (117), (139), and (140) to write the complete
Boltzmann equation for f(x, p,8) up to first order in # as,
1 _
pof(x.p.8) = Z/dF1dF2dF’dS(P)(Z”h)45(4)(19 +p' = pr—p)W
X [f(x+ Al - Avpl’gl)f(x_’_ AZ - A’p2’§2)f('x+ Al -
_.]_C(x+ A1 - A’plvgl).f(x+ AZ - Ava’QZ)f(x+ A
|

A, p' &) f(x, p,3)

- A p.8)f(x.p.8)]+OR).  (142)

This result agrees with that of the GLW approach, Eq. (1),
in the limit of Boltzmann statistics, where f, ', f1, f» = 1,
and generalizes it to the case of quantum statistics.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have revisited the nonlocal collision term
derived in Refs. [41,73]. In those works, the nonlocality of
the collision term manifested itself by certain space-time
shifts [given by Eq. (2) for a particle with momentum p* and

spin vector 8] of the collision partners. However, the explicit
dependence of these space-time shifts on the frame vector
# = (1,0) violates Lorentz covariance. In this work, we
restored Lorentz covariance by carefully recomputing the
collision term in the GLW approach [83], and confirmed the
result by a calculation within the KB [89] approach. This
results in the more complicated, but manifestly Lorentz-
covariant expressions (3) for the space-time shifts.

In future work, one should repeat the derivation of spin
hydrodynamics along the lines of Ref. [66,71] with the
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Lorentz-covariant space-time shifts (3). For such a calcu-
lation one cannot use the space-time shifts (3) directly,
since the trace 7 appears in the denominator, which
depends on the spin variables, cf. Eq. (116). However, in
order to perform the integrations over spin space, the latter
should appear in the numerator, where one can apply the
relations (8). One therefore needs to resort to the form of
the nonlocal collision term as given, e.g., in Eq. (137b).
Here, both 7 and the first-order distribution functions are
linear in the spin variables and thus appear under the
integral in a form where the relations (8) are applicable. In
Appendix C we give the trace terms required for such a
calculation for scalar boson exchange as a simple example.
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APPENDIX A: PREFACTOR
IN EQS. (29) AND (41)

In this Appendix, we convince ourselves of the correct-
ness of the prefactor in Egs. (29) and (41). To this
end, consider the expression for the canonical energy-
momentum tensor in terms of the vector component of the

VVigner funCtion,

At order O(A°), VO¥ = pt FO) /m, cf. Eq. (34), and we
obtain with Egs. (39) and (41),

T = 2/ anys P o A" = ) O(x. p)

=2 / dPp#p* £ (x, p). (A2)

This is the standard expression for the energy-momentum
tensor for a non-interacting gas in kinetic theory. In
equilibrium, £(©) is the Fermi-Dirac distribution function,
F9) = [ewp=m/T 4 1]=1. The overall factor 2 counts the
two spin degrees of freedom. Thus, Eqs. (29a) and (41) are
correct.

APPENDIX B: PROPERTIES OF TRACE TERMS

In this appendix, we prove a set of identities for the traces
b
TO; T;(Aa)» T;(t )9 T;(JC)v Tl./wplf’ TZ,/wpg» T//wpw9 and T/,wpy7
respectively. These identities make use of the symmetry
properties of the dP;dP, integrals under which these
various traces appear.

1. T, is real

We prove that, under an integral of the form

/dPldpzTOf(pl’lh)v (B1)

where £(p1. pa) = £(pa, p1), the imaginary part of T can
be set to zero. To this end, we compute

Ty = Tr[(1 4 ysf)AT (p)T DA (py) TP TrTDAT (p )TN (p')]*
= Tr[(1 4 75¢) AT (p)TDAT (p )TOAT (p" ) TDAT (py)T]*
=TT A (o) T A ()1 (1 + 59 TTHA () T A () T

= Te[COTAT (py) TTOTAT (p') TTEOTAY (py ) TTOTAT (p) (1 + y54)T).

N

(B2)

Using A(p)" = y’A*(p)y? [and similarly for A*(p,), A*(p,), and AT(p)], (1 +ys¢)T = y°(1 + y5¢)y°, as well as
[ = y0r(©)y0 we obtain

T5 = Tr[TOAT (po)TOAT (p) (1 + )] Te[AT (p)TOAT (py)T)]

= Te[LOAY (po)TOAT (p")TOAT (p)TDAT (p)(1 +759)]. (B3)

We now exchange the summation indices ¢ <> d in both terms, which is possible, since the prefactor ~G .G, of the collision
integral is also symmetric under this exchange. Under an integral of the form (B1), we are also allowed to exchange the
integration variables p/ <> p5 in the second term, because f(pi, p,) is symmetric under this exchange. Finally, using
Eq. (56) and the cyclic property of the trace, we arrive at ac
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T?; = To, (B4)

which proves that the imaginary part of 7, vanishes under the integral (B1).

2. T, ,(lb) is complex conjugate of 7 ,(f)

We prove that, under an integral of the form

[ aap T f(p ). (B3)
where f(py, p2) = f(p2, P1), we may set T,(,b) = T,(,a)*. From Eq. (121) we compute

T = Tr[(1+ 75f)A* ()7, DO (po) DO TrDOAS (py )TN (p')]*
= Tr[(1 + 75¢)AT(p)y, L OAT (p)TE AT (p)TDAT (py) T
= Tr[TOT AT (po) Ty IAT (p)F (1 + ys59) T Tr[AT (p) T AT (py) T
= Tr[TTA (py) DA (p ) T A (p)) T IAT (p)T(1 +759)]. (B6)

Performing similar steps as in Appendix B 1, because f(p;, p,) in the integral (B5) is symmetric under pi <> p, we then
show that

T = Te[(1 + 759 ) AT (p)TD AT (py) Ty, ITHTOAT (p )TOA* ()]
—Tr[(1 4 ysf) AT ()T A+ (p) )TEOAT (P )TD A+ (py) Ty, | = T, (B7)

of. Eq. (136).

3. T\ is real

We show that, under an integral

[ aPar T s (o) (B3)
where f(py, p2) = f(pa, p1), the imaginary part of T/(f> vanishes. To this end, we compute

T, = Te[(1+ ysf) AT (p)TOAT (po) DO Tr DO AT (p )Ty, |
= Tr[(1 + ys)AT (p)TDAT (p )Ty, LOAT (py) )"
= Tr[DTAY (po) T@TA* (p)T (1 4 y59) T Tr [yl A (py ) T
= Tr[TOF AT (p,) T DO AT (p)) T AT (p)T(1 + y59) . (B9)

Employing similar steps as in Appendix B 1, we obtain

T =Tr[(1 + psf) AT (p)TOAT (p)TONTTO AT (py )Ty, ]
— Tr[(1 + 75) AT (p)TDA* (p )Ty, DDA (py) T = T (B10)
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4. Identities for 7' ,,p%, T, P05 T ,p", and T, p*

We first show that, under an integral of the form

/dPlszTjwp/”f(pl,pz), (Bll)

where f(py,p2) = f(p2. P1), T}, p" assumes the form

T;,0" = 2mIm{Tr[(1 + y5¢)AT (p)TDAT (po) T T [COAT (p )LOAT (p')y,]
= Tr[(1 + ys#)AT (p)TOAY (p )TN (p)y, DDA (py) T} (B12)

To this end, note that ¢, p" = %[y,.#'] = im[y,, A*(p’)]. Therefore, Eq. (131c) (multiplied by p’) can be written as

Tup" = im{Te[(1+ rs¢) A" (p)L DA (po) IO Te[TOAT (p )Ty, A (p')]
= Tr[(T + 7s¢) AT (P)TDAT (p )Ty, AT (p")TDAT (p)I]
= Tr[(1 +y5¢) A" (P)T AT (po)T T [TDAT (p LAY (p)r,]
+Te(1+75§)AT (P)TDAT (p )TN (p)y DDA (po) T} (B13)
Using similar steps as in Appendix B 1, we exploit the symmetry under the integral (B11) to show that the terms in the first

two lines in Eq. (B13) are the complex conjugates of the terms in the last two lines. This proves Eq. (B12).
Next, we show that, under an integral of the form

/ AP\APS[T " f(p1.p2) + TopoPsg(prs 1)) (B14)

with real-valued functions f(py, p»), g(pi, p») which fulfill f(p;, p») = g(p2, p1), we may use the following expressions
for 7, ,,pY{ and T, ,,p5,

T 0t = 2mIm{Te[(1 + 75¢)A* (P)TON* (p) FOITHTD AT (py ), LA™ ()]
—Tr[(1 + 7 ) AT (P)TOA* () )y, DONH (p)TDA (py)TO}, (B15a)

Togups = 2mIm{Tr[(T + y5¢) AT (P)T DA (po)y, D TETOAY (p )TOAT ()]
= Te[(V+ 75§ ) AT (P)TOAT (p)TEOAT (P )TDAT (py)y, T} (B15b)
The proof follows similar steps as that of Eq. (B12). We first write o, p% , = £[y,. #12] = im[y,, A" (p;,)] and insert this
into Eq. (131a) (multiplied by pY) and Eq. (131b) (multiplied by p%), respectively,
Tyl = im{Tr[(1 +ys¢)A (p)TOAT (po) TONTET Dy, A* (p )TN (p')]

= Te[(1+ 75§ ) AT (P)T Dy, A* (p)T A+(p )rt A+(P2)F( J

= Tt[(T + 75y ) AT (P)T DA (p)TOTTHTD AT (py)y, LAY (p')]

+ Te[(1 4 y5¢) AT ()T AT (py)y, DA (p)TDAT (p )F( iis (B16a)

_ —

Toupy = im{Tr[(1 + ys¢ ) AT (p)T Dy, AT (po) DT DA™ (p )TOAT(p')]
= Tr[(1 + ysf) AT (P)T@OA* (p)LEOA* (p )T Dy, A+ (py)T]
= Tr[(1 4 75¢) AT (P)T DA (po)y, LT TOAT (p )TN (p)]
+ Tr[(V 4 75¢) AT ()T DA (p)TEOAT (p YT AT (py)y, L]} (B16b)
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Multiplying 7' ,, p{ with f(p,, p,) and T, ,, p with g(p,, p,), and taking the sum, we then prove that, under the integral
(B14) and using f(py, p2) = 9(p2, p1), the complex conjugate of terms resulting from the last two lines in Eqs. (B16a)
and (B16b) is
{Te[(1+ 7s/) AT (D)L DA (po)TONTITD AT (py )y, LA (p'))
= Tr[(1 + 7s)AT (DT DAY (p1)y, TN (P)TOAT (p)TY f (1, p2)
+A{TH[(1 +750) AT (P)TOAT (p)y, DONTHTO AT (p)TOAT (p)]
= Tr[(T + ys)A* (P)TDAT (p )TN (P )TDAY (pa)r, LT g (1 p2)
= Tr[(1 +ysf)AT(p)T <d>/\*(pz)l““)]Tr[F(”%A*(pl)F(“>A+( If(p1sp2)

= Tr[(1 + 759 )AT (p)TOAT (p)TOAT (p ) A (p2)INg(py. pa)
+ Tr[(1 + ys¢)A* ()T Dy, AT (po)I ] Tr[C@ ( DTEAT(p)]g(py. pa)
= Te[(1 4 ysf) AT (p)T Dy, AT (p )TOAT (p")TOAT (p) T f (1. pa). (B17)

This shows that, under the integral (B14) and in the combination 7'y ,, p{ f(p1. P2) + T 2,,P59(P1. P2) the terms in the first
and second lines of Eqs. (B16a), (B16b) are (up to a minus sign) the complex conjugates of the terms in the third and fourth
lines. This completes the proof of Egs. (B15a), (B15b).

Finally, we compute

i | . .
5 Twp” =5 -Trl(1 +7sd JAT (p)TDAT ()T is,, p*| T[T @A (p )TOAT (p')]

1 .
= S TH(1 4 75) AT ()TN (pTOAT ()T OAT ()T O, ). (B18)
|

Using io,, p* = —y,# + p,, the cyclicity of the trace, the 1 n2 w A,
relation p(1 + ys¢) = (1 +ysf)p, which holds since %Re’]—l,wp’f = 4mG o h”, (B20c)
p-8=0, and the identity pA™(p) = mA™(p), which d
is valid for on-shell particles, we arrive with Eqgs. (114) 1 "2 w Ay,
and (136) at 7 ReT P = dm = Gt h” ., (B20d)

i P 1 (b) 14 1 (a)* 1 flz w Al
— T 0 ="LTy—=T,) =LTy-=-T,”". (B19 — 1 op = —
o lwP =5 0Tyt =5 doT 5 (B19) o ReT ), p" =4m GComi i (B20e)
The last identity uses the result of Appendix B 2, which is 1 n» WA,
possible since the term on the left-hand side appears under 2_RCT wP* =2m G.G, e n (B20f)

an integral of the type (BS), cf., e.g., Eq. (B137b).
with the space-time shifts (3) and WV from Eq. (4). Using
5. Relation between traces and space-time shifts Eq. (118), we immediately prove Eqs. (139).

Consider the traces in Egs. (114), (121), (131), and

(136). Under the dI';dI',dI” integral, we can replace the
energy projectors by the quantities defined in Eq. (5) as,
e.g., AT(p))=2h(p,,8,), since the additional terms
vanish because of Eq. (8). Employing this for
AT (p1), AT (ps), and AT(p’), we find with Egs. (B4),
(B7), (B10), (B12), (B15a), (B15b), and (B19),

R WA,

_ (b) _
Im’]' = —-Im7, =4chGd%7,

(B20a)

m7\) =0 (B20b)

APPENDIX C: TRACES FOR SCALAR
BOSON EXCHANGE

In this appendix, we evaluate the various traces occurring
in the collision term for scalar boson exchange, I''®) = 1.
Using the Mandelstam variables

=(p+p')*=(p1+p2)*
=(p—p1)*=(p'—p2)*.
=(p—p2)*=(p'=p1)%

(C1)

with s + 1 + u = 4m?, Eq. (114) becomes
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(s+0)2s+1) s—t i 5
7 T om2 + %eﬂmﬁgﬂpyl’?l’z-

Ty = (C2)

8m

We denote the momentum p# in the C.M. frame as
Pe = (E,,p,), with E, := \/p; +m?, where p, := |p,|.
It then follows that p = (E.,—p,). Furthermore, we
define plll* = (E*apl*)’ such that pg* = (E*’ _pl*)'
Here we have used that, in the c.m. frame, |p,|=
[Pi.| = p., such that the on-shell energies of all particles
are equal. Introducing the scattering angle ©® = £(p,,P1.),
we have s=4(m>+p2), t=-2p2(1 —cos®), u=
—2p2(1 + cos ®), and therefore

2

p p.
ReTy=2|1+=5(14+2cos®)+—=
m m

(C3)

The low-energy limit is therefore lim, _,,Re7, = 2, and

the limit of small scattering angles is limg_qRe7y =
2 4

2(1 + 32 432,

Similarly, we evaluate the traces (126). This is simplified
by taking the difference of these traces and 7. Using
energy-momentum conservation multiple times to elimi-
nate the dependence on p*, we find

s—t tis+1)
T.-Ty=8-3,|—
! 0=3 ghsl{Zmz_’_ 8m* ]

8- u 3 - 8-
_ P1<_1P+1P2>

m \4m®> m m

8D p

I 5
ot sCuafP PP (Cha

N

2m? 8m*

g'172<2S+f932'17 §2‘P1>
+ ; -
m dm m m

TQ—TO_Q.QZ{S_t (28+t)(s+t)]

8% p

i
- +?€,¢mﬂ§’£p”p?p§, (C4b)

s—t t(s+1)
T -Ty=8-8|—
0 [Zm2+ 8m4}

$-py(8-p u 8 p
m m 4dm= m
g-p,(8-p t &-p
m m 4m= m

i 8
+— Cuapd" P DIDS

(C4c)

(1+cos®)(3+cosO)|.

_ fs—t Q2s+0)(s+0)] 8 -pi3-p,
T-Ty=8-8 -
0 2m? 8m* * m?
8-pr8-py | i 3 z
— T e PP, (CAd)

We note that the last two terms in the first line of Eq. (C4d)
are antisymmetric under the exchange of p; <> p, and thus
vanish under a dP;dP, integral where the remainder of the
integrand is symmetric under this exchange.

In the low-energy limit, i.e., where the c.m. momentum
P, — 0, one can show that all four-products between spin
vectors and momenta vanish. This is most easily seen in the
c.m. frame and using the orthogonality of the spin four-
vector with the four-momentum. Also, in this limit all
momenta just have a time component, e.g., p* — (m,0),
and similarly for the other momenta. Then, all imaginary
parts in Eqs. (C4) vanish. This then yields

;}TO(TI —Ty) =233, (C5a)
,}fino(Tz —Ty) =—28-8,, (C5b)
pl'ir_r)lo(T’ ~T,) =28-8, (C5c)
lim (7 = T,) = —23- 3. (C54)

P.—0

Similarly, we compute from Eqgs. (131)

8- pi PPiP) Y 8 piph
4m?

Tl,;wpll/ = €m/aﬂ|: m 2m2 m

4m* m

. 3s
+1 ]—4—’/”2 pﬂ+—
3t
+ 1_4m2 p2,/4 ’

B
8 pap'piph ( u )é”p“fp’z

[
m  2m? + 4m? m

t— ué”p"’p/f]

(C6a)

TZ,/wplé = _€;waﬂ|:

n t—u—4(s+1) Q”p“pg]

4m? m
) 3s 3u
“\ ) et ) e
s—u
=+ mpz,ﬂ] ) (Cob)
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—€
uvap m 2m? Am* m

l» gl/p(lplf u gl/p(lpg
1+— 1+—
N < i 4m2) m T aE) T

fu—t s—t u-—=s
_l<4m2 py+4m2 pl[l 4m 2 p2/4> (C6C)

. [3 <(p1=p2) P'PYPL 1= U8 piph
1

and from Eq. (121)

(a) S+3fpﬂ S+tp1;4 N p2/4
T, = 5
4m®> m  4m* m 2m m

(PP u pP) st t—upph
nvaf s

m? 4m? m? 4m? m?
(C7)
as well as from Eq. (136b)
T(c): M+ZPM_3(S+I)L S+M@
a 4m? m dm*> m 4m? m
a P a P
v plpz PPy, PP
+2€;waﬁ§ < m 2 + m2 ) (CS)

Note that some terms in these expression can be fur-
ther simplified using the symmetry under the dP,dP,
integral.

From these results we finally compute the space-time
shifts using Eqgs. (139),

n
A, = —ReT 0"
L omReT 2m ©L 1P
__h 8- p1 p'piph
2mReT ™| m  4m?
a P a P
t él’plp/2 r—uspp,
1+— , Cc9
+( +4m2> 2m? +4m2 2m? (C9a)
A, = h ReT H
247 2mReT 2m 24u:P2
__h [ ptpin
2mReT 4m?
() Eih A+ &)
4m?)  2m? 4m? 2m? |’
(C9b)
— R T/ v
“ T omReT o mP
____ h . ﬁ'(pl—pz)p”p?p§+t—u§”p?P§
2mReT " m 4m®>  4m*> 2m?
U 40 /} U 440 /}
8 8" P
1+— 1+— , (C9
+< +4m2> 2m? +( +4m> 2m? (C9c)
nh
A Im T
* = 2mReT
_ h P1P2 u p* P
" 2mReT Cuuap® m>  Am? m?
s+t—upip,
t7 . Cad
T mz) (C9d)

In the low-energy limit, the spacetime shifts vanish.
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