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We find all the integer charge solutions to the equations for the cancellation of local gauge anomalies in a
class of gauge theories that extend the Standard Model (SM) by a gauge group of the formG × Uð1Þ, where
G is an arbitrary semisimple compact Lie group. The SM fermions are assumed to be neutral under
G × Uð1Þ gauge interactions, while the new fermions transform in nontrivial representations of both the
new and the SM gauge groups. Our analysis is valid also when the latter is embedded in an arbitrary
semisimple compact Lie group. Theories with this structure have recently been studied as models of
composite axions based on accidental symmetries and can provide a field theory resolution to the axion
quality problem. We apply our results to cases of phenomenological interest and prove the existence of
charge assignments with Peccei-Quinn symmetry protected up to dimension 18.
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I. INTRODUCTION

The consistency of quantum gauge theories relies on the
cancellation of gauge anomalies; see, for instance, Ref. [1].
These conditions impose nontrivial restrictions on the
choice of charges and representations for fermions with
vanishing mass. This is particularly relevant for chiral
gauge theories, in which the fermionic mass terms are
forbidden by gauge invariance. In the case of four-dimen-
sional theories and in the presence of a U(1) gauge group,
the condition for the vanishing of the ½Uð1Þ�3 anomaly,
corresponding to a triangle diagram, translates into an
homogeneous cubic equation for the charges of the form

x31 þ � � � þ x3n ¼ 0:

Additional conditions derive from the cancellation of
mixed gauge anomalies.
If the charges are integers,1 as believed to be the case if the

theory admits a quantum gravity UV completion [2,3] and
mandatory if the U(1) group is embedded in a simple non-
Abelian gauge group, then one has to deal with a system of

Diophantine equations, i.e., polynomial equations over the
ring of integers. Cubic Diophantine equations are an active
research topic in mathematics and no general method of
solution is known at present times. Finding the integer
solutions to the anomaly equations thus appears a formi-
dable task.
In the past few years, however, starting from the seminal

work of Ref. [4] (see also [5] for earlier progress), it has
been realized that some explicit cases of physical relevance
can be solved completely using elementary methods. The
solved cases include purely Abelian gauge theories [4,6,7],
Abelian extensions of the Standard Model (SM) [8–11] and
even the gauge-only2 anomalies of the SM [12]. To the best
of our knowledge no result is currently available for more
general non-Abelian extensions of the SM with fixed
matter content. Scenarios based on these constructions
have been extensively studied with several phenomeno-
logical motivations, including composite Higgs models
[13–15] (see, for instance, [16,17] for more recent reviews),
models of composite QCD axion [18–29], and studies of
dark matter and dark sectors [30–43] (see [44,45] for recent
reviews). Solving the corresponding anomaly equations
provides a way to systematically classify them and restrict
the space of physically admissible theories. In this work we
shall take one step in this direction by providing the general
solution to the equations for the cancellation of local gauge
anomalies in a class of chiral gauge theories that extend the
SM with a non-Abelian gauge group of the form G × Uð1Þ,
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1Of course, up to an overall redefinition of the U(1) gauge
coupling constant.

2That is, without imposing the cancellation of mixed gauge-
gravitational anomalies.

PHYSICAL REVIEW D 106, 116020 (2022)

2470-0010=2022=106(11)=116020(17) 116020-1 Published by the American Physical Society

https://orcid.org/0000-0003-4166-3997
https://orcid.org/0000-0002-1887-8351
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.116020&domain=pdf&date_stamp=2022-12-28
https://doi.org/10.1103/PhysRevD.106.116020
https://doi.org/10.1103/PhysRevD.106.116020
https://doi.org/10.1103/PhysRevD.106.116020
https://doi.org/10.1103/PhysRevD.106.116020
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


where G is a semisimple compact Lie group. Our methods
of solution will be along the lines of the enlightening
geometric approach described in Ref. [6].
We consider theories that extend the SM matter content

by a fixed number of dark fermions with charge assign-
ments that are vectorlike under G ×GSM, but otherwise
arbitrary under the U(1) factor. The analysis is valid also
when the SM factor is embedded in an arbitrary semisimple
compact Lie group, making it compatible with all the most
popular grand unification scenarios. Hidden valley models
[30,31], where the SM is augmented by a non-Abelian
confining SUðNÞ factor, offer a compelling mechanism to
decouple visible physics from a dark sector at relatively low
energy scales. In the hidden valley scenario, the dark
fermions are not charged under the SM, but the existence
of an Abelian U(1) factor in addition to the confining factor
SUðNÞ enables a portal between the two sectors, through
the kinetic mixing of the U(1) and the SM hypercharge
gauge bosons. On the other hand, it is also possible to
consider the case where the fundamental dark constituents
are, in fact, charged under the SM, but the confining
dynamics of G leaves the SM unbroken. This paradigm,
known as vectorlike confinement [33], has received
considerable interest in the context of beyond the SM
phenomenology. Composite states of the dark gauge
theory—such as baryons, pions, or more exotic states—
can be stable thanks to accidental global symmetries and
act as promising dark matter candidates [34–43]. The
coupling of the dark fermions to GSM, moreover, is a
necessary ingredient in the models of composite QCD
axions. One might wonder if a dark U(1) could still play a
role in these cases, even if the two sectors are already in
communication through SM gauge interactions. An inter-
esting possibility is that the additional U(1) makes the
matter content chiral, despite a vectorlike assignment under
G ×GSM. If the U(1) gauge coupling is perturbative, this
allows one to have a chiral gauge theory while still keeping
control of the low energy dynamics of the non-Abelian
factor G (such as its confining nature and the pattern of
chiral symmetry breaking). Gauge invariance then forbids
mass terms for the fermions, and the low energy phenom-
enology is completely determined by the dark confinement
scale. Scenarios of this kind have been studied in [29,43]
and give rise to a rich interplay between cosmological and
laboratory probes. In combination with theoretical con-
straints, for instance anomaly cancellation and perturba-
tivity of the gauge couplings, such models can be classified
with a minimal set of assumptions. In this spirit, we hope
our results may be useful beyond the specific examples we
consider, either in a direct manner or through an application
of the same techniques to similar problems.
As a nontrivial application of our results, we shall

consider the theories introduced in Ref. [29] as models of
composite axions with accidental Peccei-Quinn (PQ) sym-
metry, whose properties and phenomenological interest will

be reviewed in Sec. V. They can provide a resolution to the
QCD axion quality problem by forbidding local PQ violat-
ing operators up to very high dimensions, depending on the
integer values of the charges. They generalize previous
constructions of models beyond the SM with accidentally
stable composite dark matter candidates [39,40,43]. Our
general solution for the anomaly equations can be useful,
amongother things, to assesswhich charge assignments give
rise to a high quality QCD axion in the models of Ref. [29].
The article is organized as follows. In Sec. II we present

the class of gauge theories of interest, defining the matter
content and gauge group structure, and formulate the
mathematical problem for the cancellation of gauge anoma-
lies. In Sec. III we find all the integer solutions to the
system of anomaly equations, building up from simple
cases and then addressing the general case. The inclusion of
SM hypercharges is then discussed in Sec. IV, before
applying our findings to models of the composite QCD
axion that address the axion quality problem in Sec. V. The
reader interested only in the general solution to the anomaly
equations can read the general formulation in Sec. II and
then jump directly to Sec. III C.
Notation and conventions Throughout the paper we

work in 3þ 1 dimensions. Given a unitary representation
r of a compact Lie group, with r̄ denoted as the complex
conjugate representation.
We employ the notation ½x1∶…∶xn�, with elements xi∈K

(the field K being Q or R), to denote the equivalence
classes of elements of Knnf0g under the equivalence
relation: ðx1;…; xnÞ ∼ ðy1;…; ynÞ if there is a λ ∈ K such
that ðx1;…; xnÞ ¼ λðy1;…; ynÞ. This construction defines
homogeneous coordinates on the projective space PKn−1.

II. THE MODELS AND THE ANOMALY
CANCELLATION CONDITIONS

We consider gauge theories that extend the SM by a
gauge group of the form G × Uð1Þ, where G is a generic
semisimple compact Lie group. For the sake of presentation
we shall refer to gauge groups, but, in fact, our analysis will
depend on the Lie algebra alone, and we shall not specify
the global gauge group structure.
The fermionic matter content of the theory is that of the

SM, with three generations of quarks and leptons and the
possible addition of right-handed neutrinos, which are all
assumed to transform in the trivial representation of
G × Uð1Þ, plus a new set of fermions charged under
G × Uð1Þ ×GSM. In addition, we assume that the new
fermions have vectorlike charge assignments under both
the non-Abelian factor G and the SM factor GSM. These
requirements will be motivated more precisely in the rest of
the section, and they correspond to the class of phenomeno-
logically interesting models described in the Introduction.
More in detail, we denote withGSM the SM gauge group,

or possibly a compact semisimple gauge group that extends
it. This allows us to treat in full generality also the case in
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which the SM is embedded into a grand unification group at
high energies (in 3þ 1 dimensions). The case of a simple
group corresponds towell-knowngrandunified theories such
as SU(5) or Spin(10), while more general semisimple
extensions of the SM include also the Pati-Salam model
½SUð4Þ × SUð2Þ × SUð2Þ�PS and have recently been classi-
fied in Ref. [46].We first consider the case in whichGSM is a
generic semisimple gauge group which extends the SM, so
that the equations for the cancellation of gauge anomalies
simplify. The same analysis is valid also for the case inwhich
GSM is the SM gauge group SUð3ÞQCD × SUð2ÞEW × Uð1ÞY
but the new fermions carry only SUð2ÞEW and SUð3ÞQCD
quantum numbers (i.e., have zero hypercharge). The inclu-
sion of hypercharge for the new fermions requires some care
since it gives rise to additional anomaly conditions, and its
analysis will be deferred to Sec. IV.
The models are defined in terms of two sets of left-

handed Weyl (two-component) fermions fψ ig and fχig,
transforming under G × Uð1Þ × GSM in representations:

ψ i ∼ ðR; pi; riÞ; χi ∼ ðR̄; qi; r̄iÞ; i ¼ 1;…; nf; ð1Þ

where R and ri are generic, possibly reducible, finite
dimensional unitary representations of G and GSM, respec-
tively, while pi and qi are integers labeling the Uð1Þ
charges. We shall pay special attention to the cases nf ¼ 2

and nf ¼ 3, and provide a general solution for arbitrary nf.
It is convenient to introduce the notation

di ¼ dimðriÞ ¼
X
α

dimðri;αÞ; Ti ¼
X
α

Tðri;αÞ; ð2Þ

where ri ¼
P

α ri;α, with ri;α irreducible, dimðri;αÞ is the
dimension of each irreducible fragment and Tðri;αÞ is its
Dynkin index.3 We define similarly dðGÞ and TðGÞ as the
dimension and the (total) Dynkin index of the representa-
tions R and R̄ of G.
This class of models would correspond to a vectorlike set

of fermions if the charges pi and qi were vanishing.
However, with a general charge assignment the model is
chiral. From a phenomenological point of view, chiral
models are particularly interesting, as mass terms for the
dark fermions are forbidden by gauge invariance. All
relevant scales in the IR (such as masses of the physical
particles) are thus generated dynamically. This is in contrast
to vectorlike models, where the fundamental fermions can
have arbitrary mass terms. Despite being chiral, the theories
we consider can give rise to an infrared dynamics that is
under theoretical control, if the gauge group G has a well-
understood confining dynamics in the infrared, and if
the U(1) and GSM factors are weakly coupled at the

confinement scale of G. The vectorlike structure with
respect to GSM ensures the existence of a GSM preserving
vacuum that is dynamically preferred in most cases [47]. A
prominent example is obtained if G ¼ SUðNÞ and the
representation R is the fundamental representation of
SUðNÞ. In many cases, depending on the fermion multi-
plicities, the infrared spectrum consists of a collection of
(pseudo) Nambu-Goldstone bosons associated with the
spontaneously broken global symmetries, plus heavier
resonances. The U(1) gauge group is expected to be in
the Higgs phase if the theory is chiral and the vacuum is
aligned in the GSM preserving direction. The dynamically
generated masses for the light states can be computed in a
systematic way by including the weak gauging of Uð1Þ ×
GSM in a chiral Lagrangian approach for the low energy
theory of G, as discussed in detail in Ref. [43]. The
conditions for anomaly cancellation and their solutions
are in any regard independent from the previous consid-
erations on the infrared dynamics of the theories.
We shall be interested in the conditions for the cancel-

lation of local gauge anomalies for G × Uð1Þ ×GSM.
Global (nonperturbative) anomalies [48,49] are related to
the topology of the gauge group and depend on the specific
choice of Lie group rather than just its Lie algebra. Their
analysis is left to a future work (see Refs. [50–52] for a
recent study in the SM and some of its extensions).
Since the generators of a representation of a semisimple

Lie algebra are traceless, the mixed anomalies G × ½Uð1Þ�2,
G × ½GSM�2, GSM × ½Uð1Þ�2, and GSM × ½G�2 vanish trivi-
ally. Moreover, the ½GSM�3 anomaly vanishes as a conse-
quence of the cancellation of gauge anomalies in the SM (or
its semisimple extension) and the fact that the set of additional
fermions we introduced is vectorlike with respect to GSM.
Similarly, the anomaly ½G�3 vanishes due to the vectorlike
structure of the new fermions with respect to G. We are left
with the mixed anomalies Uð1Þ × ½GSM�2, Uð1Þ × ½G�2, and
the Abelian anomaly ½Uð1Þ�3. The only nontrivial condition
from the cancellation of local gravitational anomalies is
Uð1Þ × ½grav�2, but in the class of models we consider the
latter is equivalent to the condition for Uð1Þ × ½G�2. We thus
obtain a system of three equations of the form

Xnf
i¼1

ðpi þ qiÞTi ¼ 0; ð3aÞ

Xnf
i¼1

ðpi þ qiÞdi ¼ 0; ð3bÞ

Xnf
i¼1

ðp3
i þ q3i Þdi ¼ 0; ð3cÞ

where we have dropped the common factors TðGÞ and dðGÞ,
which are the same for all fermions and always nonzero.

3We adopt a normalization in which the Dynkin index is equal
to 1 for the fundamental representation, so that Ti is always an
integer.
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With our notation and conventions this is a system of
Diophantine equations with integer coefficients for the
integer charges ðqi; piÞ. Since the equations are defined by
homogeneous polynomials, it is sufficient to work over the
field Q of rational numbers, and then rescale by an integer
multiple to obtain all the integer solutions.

III. GENERAL SOLUTION TO THE ANOMALY
CANCELLATION CONDITIONS

In this section we focus on theories in which either the
new fermions ðψ i; χiÞ have vanishing hypercharge or the
SM gauge group is extended to an arbitrary compact
semisimple Lie group that we denote by GSM. We wish
to provide a general solution to the system (3) in the case of
nf distinct U(1) charges for the fields ψ i and nf for the
fields χi. For nf ¼ 2, 3 the cubic equation can often be
reduced to a quadratic equation, and we shall treat these
cases first. The general case will then be addressed,
providing a solution valid also in the previous instances,
but corresponding to a different parametrization.

A. Models with nf = 2

For nf ¼ 2, the two linear equations

ðp1 þ q1ÞT1 þ ðp2 þ q2ÞT2 ¼ 0;

ðp1 þ q1Þd1 þ ðp2 þ q2Þd2 ¼ 0; ð4Þ

admit solutions with ðpi þ qiÞ ≠ 0 only if T1d2 ¼ d1T2, in
which case they become equivalent.
In the case d1 ¼ d2 the system reduces to that of four

U(1) charges with zero sum and vanishing sum of cubes.
The general solution is well known and is given by
assignments of the form

ðq1 ¼ −p1; q2 ¼ −p2Þ; ðp2 ¼ −p1; q2 ¼ −q1Þ;
and ðp2 ¼ −q1; q2 ¼ −p1Þ: ð5Þ

These assignments are vectorlike with respect to Uð1Þ, but
can still give rise to overall chiral models, which fall into
three classes and have been classified in Ref. [43]. From
now on we therefore assume without loss of generality
that d2 > d1.
The linear equations (4) and the cubic equation

ðp3
1 þ q31Þd1 þ ðp3

2 þ q32Þd2 ¼ 0 ð6Þ

always admit a vectorlike set of solution with ðq1 ¼ −p1;
q2 ¼ −p2Þ. On the other hand, if ðp1 þ q1Þ ≠ 0, combin-
ing the equations and after straightforward manipulations
one arrives at

ðd22 − d21Þðp1 þ q1Þ2 þ 3d22ðp1 − q1Þ2 − 3d22ðp2 − q2Þ2 ¼ 0:

ð7Þ

This is a homogeneous quadratic Diophantine equation in
the three variables

X¼ðp1þq1Þ; Y¼ðp1−q1Þ; Z¼ðp2−q2Þ: ð8Þ

Equations of this type have been extensively studied, and
they are fully understood (see, for instance, Ref. [53]). In
particular, there are general criteria for the solvability of
these equations; it is known that if a particular nontrivial
solution is known, then there are actually infinite solutions,
and the general solution can be parametrized in closed form
in terms of arbitrary integers (Theorem 4 in Chapter 7 of
[53]). Let us give a brief description of how this can be
achieved in the explicit example of our equation.
From a geometric point of view, Eq. (7) defines a conic

in the projective plane PR2, which in homogeneous
coordinates ½X∶Y∶Z� is given by the zero locus of the
quadratic form

QðX; Y; ZÞ≡ ðd22 − d21ÞX2 þ 3d22Y
2 − 3d22Z

2: ð9Þ

The solutions to the Diophantine equation will be given by
all the rational points on this conic and define a curve in the
projective space PQ2. Given a rational point P0 ¼
½X0∶Y0∶Z0� on the conic, any other point on the curve is
rational if and only if it lies on a rational line4 passing
through P0. Indeed, given any other rational point P̄ on the
conic there exists a line passing through P̄ and P0, and this
line has rational coefficients; vice versa, the intersection of
a quadratic curve with a rational line through one of its
rational points is always a rational point. In this way, all
solutions can be generated from a single one.
In practice, it is convenient to eliminate the redundancy

under coordinate rescalings and work in affine space. Since
d2 > d1, there are no nontrivial solutions with Z ¼ 0, and
we are free to divide by Z to switch to affine coordinates
x ¼ X=Z and y ¼ Y=Z and consider the quadratic form

qðx;yÞ≡Q

�
X
Z
;
Y
Z
;1

�
¼ðd22−d21Þx2þ3d22y

2−3d22: ð10Þ

The zero set of qðx; yÞ defines an ellipse in R2, which
corresponds to our conic. A particular rational point on the
ellipse can easily be found by inspection and is given by
ðx0; y0Þ ¼ ð0; 1Þ. All the other rational points will be given
by the intersection of the curve with the set of affine lines
through ðx0; y0Þ with rational coefficients: y ¼ kxþ 1 with
k ∈ Q. In particular, by carrying out the algebra it follows
that such a point is given by

4That is, a line with rational coefficients.
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x ¼ fxðkÞ
fðkÞ ≡ 6kd22

d21 − d22ð3k2 þ 1Þ ;

y ¼ fyðkÞ
fðkÞ ≡ d21 þ d22ð3k2 − 1Þ

d21 − d22ð3k2 þ 1Þ ;

fðkÞ≡ d21 − d22ð3k2 þ 1Þ; ð11Þ

which is always a rational point as expected. To go back to
the homogeneous space of integer solutions, one can
simultaneously rescale all coordinates by fðkÞ and homog-
enize the polynomials

X¼l2fxðk=lÞ; Y¼l2fyðk=lÞ; Z¼l2fðk=lÞ: ð12Þ

Since we have assumed X ¼ ðp1 þ q1Þ ≠ 0 in deriving the
quadratic equation, we need to exclude the values k ¼ 0 or
l ¼ 0 in order to avoid a double counting.
Finally, the general solution for the Uð1Þ charges can be

recovered by use of Eqs. (4) and (8):

p1 ¼
n
μ2

p̃1¼
n
μ2

½d21l2þd22ð3k2þ6kl−l2Þ�;

q1 ¼
n
μ2

q̃1 ¼
n
μ2

½−d21l2þd22ðl2þ6kl−3k2Þ�;

p2 ¼
n
μ2

p̃2¼
n
μ2

½d21l2−6d1d2kl−d22ð3k2þl2Þ�;

q2 ¼
n
μ2

q̃2 ¼
n
μ2

½−d21l2−6d1d2klþd22ð3k2þl2Þ�; ð13Þ

where n; k;l ∈ Znf0g, the fp̃i; q̃ig are defined implicitly
above, and

μ2 ¼ gcdðp̃1; p̃2; q̃1; q̃2Þ; ð14Þ

plus the vectorlike set of solutions with ðq1 ¼ −p1;
q2 ¼ −p2Þ. The factor n takes into account the possibility
of rescaling a solution by an arbitrary integer.

B. Models with nf = 3

Increasing the number of independent charges we con-
sider now theories with nf ¼ 3. The system of equations
comprises the two linear equations

ðp1 þ q1ÞT1 þ ðp2 þ q2ÞT2 þ ðp3 þ q3ÞT3 ¼ 0;

ðp1 þ q1Þd1 þ ðp2 þ q2Þd2 þ ðp3 þ q3Þd3 ¼ 0; ð15Þ

and the cubic equation

ðp3
1 þ q31Þd1 þ ðp3

2 þ q32Þd2 þ ðp3
3 þ q33Þd3 ¼ 0: ð16Þ

This system always admits vectorlike solutions with
ðpi þ qiÞ ¼ 0 for i ¼ 1, 2, 3. Moreover, if there is at least

a vectorlike pair of fermions, then the equations reduce to
those of the nf ¼ 2 case. We therefore restrict our attention
to the case ðpi þ qiÞ ≠ 0.
For notational simplicity, we introduce the antisymmet-

ric combinations

Dij ¼ −Dji ≡ diTj − djTi; ð17Þ

which satisfy the cyclic property

d1D23 þ d2D31 þ d3D12 ¼ 0: ð18Þ

We note that if one Dij ¼ 0 but the other two Dij’s are
nonzero, one can easily prove by combining the two linear
equations (15) that the pair of charges with (k ≠ i, j) is
vectorlike: ðpk þ qkÞ ¼ 0. In this case, therefore, the
equations reduce to those of the nf ¼ 2 case we already
treated.

1. Nondegenerate system

Let us consider the case Dij ≠ 0 for every i, j. From
Eq. (18) it follows that the signs of the Dij’s cannot all be
equal, and with a suitable permutation of the indices one
can always assume sgnðD23Þ ¼ −sgnðD12Þ ¼ −sgnðD31Þ.
We shall assume that such a reshuffling has been performed
and that D23 is the one with opposite sign.
In this case the system in (3) can be reduced to a

homogeneous quadratic equation, and so the general
procedure to solve the system parallels that of nf ¼ 2,
although the computations become more involved. From
the two linear equations (15) one can easily eliminate two
variables as

p2þq2¼
D31

D23

ðp1þq1Þ; p3þq3¼
D12

D23

ðp1þq1Þ: ð19Þ

Then, direct substitution allows one to turn the cubic
equation (16) into a quadratic one

½d1D3
23 þ d2D3

31 þ d3D3
12�X2

þ 3D2
23½d1D23W2 þ d2D31Y2 þ d3D12Z2� ¼ 0; ð20Þ

in terms of the four variables

X ¼ ðp1 þ q1Þ; W ¼ ðp1 − q1Þ;
Y ¼ ðp2 − q2Þ; Z ¼ ðp3 − q3Þ; ð21Þ

which can be solved using the same method described
previously.
Analogous to the nf ¼ 2 case, solutions can be

expressed as the rational points of a hypersurface in the
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projective space PR3, that in homogeneous coordinates
½X∶Y∶Z∶W� is defined by the zero locus of the quadratic
form

QðX;Y;Z;WÞ≡X2½d1D3
23þd2D3

31þd3D3
12�

þ3D2
23½d1D23W2þd2D31Y2þd3D12Z2�:

ð22Þ

They thus define a quadric hypersurface in the rational
projective space PQ3. It is convenient to switch again to
affine coordinates x ¼ X=W; y ¼ Y=W; z ¼ Z=W, where
we are neglecting for the moment the solutions with
W ¼ 0, which correspond to points at infinity in the
affine space spanned by ðx; y; zÞ.5 The quadratic form
becomes

qðx; y; zÞ≡QðX=W; Y=W; Z=W; 1Þ
¼ x2½d1D3

23 þ d2D3
31 þ d3D3

12�
þ 3D2

23½d1D23 þ y2d2D31 þ z2d3D12�: ð23Þ

The rational point ðx0; y0; z0Þ ¼ ð0; 1; 1Þ always belongs to
the surface, since the Dij’s satisfy the cyclic property (18).
From the knowledge of a rational solution, all the other
rational points can be obtained as the intersection between
the surface and the set of rational lines through ðx0; y0; z0Þ,
defined by

y ¼ kxþ 1; z ¼ lxþ 1;

for k;l ∈ Q.
After a coordinate rescaling and homogenization, the full

solution for the U(1) charges can finally be expressed as

p1 ¼
n
μ3

p̃1 ¼
n
μ3

ðm2½d1D3
23 þ d2D3

31 þ d3D3
12� − 6mD2

23½kd2D31 þ ld3D12� þD2
23½3l2d3D12 þ 3k2d2D31�Þ;

q1 ¼
n
μ3

q̃1 ¼
n
μ3

ð−m2½d1D3
23 þ d2D3

31 þ d3D3
12� − 6mD2

23½kd2D31 þ ld3D12� −D2
23½3l2d3D12 þ 3k2d2D31�Þ;

p2 ¼
n
μ3

p̃2 ¼
n
μ3

ðm2½d1D3
23 þ d2D3

31 þ d3D3
12� − 6mD31D23½kd2D31 þ ld3D12�

− 6kD2
23½kd2D31 þ ld3D12� þD2

23½3l2d3D12 þ 3k2d2D31�Þ;
q2 ¼

n
μ3

q̃2 ¼
n
μ3

ð−m2½d1D3
23 þ d2D3

31 þ d3D3
12� − 6mD31D23½kd2D31 þ ld3D12�

þ 6kD2
23½kd2D31 þ ld3D12� −D2

23½3l2d3D12 þ 3k2d2D31�Þ;
p3 ¼

n
μ3

p̃3 ¼
n
μ3

ðm2½d1D3
23 þ d2D3

31 þ d3D3
12� − 6mD12D23½kd2D31 þ ld3D12�

− 6lD2
23½kd2D31 þ ld3D12� þD2

23½3l2d3D12 þ 3k2d2D31�Þ;
q3 ¼

n
μ3

q̃3 ¼
n
μ3

ð−m2½d1D3
23 þ d2D3

31 þ d3D3
12� − 6mD12D23½kd2D31 þ ld3D12�

þ 6lD2
23½kd2D31 þ ld3D12� −D2

23½3l2d3D12 þ 3k2d2D31�Þ; ð24Þ

with k;l; m; n ∈ Z and the fp̃i; q̃ig are defined implicitly
above. Again, the solutions are parametrized by an extra
variable n which corresponds to an overall rescaling. The
normalization constant μ3 is given by

μ3 ¼ gcdðp̃1; p̃2; p̃3; q̃1; q̃2; q̃3Þ: ð25Þ

The last question left to determine is whether the points at
infinity, corresponding to W ¼ 0, give rise to an additional
family of solutions. In this case, the equation reduces to

X2½d1D3
23 þ d2D3

31 þ d3D3
12�

þ 3D2
23½Y2d2D31 þ Z2d3D12� ¼ 0: ð26Þ

If the sign of the X2 coefficient sgnðd1D3
23 þ d2D3

31 þ
d3D3

12Þ is equal to sgnðD12Þ ¼ sgnðD31Þ, Eq. (26) does not
admit any nontrivial solutions. If the signs are different, the
(non)existence of additional solutions depends on the
numerical value of the coefficients. A known result in
number theory (see Chapter 7 of [53], Theorem 5)
guarantees that if an equation of the form

aX2 þ bY2 þ cZ2 ¼ 0; a ∈ Zb; c ∈ Nnf0g; ð27Þ

has nontrivial integer solutions, at least one of them
satisfies

5Notice that we are choosing to go to affine space by rescaling
by W in order to minimize the number of points at infinity of the
quadric, since D23 was the coefficient with opposite sign with
respect to D12, D13.
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jX0j ≤
ffiffiffiffiffi
bc

p
; jY0j ≤

ffiffiffiffiffiffiffiffi
jajc

p
; jZ0j ≤

ffiffiffiffiffiffiffiffi
jajb

p
: ð28Þ

For any choice of representations, it is therefore possible to
determine whether (26) is solvable in a finite number of
steps, by checking whether any of the integer triples
satisfying (28) solve the equation. In the affirmative case,
all the other solutions can be generated from a particular
one with the methods employed in the last two sections. All
three possibilities can be realized in practice, as shown by
the examples in Appendix.

2. Degenerate system

If Dij ¼ 0 for every ði; jÞ, then the two linear equa-
tions (15) become equivalent. In this case the remaining
equations correspond to a special instance of the equations
for the cancellation of gauge anomalies for a single Uð1Þ
gauge group studied in Refs. [4,6]. In particular, they
coincide with the anomaly cancellation equations for a set
of 2d1 þ 2d2 þ 2d3 fermions charged under a single Uð1Þ
gauge group, in which there are di pairs with charges
ðpi; qiÞ for i ¼ 1, 2, 3. The method of solution of Ref. [4]
does not allow one to easily enforce the constraint that
some of the charges are equal. However, it is still possible
to obtain a closed form solution following an observation
stressed in Appendix B of Ref. [6]: given a cubic curve with
a known rational point P0 which is a double point,6 every
other rational point of the curve can be expressed in terms
of a rational parameter (see, e.g., Theorem 3 in Chapter 9 of
[53]). This is a generalization of the method we used in the
case of a quadric. It is sufficient to consider the set of all the
rational lines through P0: this set covers the whole rational
projective space of interest, and the intersection of such a
line with the cubic is always a rational point, since P0 is a
double point.
In our case we can use the linear equation (15) to

eliminate q3 and obtain a cubic in PQ4, defined in terms of
homogeneous coordinates ½p1∶q1∶p2∶q2∶p3� by the zero
locus of

Fðp1; q1; p2; q2; p3Þ ¼ d1d23ðp3
1 þ q31Þ þ d2d23ðp3

2 þ q32Þ
þ d33p

3
3 − ðd1ðp1 þ q1Þ

þ d2ðp2 þ q2Þ þ d3p3Þ3: ð29Þ

It is easy to verify that the rational point Π0 ¼
½1∶ − 1∶1∶ − 1∶1� lies on the cubic and is also a double
point, since all the partial derivatives of F vanish. We can
therefore find all the rational points of the cubic F as the
intersection of F with the rational lines

L ¼ k1Π0 þ k2Σ; ð30Þ

where K ¼ ½k1∶k2� ∈ PQ and Σ ¼ ½l1∶m1∶l2∶m2∶l3� ∈
PQ4 (the notation for the components of Σ is chosen for
convenience, in analogy with the notation we use for the
charges). Substituting (30) in (29), we find the intersection
points as the solutions of

k22ðk1A1 þ k2A2Þ ¼ 0; ð31Þ

where

A1 ¼ 3d1d23ðl2
1 −m2

1Þ þ 3d2d23ðl2
2 −m2

2Þ þ 3d33l
2
3

− 3d3ðd1ðl1 þm1Þ þ d2ðl2 þm2Þ þ d3l3Þ2;
A2 ¼ d1d23ðl3

1 þm3
1Þ þ d2d23ðl3

1 þm3
1Þ þ d33l

3
3

− ðd1ðl1 þm1Þ þ d2ðl2 þm2Þ þ d3l3Þ3: ð32Þ

For k2 ¼ 0 we recover the original point Π0, whereas for
½k1∶k2� ¼ ½A2∶ − A1� we find all the other rational points
on the cubic. Plugging back and using the linear equation to
recover q3, we obtain the general solution for the charges

p1 ¼
n
μ3

p̃1 ¼
n
μ3

½A2 −A1l1�;

q1 ¼
n
μ3

q̃1 ¼
n
μ3

½−A2 −A1m1�;

p2 ¼
n
μ3

p̃2 ¼
n
μ3

½A2 −A1l2�;

q2 ¼
n
μ3

q̃2 ¼
n
μ3

½−A2 −A1m2�;

p3 ¼
n
μ3

p̃3 ¼
n
μ3

½A2 −A1l3�;

q3 ¼
n
μ3

q̃3

¼ n
μ3

�
−A2þ

A1

d3
ðd1ðl1þm1Þþ d2ðl2 þm2Þþ d3l3Þ

�
;

ð33Þ

with A1 and A2 defined in (32), li; mi; n ∈ Z, and the
fp̃i; q̃ig defined implicitly above. As before, the integer
solutions are parametrized by an extra variable n which
corresponds to an overall rescaling, and the normalisation
constant μ3 is defined as

μ3 ¼ gcdðp̃1; p̃2; p̃3; q̃1; q̃2; q̃3Þ: ð34Þ

Notice that A1 is a multiple of d3 and so the fp̃i; q̃ig are
manifestly integers. Moreover, the vectorlike solutions are
recovered when A1 ¼ 0.

C. Models with arbitrary nf
In this section we set ν≡ nf for notational convenience.

The method of solution described in the last paragraph can
be straightforwardly extended to treat the general case.6That is, a zero of the cubic and of all its partial derivatives.
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Let us consider first Eqs. (3b) and (3c), involving the
dimensions di. We can use the linear equation to solve for
qν and plug back in (3c) to obtain a cubic inPQ2ν−2. In terms
of homogeneous coordinates ½p1∶q1∶…∶pν−1∶qν−1∶pν� it is
defined by

Fðpi; qiÞ ¼ d2ν
Xν−1
i¼1

diðp3
i þ q3i Þ þ d3νp3

ν

−
�Xν−1

i¼1

diðpi þ qiÞ þ dνpν

�3

: ð35Þ

It is easy to check that it describes a singular cubic hyper-
surface with Π0¼½1∶−1∶…∶1∶−1∶1� as a rational double
point. As previously described, we can find all the rational
points of the cubicF as the intersection ofFwith the rational
lines

L ¼ k1Π0 þ k2Σ; ð36Þ
where K ¼ ½k1∶k2� ∈ PQ and Σ ¼ ½l1∶m1∶…∶lν−1∶
mν−1∶lν� ∈ PQ2ν−2.
Carrying out the algebra we find that the rational points

are given by

pi ¼
n
μν

p̃1 ¼
n
μν

½A2 − A1li�;

qi ¼
n
μν

q̃1 ¼
n
μν

½−A2 − A1mi�;

pν ¼
n
μν

p̃ν ¼
n
μν

½A2 − A1lν�;

qν ¼
n
μν

q̃ν ¼
n
μν

�
−A2 þ

A1

dν

�Xν−1
i¼1

diðli þmiÞ þ dνlν

��
;

ð37Þ
where li; mi; n ∈ Z, the index i runs on i ¼ 1;…; ν − 1,
and μν, fp̃i; q̃ig are defined in analogy to the previous
section. The coefficients A1 and A2 are polynomials in the
parameters li and mi:

A1 ¼ 3d2ν
Xν−1
i¼1

diðl2
i −m2

i Þ þ 3d3νl2
ν

− 3dν

�Xν−1
i¼1

diðli þmiÞ þ dνlν

�2

;

A2 ¼ d2ν
Xν−1
i¼1

diðl3
i þm3

i Þ þ d3νl3
3

−
�Xν−1

i¼1

diðli þmiÞ þ dνlν

�3

: ð38Þ

The linear equation involving the Dynkin indices (3a)
results in an additional constraint on the arbitrary integers
li and mi:

Xν−1
i¼1

Diνðli þmiÞ ¼ 0; ð39Þ

which can be either solved explicitly in the previous
expressions or, more conveniently, taken into account
when choosing the integers parametrizing the solution.

IV. THE INCLUSION OF HYPERCHARGE

Having found the general charge assignment for theUð1Þ
gauge group in cases where GSM is a semisimple extension
of the SM group, we wish now to address the case in which
GSM is taken to be SUð3ÞQCD × SUð2ÞEW × Uð1ÞY , and the
new fermions ψ i and χi have a nonvanishing hypercharge.
The quantum numbers underG ×Uð1Þ × GSM are therefore
given by (1), with the specification ri ¼

P
αðr̂i;α; yi;αÞ,

where r̂i;α are irreducible representations of SUð3ÞQCD ×
SUð2ÞEW and yi;α their corresponding hypercharge. The
anomaly cancellation conditions for the Uð1Þ charges, and
their solutions discussed in the previous section, are still
relevant for the models we consider here, but must be
supplemented by additional conditions. There are only two
additional nontrivial equations for the cancellation of gauge
anomalies, namely the mixed ones Uð1ÞY × ½Uð1Þ�2 and
Uð1Þ × ½Uð1ÞY �2. In the general case they read

8<
:

Pnf
i¼1ðpi þ qiÞ

P
α
di;αy2i;α ¼ 0;

Pnf
i¼1ðp2

i − q2i Þ
P
α
di;αyi;α ¼ 0:

ð40Þ

The approach that we choose to pursue is the following:
given a choice of Uð1Þ charges ðpi; qiÞ, which for fixed
SUð3ÞQCD × SUð2ÞEW representations can be found using
the results of the previous section, we want to determine
which assignments of hypercharge are consistent with the
system (40).
It is always possible to solve the system by solving for

one of the hypercharges in the linear equation and plugging
back in the quadratic one. We are left with an homogeneous
quadratic Diophantine whose solutions can always be
found with the methods already illustrated. We shall not
do this explicitly in the general case, but the procedure to
find the general solution for any case of interest should be
clear. We present, however, the explicit solution in two
special cases of phenomenological relevance, in connection
to models of composite axions (see Sec. V for a brief
overview).

A. Models with nf = 2

We treat the case in which yi;α ¼ yi for every α. The
equations for the hypercharges read
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ðp1 þ q1Þd1y21 þ ðp2 þ q2Þd2y22 ¼ 0;

ðp2
1 − q21Þd1y1 þ ðp2

2 − q22Þd2y2 ¼ 0: ð41Þ

In the case of a vectorlike assignment ðq1 ¼ −p1;
q2 ¼ −p2Þ, they are trivially satisfied for arbitrary y1
and y2. We shall therefore consider the case ðp1 þ q1Þ ≠ 0.
If d1 ¼ d2, the U(1) charges satisfy one of the assign-

ments in (5). It follows that the general solutions with
ðp1 þ q1Þ ≠ 0 are

ðp2 ¼ −p1; q2 ¼ −q1; y2 ¼ −y1Þ;
ðp2 ¼ −q1; q2 ¼ −p1; y2 ¼ y1Þ: ð42Þ

Let us now consider d2 > d1. Then, the first equation in
(41) [in combination with Eq. (4)] implies that y1 ¼ �y2.
Because of the second equation in (41), however, these
assignments are consistent only if the U(1) charges satisfy,
respectively,

Qþ ≡ ðp2
1 − q21Þd1 þ ðp2

2 − q22Þd2 ¼ 0 or

Q− ≡ ðp2
1 − q21Þd1 − ðp2

2 − q22Þd2 ¼ 0: ð43Þ

Since the possible values that fpi; qig can take are already
determined by (13), it is possible to verify whether any of
them satisfy (43) upon direct substitution. After a few
algebraic manipulations,

Qþ ¼ 144d1d42k
3l; Q− ¼ 48d1ðd21 − d22Þd22kl3: ð44Þ

The only solutions are either k ¼ 0 or l ¼ 0, which are
already included in the solutions with ðp1 þ q1Þ ¼ 0. We
conclude that for d2 > d1 the only consistent assignments
of hypercharge with yi;α ¼ yi are the vectorlike ones with
ðq1 ¼ −p1; q2 ¼ −p2Þ and arbitrary y1 and y2.

B. Models with nf = 3 and irreducible representations

For nf ¼ 3 and ri irreducible the anomaly cancellation
conditions take the form

ðp1þq1Þd1y21þðp2þq2Þd2y22þðp3þq2Þd3y23¼ 0 ð45Þ

and

ðp2
1−q21Þd1y1þðp2

2−q22Þd2y2þðp2
3−q23Þd3y3¼ 0: ð46Þ

As in the nf ¼ 2 case, vectorlike solutions with (pi ¼ −qi)
automatically satisfy the equations for any choice of
hypercharges, so we assume pi þ qi ≠ 0 in the following.
Equation (45), together with the other linear equations (15),
immediately implies that for any chiral solution

det

0
B@

d1 d2 d3
T1 T2 T3

d1y21 d2y22 d3y23

1
CA ¼ 0; ð47Þ

also equivalent to

y21d1D23 þ y22d2D31 þ y23d3D12 ¼ 0; ð48Þ

in our notation.
We consider the case in which Dij ≠ 0 for all pairings,

that is, realised in all the nf ¼ 3 composite axion models
classified in Ref. [29] (see Table III). Then, Eq. (46) can be
turned into a simpler form

ðp1 − q1Þd1y1D23 þ ðp2 − q2Þd2y2D31

þ ðp3 − q3Þd3y3D12 ¼ 0; ð49Þ

from the relations (19) involving the sums pi þ qi.
Assuming that the system does not admit solutions with
pi þ qi ¼ 0 for every i ¼ 1, 2, 3,7 and without loss of
generality taking p3 ≠ q3, upon further substitution we
obtain a second degree homogeneous equation in two
variables for the hypercharges

y21d1D23½d3D12ðp3 − q3Þ2 þ d1D23ðp1 − q1Þ2�
þ y22d2D31½d3D12ðp3 − q3Þ2 þ d2D31ðp2 − q2Þ2�
þ 2y1y2d1d2D23D31ðp1 − q1Þðp2 − q2Þ ¼ 0; ð50Þ

which can easily be solved for given values of the charges
fpi; qig. In particular, it admits a solution if and only if the
quantity

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−d1d2D23D31ðp3 − q3Þ½d1D23ðp1 − q1Þ þ d2D31ðp2 − q2Þ þ d1D23ðp3 − q3Þ�

p
∈ Z: ð51Þ

The values of the hypercharges y2 and y3 can be straight-
forwardly derived from the previous equations given an
arbitrary integer value of y1.

V. COMPOSITE AXION MODELS AND PECCEI-
QUINN VIOLATING OPERATORS

Having determined the general solutions to the anomaly
cancellation equations for a broad class of chiral gauge
theories, we wish to apply these results to cases of
phenomenological relevance, illustrating their usefulness.

7This is equivalent to the condition d1D3
23þd2D3

31þd3D3
12≠0,

satisfied in all the explicit models of interest.
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We shall do so in the context of the models of composite
QCD axion recently introduced in Ref. [29], which we
briefly review. We refer the reader to [29] for a more
detailed discussion, references to the original literature, and
alternative approaches.
The models considered have the structure described in

Eq. (1), withG ¼ SUðNÞ and R ¼ □, withGSM taken to be
either the SM gauge group or its unified version SUð5ÞGUT,
and the SU(N) dynamics assumed to be confining with a
confinement scale of the order of the Peccei-Quinn scale
fPQ ≳ 4 × 108 GeV. A schematic table depicting the matter
content of the models is shown in Table I. When the set
fri;αg of irreducible GSM representations includes frag-
ments with different Dynkin indices, some of the global
symmetries are anomalous, and one of them can be
identified with the PQ symmetry giving rise to the QCD
axion. It is spontaneously broken by the confining dynam-
ics, and the QCD axion is identified with one of the
(pseudo) Nambu-Goldstone bosons. The accidental nature
of the symmetry thus provides a natural explanation for its
existence, different from more traditional constructions
where the axion is introduced as the phase of a fundamental
complex scalar field and the PQ symmetry is postulated by
hand [54–57]. The models can be seen as generalizations of
the composite axion proposed in [18], with the difference
that fermions are now charged under an additional U(1)
factor. Since the axion decay constant fa will be of order of
the confinement scale ΛPQ, the latter has to take very high
values in realistic models, ΛPQ > 108 GeV. Therefore, the
low energy phenomenology is completely determined by
the states that remain naturally light, such as (pseudo)
Nambu-Goldstone bosons. The effects of the Uð1Þ and
GSM weak gaugings can be included systematically, and the
dynamics of these states thoroughly analyzed, with the use
of an effective chiral Lagrangian approach. The phenom-
enological properties of the QCD axion can be well

predicted in terms of the UV theory. In the notation of
[29], and using the results of [58], one has

ma ¼ 5.70ð7Þ
�
1012 GeV

fa

�
μeV;

gaγγ ¼
αem
2πfa

�
E
N
− 1.92ð4Þ

�
;

cp ¼ −0.47ð3Þ; cn ¼ −0.02ð3Þ: ð52Þ

The vanishing of the leading-order UV contributions to the
axion-fermion couplings in our model gives a sharp
prediction for these quantities, common to all the so-called
“hadronic” axion models.
Reference [29] classified all the choices of GSM repre-

sentations for nf ¼ 2 and nf ¼ 3 (in the first case with ri
reducible, while in the second case with ri irreducible) such
that: (1) the renormalizable Lagrangian has an accidental
Peccei-Quinn global symmetry; (2) the dynamics of the
SU(N) gauge group is confining; and (3) the SM gauge
couplings are perturbative up to the Planck scale.
Generic higher dimensional operators can and will break

explicitly the global PQ symmetry. In particular, these
operators are expected to be generated by every consistent
quantum gravity UV completion [2,3], potentially spoiling
the QCD axion solution to the strong CP problem. This
UV sensitivity is known as the axion quality problem.
To quantify the level of protection needed to ensure a
robust solution to the strong CP problem irrespectively of
the UV physics, it is necessary to identify the leading
effects that generate a UV contribution to the QCD axion
potential.
It has been shown in Ref. [29] that the PQ violating

operators that generate a potential for the QCD axion
are gauge invariant operators of the schematic form
OPQ ¼ Q

i ψ iχi, possibly nonlocal products of local gauge
invariant scalar operators (i.e., of the operators that appear
in the Lagrangian).8 We shall refer to the insertion of a local
operator in a correlator as a single insertion, whereas the
insertion of a nonlocal operator of the described form will
be called amultiple insertion. An operator corresponding to
a double insertion will be a bilocal operator Oðx1; x2Þ, and
more general multiple insertions will correspond to multi-
local operators. We assume that the anomalous dimensions
of the operators are small corrections to the classical
dimension. The effective dimension of a nonlocal operator
built from N local ones is

TABLE I. Schematic structure of the composite axion models
with nf ¼ ν. The representations r1; r2;…; rν can be reducible,
and the Uð1ÞD charges satisfy ðpi þ qiÞ ≠ 0 in chiral models. The
PQ transformation, if it exists, is a traceless, axial, global U(1)
symmetry which commutes exactly with the whole gauge group
and is anomaly-free under SUðNÞ2. See Ref. [29] for a classi-
fication of explicit examples.

SU(N) Uð1ÞD GSM Uð1ÞPQ
ψ1 □ p1 r1 α1
..
. ..

. ..
. ..

. ..
.

ψν □ pν rν αν

χ1 □̄ q1 r̄1 α1

..

. ..
. ..

. ..
. ..

.

χν □̄ qν r̄ν αν

8Additional factors of the form ðψ†
i ψ iÞ, ðχ†i χiÞ could in

principle be relevant for non-local operators, but are always
redundant for local operators, since they are always PQ singlets
and it is always possible to construct a lower dimensional
operator by removing them. We shall neglect them in what
follows, and comment on them only when needed.
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Δeff ¼
XN
i¼1

Δi − 4ðN − 1Þ; ð53Þ

whereΔi is the scaling dimension of each local operator, and
we are neglecting possible anomalous dimensions. Denoting
byΔPQ the (effective) dimension of the leading PQ violating
effects, a solution of the axion quality problem requires
ΔPQ ≥ 9. Robust solutions with ΔPQ ¼ 12 have been iden-
tified, and we shall show now that with appropriate charge
assignments it is possible to have models withΔPQ up to 18.
It is convenient to adopt a notation such that ðψ iχiÞκi ¼

ðψ�
i χ

�
i Þjκij for κi < 0, with the Lorentz, G, and GSM indices

contracted so that the pair ψ iχi is a scalar operator, gauge
singlet of G and GSM, and κi is an integer.
In this class of models, any anomalous Uð1Þ global

symmetry corresponding to a PQ symmetry always acts as
a multiple of the identity on the subsets fψ i;α; χi;αg of the
fields fψ i; χig, with ψ i;α corresponding to the irreducible
GSM representation ri;α, and similarly for χi;α. Therefore,
given an operator of the schematic form

Q
iðψ iχiÞ it is

always possible to construct a PQ violating one with the
same dimension, by restricting to a single subset of fields
on which the PQ symmetry generator acts nontrivially.
On the other hand, according to the analysis of [29], the
PQ violating operators that generate a potential for the
QCD axion are gauge invariant operators of the formQ

iðψ i;αχi;αÞκi , possibly nonlocal products of local gauge
invariant scalar operators. Therefore it is sufficient to
characterize the set of operators of the form

Q
iðψ iχiÞ.

An operator Os ¼
Q

ν
i¼1ðψ iχiÞκi is gauge invariant, i.e.,

neutral under Uð1Þ, if and only if

Xν
i¼1

κiðpi þ qiÞ ¼ 0: ð54Þ

At the level of a single insertion, the lowest dimensional
operators generating a potential for the axion will then have
a classical scaling dimension of

Δs ¼ 3 · Minfκig

�Xν
i¼1

jκij
�
; ð55Þ

where the minimization occurs among the set of integers
fκig satisfying (54). In turn, one can determine the operator
dimension for multiple insertions by performing the
sum (53).

A. Models with nf = 2

We focus now on models with nf ¼ 2, whose classi-
fication along the lines previously discussed is summarized
in Table II. From now on we shall consider the case
d2 > d1, with pi þ qi ≠ 0, of interest for the solution of the
QCD axion quality problem.
Regarding the dimension of PQ violating operators,

Ref. [29] identified some universal PQ violating local
operators that imply an upper bound on the dimension
of the leading PQ violating operator Δmax

PQ . The question of
whether there are charge assignments with ΔPQ ¼ Δmax

PQ

was, however, left unsettled. Using our explicit solution we
are able now to address this question, showing that in all the
models there are charge assignments with ΔPQ ¼ Δmax

PQ ,
thus providing a positive answer. In particular, for the case
nf ¼ 2, there are phenomenologically viable models with
ΔPQ ¼ 15 that can therefore provide a particularly robust
solution to the axion quality problem.
At the level of local operators, the condition (54)

together with Eq. (13) gives

κ1ð6d22klÞ þ κ2ð−6d1d2klÞ ¼ 0: ð56Þ

TABLE II. Classification of composite axion models with nf ¼ 2, reproduced from [29]. The multiplicity of SM
singlets m is an integer in the specified range. Δmax

PQ denotes the dimension of the leading single insertion PQ
violating operators, while in the last column we list a lower bound on k=l, for k > l > 0, that ensures that the effect
of multiple insertions is negligible. An empty slot means that single insertions are always the leading effect for that
choice of representation. The corresponding charges can be obtained from Eq. (13).

GSM r1 r2 d1 d2 Δmax
PQ ðk=lÞmin

SUð3Þc ð3 ⊕ m1Þ ð3 ⊕ m1Þ 3þm 3þm 1 ≤ m ≤ 23 6
ð3 ⊕ m1Þ 2ð3 ⊕ m1Þ 3þm 2ð3þmÞ 1 ≤ m ≤ 8 9
ð3 ⊕ m1Þ 3ð3 ⊕ m1Þ 3þm 3ð3þmÞ 1 ≤ m ≤ 3 12 14=9
2ð3 ⊕ m1Þ 2ð3 ⊕ m1Þ 2ð3þmÞ 2ð3þmÞ 1 ≤ m ≤ 3 6
ð3 ⊕ 1Þ 4ð3 ⊕ 1Þ 4 16 15 5=2
2ð3 ⊕ 1Þ 3ð3 ⊕ 1Þ 8 12 15 10=9

SUð5ÞGUT ð5 ⊕ m1Þ ð5 ⊕ m1Þ 5þm 5þm 1 ≤ m ≤ 21 6
ð5 ⊕ m1Þ 2ð5 ⊕ m1Þ 3þm 2ð3þmÞ 1 ≤ m ≤ 6 9
ð5 ⊕ 1Þ 3ð5 ⊕ 1Þ 6 18 12 14=9
2ð5 ⊕ 1Þ 2ð5 ⊕ 1Þ 12 12 6

5 ð10 ⊕ 51Þ 5 15 12 14=9
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Its unique nonzero solution for k;l ≠ 0 is ½κ1∶κ2� ¼
½d1∶d2� and corresponds to the PQ violating operators
already identified in [29]. This shows that those operators
are the lowest dimensional among local operators. Their
explicit form and classical dimension are

Os ¼ ðψ1χ1Þκ1ðψ2χ2Þκ2 ;
Δs ¼ 3ðd1 þ d2Þ= gcdðd1; d2Þ > 6: ð57Þ

The question left to answer is whether it is possible to
have a nonlocal operatorOPQ of the form ðψ1χ1Þκ1ðψ2χ2Þκ2
that is the product of two or more local gauge invariant
scalar operators and has a smaller effective dimension. We
can always write this operator as the product of two gauge
invariant scalar operators, OPQ ¼ O1O2, which are pos-
sibly nonlocal.9 A net zero charge under U(1) is a necessary
but not a sufficient condition for these operators to be gauge
invariant, since specific choices of representations under
GSM will impose additional requirements; however, these
are model dependent and will not be considered in our
analysis. Since κ1 and κ2 have the same sign, the only
possible suboperators that can be gauge singlets for every
choice of group G are ðψ iχiÞλ, ðψ1χ2Þλ; ðψ2χ1Þλ, or a
product of them.10 The case O1 ¼ ðψ iχiÞλ is excluded
unless k ¼ 0 or l ¼ 0, which correspond to vectorlike
assignments. Similarly, O1 ¼ ðψ iχjÞλ, with i ≠ j gives

λðpi þ qjÞ ¼ 0; ð58Þ

which implies

d2k2 � ðd2 − d1Þkl ¼ 0 ð59Þ

and has no solution for k ≠ 0, assuming ½k∶l� ≠
½�ðd2 − d1Þ∶d2�. This also excludes the case O1 ¼
ðψ iχiÞλ1ðψ jχkÞλ2 , since the operator O2 would be of the
form we already excluded. We are left with operators of the
form O1 ¼ ðψ1χ2Þλ1ðψ2χ1Þλ2 , and correspondingly O2 ¼
ðψ1χ1Þκ1−λ1ðψ2χ2Þκ2−λ1ðψ2χ1Þλ1−λ2 , with ½k1∶k2� ¼ ½d1∶d2�.
Their gauge invariance implies the condition

λ1ðp1þq2Þþλ2ðp2þq1Þ¼0

⇒λ1ðkd2þlðd2−d1ÞÞþλ2ð−kd2þlðd2−d1ÞÞ¼0; ð60Þ

which is solved by ½λ1∶λ2� ¼ ½kd2 − lðd2 − d1Þ∶
kd2 þ lðd2 − d1Þ�. Given a choice of dimensions d1 and
d2, it is always possible to find a choice of k;l such that the

classical dimension of O1 considered as a local operator
ΔðO1Þ is arbitrarily large. Indeed, for k > l > 0,

ΔðO1Þ ¼ 3 · Minfλigfjλ1j þ jλ2jg ≥ 3 ·
2kd2

2lðd2 − d1Þ
≡ ΔðO1Þjmin; ð61Þ

since for ðλ̄1 ¼ kd2 − lðd2 − d1Þ; λ̄2 ¼ kd2 þ lðd2 − d1ÞÞ,
we have that gcdðλ̄1; λ̄2Þ must be a divisor of λ̄2 − λ̄1 ¼
2lðd2 − d1Þ. In the limit of large k=l we can therefore
increase the dimension of all operators with the same
form as O1 arbitrarily, so that their insertions can be
neglected.
On the other hand, ΔðO2Þ ≥ 9 if O2 is a local operator,

so that even in the case in which ΔðO1Þ > 9 and it can be
obtained as a nonlocal composite operator built as the
product of local operators O2, its effective dimension is
bounded by

ΔðO1Þjeff ≥ ΔðO1Þjmin − 4

�
1

9
ΔðO1Þjmin − 1

�

¼ 4þ 5

9
ΔðO1Þjmin; ð62Þ

which can again be made arbitrarily large by appropriately
choosing k=l.
As a consequence, it is always possible to find charge

assignments such that the leading PQ-violating effects are
associated with local operators of the form (57), with
classical dimension Δs. In particular, all the nf ¼ 2 models
classified in Table II admit charge assignments with the
maximal level of protection, ΔPQ ¼ Δmax

PQ .

B. Models with nf = 3 and beyond

For considerations related to PQ violating operators it is
convenient to use the parametrization of Eq. (37) for the
Uð1Þ charges, in the case where nf > 2. For this reason, we
shall first provide a unified treatment, and later specialize to
the particular case nf ¼ 3. In this section we set again
ν≡nf for notational convenience. Following this approach,
Eq. (54) can be written as

Xν−1
i¼1

ðli þmiÞðκidν − diκνÞ ¼ 0; ð63Þ

supplemented by the constraint

Xν−1
i¼1

ðli þmiÞDiν ¼ 0: ð64Þ

We remind the reader that the parameters describing the
solutions (37) are given by the set fli; migi¼1;…;ν−1 plus the
additional variable lν, which does not appear in the two

9That is, they can themselves be the result of a multiple
insertion.

10It is straightforward to check that additional factors of the
form ðψ†

iψ jÞ, ðχ†i χjÞ can always be neglected when interested in
the lowest dimensional PQ violating operators.
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equations above. The solutions with li ¼ −mi correspond
to vectorlike charge assignments, and we shall henceforth
assume li þmi ≠ 0.
Substituting the constraint (64) into (63), one is left with

Xν−2
i¼1

ðli þmiÞ½Dν−1νðκidν − diκνÞ

−Diνðκν−1dν − dν−1κνÞ� ¼ 0; ð65Þ

an expression only in terms of the independent parameters
fli; migi¼1;…;ν−2. The case ν ¼ nf ¼ 3 gives a linear
Diophantine equation in the three integer variables κi,
and this can be easily solved once a choice of representa-
tions has been specified. It is given by

κ1D23 þ κ2D31 þ κ3D12 ¼ 0: ð66Þ

This shows in particular that at the level of single insertion,
the existence of PQ violating operators and their leading
dimension is determined only by the choice of GSM
representations and does not depend on the specific assign-
ments of U(1) charges. This feature is true also for the
nf ¼ 2 models of the previous section, and was also
noticed a posteriori in the numerical scan of PQ violating
operators performed in [29] for selected nf ¼ 3 models.
In general, defining E ¼ gcdðD23; D31Þ, and given an

explicit solution ðx0; y0Þ to the equation

D23xþD31y ¼ E; ð67Þ

which can always be found through Euclid’s algorithm, the
general solution to Eq. (66) is

½κ1∶κ2∶κ3� ¼ ½−D12ðx0h1 þD31h2Þ∶
−D12ðy0h1 −D23h2Þ∶Eh1�; ð68Þ

with h1; h2 ∈ Z arbitrary integers. Moreover, an obvious
solution to Eq. (66) is ðκ1; κ2; κ3Þ ¼ ðd1; d2; d3Þ, which
allows one to extract the upper bound

Δs ≤ 3
d1 þ d2 þ d3
gcdðd1; d2; d3Þ

: ð69Þ

This is, however, hardly saturated in practice, as one can
usually find solutions with smaller κi’s.
We are ready now to apply this general analysis to the

case of the composite axion models with nf ¼ 3 and
irreducible GSM representation classified in Ref. [29], as
summarized in Table III. As an example, consider the
model with GSM ¼ SUð5ÞGUT and ðr1; r2; r3Þ ¼ ð1; 5̄; 10Þ
or ðr1; r2; r3Þ ¼ ð1; 5; 10Þ. There, Eq. (66) reads

5κ1 − 3κ2 þ κ3 ¼ 0: ð70Þ

Its general solution is ½κ1∶κ2∶κ3�¼½h1þ3h2∶2h1þ5h2∶h1�.
The solutions that minimize the expression in (55) are
obtained for ðh1; h2Þ equal to ðþ1; 0Þ, ð−2;þ1Þ, and
ð3;−1Þ, corresponding to ðκ1; κ2; κ3Þ ¼ ðþ1;þ2;þ1Þ,
ðκ1;κ2;κ3Þ¼ðþ1;þ1;−2Þ, and ðκ1; κ2; κ3Þ ¼ ð0;þ1;þ3Þ,
respectively, and result in Δs ¼ 12. These operators
coincide with the generic PQ violating operators identified
in Ref. [29], present irrespectively of the choice of Uð1Þ
charges. The absence of additional local operators for
arbitrary values of the charges was a mysterious output
of the numerical scan that we now understand from an
algebraic perspective. It is straightforward to repeat the
same analysis for the other choices of representations.
For ν ¼ nf > 3, it is always possible to find an assign-

ment of the fli; mig such that, for any choice of the κi
within a finite set, Eq. (65) can be satisfied only if it
vanishes term by term, i.e.,

JiðκÞ≡Dν−1νðκidν − diκνÞ −Diνðκν−1dν − dν−1κνÞ
¼ 0; i ¼ 1;…; ν − 2: ð71Þ

To do so, one starts by fixing a desired level of protection
Δ� that is required at the level of single insertions, and
correspondingly chooses the κi to be lying within the set

KðΔ�Þ ¼
�
κi ∈ Z;with3

X
jκij ≤ Δ�

�
: ð72Þ

A suitable choice of the fli; mig can then be constructed as
follows. Starting from arbitrary values of ðl1; m1Þ, the
elements fli; migi¼1;…;ν−2 should be chosen to satisfy

jlj þmjj>maxfκi∈KðΔ�Þ;JjðκÞ≠0g

�				
Pj−1

i¼1ðli þmiÞJiðκÞ
JjðκÞ

				
�
;

ð73Þ

TABLE III. Classification of composite axion models with
nf ¼ 3 and irreducible representations, reproduced from [29].
The dimension di of the representation ri can be read from the
symbol corresponding to the irreducible representation. We
report the values of the coefficients Dij defined in Eq. (17).
The last column reports the dimension of the leading single
insertion PQ violating operator, as confirmed from our analysis.
For the charge assignments specified by parameters satisfying
Eq. (85), multiple insertions are negligible and ΔPQ ¼ Δmax

PQ .

GSM r1 r2 r3 D12 D23 D31 Δmax
PQ

SUð3Þc 1 3 6 1 9 −5 12
8 3 6 −10 9 −4 15
1 3 8 1 10 −6 15
1 6 8 5 −4 −6 12

SUð5ÞGUT 1 5̄ 10 1 5 −3 12
1 5̄ 15 1 20 −7 15
1 10 15 3 25 −7 18
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which is well defined for any value of Δ� since the right-
hand side is a bounded quantity (the denominator is a
nonvanishing integer) and the set K is finite. Working in
reverse, it is now easy to see that all the Ji’s in (71) must
vanish if Eq. (65) is to be satisfied, starting from i ¼ ν − 2
and proceeding in descending order up to i ¼ 1.
With a few algebraic manipulations, the equations in (71)

can be turned into the system

8>>>>>>>><
>>>>>>>>:

k1Dν−1ν þ kν−1Dν1 þ kνD1ν−1 ¼ 0

..

.

kiDν−1ν þ kν−1Dνi þ kνDiν−1 ¼ 0

..

.

kν−2Dν−1ν þ kν−1Dνν−2 þ kνDν−2ν−1 ¼ 0:

ð74Þ

The first equation coincides with (66) after a relabeling and
is therefore solved by

½κ1∶κν−1∶κν� ¼ ½−D1ν−1ðx0h1 þDν1h2Þ∶
−D1ν−1ðy0h1 −Dνν−1h2Þ∶Eνh1�; ð75Þ

where Eν ¼ gcdðDνν−1; Dν1Þ and, as before, ðx0; y0Þ is a
particular solution of

Dνν−1xþDν1y ¼ Eν: ð76Þ

The remaining ν − 3 variables can be extracted from the
corresponding equations as

½κi∶κν−1∶κν� ¼ ð77Þ

½DνiD1ν−1ðy0h1 −Dνν−1h2Þ −Diν−1Eνh1∶

−Dν−1νD1ν−1ðy0h1 −Dνν−1h2Þ∶Dν−1νEνh1�: ð78Þ

Analogously to the case nf ¼ 2, one can then define a
maximum level of protection

Δmax
PQ ¼ 3 · Minfκig

�Xν
i¼1

jκij
�
; ð79Þ

where the minimization is restricted to the fκig taking
values in (75) and (77). For nf ¼ 3, this coincides with the
Δmax

PQ of [29], corresponding to the operators discussed in
the previous paragraph. Setting Δ� ¼ Δmax

PQ in Eq. (72), we
have then shown that there exist charge assignments for
which all single insertions have a dimension Δs ≥ Δmax

PQ .
A complete analysis of the effects due to multiple

insertions would probably require a numerical, brute-force
approach to implement GSM gauge invariance, as per-
formed in [29] for a specific choice of representations.
However, we shall show that there always exist values of

the fli; mig [and hence of the U(1) charges] for which the
effect of multiple insertions is subdominant with respect to
that of single insertions, so that ΔPQ ¼ Δmax

PQ can be
obtained even for the models with general nf. In particular,
this applies to the nf ¼ 3 models listed in Table III. The
statement can be shown by proving that for such values of
the charges it is not possible to write down any local, gauge
invariant operator with a dimension smaller than those of
the form Os ¼

Q
ν
i¼1ðψ iχiÞκi . It then follows from (53) that

any multiple insertion will have an effective dimension
of Δeff ≥ NðΔmax

PQ − 4Þ þ 4 ≥ Δmax
PQ .

The fermion content of a generic operator can be written
as Oε ¼

Q
ν
i¼1 ψ

κiþεi
i χκii , where gauge invariance under G

for arbitrary gauge group G imposes the constraintP
ν
i¼1 εi ¼ 0, and we do not impose invariance under

GSM. Generalizing (54), the requirement of neutrality under
U(1) can be stated as

Xν
i¼1

κiðpi þ qiÞ þ εipi ¼ 0: ð80Þ

Thus, the lowest dimension they can attain is given by

Δε ¼
3

2
· Minfκi;εig

�Xν
i¼1

jκij þ
Xν
i¼1

jκi þ εij
�
; ð81Þ

where the minimum is evaluated over all values of fκi; εig
satisfying (80). Of course, Δε ≤ Δmax

PQ , corresponding to the
case where εi ¼ 0 for all i. Using the fact that

P
ν
i¼1 εi ¼ 0,

Eq. (80) can be turned into (assuming A1 ≠ 0)

Xν−2
i¼1

JiðκÞðli þmiÞ þ dν
Xν
i¼1

εili ¼ 0; ð82Þ

the first term can be recognized as the one corresponding to
single insertions. We now wish to prove the existence of
suitable charge assignments, for which no solutions to
Eq. (82) can realize Δε < Δmax

PQ . The strategy is to choose
values of the fli; mig such that Eq. (82) must be satisfied
term by term (with a similar procedure to the one used for
single insertions):

JiðκÞ ¼ 0;
Xν
i¼1

εili ¼ 0; ð83Þ

and such that there are no solutions to (83) withΔε < Δmax
PQ .

They are defined as those belonging to the set
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KεðΔmax
PQ Þ

¼
�
κi;εi ∈Z;with

3

2

�X
jκijþ

X
jκiþ εij

�
<Δmax

PQ

�
:

ð84Þ

To ensure the latter condition is satisfied, one starts by
choosing the flig in such a way that the elements of
KεðΔmax

PQ Þ can never solve the independent equations in (83)
simultaneously. This can always be done by taking the li to
be large enough, for instance, ljþ1 > jPj

i¼1 εilij for any
εi ∈ KεðΔmax

PQ Þ.11 This implies Eq. (83) can be satisfied only
if the εi vanish one by one starting from i ¼ ν, a solution
that does not belong to KεðΔmax

PQ Þ. On the other hand, the
fmigi¼1;…;ν−2 can be chosen in succession so that they
satisfy12

jlj þmjj > maxfκi;εi∈KεðΔmax

PQ
Þ;JjðκÞ≠0g

×

�				
Pj−1

i¼1ðli þmiÞJiðκÞ
JjðκÞ

				þ
				 dν

P
ν
i¼1 εili

JjðκÞ
				
�
;

ð85Þ

in such a way that, in analogy with what was argued
previously for Eq. (73), any solution of (82) with κi; εi ∈
KεðΔmax

PQ Þ requires all terms JiðκÞ to vanish individually,
implying (83). By construction, the solutions of (83) cannot
belong toKεðΔmax

PQ Þ, and one concludes that there cannot be
gauge invariant, local operators with a dimension smaller
than Δmax

PQ (corresponding to the already identified single
insertion).13 Notice that Eq. (85) automatically implies
(73), so that single and multiple insertions can be accounted
for simultaneously, and the charge assignments now
specified indeed have ΔPQ ¼ Δmax

PQ . In particular, all the
models of Table III admit charge assignments with the
maximum level of protection.
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APPENDIX: POINTS AT INFINITY FOR nf = 3

We collect a few explicit examples concerning the
additional family of solutions that may arise from points
at infinity for nf ¼ 3, showing how all the three possibil-
ities listed at the end of Sec. III B can be realized in
practice. These models do not have any pretense of being
realistic or phenomenologically relevant, but only serve as
a proof of principle for the existence of such solutions. For
this reason, we can take the would-be-SM gauge group
GSM as any semisimple Lie group.
In the notation of Sec. III B, points at infinity correspond

to the solutions of Eq. (26), which can also be parametrized
as in (27). The different representations can always be
arranged in such a way that b · c > 0, leading to three
qualitatively distinct cases. In each of these, we write down
a choice of representations that would realize that possibil-
ity and the corresponding form of Eq. (26).
(a) Case 1: a · b ≥ 0, no solution:

GSM ¼SUð3Þ; r1¼ 3; r2 ¼ 6; r3¼ 1; ðA1Þ

8X2 þ 10Y2 þ 15Z2 ¼ 0: ðA2Þ

Being a sum of positive terms, this equation does not
admit any nontrivial integer solutions.

(b) Case 2:a · b < 0, infinite solutions:

GSM ¼SUð4Þ; r1¼ 4; r2 ¼ 1; r3¼ 6; ðA3Þ

3X2 − 4Y2 − 12Z2 ¼ 0: ðA4Þ

One can check by inspection that the point
ðX0; Y0; Z0Þ ¼ ð2; 0; 1Þ belongs to the conic. With
the methods employed in the text, the general solution
can be written down as

X ¼ n
μ
ð8k2 þ 6l2Þ; Y ¼ n

μ
12kl;

Z ¼ n
μ
ð4k2 − 3l2Þ; n; k;l ∈ Z; ðA5Þ

with

μ ¼ gcdð8k2 þ 6l2; 12kl; 4k2 − 3l2Þ: ðA6Þ

(c) Case 3:a · b < 0, no solution

GSM¼SUð5Þ; r1¼10; r2¼5; r3¼24; ðA7Þ

525X2 − 2366Y2 − 2028Z2 ¼ 0: ðA8Þ

One can check numerically that there are no integer
solutions in the domain defined by (28), so that the
only one is the trivial one.

11The setKεðΔmax
PQ Þ is finite, so this prescription is unambiguous.

12At this point, mν−1 will be univocally determined by the
constraint (64).

13Except the trivial operators solely built out of ðψ†
i ψ jÞ, ðχ†i χjÞ

factors that do not affect the axion potential.
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