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We investigate the impact of the finite volume and the thermal fluctuations on the critical end point
of the QCD phase diagram. To do so, we implement the super statistics framework with gamma, F, and
log-normal distributions and their relation with the Tsallis nonextensive thermodynamics. We compute an
effective thermodynamic potential as a function of the inverse temperature fluctuations and explicit
dependence on the system volume. To find an analytic expression for the effective potential, we expand the
modified Boltzmann factor by using the equilibrium thermodynamic potential computed in the linear sigma
model coupled to quarks. We find that the pseudocritical temperature of transition at vanishing baryon
chemical potential is modified by the size of the system being about 7% lower for small volumes.
Additionally, the critical end point moves to higher densities and lower temperatures (about 12% in both
cases). Interestingly, the results are quantitatively the same when the parameter that models the out-of-
equilibrium situation is modified, indicating that the chiral symmetry restoration is robust against the
thermal fluctuations in this approximation.
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I. INTRODUCTION

In the understanding of the strongly interacting matter
under extreme conditions, the study of the QCD-phase
diagram has become of great interest in the last few years.
In particular, determining the location of the critical end
point (CEP) in the baryon chemical potential (μB) and
temperature (T) plane is a challenging goal from theoretical
and experimental perspectives. It is well established that
in some regions of density and temperature, the so-called
chiral symmetry is restored from the hadronic matter to the
quark-gluon plasma phase (QGP): LQCD with 2þ 1 light
flavors shows a transition in the T axis as a crossover with a
pseudocritical temperature Tc ≃ 150–156 MeV [1–3] (see
Ref. [4] for an overview of recent progress in the phase
diagram). Recent determination of the transition temper-
ature with increased precision at finite baryon density can

be found in Refs. [5,6], with Tc ¼ 156.5� 1.5 MeV at
μB ¼ 0. Moreover, many theoretical and phenomenological
models predict a first-order transition line in the low T and
large μB region [7–12]. Hence, the pass from a second
order phase transition regime to one of first order defines
the CEP location.
Although the phenomenological description of the

experimental data assumes conditions close to ideal ther-
malization, it is natural to assume that, in a heavy-ion
collision, there are stages where the thermal equilibrium
cannot be demanded a priori [13–15]. Indeed, the QGP
phase is preceded by the glasma, which corresponds to a
high gluon occupation system where its constituents are
out of thermal equilibrium [16–18]. Previous works have
demonstrated that the signals of the glasma can be relevant
to the final observables such as elliptic flow and photon
invariant momentum distribution [19–22]. Then, it is
interesting to inquire if the nonequilibrium stages related
to the QGP formation may modify the findings about the
chiral symmetry restoration.
As an attempt to describe situations outside of thermal

equilibrium, super statistics (SS) is one of the most
attractive frameworks for describing the nonequilibrium
dynamics of complex systems. Beck and Cohen introduced
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SS as an extension of the equilibrium Boltzmann statistics
by considering fluctuations in some extensive parameter β̃
[23–25]. Such a parameter can be identified as the inverse
temperature, vorticity, friction constant, volatility in
finance, or a quantity whose space-time fluctuations are
much larger than the typical relaxation time of the local
dynamics. Previous works have shown that a SS description
of the temperature and baryon chemical potential impact
the CEP location [26,27]. On the other hand, particular
choices of SS are related to nonextensive thermodynamic
scenarios [28,29], so that SS may serve as a link between
the thermal fluctuations [30,31] and the studies with
nonextensive statistical mechanics [32–34] or explicit
volume dependence [35–40] for the QCD phase diagram.
This work presents the interplay between the thermal

fluctuations and the finite-volume effects in the CEP
location in the linear sigma model (LσM) framework.
First, the out-of-equilibrium situation is modeled with
the χ2 distribution function so that the fluctuations of the
inverse temperature β are encoded in the parameter q. The
CEP’s volume dependence arises from the definition of
the Boltzmann partition function, which enters explicitly
into the SS-thermodynamic potentials within a Tsallis-like
prescription. The paper is organized as follows: In Sec. II,
we present a summary of the SS and its relation with the
nonextensive Tsallis thermodynamics. Next, in Sec. III, the
SS-effective potential density is found in its general form as
a function of its equilibrium counterpart. Then, in Sec. V,
we present the effective density potential (in equilibrium)
from the LσM coupled to quarks. The results and dis-
cussion are presented in Sec. VI. Finally we summarize and
give an outlook of the analysis in Sec. VII.

II. SUPER STATISTICS

The SS is based on the idea that some intensive
parameter β̃ may fluctuate by following a certain proba-
bility distribution function fðβ̃Þ. By assuming that the
system passes through equilibrium states e−β̃ Ĥ, it is
possible to construct a modified Boltzmann factor from
the superposition of two statistics: one referring to the local
equilibrium, and other due to the fluctuations. Explicitly,
this modified Boltzmann factor reads

B̂≡
Z

∞

0

dβ̃fðβ̃Þe−β̃ Ĥ; ð1Þ

where Ĥ is the Hamiltonian of the system. At this level,
SS is an ansatz, and therefore, it cannot be taken as an first
principles model for thermodynamic fluctuations.
Several models for fðβ̃Þ are used, depending of the

physical situation to be modeled. For example, the most
used are these:

(i) Uniform distribution: It is the simplest distribution,
given by

fðβ̃Þ ¼ 1

b
; ð2Þ

with b as a constant.
(ii) Multilevel distribution: This distribution may appear

when the system passes through several stages of
Boltzmann-like equilibrium, each with equal prob-
ability. Its mathematical form is

fðβ̃Þ ¼ 1

N

XN
k¼1

δðβ̃ − βkÞ: ð3Þ

(iii) Gamma distribution: The Gamma or χ2 distribution
is given by

fðβ̃Þ ¼ 1

bΓðcÞ
�
β̃

b

�c−1
e−β̃=b; ð4Þ

where b and c are free parameters.
(iv) Log-normal distribution: This distribution function

is given by

fðβ̃Þ ¼ 1ffiffiffiffiffiffi
2π

p
β̃u

exp

�
−
log2ðβ̃=vÞ

2u2

�
; ð5Þ

where u and v are free parameters.
(v) F distribution: For positive integers v, and w and

b > 0, the F distribution is defined as

fðβ̃Þ ¼ Γ½ðvþ wÞ=2�
Γðv=2ÞΓðw=2Þ

�
bv
w

�
v=2

×
β̃

v
2
−1

ð1þ bv
w β̃ÞðvþwÞ=2 : ð6Þ

The latter gives the Tsallis distribution in the β̃
space when v → 2.

In this work, in order to obtain analytical results for B̂,
we use the gamma-distribution function. An interesting
case is provided when its parameters are chosen as

bc ¼ β ¼ 1=ðkBTÞ; and c ¼ −1=ð1 − qÞ; ð7Þ
so that B̂ can be written in terms of a q exponential, namely

B̂ðβÞ ¼ e−βĤq ; ð8Þ

where the q exponential is defined as

exq ≡ ½1þ ð1 − qÞx�1=ð1−qÞ: ð9Þ

From Eq. (8) it is possible to define a density operator as
follows:

ρ̂ ¼ 1

Z
e−βĤq ; ð10Þ
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where Z is the partition function given by

Z ¼ Trρ̂; ð11Þ
and from which the thermodynamic properties can be
defined. In particular, in order to describe the QCD chiral
symmetry restoration, we are interested in the LσM
effective potential density, which is described in the next
section.

III. SUPER STATISTICAL EFFECTIVE
POTENTIAL DENSITY

As is pointed out in previous works, one can explore
the similarities of Eq. (8) within the nonadditive Tsallis
thermodynamics [28,29]. The idea consists in preserving
the Legendre structure of thermodynamics, which is lost in
the Boltzmann-like formulation when the q exponential is
involved [41]. In the Tsallis prescription, the effective
potential density is given by

ΩT ¼ −
1

Vβ
lnqZ; ð12Þ

where the subscript “T” is for Tsallis, and lnq x is the q
logarithm, defined as

lnqx ¼ x1−q − 1

1 − q
: ð13Þ

Preservation of Legendre structure is a desirable
feature of a thermodynamic theory, because it is related
to a increasing entropy and positive definite specific
heat [42–44].

IV. SUPER STATISTICAL PARTITION FUNCTION

In this section, we explore two approximations of the
modified Boltzmann factors in order to obtain analytical
results. The first one, done only for the gamma-distribution
function, is provided by series expansion in powers of
(q − 1) up to order Oðq − 1Þ2, which allows us to compute
the corrections due to the finite size and the thermal

fluctuation in the CEP’s location. The second one is given
in terms of an expansion in powers of βĤ from where the
expressions for several distribution functions are different,
providing more information on the underlying complex
dynamics for the fluctuations in each case.
At this point, it is necessary to comment on the validity

of the expansion, which assumes small βĤ. In fact, in the
near to second-order phase transition, the fields are small
given that the fermions approach the chiral limit where
gv < T. This behavior is captured by the effective equi-
librium potential of Sec. V from which the SS correction
are computed. On the other hand, near a first-order phase
transition, there is a discontinuity in the order parameter v
and the fields are not necessarily small, and an effective
potential at low temperatures needs to be computed.
Nevertheless, as is shown in Ref. [11], the results obtained
from approximations of high and low temperatures are
closely related by a change in the coupling constants of
fermions and bosons. Then, as a first approximation, the
product βĤ might be considered small. Corrections due to
the low-temperature regime are in process, and we will
report them elsewhere.

A. Expansion in powers of q− 1
In order to find a expression for the SS-partition

function, we expand Eq. (11) around q ¼ 1, so that, up
to order Oðq2Þ,

Z ≈ Z0 þ
q − 1

2
β2

∂
2Z0

∂β2

þ ðq − 1Þ2
24

�
8β3

∂
3Z0

∂β3
þ 3β4

∂
4Z0

∂β4

�
; ð14Þ

where Z0 is the Boltzmann partition function given by

Z0 ¼ exp ð−VβΩ0Þ; ð15Þ

where Ω0 is the equilibrium effective potential density and
V is the volume of the system. Note that the derivatives of
Z0 introduce a nontrivial volume dependence, namely,

Z ≈ e−βVΩ0

�
1þ q − 1

2
β2
�
V2

�
Ω0 þ β

∂Ω0

∂β

�
2

− 2V
∂Ω0

∂β
− βV

∂
2Ω0

∂β2

�

þ ðq − 1Þ2
3

β3V

�
−V2

�
Ω0 þ β

∂Ω0

∂β

�
3

− 3
∂
2Ω0

∂β2
þ 3V

�
Ω0 þ β

∂Ω0

∂β

��
2
∂Ω0

∂β
þ β

∂
2Ω0

∂β2

�
− β

∂
3Ω0

∂β3

�

þ ðq − 1Þ2
8

β4
�
V4

�
Ω0 þ β

∂Ω0

∂β

�
4

− 6V3

�
Ω0 þ β

∂Ω0

∂β

�
2
�
2
∂Ω0

∂β
þ β

∂
2Ω0

∂β2

�
þ 3V2

�
2
∂Ω0

∂β
þ β

∂
2Ω0

∂β2

�
2

− 4V
∂
3Ω0

∂β3
þ 4V2

�
Ω0 þ β

∂Ω0

∂β

��
3
∂
2Ω0

∂β2
þ β

∂
3Ω0

∂β3

�
− βV

∂
4Ω0

∂β4

��
: ð16Þ
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The latter partition function has two interesting features:
It includes thermal fluctuations within the q parameter and
links the nonextensive scenario with an explicit volume
dependence.

B. Differences with other distribution functions
from an expansion in powers of βĤ

As was commented in Eq. (36), the correction up to order
OðσĤÞ2 is the same for most of the distribution functions
when a series expansion is done in powers of σ2 or q − 1.
However, there is another way to expand the modified
Boltzmann factor, which corresponds to powers of βĤ
introducing noticeable differences between the expressions.
In general, such a expansion can be written as [23]

B̂ðĤÞ ¼ e−βĤ
�
1þ q − 1

2
β2Ĥ2 þ ηðqÞβ3Ĥ3 þ…

�
; ð17Þ

where

ηðqÞ ¼

8>>>>><
>>>>>:

0; for uniform and2-level dist:

− 1
3
ðq− 1Þ2; for gamma dist:

− 1
6
ðq3 − 3qþ 2Þ; for log-normal dist:

− 1
3

ðq−1Þð5q−6Þ
3−q ; for F dist: withv¼ 4

;

ð18Þ

and the q index is given for each distribution by

q¼
(
w; for log-normal dist:

q¼1þ 2ðvþw−2Þ
vðw−4Þ ; for Fdistribution

: ð19Þ

Figure 1 shows the differences of ηðqÞ for each distribution
function.
Note that with this power series we ignore in Eq. (14)

the term

ðq − 1Þ2
24

�
3β4

∂
4Z0

∂β4

�
; ð20Þ

which is proportional to β4Ĥ4. However, although that term
seems essential in the analytical expression of the potential,
the numerical calculations show that in the present work,
it is negligible when compared with

ðq − 1Þ2
24

�
8β3

∂
3Z0

∂β3

�
: ð21Þ

Then, the results for the gamma distributions are the
same that the related in Sec. IVA.
From the above, the general form of the partition

function will be

Z ≈ e−βVΩ0

�
1þ q − 1

2
β2
�
V2

�
Ω0 þ β

∂Ω0

∂β

�
2

− 2V
∂Ω0

∂β
− βV

∂
2Ω0

∂β2

�

− ηðqÞβ3V
�
−V2

�
Ω0 þ β

∂Ω0

∂β

�
3

− 3
∂
2Ω0

∂β2
þ 3V

�
Ω0 þ β

∂Ω0

∂β

��
2
∂Ω0

∂β
þ β

∂
2Ω0

∂β2

�
− β

∂
3Ω0

∂β3

��
: ð22Þ

V. EQUILIBRIUM EFFECTIVE POTENTIAL OF
LINEAR SIGMA MODEL COUPLED TO QUARKS

In Sec. IV, the SS effective potential density is written
in terms of the equilibrium potential Ω0. To obtain it, and
in order to compute some features of the QCD phase
diagram, we use the LσMq whose Lagrangian density is
given by [11]

L ¼ 1

2
ð∂μσÞ2 þ

1

2
ð∂μπÞ2 þ

a2

2
ðσ2 þ π2Þ − λ

4
ðσ2 þ π2Þ2

þ iψ̄γμ∂μψ − gψ̄ðσ þ iγ5τ · πÞψ ; ð23Þ

where the mass parameter a2, and the couplings λ and g are
positive constants, ψ is an SU(2) isospin doublet, and π
and σ are an isospin triplet and singlet, respectively.

FIG. 1. Function ηðqÞ for three distribution functions.
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We take the neutral pion π0 as the third component of the
triplet and the charged pions as

π� ¼ 1

2
ðπ1 ∓ iπ2Þ: ð24Þ

It is well established that this model admits spontaneous
symmetry breaking, which can be realized over the σ field
when it develops a vacuum expectation value v. This
mechanism is obtained from the shift

σ → σ þ v; ð25Þ

so that

L ¼ a2

2
v2 −

λ

4
v4

−
1

2
ð∂μσÞ2 −

1

2
ð3λv2 − a2Þσ2

−
1

2
ð∂μπÞ2 −

1

2
ðλv2 − a2Þπ2

þ iψ̄γμ∂μψ − gvψ̄ψ þ Lb
I þ Lf

I ; ð26Þ

where

Lb
I ¼ −

λ

4
ðσ2 þ π2Þ2 ð27aÞ

and

Lf
I ¼ −gψ̄ðσ þ iγ5τ · πÞψ : ð27bÞ

The latter equations implies that after symmetry break-
ing, the involved fields acquire mass given by

m2
σ ¼ 3λv2 − a2; ð28aÞ

m2
π ¼ λv2 − a2; ð28bÞ

mf ¼ gv: ð28cÞ

To compute the equilibrium effects of the finite temper-
ature and density in the chiral symmetry restoration, we use
the effective potential and the self-energy up to the ring
diagrams, so that in a high-temperature limit where the
quark masses are small, they are [11,45]

Ω0 ¼ −
a2

2
v2 þ λ

4
v4 þ

X
i¼σ;π

�
m4

i

64π2

�
ln

�
16π2T2

2a2

�
− 2γe þ 1

�
−
π2T4

90
þm2

i T
2

24
−

T
12π

½m2
i þ ΠðT; μÞ�3=2

�

−
Nc

16π2
X
f¼u;d

�
m4

f

�
ln

�
8π2T2

a2

�
þ ψ0

�
1

2
þ iμ
2πT

�
þ ψ0

�
1

2
−

iμ
2πT

�
þ 1

�
þ 8m2

fT
2½Li2ð−eμ=TÞ

þ Li2ð−e−μ=TÞ� − 32T4½Li4ð−eμ=TÞ þ Li4ð−e−μ=TÞ�
�
; ð29Þ

and

ΠðT; μÞ ¼ λT2

2
−
NfNcg2T2

π2

× ½Li2ð−eμ=TÞ þ Li2ð−e−μ=TÞ�; ð30Þ

where γe is the Euler-Mascheroni constant, ψ0ðxÞ is the
digamma function, and LinðxÞ is the poly-logarithm func-
tion of order n. Moreover, we take Nc ¼ 3 and Nf ¼ 2, as
the number of colors and flavors, respectively. The coupling
constants are fixed with conditions at μ ¼ 0, where the
physical boson masses (corrected by the self-energy) are

m2
σ ¼ 3λv2 − a2 þ λT2

2
þ NfNcg2T2

6
ð31aÞ

and

m2
π ¼ λv2 − a2 þ λT2

2
þ NfNcg2T2

6
; ð31bÞ

so that in the transition temperature Tc, the masses vanishes.
Then, by solving for a from Eqs. (31):

a ¼ Tc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

2
þ NfNcg2

6

s
: ð32Þ

Now, from Eqs. (28) is easy to check that

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

σ − 3m2
π

2

r
: ð33Þ

The present work takes into account only two quark
flavors in the chiral limit, which allows us to compare
with lattice simulations for Nf ¼ 2þ 1, where the critical
temperature at μ ¼ 0 is T ≃ 170 MeV [46]. Then, the
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constants λ and g can be identified, and, throughout the
paper, we take them as λ ¼ 0.86 and g ¼ 1.1.
Our goal is to describe the chiral symmetry restoration

where the quark mass vanishes so that the sigma’s field
vacuum expectation value v is promoted as the order
parameter for the transition. In that spirit, the phase
transition and its order are identified from the effective
potential shape in such a way that the order parameter has a
discontinuity at the critical temperature Tc for a first-order
phase transition. In contrast, in a second-order phase
transition, it evolves continuously. Figure 2 illustrates
the potential shape for both situations.

It is worth saying that the potential of Eq. (29) is obtained
by assuming that temperature is the dominant energy scale,
i.e., T > μ > mf or T > gv, so that the fermions are close
to the chiral limit. Therefore, in a strict sense, the potential
is not valid in regions where μ≳ T and where the first-order
transition lines begin. Nevertheless, Fig. 3 shows the CEP’s
location computed from Eq. (26) in a low-temperature
approximation [11,47] (filled black symbols), Lattice
QCD (LQCD) calculations (points with error bars), other
phenomenological models (white-empty symbols), and the
computations from Eq. (29) without super statistics (six-
point orange star). As can be noticed, working with Eq. (29)
provides good results according to the current state-of-the-
art of the CEP location. Therefore, if the temperatures are
not low enough (we are not interested on the first-order
transition lines but in the CEP’s coordinates), our results
can be regarded as a valid approximation.

VI. RESULTS AND DISCUSSION

In the previous sections, we developed a formalism to
describe the QCD chiral symmetry restoration within the
LσM coupled to quarks when the system has fluctuations
in its temperature. Moreover, given the connection between
SS and the Tsallis nonadditive thermodynamics, our
formalism links the out-of-equilibrium situation with an
explicit volume dependence. This section explores the
impact of thermal fluctuations and the system’s size in
the CEP location and the transition lines.

A. Expansion in powers of q− 1
Before presenting our results, let us comment that the

parameters q and V are independent. This is an important
feature because the SS formalism can be interpreted as if
the system is divided into N subsystems, each with local
equilibrium, and the distribution function fðβ̃Þ accounts for
the spatial temperature distribution among them [25–27].
The latter implies that the q parameter can be identified as

FIG. 3. CEP’s location from different approaches. The points
with error bars are LQCD extensions from Refs. [12] (red), [48]
(blue), [49] (black), [50] (magenta), and [51] (green). The black
filled symbols correspond to the low-temperature approach of
Eq. (26) [11,47] when the coupling constants ðλ; gÞ are (2.2,1.7)
for black filled square, (2.4,1.65) for black up-pointing triangle,
(2.1,1.725) for black filled circle, (2.5,1.7) for black down-
pointing triangle, and (2.7,1.6) for black right-pointing triangle.
The empty symbols are model predictions: circled minus from
Ref. [52], circled slash from Ref. [53], circled plus from Ref. [54],
square from Ref. [26], circled cross from Ref. [55], down-
pointing triangle from Ref. [56], circle with black dot from
Ref. [57], left-pointing triangle from Ref. [58], right-pointing
triangle from Ref. [59], up-pointing triangle from Ref. [60], circle
from Ref. [61], and diamond from Ref. [62]. The orange six-point
star corresponds to the CEP located with Eq. (29). (Figure
adapted from Ref. [47].)

(a) (b)

FIG. 2. Shapes of the effective potential as function of the order parameter v and for temperatures lowers, equal, and higher than the
transition temperature Tc.
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q ¼ 1þ 2=N: ð34Þ

Nevertheless, there is another interpretation of the SS:
the system is not divided into subsystems, but it as a whole
passes through several equilibrium stages. Then, the total
volume remains unaltered, and the fluctuations acquire a
temporal nature. We adopt this point of view.
On the other hand, given that the SS is an ansatz, the q

parameter can be interpreted in several ways beyond the
relation of Eq. (34). In fact, this parameter can be related to
the variance of the inverse temperature fluctuations [23]:

ðq − 1Þβ2 ¼ σ2 or q ¼ hβ̃2i
hβ̃i2 ; ð35Þ

so that it is possible to find a general expression for the
modified Boltzmann factor given by

B̂ ¼ e−βĤ
�
1þ 1

2
σ2Ĥ2 þOðσ3Ĥ3Þ

�
; ð36Þ

where the variances (and therefore the q parameter) have
different forms. For example, for the uniform, log-normal,
and the F distribution, the variances are, respectively,

σ2 ¼ b2=12; ð37aÞ

σ2 ¼ v2es
2ðes2 − 1Þ; ð37bÞ

and

σ2 ¼ 2w2ðvþ w − 2Þ
b2vðw − 2Þ2ðw − 4Þ : ð37cÞ

Note that Eq. (35) defines only positive values of q − 1,
and therefore, q ≥ 1. Nevertheless, we aim to connect with
a nonextensive scenario; i.e., the Tsallis statistics in which
a priori there are no restrictions over q. Hence, in order to
present general results (valid for both points of view), we
explore the range 0.8 ≤ q ≤ 1.2 (values outside of this
interval imply more terms in the q − 1 series expansion).
Figure 4 shows the pseudocritical temperature Tc (at

μB ¼ 0) as a function of the thermal fluctuation’s parameter
q, and the dimensionless volume V ≡ a3V. In order to
visualize the effects of the variables, we scaled Tc with the
pseudocritical temperature at thermal equilibrium T0

c. As
can be noticed, the fluctuations in temperature reproduce
almost the same results for q ¼ 1.1 and q ¼ 1.2 (the same
behavior is found with q ¼ 0.8 and q ¼ 0.9). Still, for
small system size, the transition temperature decreases
around 20% from the value found in the equilibrium
situation. Note that a similar scaling with the volume is
found in Ref. [35] for a finite box model by using lattice
Yang-Mills theory and Dyson-Schwinger equations for
2þ 1 quark flavors.

Figure 5 presents the effective QCD phase diagram in
the plane μ − T (recall μB ¼ 3μ) computed from Eq. (12)
for several values of V with q ¼ 1.2. The dashed curves
represent the crossover or second-order phase transition
lines, whereas the continuous are the first-order critical

FIG. 4. Pseudocritial temperature Tc at μ ¼ 0 as a function of
the dimensionless volume V ¼ a3V for q ¼ 1.1 and q ¼ 1.2. The
reference temperature T0

c ≈ 0.9 is the transition temperature at
μ ¼ 0 in the equilibrium case q → 1. The curves are obtained
with the Tsallis prescription. A similar behavior is found with
q ¼ 0.8 and q ¼ 0.9.

(a)

(b)

FIG. 5. Effective QCD phase diagram obtained from the
potential ΩT for q ¼ 1.2 and several values of V. The points
are the CEP’s location for each volume. The values of T and μ in
the critical line are normalized to their own Tc which is volume
dependent. Panel (a) is the full phase diagram, and panel (b) is an
enlargement in order to appreciate the volume effects in the CEP
(only the first-order critical lines are shown).
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regions. The dots are the CEP location when the critical
values of T and μ are scaled with the respective Tc
for each V. The finite volume effect is translated to
move the CEP toward smaller temperatures and larger
chemical potentials, which correspond to a change about
10%–17% for μ, and 10%–12% for T. Again, the findings
are in agreement with the findings of with Ref. [35].
Moreover, the results are quantitatively the same when
variations in q are implemented, which indicates that the
transition lines and the CEP location are robust against
thermal fluctuations but have a considerable dependence
on the size of the system.

B. Expansion in powers of βĤ

Finally, in order to compare the differences between
super statistics prescriptions, Figs. 6 and 7 show the
changes of Tc with V, and the CEP’s locations obtained
from Eq. (22), both for the gamma, F, and log-normal
distribution functions. Once again, the results seem

independent of the value of q, which indicates that,
in our series expansions, the temperature fluctuations are
irrelevant, and the chiral symmetry restoration is robust
in the present approximation. However, the Tc and CEP
are sensitive to the system’s volume, but the deviations
from one distribution function to another are minor. In
fact, only the F distribution has noticeable differences
when compared with the gamma and the log-normal
results, which is similar to the observed in Fig. 1. This
behavior is not surprising: the series expansion of
Eq. (22) is made in powers of βĤ, which is a tiny
quantity near the transition. Then, in the critical lines,
one may expect similar results.

VII. SUMMARY AND CONCLUSIONS

In this work, we have used the LσM coupled with quarks
to locate the CEP in the effective QCD phase diagram by
considering the finite-size effects produced by thermal
fluctuations. The SS provides the connection between the
out-of-equilibrium condition and the nonextensive thermo-
dynamics with the χ2-distribution function so that its free
parameters resemble the Tsallis statistics. Therefore, we end
with an effective thermodynamic potential as a function of
the thermal-fluctuations parameter q and explicit volume
dependence. To appreciate the finite size effects, we adopted
the SS interpretation in which the distribution function
models the system as a whole, passing for several stages
close to the thermal equilibrium. Moreover, given the
universality of the modified Boltzmann factor, we expanded
the range o values of q by demanding its nature as a
parameter into an ansatz. With this, several distribution
functions can be considered.
We find that the pseudocritical temperature Tc at μ ¼ 0

is considerably changed when the system’s volume
decreases (around a 7% for the smaller volume consid-
ered). Nevertheless, the temperature fluctuations do not
represent significant changes in the value of Tc. The same
situation is found in the CEP location: it moves towards
high values of μ and lower temperatures, so that the former
may change in a range of the 10%–17%, and the latter in
the range of 10%–12%, when the plane μ − T is scaled by
the respective pseudocritical temperatures for each vol-
ume. Furthermore, the critical lines for each set of
parameters lie close to the curve of the equilibrium case.
Interestingly, the named results are quantitatively the same
when q varies in the interval 0.8 ≤ q ≤ 1.2, which indi-
cates that, in this approximation, the chiral symmetry
restoration is robust against the thermal fluctuations. Still,
the order of the transition may be affected by the size of
the system.
Finally, by considering a series expansion in powers

of βĤ, we compared different distribution functions and
their corresponding modified Boltzmann factors. In par-
ticular, we analyzed the gamma, F, and log-normal dis-
tributions. The findings relate that for those super statistics

FIG. 6. Pseudocritial temperature Tc at μ ¼ 0, as a function of
the dimensionless volume V ¼ a3V for q ¼ 1.2 and different
distribution functions.

FIG. 7. CEP’s locations obtained from Eq. (22) for different
distribution functions: Gamma (green), F (blue), and log-normal
(black). The symbols represent the dimensionless volume: circled
cross for V ¼ 50, up-pointing triangle for V ¼ 40, filled circle for
V ¼ 20, and filled square for V ¼ 10. The yellow star is the pure
Boltzmann result. The inset shows an enlargement in order to
appreciate the CEP deviations of each distribution function. The
results are independent of q, and here we present q ¼ 1.2.
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prescriptions, the effects of the temperature fluctuations
and volume remains, i.e., up to the presented approxima-
tion, the critical values of μ and T for the chiral symmetry
restoration are the same when q varies. Moreover, the
CEP’s location moves to higher μ and lower T when the
volume is decreased.
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