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We construct the effective potentials of the PN
ψ and PΛ

ψs states based on the SUð3Þf symmetry and heavy
quark symmetry. Then we perform the coupled-channel analysis of the lowest-isospin PN

ψ and PΛ
ψs systems.

The coupled-channel effects play different roles in the PN
ψ and PΛ

ψs systems. In the PN
ψ systems, this effect

gives minor corrections to the masses of the PN
ψ states. In the PΛ

ψs system, the ΛcD̄s − ΞcD̄ coupling will

shift the mass of the PΛ
ψsð4338Þ0 close to the ΞcD̄ threshold. The ΛcD̄

ð�Þ
s − ΞcD̄ð�Þ coupling will also

produce extra PΛ
ψs states. We discuss the correspondence between the PN

ψ and PΛ
ψs states. Our results prefer

that the SU(3) partners of the observed PN
ψ ð4312Þþ, PN

ψ ð4440Þþ, and PN
ψ ð4457Þþ in the PΛ

ψs system not
have been found yet.

DOI: 10.1103/PhysRevD.106.116017

I. INTRODUCTION

Very recently, the LHCb Collaboration announced
the observation of a PΛ

ψsð4338Þ0 signal1 from the J=ΨΛ
mass spectrum in the B− → J=ΨΛp̄ process [2]. The mass
and width of this new pentaquark candidate were measured
to be

MPcs
¼ 4338.2� 0.7� 0.4 MeV; ð1Þ

ΓPcs
¼ 7.0� 1.2� 1.3 MeV: ð2Þ

Meanwhile, the amplitude analysis prefers the 1
2
−-spin-

parity quantum numbers. The central value of the mass of
PΛ
ψsð4338Þ0 is above the ΞcD̄ threshold. Thus, this state

cannot be directly assigned as the ΞcD̄ molecular state.
However, the authors of Ref. [3] pointed out that the line
shape of this resonance could be distorted from the
conventional Breit-Wigner distribution if it lies very close
to and strongly couples to the threshold.
Besides the newly observed PΛ

ψsð4338Þ0, the PΛ
ψsð4459Þ0

was observed at LHCb [4] as a candidate of a ΞcD̄�
molecular state, which agrees well with the prediction from

the chiral effective field theory in Ref. [5]. The strange
hidden-charm states were also discussed in Refs. [6–14]
and reviewed extensively in Refs. [15–20].
The mass of the PΛ

ψsð4459Þ0 is about 19 MeV below the
ΞcD̄ threshold. In Ref. [21], the author argued that from
heavy quark symmetry, the ½ΞcD̄�1=2− , ½ΞcD̄��1=2− , and
½ΞcD̄��3=2− channels should share identical potentials and
have comparable binding energies. However, since the
mass of the charm quark is not heavy enough, a serious
study on the masses of the ½ΞcD̄��1=2−=½ΞcD̄��3=2− states
should also take the heavy quark symmetry-breaking effect
into account. With the assignment of the PΛ

ψsð4338Þ0 and
PΛ
ψsð4459Þ0 as the ½ΞcD̄�1=2− and ½ΞcD̄��1=2− (½ΞcD̄��3=2− )

molecular states, the degeneracy of the ½ΞcD̄��1=2− and
½ΞcD̄��3=2− channels is removed by the coupled-channel
effects and recoil corrections.
Another novel phenomenon from the MJ=ΨΛ invariant

spectrum [2] is that there seems to be a structure around
M ¼ 4254 MeV. To understand this signal, the LHCb
checked the mðJ=ΨΛÞ distribution close to the Λþ

c D−
s

threshold and found that this signal is not statistically
significant. Nevertheless, the authors in Ref. [22] inves-
tigated the PΛ

ψsð4338Þ0 and PΛ
ψsð4255Þ0 pole positions

from a unitary ΞcD̄ − ΛcD̄s coupled-channel scattering
amplitude. Besides this, the PΛ

ψsð4255Þ0 pole was also
found in a model with the coupling between the meson-
baryon molecule and the compact five-quark state [23].
The PΛ

ψsð4255Þ0 state was also suggested in an effective
field theory framework [24].
The analogy between the observed [PN

ψ ð4312Þþ,
PN
ψ ð4440Þþ, PN

ψ ð4457Þþ] [25,26] and [PΛ
ψsð4338Þ0,

PΛ
ψsð4459Þ] states is discussed in Refs. [27–29]. However,
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1We adopt the nomenclature proposed by the LHCb Collabo-
ration [1] throughout this paper.
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since the Σc and Ξc belong to different SUð3Þf multiplets,
the relations between the discussedPN

ψ andPΛ
ψs states are not

clear. Besides, the PN
Ψss pentaquark states as the partners of

the PN
ψ and PΛ

ψs states are investigated in Ref. [30].
If the PΛ

ψs states and PN
ψ states can be related via SUð3Þf

symmetry, it is important to investigate the similarities and
differences between these two sets of molecular candidates.
In Refs. [31,33], we discussed the symmetry properties of
different heavy-flavor molecular systems via a quark-level
Lagrangian. We proposed that the interactions of different
heavy-flavor molecules can be related via a generalized
flavor-spin symmetry [31]. This framework provides a
suitable tool to discuss the similarities between the PN

ψ

and PΛ
ψs states.

We also notice an important difference between the PN
ψ

and PΛ
ψs states. The minimal quark components of the PN

ψ

and PΛ
ψs states are cc̄nnn (a calculation based on the

compact pentaquark configuration of the PN
ψ states can be

found in Ref. [32]) and cc̄nns (n ¼ u, d), respectively. For
the charmed/charmed-strange mesons and baryons, the
SUð3Þf symmetry-breaking effects are reflected on their
physical masses, and we need to distinguish the s quark
from u, d quarks when we study the PΛ

ψs systems. Unlike
the PN

ψ pentaquarks, the PΛ
ψs states can couple to two sets of

channels—i.e., the cns − c̄n-type and cnn − c̄s-type chan-
nels. In Table I, we list the possible open-charm channels
and their thresholds for the PN

ψ and PΛ
ψs systems.

In this work, we will take PΛ
ψsð4338Þ0 as a molecular

candidate and discuss the following three issues:
(1) Can we understand the minor binding energy of the

PΛ
ψsð4338Þ0 (close to the ΞcD̄ threshold) through a

ΞcD̄ − ΛcD̄s coupled-channel effect?
(2) Can we produce a PΛ

ψsð4255Þ0 bound state by includ-
ing the ΞcD̄ − ΛcD̄s coupled-channel effect with the
potential constrained from SUð3Þf symmetry?

(3) What is the correspondence between the PN
ψ and PΛ

ψs

states if the interactions of the PN
ψ and PΛ

ψs states
obey a generalized flavor-spin symmetry?

This paper is organized as follows: We present our
theoretical framework in Sec. II and the corresponding
numerical results and discussions in Sec. III. Section IV is
the summary.

II. FRAMEWORK

In Ref. [33], we proposed an isospin criterion and
pointed out that the PN

ψ and PΛ
ψs states with the lowest

isospin numbers are more likely to form bound states.
Based on the same Lagrangian, we only focus on the PN

ψ

and PΛ
ψs states with isospin numbers I ¼ 1=2 and 0,

respectively. Thus, we will not include the Σð�Þ
c D̄ð�Þ

s

channels listed in Table I for the PΛ
ψs system.

For the I ¼ 1=2 PN
ψ states, we consider the following

channels for the J ¼ 1=2 and 3=2 states:

J ¼ 1

2
∶ΛcD̄;ΛcD̄�;ΣcD̄;ΣcD̄�;Σ�

cD̄�; ð3Þ

J ¼ 3

2
∶ΛcD̄�;Σ�

cD̄;ΣcD̄�;Σ�
cD̄�: ð4Þ

Similarly, for the I ¼ 0 PΛ
ψs states, we include the following

channels for the J ¼ 1=2 and 3=2 states:

J ¼ 1

2
∶ΛcD̄s;ΛcD̄�

s ;ΞcD̄;ΞcD̄�;Ξ0
cD̄;Ξ0

cD̄�;Ξ�
cD̄�; ð5Þ

J ¼ 3

2
∶ΛcD̄�

s ;ΞcD̄�;Ξ�
cD̄;Ξ0

cD̄�;Ξ�
cD̄�: ð6Þ

The result of the PN
ψ (PΛ

ψs) state with J ¼ 5=2 can be
obtained from a single-channel calculation and was pre-
dicted in Ref. [33] in the same framework. Thus, we will
not discuss them further in this work.

A. Lagrangians for the baryon-meson systems

To describe the S-wave interactions between the ground
charmed/charmed-strange baryons and mesons, we intro-
duce the following quark-level Lagrangian [5,33,35,36]:

L ¼ gsq̄Sqþ gaq̄γμγ5Aμq: ð7Þ

Here, q ¼ ðu; d; sÞ, and gs and ga are two independent
coupling constants that describe the interactions from the
exchanges of the scalar and axial-vector meson currents.
They encode the nonperturbative low-energy dynamics of
the considered heavy-flavor meson-baryon systems.
From this Lagrangian, the effective potential of the light

quark-quark interactions reads

V ¼ g̃sλ1 · λ2 þ g̃aλ1 · λ2σ1 · σ2: ð8Þ

Here,

TABLE I. The thresholds of the meson-baryon channels asso-
ciated with the PN

ψ and PΛ
ψs systems. We adopt the isospin

averaged masses for the ground charmed mesons and baryons
[34]. All values are in units of MeV.

PN
ψ PΛ

ψs

ΛcD̄ 4153.7 ΛcD̄s 4255.5 ΞcD̄ 4336.7
ΛcD̄� 4295.0 ΛcD̄�

s 4398.7 ΞcD̄� 4478.0
ΣcD̄ 4320.8 ΣcD̄s 4422.5 Ξ0

cD̄ 4446.0
Σ�
cD̄ 4385.4 Σ�

cD̄s 4487.1 Ξ�
cD̄ 4513.2

ΣcD̄� 4462.1 ΣcD̄�
s 4565.7 Ξ0

cD̄� 4587.4
Σ�
cD̄� 4526.7 Σ�

cD̄�
s 4630.3 Ξ�

cD̄� 4654.5
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λ1 · λ2 ¼ λ81λ
8
2 þ λi1λ

i
2 þ λj1λ

j
2; ð9Þ

where i and j sum from 1 to 3 and 4 to 7, respectively. The
operators λ81λ

8
2 (λ

8
1λ

8
2ðσ1 · σ2Þ), λi1λi2 (λi1λi2ðσ1 · σ2Þ), and λj1λj2

(λj1λ
j
2ðσ1 · σ2Þ) arise from the exchanges of the isospin

singlet, triplet, and two doublet light scalar (axial-vector)
meson currents, respectively. The redefined coupling con-
stants are g̃s ≡ g2s=m2

S and g̃a ≡ g2a=m2
A.

The Lagrangian in Eq. (7) allows the exchanges of
two types of scalar and axial-vector mesons that have
quantum numbers IðJPÞ ¼ 0ð0þÞ, 1ð0þÞ, 1=2ð0þÞ and
IðJPÞ ¼ 0ð1þÞ, 1ð1þÞ, 1=2ð1þÞ, respectively. At present,
we cannot specifically pin down the coupling parameter of
each exchanged meson in the above six meson currents.
Alternatively, since the mesons in each meson current have
identical interacting Lorentz structure, we use the coupling
constant g̃s (g̃a) to collectively absorb the total dynamical
effects from the exchange of each scalar (axial-vector)
meson current. In addition, the couplings g̃s (g̃a) for the
scalar (axial-vector) meson currents with different isospin
numbers are the same in the SU(3) limit.
The effective potential between the ith baryon-meson

channel BiMi and the jth baryon-meson channel BjMj

with total isospin I and total angular momentum J can be
calculated as

vij ¼ h½BiMi�IJjVj½BjMj�IJi: ð10Þ

Here, j½BiMi�IJi is the quark-level flavor-spin wave function
of the considered ith-channel baryon-meson system

j½BiMi�IJi ¼
X

mI1
;mI2

CI;Iz
I1;mI1

;I2;mI2
ϕ
Bif

I1;mI1
ϕ
Mif

I2;mI2

⊗
X

mS1
;mS2

CJ;Jz
S1;mS1

;S2;mS2
ϕBis
S1;mS1

ϕMis
S2;mS2

: ð11Þ

In Eq. (11), ϕBis
S1;mS1

and ϕMis
S2;mS2

are the spin wave functions

of the baryon and meson, respectively. The total spin wave
function can be obtained with the help of SU(2) CG
coefficient CJ;Jz

S1;mS1
;S2;mS2

. For the flavor wave functions of

the considered baryons (ϕ
Bif

I1;mI1
) and mesons (ϕ

Mif

I1;mI1
), their

explicit forms have been given in Ref. [31]. When con-
structing the total flavor wave functions of the considered
baryon-meson systems, we use the SU(2) CG coefficient
and take the s quark as a flavor singlet.
The coupled-channel Lippmann-Schwinger equation

(LSE) reads

TðEÞ ¼ V þ VGðEÞTðEÞ; ð12Þ

with

V ¼

0
BBBBBBBBB@

v11 � � � v1i � � � v1n

..

. ..
. ..

.

vj1 � � � vji � � � vjn

..

. ..
. ..

.

vn1 � � � vni � � � vnn

1
CCCCCCCCCA
; ð13Þ

TðEÞ ¼

0
BBBBBBBBB@

t11ðEÞ � � � t1iðEÞ � � � t1nðEÞ
..
. ..

. ..
.

tj1ðEÞ � � � tjiðEÞ � � � tjnðEÞ
..
. ..

. ..
.

tn1ðEÞ � � � tniðEÞ � � � tnnðEÞ

1
CCCCCCCCCA
; ð14Þ

and

GðEÞ ¼ diagfG1ðEÞ;…; GiðEÞ;…; GnðEÞg: ð15Þ

Here,

Gi ¼
1

2π2

Z
dq

q2

E−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i1 þ q2
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi2 þ q2

p u2ðΛÞ: ð16Þ

Here, mi1 and mi2 are the masses in the ith channel of the
baryon and meson, respectively. In our previous work
[31,33], we use a step function to exclude the contributions
from higher momenta to perform the single-channel cal-
culation. In the coupled-channel case, we need to further
suppress the contributions from the channels that are far
away from the thresholds of the considered channels. Thus,
we introduce a dipole form factor uðΛÞ ¼ ð1þ q2=Λ2Þ−2
with regular parameter Λ ¼ 1.0 GeV [22,37,38].
The pole position of Eq. (12) satisfies jj1 − VGjj ¼ 0. For

the bound state below the lowest channel, we search the
bound-state solution in the first Riemann sheet of the lowest
channel. For the quasibound state between the thresholds of
the ith and jth channels, we adopt the complex scaling
method and replace the integration variable q with q →
q × expð−iθÞ while maintaining 0 < θ < π=2 to find the
quasibound-state solution in the first Riemann sheet of
the higher jth channel and the second Riemann sheet of the
lower ith channel. [39].

III. NUMERICAL RESULTS

A. Determination of g̃s and g̃a
We first determine the parameters g̃s and g̃a in our model.

We collect the matrix elements of hλ1 · λ2i, hλ1 · λ2σ1 · σ2i
for the PN

ψ and PΛ
ψs states in Tables II and III, respectively.

We can directly obtain the effective potentials associated
with the PN

ψ and PΛ
ψs states from Tables II and III,
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respectively. For example, the explicit form of the effective
potential matrix for the J ¼ 3=2 PN

ψ states is

V
PN
ψ

3=2¼

0
BBBBBBBB@

2
3
g̃s −2

ffiffiffi
3

p
g̃a 2g̃a 2

ffiffiffi
5

p
g̃a

−2
ffiffiffi
3

p
g̃a −10

3
g̃s − 10

3
ffiffi
3

p g̃a −10
ffiffi
5
3

p
3

g̃a

2g̃a − 10

3
ffiffi
3

p g̃a −10
3
g̃s− 20

9
g̃a

10
ffiffi
5

p
9

g̃a

2
ffiffiffi
5

p
g̃a −10

ffiffi
5
3

p
3

g̃a
10

ffiffi
5

p
9

g̃a −10
3
g̃sþ 20

9
g̃a

1
CCCCCCCCA
:

ð17Þ

Similarly, the effective potential matrices VPc
1=2, V

Pcs
1=2, and

VPcs
3=2 can also be obtained directly from Tables II and III.
We use the masses of the observed PN

ψ states as input to
determine the coupling constants g̃s and g̃a. In our previous
work, we find that the Lagrangian in Eq. (7) can give a
satisfactory description of the observed Tcc [40,41], PN

ψ ,
and PΛ

ψs states if we assign PN
ψ ð4440Þþ and PN

ψ ð4457Þþ as
the IðJPÞ ¼ 1=2ð1=2−Þ and 1=2ð3=2−Þ states. For consis-
tency, we still adopt this set of assignments and use the

masses of the PN
ψ ð4440Þþ and PN

ψ ð4457Þþ as inputs. In
the coupled-channel formalism, the bound/quasibound
states in the JP ¼ 1=2− and 3=2− PN

ψ systems satisfy the
following equations:

Rek1 − V
PN
ψ

1=2G
PN
ψ

1=2k ¼ 0; ð18Þ

Imk1 − V
PN
ψ

1=2G
PN
ψ

1=2k ¼ 0; ð19Þ

Rek1 − V
PN
ψ

3=2G
PN
ψ

3=2k ¼ 0; ð20Þ

Imk1 − V
PN
ψ

3=2G
PN
ψ

3=2k ¼ 0: ð21Þ

These four equations can be solved numerically, and we get

g̃s ¼ 8.28 GeV−2; g̃a ¼ −1.46 GeV−2: ð22Þ

The imaginary parts of the pole positions of PN
ψ ð4440Þþ

and PN
ψ ð4457Þþ can also be obtained from Eqs. (18)–(21).

TABLE III. The matrix elements of [hλ1 · λ2i, hλ1 · λ2σ1 · σ2i] for the meson-baryon channels associated with the JP ¼ 1=2− and 3=2−

PΛ
ψs systems.

VPcs
1=2 VPcs

3=2

Channel ΛcD̄s ΛcD̄�
s ΞcD̄ ΞcD̄� Ξ0

cD̄ Ξ0
cD̄� Ξ�

cD̄� Channel ΛcD̄�
s ΞcD̄� Ξ�

cD̄ Ξ0
cD̄� Ξ�

cD̄�

ΛcD̄s ½− 4
3
; 0� [0, 0] ½2 ffiffiffi

2
p

; 0� [0, 0] [0, 0] ½0; 2 ffiffiffi
2

p � [0, 4] ΛcD̄�
s ½− 4

3
; 0� ½2 ffiffiffi

2
p

; 0� ½0;−2 ffiffiffi
2

p � ½0; 2
ffiffi
2
3

q
� ½0; 2

ffiffiffiffi
10
3

q
�

ΛcD̄�
s ½− 4

3
; 0� [0, 0] ½2 ffiffiffi

2
p

; 0� ½0; 2 ffiffiffi
2

p � ½0;−4
ffiffi
2
3

q
� ½0; 4ffiffi

3
p � ΞcD̄� ½− 10

3
; 0� ½0;−2� ½0; 2ffiffi

3
p � ½0; 2

ffiffi
5
3

q
�

ΞcD̄ ½− 10
3
; 0� [0, 0] [0, 0] [0, 2] ½0; 2 ffiffiffi

2
p � Ξ�

cD̄ ½− 10
3
; 0� ½0;− 10

3
ffiffi
3

p � ½0;− 10
ffiffi
5
3

p
3

�
ΞcD̄� ½− 10

3
; 0� [0, 2] ½0;− 4ffiffi

3
p � ½0; 2

ffiffi
2
3

q
� Ξ0

cD̄� ½− 10
3
;− 20

9
� ½0; 10

ffiffi
5

p
9
�

Ξ0
cD̄ ½− 10

3
; 0� ½0;− 20

3
ffiffi
3

p � ½0; 10
ffiffi
2
3

p
3

� Ξ�
cD̄� ½− 10

3
; 20
9
�

Ξ0
cD̄� ½− 10

3
; 40
9
� ½0; 10

ffiffi
2

p
9
�

Ξ�
cD̄� ½− 10

3
; 50
9
�

TABLE II. The matrix elements of ½hλ1 · λ2i, hλ1 · λ2σ1 · σ2i� for the meson-baryon channels associated with the JP ¼ 1=2− and 3=2−

PN
ψ systems.

V
PN
ψ

1=2 V
PN
ψ

3=2

Channel ΛcD̄ ΛcD̄� ΣcD̄ ΣcD̄� Σ�
cD̄� Channel ΛcD̄� Σ�

cD̄ ΣcD̄� Σ�
cD̄�

ΛcD̄ ½2
3
; 0� [0, 0] [0, 0] ½0; 2 ffiffiffi

3
p � ½0; 2 ffiffiffi

6
p � ΛcD̄� ½2

3
; 0� ½0;−2 ffiffiffi

3
p � [0, 2] ½0; 2 ffiffiffi

5
p �

ΛcD̄� ½2
3
; 0� ½0; 2 ffiffiffi

3
p � ½0;−4� ½0; 2 ffiffiffi

2
p � Σ�

cD̄ ½− 10
3
; 0� ½0;− 10

3
ffiffi
3

p � ½0;− 10
ffiffi
5
3

p
3

�
ΣcD̄ ½− 10

3
; 0� ½0;− 20

3
ffiffi
3

p � ½0; 10
ffiffi
2
3

p
3

� ΣcD̄� ½− 10
3
;− 20

9
� ½0; 10

ffiffi
5

p
9
�

ΣcD̄� ½− 10
3
; 40
9
� ½0; 10

ffiffi
2

p
9
� Σ�

cD̄� ½− 10
3
; 20
9
�

Σ�
cD̄� ½− 10

3
; 50
9
�
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B. Discussion on the form factor

In Ref. [33], we adopt a step function in the effective
potential to exclude the contributions from higher
momenta:

Vðp; p0Þ ¼ V ½BM�IJΘðΛ − pÞΘðΛ − p0Þ: ð23Þ

For the bound state, the Green’s function can be obtained
analytically and have the expression

G ¼ mμ

π2

�
−Λþ qtan−1

�
Λ
q

��
; q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2mμE
p

: ð24Þ

Here, the tan−1ðΛqÞ function has a singularity at q ¼ Λ.
In Ref. [33], we precisely solve the g̃s, g̃a, and Λ cases
from three single-channel equations with the masses of
PN
ψ ð4312Þ, PN

ψ ð4440Þ, and PN
ψ ð4457Þ as inputs. We obtain

Λ ¼ 0.409 GeV. In the single-channel case, the discussed
molecular candidates are very close to their corresponding
thresholds. Thus, the condition q ≪ Λ is satisfied.
However, in the multichannel case, if the two thresholds
have a large mass gap, then q ≈ Λ is possible, which leads
to a singularity at q ¼ Λ. This singularity will appear like
a “bound state” solution in the first Riemann sheet. Such a
solution is artificially introduced by choosing the step
function as the regulator. And it is difficult to distinguish
these fake solutions from physical solutions, especially for
our multichannel calculation. To avoid this difficulty, we
introduce the dipole form factor uðΛÞ ¼ ð1þ q2=Λ2Þ−2.
In Ref. [33], Λ, g̃s, and g̃a are precisely solved from three

single-channel equations. In this work, we want to take into
account the coupled-channel effect to determine our cou-
pling parameters, and it is more complicated to numerically
solve the coupled-channel equations with Λ, g̃s, and g̃a as
three undetermined parameters. To simplify our calculation,
we fix Λ at 1.0 GeV, which is widely adopted in other
literature [37,38], and select the JP ¼ 1=2− PN

ψ ð4440Þ and
JP ¼ 3=2− PN

ψ ð4457Þ states as the inputs of Eqs. (18)–(21),
respectively, to determine g̃s and g̃a. Of course, we can setΛ
to other values near 1.0 GeV; in that case, we obtain another
set of g̃s and g̃a with PN

ψ ð4440Þ andPN
ψ ð4457Þ as inputs. But

we find that the obtained masses of bound states only have
weak Λ dependences.
In addition, if we refer to the procedures by which we

determine the parameters Λ, g̃s, and g̃a in Ref. [33] and in
this work as Scheme 1 and Scheme 2, respectively, we can
further perform a brief single-channel calculation on the
masses of the states listed in Table III of Ref. [33]; the
results are presented in Table IV. From Table IV, we find
that the results obtained from the dipole form factor
adopted in this work are still consistent with those in
our previous work [33].

C. Flavor-spin symmetry of the PN
ψ and PΛ

ψs systems
in the single-channel formalism

With the determined parameters g̃s and g̃a, we first
present our single-channel results for the considered PN

ψ

and PΛ
ψs systems and demonstrate that we can relate the PN

ψ

and PΛ
ψs systems from their interactions constrained by the

SU(3) and heavy quark symmetries.
Although ΞcD̄ and ΣcD̄ belong to different multiplets, in

Ref. [31] we proposed that there exists a generalized flavor-
spin symmetry between two-body heavy-flavor systems.
For two different heavy-flavor meson-baryon systems, if
they both possess the same flavor (hHf

1H
f
2 jλ1 · λ2jHf

1H
f
2i)

and spin (hHs
1H

s
2jσ1 · σ2jHs

1H
s
2i) matrix elements, they will

still have identical effective potentials in the SU(3) and
heavy quark limits.
In the single-channel formalism, we present the masses

and binding energies of the PN
ψ and PΛ

ψs states in Table V.
The theoretical uncertainties are introduced by considering
the experimental errors of the masses of PN

ψ ð4440Þþ and
PN
ψ ð4457Þþ. We collect the PN

ψ and PΛ
ψs states that share

identical effective potentials in the same row. As listed in
Table V, the PN

ψ and PΛ
ψs states have similar binding energies

in the same row and can be related via a flavor-spin
symmetry.

D. The masses of PN
ψ states in the multichannel
formalism

Next, we explore how the coupled-channel effect
influences the masses of the PN

ψ states. As can be seen
from Eq. (8), the effective potential consists of two parts—
i.e., the central term (g̃sλ1 · λ2) and the spin-spin interaction
(g̃aλ1 · λ2σ1 · σ2) term. Since the determined g̃s is much
larger than g̃a, the central term dominates the total effective
potential and therefore determines whether the considered
system can form a bound state.
As given in Table II, for the matrix elements in the PN

ψ

system, all the diagonal matrix elements have central terms,

TABLE IV. The masses and binding energies of the molecular
candidates considered in Table III of Ref. [33]. A step function
[ΘðΛ − qÞ] [33] and a dipole form factor [ð1þ q2=Λ2Þ−2] are
introduced to regularize the integral in Scheme 1 and Scheme 2.
The listed values are all in units of MeV.

Scheme 1 Scheme 2

Mass [33] BE [33] Mass BE

Tccð3875Þþ 3874.5 −1.8 3875.5 −0.8
PN
ψ ð4312Þþ 4311.9 −8.9 4312.7 −8.7

PN
ψ ð4380Þþ 4376.2 −9.1 4376.9 −8.5

PN
ψ ð4440Þþ 4440.2 −21.8 4438.9 −23.2

PN
ψ ð4457Þþ 4457.3 −4.8 4457.5 −4.6

PΛ
ψsð4459Þ0 4468.1 −10.0 4468.3 −9.7
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and some of them have corrections from the spin-spin
interaction terms. The off-diagonal terms only consist of
the spin-spin interaction terms. Thus, before we perform a
practical multichannel calculation of the PN

ψ system, we
may anticipate that the coupled-channel effect would have
small corrections to the masses of the PN

ψ states.
As discussed in Sec. II, we include five and four channels

to study the J ¼ 1=2 and J ¼ 3=2 PN
ψ states, respectively.

For the J ¼ 1=2 channels, according to their thresholds, we
consider five energy regions:

E ≤ mΛcD̄; ð25Þ

mΛcD̄ < E ≤ mΛcD̄� ; ð26Þ

mΛcD̄� < E ≤ mΣcD̄; ð27Þ

mΣcD̄ < E ≤ mΣcD̄� ; ð28Þ

mΣcD̄� < E ≤ mΣ�
cD̄� : ð29Þ

We search the bound (quasibound)-state solutions below the
higher threshold in each energy region on the first Riemann
sheet. The bound (quasibound)-state solutions of the
J ¼ 3=2 PN

ψ , J ¼ 1=2, and 3=2 PΛ
ψs states can be found

by repeating the same procedure. We present the obtained
PN
ψ states in Table VI. We do not find any bound states

below the ΛcD̄ threshold. Thus, all the obtained resonances
(ER) listed in Table VI should refer to quasibound states and
have imaginary parts [ImðERÞ]. Since we only include the
two-body open-charm decay channels, the estimated widths
(Γ) in Table VI are smaller than experimental widths. By
comparing the masses of PN

ψ states in Tables V and VI, we
find that the coupled-channel effect indeed has a small
influence on the masses of the PN

ψ states.

E. A numerical experiment on the (ΛcD̄
ð�Þ
s , ΞcD̄ð�Þ)

coupled-channel systems

There exists an important difference between the effec-
tive potential matrices in the PN

ψ and PΛ
ψs systems. As

presented in Tables II and III, the diagonal matrix elements
in the PΛ

ψs system are very similar to those of the PN
ψ

system. But for the off-diagonal matrix elements, the
effective potentials of the ΛcD̄s − ΞcD̄ and ΛcD̄�

s −
ΞcD̄� channels in the PΛ

ψs system with J ¼ 1=2 or 3=2
consist of central terms. These terms may give considerable
corrections to the spectrum of the PΛ

ψs states.
For the J ¼ 1=2 and J ¼ 3=2 PΛ

ψs systems, as given in
Eqs. (5) and (6), we need to perform seven and five

TABLE V. In the single-channel formalism, the binding energies of the PN
ψ and PΛ

ψs states that share the same
effective potentials in the SU(3) and heavy quark limits. All results are in units of MeV.

PN
ψ Mass BE PΛ

ψs Mass BE V

½ΣcD̄�12 4312.7þ4.1
−2.6 −8.1þ4.1

−2.6
½ΞcD̄�12 4328.5þ4.1

−2.7 −8.2þ4.1
−2.7

− 10
3
g̃s

½ΞcD̄��12;32 4468.3þ4.5
−2.9 −9.7þ4.5

−2.9

½Σ�
cD̄�32 4376.9þ4.2

−2.7 −8.5þ4.2
−2.7

½Ξ0
cD̄�12 4437.2þ4.5

−2.8 −8.8þ4.3
−2.8

½Ξ�
cD̄�32 4503.9þ4.4

−2.8 −9.3þ4.4
−2.8

½ΣcD̄��12 4438.9þ4.9
−8.9 −23.2þ4.9

−8.9 ½Ξ0
cD̄��12 4562.9þ2.8

−9.1 −24.5þ2.8
−9.1 − 10

3
g̃s þ 40

9
g̃a

½ΣcD̄��32 4457.5þ3.7
−1.8 −4.6þ3.7

−1.8 ½Ξ0
cD̄��32 4582.2þ4.0

−2.0 −5.2þ4.0
−2.0 − 10

3
g̃s − 20

9
g̃a

½Σ�
cD̄��12 4498.8þ6.6

−6.0 −27.9þ6.6
−6.0 ½Ξ�

cD̄��12 4625.3þ6.8
−12.7 −29.2þ6.8

−12.7 − 10
3
g̃s þ 50

9
g̃a

½Σ�
cD̄��32 4510.3þ4.1

−4.1 −16.4þ4.1
−4.1 ½Ξ�

cD̄��32 4637.9þ4.3
−4.2 −16.6þ4.3

−4.2 − 10
3
g̃s þ 20

9
g̃a

TABLE VI. The results of PN
ψ states obtained in the coupled-channel formalism. Here, Γ ¼ −2ImðERÞ, and all the

results are in units of MeV.

Our Exp

State JP Mass Γ Mass Width

PN
ψ ð4312Þþ 1

2
− 4308.2þ2.6

−4.5 2.6þ2.4
−1.7 4311.9þ7.0

−0.9 10� 5

PN
ψ ð4440Þþ 1

2
− 4440.3þ4.0

−5.0 (input) 9.8þ4.6
−5.8 4440.3þ4.0

−5.0 21þ10
−11

PN
ψ ð4457Þþ 3

2
− 4457.7þ4.0

−1.8 (input) 2.0þ1.4
−0.8 4457.3þ4.0

−1.8 6.4þ6.0
−2.8

PN
ψ ð4380Þ 3

2
− 4373.3þ3.4

−6.8 5.2þ20.2
−3.5 � � � � � �

PN
ψ ð4500Þ 1

2
− 4501.4þ5.0

−6.2 8.8þ17.2
−5.4 � � � � � �

PN
ψ ð4510Þ 3

2
− 4513.4þ5.8

−3.1 7.6þ9.4
−0.0 � � � � � �
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coupled-channel calculations, respectively. Before we per-
form such complete calculations, we first perform a
detailed discussion on the (ΛcD̄s, ΞcD̄) and (ΛcD̄�

s ,
ΞcD̄�) coupled-channel systems.
The effective potential matrixes of the J ¼ 1=2 (ΛcD̄s,

ΞcD̄), (ΛcD̄�
s , ΞcD̄�) systems and the J ¼ 3=2 (ΛcD̄�

s ,
ΞcD̄�) system share the same expressions in the heavy
quark limit. From Table III, we obtain the corresponding
effective potential matrix,

V ¼
�
v11 v12
v21 v22

�
; ð30Þ

with

v11 ¼ −
4

3
g̃s; v22 ¼ −

10

3
g̃s; ð31Þ

v12 ¼ v21 ¼ 2
ffiffiffi
2

p
g̃sgx: ð32Þ

Here, for the diagonal matrix elements listed in Tables II
and III, their dominant components are from the exchange
of the nonstrange light scalar meson currents. Since the

interactions of the off-diagonal channel ΛcD̄
ð�Þ
s − ΞcD̄ð�Þ

are introduced via the exchange of the strange scalar meson
currents, we further introduce a factor gx to estimate the
SU(3) breaking effects. Compared with the exchange of the
nonstrange light scalar meson currents, the off-diagonal
matrix elements should be suppressed by the mass of
strange mesons. Thus, we assume 0 ≤ gx ≤ 1. This factor
also reflects the coupling strength of the ΛcD̄s − ΞcD̄

channel. With gx ¼ 0, the ΛcD̄
ð�Þ
s does not couple to the

ΞcD̄ð�Þ channel. With gx ¼ 1.0, the ΛcD̄
ð�Þ
s couples to the

ΞcD̄ð�Þ channel, and its coupling strength is set to be the
value in the SU(3) limit.
In Fig. 1(b), we present the variation of the masses for the

bound states PΛ
ψsð4338Þ0 and PΛ

ψsð4255Þ0 as the parameter
gx increases. The masses of PΛ

ψsð4338Þ0 and PΛ
ψsð4255Þ0 are

denoted with black lines. At gx ¼ 0, theΛcD̄s channel itself
has a weak attractive force v11 ¼ −4=3g̃s, and this force is
too weak to form a ΛcD̄s bound state. On the contrary, the
ΞcD̄ channel can form a bound state, and its mass is about
M ¼ 4329 MeV, slightly smaller than the experimental
value. As gx increases, the attractive force of PΛ

ψsð4338Þ0
decreases, and its mass moves closer to the ΞcD̄ threshold.
In a very narrow region 0.62 ≤ gx ≤ 0.64, the attractive
force is just enough to form a PΛ

ψsð4338Þ0 bound state at the
ΞcD̄ threshold, and the weak attractive channel ΛcD̄s starts
to form a bound state due to the ΞcD̄ − ΛcD̄s coupling.
Only in this very narrow region can PΛ

ψsð4338Þ0 and
PΛ
ψsð4255Þ0 coexist as quasibound states. At gx > 0.64,

the ΞcD̄ − ΛcD̄s coupling further weakens the attractive
force of the ΞcD̄ channel and PΛ

ψsð4338Þ0 no longer exists
as a quasibound state, while the attractive force of the ΛcD̄s

channel becomes stronger, and its mass will decrease. The
observation of the PΛ

ψsð4338Þ0 by LHCb seems to exclude
the parameter region 0.64 < gx < 1.0.
Here, we also check the pole position of PΛ

ψsð4338Þ0 at
gx > 0.64 in the energy region slightly above the ΞcD̄
threshold. We find that the pole of PΛ

ψsð4338Þ0 still exists in
the first Riemann sheet. This is mainly due to the fact that
the ΛcD̄s − ΞcD̄ coupling leads PΛ

ψsð4338Þ0 to be a state
that has a considerable width; thus, the central value of the
PΛ
ψsð4338Þ0 mass may cross the ΞcD̄ threshold. In this case,

PΛ
ψsð4338Þ0 should be interpreted as a quasibound state

above the ΞcD̄ threshold. Nevertheless, in this work, we
restrict our scope to the case in which the masses of the
bound/quasibound states are below their corresponding
thresholds.
To understand why the gx region that allows the

PΛ
ψsð4338Þ0 and PΛ

ψsð4255Þ0 states to coexist is so narrow,
we further check the role of the ΛcD̄s channel in our two-
channel model. We allow the effective potential of theΛcD̄s
channel to have a 20% shift—i.e.,

v011 ¼ v11 þ vδ11; vδ11 ¼ 0;� 1

5
v11; ð33Þ

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 1. The variations of the masses for the possible bound
states in the (ΛcD̄

ð�Þ
s ΞcD̄ð�Þ) two-channel system as the param-

eter gx increases. We use the blue dotted lines to denote the

ΛcD̄
ð�Þ
s and ΞcD̄ð�Þ thresholds. The masses of the PΛ

ψs states are
denoted with black lines. Panels (a), (d), panels (b), (e), and
panels (c), (f) are obtained at vδ11 ¼ 1=5v11, 0, and −1=5v11,
respectively. The green bands in (a), (d), (b), and (e) denote that
the bound states near the ΛcD̄s (ΛcD̄�

s) and ΞcD̄ (ΞcD̄�)
thresholds can coexist in this gx region.
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and we further check how the masses of PΛ
ψsð4338Þ0 and

PΛ
ψsð4255Þ0 change as we increase the value of gx.
The channel ΛcD̄s itself has a weak attractive force, as

presented in Fig. 1(a), at gx ¼ 0. After we increase this force
by 20%, this single channel still cannot form a bound state.
But the gx region that allows these two PΛ

ψs states to coexist
becomes broader. On the contrary, as illustrated in Fig. 1(c),
if we decrease the attractive force of the ΛcD̄s channel by
20%, then PΛ

ψsð4338Þ0 and PΛ
ψsð4255Þ0 cannot coexist, no

matter how we adjust the off-diagonal ΛcD̄s − ΞcD̄ cou-
pling. Thus, the narrow gx region within which PΛ

ψsð4338Þ0
and PΛ

ψsð4255Þ0 can coexist is due to the fact that the ΛcD̄s

channel has a small but non-negligible attractive force.
The results for the J ¼ 1=2 and 3=2 (ΛcD̄�

s ,ΞcD̄�)
coupled channels are presented in Figs. 1(d)–1(f). We find
that the roles of the predicted PΛ

ψsð4477Þ0 and PΛ
ψsð4398Þ0

with JP ¼ 1=2− or 3=2− are very similar to those of the
PΛ
ψsð4338Þ0 and PΛ

ψsð4255Þ0 with JP ¼ 1=2−, respectively.

F. The results of PΛ
ψs system in the coupled-channel
formalism

We present our complete multichannel calculations on
the J ¼ 1=2 and J ¼ 3=2 PΛ

ψs systems in Fig. 2. We find

that only the bound states close to the ΛcD̄
ð�Þ
s and ΞcD̄ð�Þ

channels have a significant dependence on gx, since these

bound states can couple to the ΛcD̄
ð�Þ
s and ΞcD̄ð�Þ channels

through non-negligible central terms, while the bound

states that can only couple to the ΛcD̄
ð�Þ
s and ΞcD̄ð�Þ

channels via the spin-spin interaction terms have a very
tiny dependence on the parameter gx.
To further present our numerical results, we fix the

parameter gx at 0.5 and at 0.62. We denote these two cases

as case 1 and case 2. These cases correspond to the results
when the possible PΛ

ψsð4255Þ0 signal does not/does exist.
The results of these two cases are listed in Table VII.
Comparing the masses of the PΛ

ψs states calculated in the
single-channel formalism (Table V) with the results
obtained in the coupled-channel formalism (Table VII),

TABLE VII. The results of the PΛ
ψs states calculated at gx ¼ 0.50 and gx ¼ 0.62 in the coupled-channel formalism.

All results are in units of MeV.

gx ¼ 0.50 gx ¼ 0.62

States Mass Γ BE Mass Γ BE

½ΛcD̄s�12 � � � � � � � � � 4255.5þ0.0
−0.7 0.0 −0.0þ0.0

−0.7
½ΛcD̄�

s �12 � � � � � � � � � 4398.1þ0.2
−1.5 0.0 −0.6þ0.2

−1.5
½ΛcD̄�

s �32 � � � � � � � � � 4398.3þ0.4
−1.3 0.0 −0.4þ0.4

−1.3
½ΞcD̄�12 4331.6þ2.6

−1.5 17.8þ3.6
−7.6 −5.0þ2.6

−1.5 4335.9þ0.7
−2.1 26.0þ5.0

−10.2 −0.7þ0.7
−2.1

½ΞcD̄��12 4472.1þ2.5
−1.6 23.4þ5.2

−6.0 −5.9þ2.5
−1.6 4477.1þ0.5

−0.8 33.0þ6.0
−8.0 −0.9þ0.5

−0.8
½ΞcD̄��32 4469.7þ1.9

−6.6 14.6þ4.4
−10.6 −8.3þ1.9

−6.6 4473.7þ2.7
−8.7 20.2þ5.8

−13.6 −4.7þ2.7
−8.7

½Ξ0
cD̄�12 4433.8þ3.4

−4.8 0.8þ5.0
−0.6 −12.2þ3.4

−4.8 4433.7þ3.5
−5.2 0.4þ2.6

−0.0 −12.3þ3.5
−5.2

½Ξ�
cD̄�32 4501.8þ4.4

−3.4 7.7þ22.3
−5.1 −11.4þ4.4

−3.4 4501.2þ4.2
−3.7 7.8þ25.4

−5.3 −12.0þ4.2
−3.7

½Ξ0
cD̄��12 4564.4þ3.4

−4.0 4.5þ9.5
−2.7 −23.0þ3.4

−4.0 4564.1þ3.3
−7.4 4.8þ9.2

−2.8 −23.3þ3.3
−7.4

½Ξ0
cD̄��32 4582.1þ4.3

−2.0 1.9þ0.7
−1.1 −5.3þ4.3

−2.0 4582.1þ4.2
−2.0 2.0þ1.3

−1.2 −5.3þ4.2
−2.0

½Ξ�
cD̄��12 4628.2þ3.5

−7.1 5.0þ9.0
−3.0 −26.3þ3.5

−7.1 4628.1þ5.1
−7.3 5.2þ24.5

−3.2 −26.4þ5.1
−7.3

½Ξ�
cD̄��32 4640.7þ5.8

−3.2 7.0þ8.2
−0.8 −13.8þ5.8

−3.2 4640.6þ5.9
−3.2 7.2þ8.4

−4.4 −13.9þ5.9
−3.2

FIG. 2. The variations of the masses for the PΛ
ψs states with

JP ¼ 1=2− and JP ¼ 3=2− as gx increases. We use blue dotted
lines to denote the considered meson-baryon thresholds. The
masses of the obtained bound states are denoted with black lines.

The green bands denote that the bound states near the ΛcD̄
ð�Þ
s or

ΞcD̄ð�Þ thresholds can coexist in this gx region.
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we infer that the off-diagonal channels that only consist of
the spin-spin interaction terms have a small influence on the
masses of the PΛ

ψs states, which is very similar to the PN
ψ

system. From Table VII, we find that there exist three extra

PΛ
ψs states below the ΛcD̄

ð�Þ
s thresholds in case 2.

For the PΛ
ψsð4338Þ0 state, due to its strong coupling to the

ΛcD̄s channel, the width of this state is broader than the
result given by LHCb. Note that in our calculation, we only
include the open-charm two-body meson-baryon channels.
Thus, the width predicted by our model should be regarded
as the lower limit of the experimental width. Since
PΛ
ψsð4338Þ0 is reported in the B → J=ΨΛp̄ channel, the

narrow width of the PΛ
ψsð4338Þ0 found by the LHCb may be

due to the small phase space of this B-meson decay process.
Thus, confirming PΛ

ψsð4338Þ0 in other decay processes is
important to pinning down its resonance parameters.
Besides, we also find that the PΛ

ψs states that are close to
the ΞcD̄ð�Þ states are broader than the otherPΛ

ψs states due to

their strong coupling to the ΛcD̄
ð�Þ
s channel. Thus, our

results suggest that there exist two JP ¼ 1=2− and JP ¼
3=2− quasibound states near the ΞcD̄� region. This region
is close to the reported PΛ

ψsð4459Þ0, and the two-peak
structure in this region has been discussed in a great deal of
the literature [5,9,14,42,43]. The results from our model
provide a new possibility—i.e., the two PΛ

ψs structures in
this region may have a significant overlap in the J=ΨΛ

invariant spectrum due to their considerable widths. The
decay behaviors of PΛ

ψsð4459Þ0 have been discussed in
Refs. [12,30,44–46]. The decay widths and decay patterns
are valuable in identifying the structure of the PΛ

ψsð4459Þ0
state. Further investigations on the total and partial decay
widths will be crucial to accomplishing a thorough under-
standing on the PN

ψ and PΛ
ψs states.

G. The correspondence between the PN
ψ and PΛ

ψs systems

Finally, we compare the masses of the PN
ψ and PΛ

ψs states
obtained from our multichannel model. The mass of the
constituent s quark is heavier than those of the u and d
quarks by about 100 MeV. Thus, we shift the mass plot of
the PΛ

ψs system by 100 MeV to check the similarities
between the PN

ψ and PΛ
ψs states. We present the multichan-

nel results for the PN
ψ system in Fig. 3(a), and the multi-

channel results for the PΛ
ψs system calculated at gx ¼ 0.5

and gx ¼ 0.62 are given in Fig. 3(b). As can be seen from
Figs. 3(a) and 3(b), the meson-baryon thresholds in the PN

ψ

and PΛ
ψs systems have the following analogies:

mΛcD̄ð�Þ ↔ mΛcD̄
ð�Þ
s
; ð34Þ

mΣð�Þ
c D̄ð�Þ ↔ mΞ0ð�Þ

c D̄ð�Þ : ð35Þ

(a) (b)

FIG. 3. The mass spectra of the PN
ψ and PΛ

ψs states in the multichannel formalism. We present the results of the PΛ
ψs system at gx ¼ 0.50

and gx ¼ 0.62. The meson-baryon thresholdsmΛcD̄ð�Þ ,mΛcD̄
ð�Þ
s
,mΣð�Þ

c D̄ð�Þ , andmΞ0ð�Þ
c D̄ð�Þ are illustrated with blue dotted lines. The two extra

thresholds, ΞcD̄ and ΞcD̄� in the PΛ
ψs, system are denoted with green dotted lines. We use black lines to denote the central values of the

obtained PN
ψ and PΛ

ψs states, and their uncertainties are illustrated with green and red rectangles. The six green states in the PN
ψ system can

directly correspond to the six green states in the PΛ
ψs system.
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We denote these thresholds with blue dotted lines in Fig. 3.
Besides these, there exist two extra meson-baryon thresh-
olds, ΞcD̄ and ΞcD̄� in the PΛ

ψs system. These two channels
cannot directly correspond to the meson-baryon channels in
the PN

ψ system. We denote these two thresholds with green
dotted lines.
As can be seen from Fig. 3, there exist six PN

ψ states with
JP ¼ 1=2− or 3=2−. These six states can correspond to the
six states in the PΛ

ψs system. We denote the masses of the
central values of these 12 states with black lines, and their
uncertainties are denoted with green rectangles. According
to Fig. 3, the experimentally observed PN

ψ states and the
predicted PΛ

ψs states should have the following analogies:

PN
ψ ð4312Þþ ↔ PΛ

ψsð4434Þ0; ð36Þ

PN
ψ ð4440Þþ ↔ PΛ

ψsð4564Þ0; ð37Þ

PN
ψ ð4457Þþ ↔ PΛ

ψsð4582Þ0: ð38Þ

As indicated in Fig. 3, if we replace the ΛcD̄�
s and Ξ0

cD̄
channels with the ΞcD̄ and ΞcD̄� channels, respectively, we
can reluctantly obtain the following analogies:

PN
ψ ð4312Þþ ↔ PΛ

ψsð4472Þ0; ð39Þ

PN
ψ ð4440Þþ ↔ PΛ

ψsð4564Þ0; ð40Þ

PN
ψ ð4457Þþ ↔ PΛ

ψsð4582Þ0: ð41Þ

The predicted PΛ
ψsð4472Þ0 may correspond to the reported

PΛ
ψsð4459Þ0. However, such an analogy indicates a con-

siderable SU(3)-breaking effect. In both sets of analogies,
PΛ
ψsð4338Þ0 cannot directly correspond to the lowest

PN
ψ ð4312Þþ state.
There exist three and six extra PΛ

ψs states that cannot
correspond to the states in the PN

ψ system at gx ¼ 0.50 and
gx ¼ 0.62, respectively. We denote the masses of the central
values of these states with black lines, and their uncertain-
ties are denoted with red rectangles. Further experimental
explorations on the PΛ

ψs system may help us to distinguish
which case should be preferred.

IV. SUMMARY

Motivated by the recently discovered PΛ
ψsð4338Þ0 from

the LHCb Collaboration, we have performed a multichan-
nel calculation of the I ¼ 1=2 PN

ψ and I ¼ 0 PΛ
ψs systems

and presented a comparison between the interactions of
the PN

ψ and PΛ
ψs states in the SUð3Þf limit and heavy

quark limit.
Unlike the c̄n − cnn (n ¼ u, d)-type meson-baryon

channels in the PN
ψ system, we need to consider two types

of channels when we study the PΛ
ψs system—i.e., the

c̄n − cns and c̄s − cnn meson-baryon channels. This
difference will lead to extra states in the PΛ

ψs systems.
The effective potentials of the PN

ψ and PΛ
ψs states are

collectively obtained via a quark-level Lagrangian, which
allows us to construct the correspondence between the PN

ψ

and PΛ
ψs systems.

We use the masses of PN
ψ ð4440Þþ and PN

ψ ð4457Þþ as
input to determine the coupling parameters g̃s and g̃a in our
model. We first study the masses of the PN

ψ states in the
single-channel and coupled-channel formalisms. Since all
the off-diagonal terms in the effective potential matrices
consist of the spin-spin interaction terms, the coupled-
channel effect provides very small corrections to the masses
of the PN

ψ states.
There exists an important difference between the PN

ψ

system and PΛ
ψs system. In the PΛ

ψs system, the off-diagonal

terms ΛcD̄
ð�Þ
s − ΞcD̄ð�Þ in the effective potential matrices

consist of the central terms and will have considerable
corrections to the mass spectrum of the PΛ

ψs states. To

clarify the role of the ΛcD̄
ð�Þ
s − ΞcD̄ð�Þ coupling, we have

performed a numerical experiment on the ðΛcD̄
ð�Þ
s ;ΞcD̄ð�ÞÞ

coupled-channel system. Our results suggest that the mass
of the PΛ

ψsð4338Þ0 may shift very close to the ΞcD̄
threshold by adjusting the coupling between the ΞcD̄
and ΛcD̄s channels. This coupling may also lead to a
PΛ
ψsð4255Þ0 state in a reasonable gx region.
Then we present our complete multichannel calculations

of the PΛ
ψs systems. Since the PΛ

ψsð4255Þ0 is not confirmed
by experiment, we present our numerical results with
gx ¼ 0.50=0.62, corresponding to the case in which the
PΛ
ψsð4255Þ0 does not/does exist, respectively. Due to the

strong ΛcD̄s − ΞcD̄ couplings, our predicted width of
PΛ
ψsð4338Þ0 is broader than the experimental value. The

reported narrower width may be due to the small phase
space of the B-meson decay process. Confirming the
PΛ
ψsð4338Þ0 state in other processes will be helpful to

pin down its resonance parameters. There exist two PΛ
ψs

states with JP ¼ 1=2− and JP ¼ 3=2− below the ΞcD̄�

threshold. The masses of these two states are close to the
mass of the reported PΛ

ψsð4459Þ0. Due to the ΛcD̄�
s − ΞcD̄�

coupling, these two states should have considerable widths
and may have significant overlap in the J=ΨΛ invariant
spectrum. Further experimental exploration would be
important to test our predictions.
Finally, we present a complete correspondence between

the PN
ψ and PΛ

ψs states. The observed PN
ψ ð4312Þþ,

PN
ψ ð4440Þþ, and PN

ψ ð4457Þþ do not directly correspond
to the observed PΛ

ψsð4338Þ0 and PΛ
ψsð4459Þ0. It is particu-

larly interesting to find the SU(3) PΛ
ψs states that may

correspond to the observed PN
ψ states, and to investigate if

such a correspondence does exist. Further experimental
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researches on these topics will be helpful to fulfill a
complete picture on the spectra of the PN

ψ and PΛ
ψs systems.
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APPENDIX: FLAVOR AND SPIN WAVE
FUNCTIONS FOR THE CONSIDERED MESON-

BARYON SYSTEMS

Similarly to the one-boson-exchange model or resonance
saturation model, in our framework, a meson and a baryon
can interact with each other via exchanging light mesons,
but we describe such a process with a quark-level
Lagrangian. Thus, the flavor and spin wave functions
are constructed at the hadron level, and we further rephrase
them into quark-level forms. In Tables VIII and IX, we
present the flavor and spin wave functions of charmed
hadrons we used in this work.
With the flavor and spin bases presented in Tables VIII

and IX, we can construct the total quark-level flavor-spin
wave function of a specific ½BM�IIzJJz

system according to
Eq. (11). For example, the explicit forms of the total wave

functions of the ½ΣcD̄�12121
2
1
2

and ½ΞcD̄�001
2
1
2

systems can be directly

obtained as

���½ΣcD̄�12121
2
1
2

E
¼

" ffiffiffi
2

3

r
uucdc̄ −

ffiffiffi
1

6

r
ðudcþ ducÞuc̄

#

⊗
� ffiffiffi

1

3

r
↑↑↓ð↑↓ − ↓↑Þ

−
ffiffiffiffiffi
1

12

r
ð↑↓↑þ ↓↑↑Þð↑↓ − ↓↑Þ

�
; ðA1Þ

���½ΞcD̄�001
2
1
2

E
¼

�
1

2
ðusc − sucÞdc̄ − 1

2
ðdsc − sdcÞuc̄

�

⊗
�
1

2
ð↑↓↑ − ↓↑↑Þð↑↓ − ↓↑Þ

�
: ðA2Þ

We explicitly expand Eqs. (A1) and (A2) to calculate
their corresponding hλ1 · λ2i and hλ1 · λ2σ1 · σ2i matrix
elements.
The wave functions for the ½ΣcD̄�121

2

and ½ΞcD̄�01
2

systems
with other Iz and Jz components can be obtained in a
similar way, and we can obtain the total wave functions of
the rest of the considered baryon-meson systems by
repeating the same procedure.

TABLE IX. The spin wave functions for the charmed hadrons considered in this work.

Hadron jSmSi ϕMs
SmS

Hadron jSmSi ϕMS
SmS

D̄=D̄s j00i 1ffiffi
2

p ð↑↓ − ↓↑Þ D̄�=D̄�
s

j11i ↑↑
j10i 1ffiffi

2
p ð↑↓þ ↓↑Þ

j1 − 1i ↓↓

Hadron jSmSi ϕBs
SmS

Hadron jSmSi ϕBS
SmS

Λc=Ξc

j 1
2
1
2
i 1ffiffi

2
p ð↑↓ − ↓↑Þ↑

Σ�
c=Ξ�

c

j 3
2
3
2
i ↑↑↑

j 1
2
− 1

2
i 1ffiffi

2
p ð↑↓ − ↓↑Þ↓ j 3

2
1
2
i

ffiffi
1
3

q
ð↑↑↓þ ↑↓↑þ ↓↑↑Þ

Σc=Ξ0
c

j 1
2
1
2
i − 1ffiffi

6
p ð↑↓þ ↓↑Þ↑þ

ffiffi
2
3

q
↑↑↓ j 3

2
− 1

2
i

ffiffi
1
3

q
ð↑↓↓þ ↓↑↓þ ↓↓↑Þ

j 1
2
− 1

2
i 1ffiffi

6
p ð↑↓þ ↓↑Þ↓ −

ffiffi
2
3

q
↓↓↑ j 3

2
− 3

2
i ↓↓↓

TABLE VIII. The flavor wave functions for the charmed hadrons considered in this work.

Hadron jImIi ϕ
Mf

ImI
Hadron jImIi ϕ

Mf

ImI

D̄ð�Þ0 j 1
2
1
2
i uc̄ D̄ð�Þ− j 1

2
− 1

2
i dc̄

D̄ð�Þ−
s j00i sc̄

Hadron jImIi ϕ
Bf

ImI
Hadron jImIi ϕ

Bf

ImI

Λþ
c j00i 1ffiffi

2
p ðdu − udÞc Σð�Þþþ

c j11i uuc

Σð�Þþ
c j10i 1ffiffi

2
p ðudþ duÞc Σð�Þ0

c j1 − 1i ddc

Ξþ
c j 1

2
1
2
i 1ffiffi

2
p ðus − suÞc Ξ0

c j 1
2
− 1

2
i 1ffiffi

2
p ðds − sdÞc

Ξ0ð�Þþ
c j 1

2
1
2
i 1ffiffi

2
p ðusþ suÞc Ξ0ð�Þ0

c j 1
2
− 1

2
i 1ffiffi

2
p ðdsþ sdÞc
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