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The phase diagram of QCD is investigated by varying number of colors Nc within a Polyakov loop
quark-meson chiral model. In particular, our attention is focused on the critical point(s); the critical point
present for Nc ¼ 3 moves toward the μq-axis and disappears as soon as the number of color is increased.
Yet, a distinct critical point emerges along the temperature axis for Nc ¼ 53 and moves toward finite
density when increasing Nc further. Thus, the phase diagram at large Nc looks specular with respect to the
Nc ¼ 3 results, with the first-order transition in the upper-left and crossover in the lower-right regions of
the ðμq; TÞ-plane. The pressure is also evaluated in dependence of Nc, showing a scaling with N0

c in the

confined and chirally broken phase and with N2
c in the deconfined one. Moreover, the presence of a chirally

symmetric but confined “quarkyonic phase” at large density and moderate temperature with a pressure
proportional to Nc is confirmed.

DOI: 10.1103/PhysRevD.106.116016

I. INTRODUCTION

The phase-diagram of QCD is one of the main subjects
of high-energy physics and is in the center of numerous
theoretical, numerical, and experimental works [1,2].
Various experimental collaborations that focus on heavy

ion collisions were and are able to investigate certain areas
of the quark chemical potential-temperature ðμq; TÞ plane
(μB ¼ 3μq is the baryonic chemical potential), depending
on the energy and the types of nuclei involved in the
collisions [3].
At the same time, lattice QCD numerical simulations

achieved a great precision along the T-axis at μq ¼ 0 [4–6]
and are constantly improving along the positive μq axis,
which is notoriously complicated by the fermionic sign
problem [7,8].
Moreover, numerous models based on (global) sym-

metries of QCD and involving mesons or quarks degrees of
freedom (d.o.f.)—or eventually both of them—delivered a
consistent qualitative picture of the main features of the

diagram that fits well with both experimental and lattice
outcomes, even though they still differ in quantitative
details [9–17].
A crossover phase transition along the T-axis and a first-

order one along the μq-axis are expected. In between, a
critical end point (CEP), whose precise location is the main
subject of numerous studies, with a second-order transition
emerges. According to various approaches, the so-called
confinement/deconfinement phase transitions and the chiral
phase transition seem to coincide, or lie very close to each
other, on the μq-T plane. Of course, this is the picture for
the number of color Nc ¼ 3 realized in nature.
Another interesting approach to QCD is the so-called

large-Nc limit [18–20]. Namely, in this limit certain
simplifications take place; the quark-antiquark mesons
(as well as glueballs) become stable, because the interaction
between them vanishes when Nc → ∞ (the exact scaling
behaviors shall be described later on). Quite remarkably,
Nc ¼ 3 can be seen as a “large number” in some cases,
since the implications of the large-Nc approach are well
confirmed; for instance, the J=ψ (as well as other charmo-
nia below the D̄D threshold) is very narrow, and the decay
of the mainly strange-antistrange f02ð1525Þ meson into two
pions is extremely small, even though the phase space
is large.
The natural question concerns the properties of the

phase diagram in the large-Nc limit. Does it keep some of
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the Nc ¼ 3 features or is it completely different? Do the
chiral and confinement/deconfinement phase transitions
coincide?
In previous works on this topic, it was indeed found that

the phase diagram for Nc ¼ 3 is rather different from its
large-Nc counterpart. According to Refs. [21,22] a quar-
kyonic phase, still confined but chirally symmetric, is
expected to take place at high quark chemical potential
and moderate temperatures. Later on, this view was
confirmed in various works, e.g., in [23], where an effective
theory of Polyakov loops is investigated that emanates from
lattice QCD with heavy quarks. The fate of nuclear matter
was also discussed in the large-Nc limit, the outcome being
that it might be rather a fortunate outcome of our Nc ¼ 3
world [24] (thus, Nc ¼ 3 should not be regarded as a “large
number” for the binding of nuclei). Different aspects of
large-Nc have been studied in a variety of works, see
Refs. [25–34] and references therein.
Here, we intend to use a chiral model for QCD, the so-

called Polyakov-loop extended linear sigma model
(PLeLSM), in order to study the phase diagram at large-
Nc. The model is based on both (pseudo)scalar and (axial-)
vector chiral multiplets and has been investigated in the
vacuum in Refs. [35,36]. Later on, it has been applied to the
QCDmedium [11,37,38] by coupling it to quarks as well as
the to the Polyakov loop that describes, in a thermodynamic
sense, confinement.
The extension of the PLeLSM to large Nc is straightfor-

ward for what concerns mesons and quarks, but care is
needed for the Polyakov-loop sector [39]. In the main text
we use the so-called uniform eigenvalue ansatz, while, for
comparison, in Appendix B we employ the Φn ¼ Φn

approximation. Both deliver qualitatively similar results.
The outcomes turn out to be quite interesting: we do

confirm the existence of a confined and chirally symmetric
region at intermediate densities and low temperatures (a
quarkyonic phase), which in turn implies that the chiral and
the deconfinement phase transitions do not coincide in the
large-Nc limit.
Moreover, we also observe other remarkable phenom-

ena: (i) The CEP disappears very fast when increasing Nc,
since already for Nc ¼ 4 it is not present. It means that the
CEP with a crossover line on its left and a first-order one on
its right is solely a feature of the Nc ¼ 3 world. At large-
Nc, the μq-axis features a crossover transition; (ii) For
intermediate Nc [in the range (4,52)] the whole diagram
contains only cross-over transitions; (iii) A new CEP along
the T-axis emerges when Nc is large enough (Nc ¼ 53).

This CEP then moves toward larger and larger μB for
increasing Nc. This is in agreement with the gluons
dominating matter along the T-axis with a first order
confinement/deconfinement transition, e.g., Refs. [40–43].
In summary, the large-Nc phase diagram is utterly

different from the Nc ¼ 3 one, thus showing that Nc ¼ 3
is in this respect ‘not large’ with the original CEP being a
property of Nc ¼ 3 only. Yet, the quarkyonic phase is
confirmed in the large-Nc domain and can be interpreted as
one of the features that link Nc ¼ 3 to the large-Nc limit.
The paper is organized as follows. In Secs. II and III we

briefly introduce the model, summarize the basic properties
of the large-Nc approach and give the explicit Nc depend-
ence of the parameters of our Lagrangian. We also show the
Nc scaling of the meson condensates and the meson masses
in the vacuum. In Sec. IV we discuss the Polyakov loops at
arbitraryNc, establish a Polyakov-loop potential suitable for
the Nc > 3 calculations and compatible with the so-called
uniform eigenvalue ansatz. The corresponding grand poten-
tial and the field equations are also presented here. In Sec. V
we show our results for the Nc dependence of the phase
diagram together with the Nc scaling of the pressure as a
function of temperature. Finally, we conclude in Sec. VI.

II. THE PLELSM MODEL

The model that we use is a three-flavored vector and
axial-vector extended linear sigma model with Polyakov-
loop and quark variables. At zero temperature, a version of
this model was investigated thoroughly in [36], while at
finite temperature in [11]. The Lagrangian consists of a
mesonic and a Yukawa part,

L ¼ Lm þ LY; ð1Þ
while the Polyakov loop is introduced with the help of the
grand potential (see later). The meson sector contains four
nonets, namely the pseudoscalar P, the scalar S, the vector
V, and the axial vector A matrix fields,

M ¼ Sþ iP ¼
X
a

ðSa þ iPaÞTa;

Lμ ¼ Vμ þ Aμ ¼
X
a

ðVμ
a þ Aμ

aÞTa;

Rμ ¼ Vμ − Aμ ¼
X
a

ðVμ
a − Aμ

aÞTa; ð2Þ

where Taða ¼ 0…8Þ denotes the generators of Uð3Þ. The
mesonic part of the Lagrangian reads

Lm ¼ Tr½ðDμMÞ†ðDμMÞ� −m0TrðM†MÞ − λ1½TrðM†MÞ�2 − λ2½TrðM†MÞ2� þ cðdet M þ det M†Þ þ Tr½HðM þM†Þ�

−
1

4
Tr½LμνLμν þ RμνRμν� þ Tr

��
m2

1

2
þ Δ

�
ðLμLμ þ RμRμÞ

�
þ h1

2
Trðϕ†ϕÞTr½LμLμ þ RμRμ�

þ h2Tr½ðMRμÞ†ðMRμÞ þ ðLμMÞ†ðLμMÞ� þ 2h3Tr½RμM†LμM� − 2g2TrfLμν½Lμ; Lν�g þ TrfRμν½Rμ; Rν�g; ð3Þ
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where

Dμ ¼ ∂
μM − ig1ðLμM −MRμÞ − ieAμ½T3;M�;

Lμν ¼ ∂
μLν − ieAμ½T3; Lν� − f∂νLμ − ieAν½T3; Lμ�g;

Rμν ¼ ∂
μRν − ieAμ½T3; Rν� − f∂νRμ − ieAν½T3; Rμ�g; ð4Þ

and the explicit symmetry-breaking terms are

H ¼ H0T0 þH8T8 ¼
1

2
diagðhN; hN;

ffiffiffi
2

p
hSÞ;

Δ ¼ Δ0T0 þ Δ8T8 ¼ diagðδN; δN; δSÞ: ð5Þ

The mesonic Lagrangian contains the dynamical and the
meson-meson interaction terms up to fourth order, that are
chirally symmetric (SUð3ÞL × SUð3ÞR ×Uð1ÞV ×Uð1ÞA).
Explicit symmetry-breaking terms (proportional to H ¼
diagðhN; hN; hSÞ and Δ ¼ diagðδN; δN; δSÞ) and Uð1ÞA
anomaly term (proportional to c) are also included.
In the fermionic sector of the model, Nf ¼ 2þ1 con-

stituent quarks are present in a Yukawa-type Lagrangian

LY ¼ ψ̄ðiγμ∂μ − gFðSþ iγ5PÞÞψ : ð6Þ

It should be noted here that constituent quarks could also be
coupled to the (axial-)vector nonets, as it is discussed e.g.,
in [44]. However, they are not relevant for the aim of the
present study and are thus omitted.
The model parameters are the bare massesm2

0 andm
2
1, the

couplings g1, g2, λ1, λ2, h1, h2, andh3, the alreadymentioned
symmetry-breaking external fields hN=S and δN=S, theUAð1Þ
anomaly parameter c, and, finally, the fermion-meson
coupling gF. These parameters are determined with a χ2

minimization method using tree-level meson masses and
decay widths as physical inputs. The tree-level masses and
decay widths can be calculated after applying the sponta-
neous symmetry breaking (SSB) and shifting the corre-
sponding fields with their nonzero vacuum expectation
values. Here we assume two scalar condensates, the ϕN=S ≡
hσN=Si nonstrange and strange condensates. More details
about the model and the fitting procedure can be found in
[11]. For completeness, the parameter values found in [11]
are listed in Table I as set A. It is worth noting that in [38] the
samemodelwith additional nonzero vector condensateswas
applied for investigation of the properties of compact stars.
Through the investigation of the asymptotic behavior of the
ϕN=S nonstrange and strange scalar condensates it was found
that the following condition

3

2
h1 þ h2 þ h3 < 0; ð7Þ

is needed for the condensates to vanish (as expected in
the chirally symmetric phase) for very large values of μB.

This restriction also has an advantage at largeNc, whichwill
be explained later. Consequently, we have taken another
parameter set from [38] (set B in Table I), which complies
this requirement.

A. Grand potential and field equations

As it is discussed in detail in [11], the thermodynamic
behavior of the system can be determined by the calculation
of the grand potential ΩðT; μqÞ, which, in the so-called
hybrid approximation, consists of a tree-level mesonic part,
a one-loop level fermionic part with vanishing mesonic
fields, and a Polyakov-loop potential,

ΩðT; μqÞ ¼ UðhMiÞ þΩð0Þ
q̄q ðT; μqÞ þ UðhΦi; hΦ̄iÞ: ð8Þ

In that approximation we assumed altogether four order
parameters, the ϕN=S nonstrange and strange scalar
condensates and the Φ and Φ̄ Polyakov-loop variables.

TABLE I. Parameter sets. Left column is taken from [11] (set
A) and right column is taken from [38] (set B).

Parameter Set A Set B

ϕN [GeV] 0.1411 0.1290
ϕS [GeV] 0.1416 0.1406

m2
0 [GeV2] 2.3925E−4 −1.2370E−2

m2
1 [GeV2] 6.3298E−8 0.5600

λ1 −1.6738 −1.0096
λ2 23.5078 25.7328
c1 [GeV] 1.3086 1.4700

δS [GeV2] 0.1133 0.2305

g1 5.6156 5.3295
g2 3.0467 −1.0579
h1 37.4617 5.8467
h2 4.2281 −12.3456
h3 2.9839 3.5755
gF 4.5708 4.9571
M0 [GeV] 0.3511 0.3935
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The field equations are given by the saddle point of the
grand potential with respect to the four order parameters

∂ΩðT;μqÞ
∂ϕN

¼ ∂ΩðT;μqÞ
∂ϕS

¼ ∂ΩðT;μqÞ
∂Φ

¼ ∂ΩðT;μqÞ
∂Φ̄

¼ 0; ð9Þ

which can be solved for nonzero T and/or μq using the
parameters fixed at T ¼ μq ¼ 0. It is worth noting that at
zero temperature Φ ¼ Φ̄≡ 0, thus there are only two field
equations. From the solution of these two equations at T ¼
μq ¼ 0 the hN=S external fields can be determined.

III. Large Nc

A. Main properties of large Nc

As argued by G. ’t Hooft [18,45], the coupling parameter
of QCD, denoted as gQCD, is not a free parameter in the
sense that it takes part in the setting of the QCD scale.
Since, beside the current quark masses, this is the only
parameter of the QCD Lagrangian, we have no evident
expansion parameter, which would be required for a
systematic expansion. One possible solution is to enlarge
the SUðNcÞ gauge group of the theory, from Nc ¼ 3 to
Nc > 3, and use 1=Nc as an expansion parameter. As it
turns out, QCD substantially simplifies at the leading order
of the 1=Nc expansion, under the assumption that Ncg2QCD
is kept fixed as Nc → ∞. Basically, the properties of the
large-Nc approximation arise from the combinatorial fac-
tors of the various Feynman diagrams for large number of
colors. The main properties are (see also Refs. [19,46]):

(i) The q̄q mesons and glueballs are free, noninteract-
ing and stable particles.

(ii) For the q̄q meson, each decay amplitude runs (at
most) with 1=

ffiffiffiffiffiffi
Nc

p
, while each four-leg scattering

amplitudes (at most) with 1=Nc.
(iii) The leading contributions to the elastic scattering

amplitude are given by tree-level graphs with mes-
ons as mediating particles. This result can be related
to the Regge phenomenology.

(iv) Diagrams that falls apart by cutting an internal gluon
line are large-Nc suppressed. This is the so called
Zweig or Okubo-Zweig-Iizuka (OZI) rule.

(v) The baryon masses diverge with ∼Nc, but the quark
masses are Nc independent.

It is also known (e.g., [21]) that the pseudocritical
temperature of the chiral phase transition at μB ¼ 0 is
independent of Nc (Tc ∝ N0

c). Since in the hadronic phase
the relevant degrees of freedom are color-singlet q̄qmesons
and glueballs, while in the quark gluon plasma (QGP)
phase they are colored quarks (∝ Nc) and, predominantly,
gluons (∝ N2

c), one can argue that the pressure p and the
energy density ϵ scale as ∝ N0

c for small and ∝ N2
c for large

temperatures [21,25].

B. Nc dependence of the model parameters

According to [19] and [35], the large-Nc scaling of the
parameters of the PLeLSM Lagrangian are summarized in
Table II. In more detail, the k-leg meson vertex scales as

Γk ∝ N
1−k

2
c , consequently the g1 and g2 parameters—being

three-leg-couplings—scale as N−1=2
c , while the λ2, h2 and

h3 parameters—being four-leg couplings—scale as N−1
c .

Due to the different trace structure (square of the trace of
two meson fields instead of the trace of four meson fields),
the parameters λ1 and h1 are more suppressed and scale
with N−2

c . The parameters m2
0, m

2
1, and δS correspond to

tree-level meson mass terms, hence they are independent of
Nc. Since the Uð1ÞA anomaly has an extra 1=Nc suppres-
sion [47], c1 scales as N

−3=2
c . From the Goldstone theorem

and the partially conserved axial current (PCAC) relation it
can be deduced that the hN=S external fields scale as

ffiffiffiffiffiffi
Nc

p
. It

should be noted that from the PCAC we also expect that the
ϕN=S meson condensates scale similarly, i.e.,

ffiffiffiffiffiffi
Nc

p
, how-

ever, we only set the scaling of hN=S (since they are
connected through the field equations and cannot be scaled
separately).
In practice, we implement the large Nc dependence as

follows:

TABLE II. Nc dependence of the parameters.

m2
0; m

2
1; δS N0

c

g1; g2; gf 1=
ffiffiffiffiffiffi
Nc

p
λ2, h2, h3 N−1

c

λ1, h1 N−2
c

c1 N−3=2
c

hN=S
ffiffiffiffiffiffi
Nc

p
gF 1=

ffiffiffiffiffiffi
Nc

p

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  20  40  60  80  100

�S
2

�N
2
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2 ]

Nc
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Set B

FIG. 1. Nc dependence of the squared meson condensates ϕ2
N

and ϕ2
S with using the parameter set A, listed in the left column

(red) and set B, listed in the right column (green) of Table I.
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g1ðNcÞ ¼
ffiffiffiffiffiffi
3

Nc

s
g1ðNc ¼ 3Þ ð10Þ

and similarly for all the other parameters in Table II. These
rescalings are done at T ¼ μq ¼ 0, than the coupled filed
equations are solved for nonzero T=μq. It is worth to note
that the hN , hS external fields are calculated at T ¼ μq ¼ 0

for Nc ¼ 3 from the field equations and rescaled to a
desired Nc. We then solve the field equations again1 to get
the values of ϕN=S condensates for the new Nc. In Fig. 1 the
Nc dependence of the ϕN=S condensates is shown using
both parameter sets in Table I. As it can be seen, after a
rather abrupt change for small Nc values, the condensates
show the expected scaling behavior (linear for the squared
condensates).
Besides the condensates, one can also check the Nc

scaling of the tree-level meson masses. The explicit
expressions of all the meson masses can be found in
[11] and [36]. The Nc-dependence of the meson masses are

shown in Fig. 2. In the top two figures the parameter set of
the left column of Table I is used. On the left the scalar and
pseudoscalar masses, while on the right the vector and axial
vector masses can be seen. For most of the masses, except
for the pion and eta, after some transient—Nc ⪅ 20—the
expected N0

c behavior sets in.
The changes at low Nc has two sources, the first one is

due to the changes of the condensates for low values of Nc
and the second is due to the subleading terms in the masses.
Both disappear rather quickly with increasing Nc. This can
be demonstrated for example in the case of the a1 mass,
which is given by2

m2
a1 ¼ m2

1 þ
h1
2
ϕ2
S þ 2δN þ 1

2
ð2g21 þ h1 þ h2 − h3Þϕ2

N;

ð11Þ
where every term has a N0

c scaling except for the h1ϕ2
N=2

term,which is∝ N−1
c . This termwill cause a drop (or rise if it

is negative) in the mass as it vanishes with the increasing
value of Nc. Such a term appears in each vector and axial-
vector masses with h1 and in each scalar and pseudoscalar

 0
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 1
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FIG. 2. The Nc dependence of the scalar and pseudoscalar (left) and the vector and axial-vector (right) meson masses. In the top
figures the parameter set from [11] (left column of Table I), while in the bottom ones the parameter set from [38] (right column of
Table I) is used. The inset on the top shows divergence of the Zπ wave function renormalization constant, which gives rise to the
divergence of the pion and eta masses, while the inset on the bottom shows the expected almost constant behavior of Zπ .

1Note, an appropriate choice of the initial values is extremely
important to find a physically meaningful solution—i.e., global
minima of the grand potential that is in connection to the solution
at Nc ¼ 3—for the field equations.

2In the expression below all parameters should be regarded as
Nc dependent (see Table II).
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masses with λ1. If the initial value of h1 or λ1 is relatively
large, then these terms give a major contribution to the
masses and the change up toNc ⪅ 20will also be significant.
Due to the large change of the vector and axial vector

masses, a problem may arise, as it can be seen in the top left
figure in Fig. 2; the mass of the pion and the ηL fields
increases, and eventually diverges at aroundNc ≈ 400. This
unwanted behavior is a consequence of the mixing between
the axial vector and pseudoscalar sector, viz., the masses of
the pseudoscalars contain a wave function renormalization
factor, which can have a zero denominator for certain
values of the parameters. This Zπ factor for the pion and the
ηN (the nonstrange part of the pseudoscalar-isoscalar
sector) reads as

Zπ ¼
ma1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
a1 − g21ϕ

2
N

q ; ð12Þ

which is well-defined only for m2
a1 > g21ϕ

2
N. This is always

true forNc ¼ 3, however, if the drop, asNc increases, in the
ma1 mass is too large, a divergence in Zπ and thus in
mπ=mηN may appear. As mentioned above this behavior of
the ma1 mass follows from that the value of h1 at Nc ¼ 3 is
relatively large and thus it gives a major contribution to the
mass. It turns out that a relatively large h1 value shows up
for most of the parameter sets that provides low mass for
the sigma (or f0) field, which is needed to get a first-order
phase transition along the μB axis. It is interesting that,
upon demanding Eq. (7) in the parametrization, the
divergence can be avoided. Such a parameter set can be
seen in the right column of Table I. The lower figures in
Fig. 2 are made with this set of parameters and obviously
the divergence is absent. It should be noted, however, that
even without imposing Eq. (7) we were able to find
parameter sets that are free from such divergences. This
shows that the condition is sufficient but not necessary.
In the future, one may consider the addition of a four-

quark nonet into the PLeLSM. Namely, the light scalar state
f0ð500Þ as well as the other scalars below 1 GeV do not fit
into the quark-antiquark picture, see the reviews [48,49]
and Refs. therein, As shown in a study of the eLSM in the
vacuum [50], when a light four-quark state is added, a small
h1 parameter is quite natural, thus no divergence would
appear. In turn, the light nonconventional meson f0ð500Þ
has also shown to be potentially relevant at nonzero
temperature [51] and at nonzero density [52,53]. The
inclusion of four-quark objects in the PLeLSM is then a
straightforward extension of the model at Nc ¼ 3. Yet, it is
not expected to affect the large-Nc results, because four-
quark states disappear in this limit.

IV. POLYAKOV-LOOPS AT LARGE Nc

The extension of the Polyakov-loop variables from
Nc ¼ 3 to Nc > 3 is a complicated tasks that requires

several steps. In this section we present a way to tackle this
problem.
The Polyakov-loop is a special Wilson-line in the

temporal direction at nonzero temperature—usually a
periodic boundary condition is applied, hence the line
becomes a loop. This provides a way to mimic the effect of
confinement as it can be used to define a parameter to signal
center symmetry breaking. The Polyakov loop is defined as

Lðx⃗Þ ¼ P exp

�
i
Z

β

0

A4dt

�
; ð13Þ

where A4 is the temporal component of the gluon field in
Euclidean metric and P the path-ordering operator. Thus,
LðxÞ is a matrix in SUðNcÞ, which, in general, is not
diagonal. To get a color singlet quantity one usually
defines the color-traced Polyakov loops, or Polyakov-loop
variables

Φðx⃗Þ ¼ 1

Nc
TrcLðx⃗Þ; and Φ̄ðx⃗Þ ¼ 1

Nc
TrcLðx⃗Þ†; ð14Þ

which are gauge invariant, but not invariant under non-
trivial center transformations, i.e., C ¼ c1, c ∈ C, jcj ≠ 1.
It is shown in [54] that the thermal expectation values of
the Polyakov-loop variables are related to the ΔFq=q̄

change in the free energy, when an infinitely heavy quark
(or antiquark) is added to the system

hΦðx⃗Þiβ ¼ e−βΔFqðx⃗Þ; hΦ̄ðx⃗Þiβ ¼ e−βΔFq̄ðx⃗Þ: ð15Þ

Since Φðx⃗Þ is not invariant under nontrivial center trans-
formations, a center symmetric phase hΦðx⃗Þiβ ¼ 0 implies
ΔFqðx⃗Þ ¼ ∞, which means confinement. In the decon-
fined phase ΔFqðx⃗Þ < ∞ and consequently Φðx⃗Þ ≠ 0. A
similar argument holds for Φ̄ðx⃗Þ for antiquarks. ThusΦðx⃗Þ
and Φ̄ðx⃗Þ can be used as order parameters of the phase
transition between the confined and deconfined phases. It
should be noted that for μq ¼ 0hΦðx⃗Þiβ ¼ hΦ̄ðx⃗Þiβ, but for
μq ≠ 0 they are not equal.
As usual, we apply the Polyakov gauge, in which A4 is

time independent and diagonal. As a further simplification
we take an x⃗-independent, i.e., homogeneous, gluon field.
Consequently L can be written as

L ¼ eiβA4 ¼ diagðeiq1 ;…; eiqNc Þ; ð16Þ

where qj ∈ R are some phases and
P

j qj ¼ 0.
Among the diagonal SUðNcÞ matrices, there are Nc − 1

independent elements, thus the two Polyakov-loop vari-
ables (that were defined above) are not sufficient alone to
completely describe the symmetry breaking for Nc > 3.
As it is discussed in [15,16], one has to define Nc − 1
independent quantities, for e.g., the color traced Polyakov
loops that wind n times around in temporal direction,
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Φn ¼
1

Nc
TrcLn; Φ̄n ¼

1

Nc
TrcL†n; ð17Þ

where n ∈ ð1;…; bNc
2
cÞ. These objects form a complete set

of order parameters. It should be noted, however, that for
Nc even there are Nc=2 variables Φn and Nc=2 variables
Φ̄n, thus altogether there are Nc Polyakov-loop objects,
but only Nc − 1 of them are independent. Thus, there are a
Φk and a related Φ̄k which only appear in certain
combinations and cannot be determined separately. On
the other hand if Nc is odd, then all the Φn and Φ̄n are
independent.
The Polyakov loop variables were already introduced in

the PLeLSM forNc ¼ 3 in [11]. Our goal is to calculate the
grand potential Eq. (8), in which the Polyakov-loop
variables appear in the second (the fermionic part) and
third (the Polyakov-loop part) terms. As explained in detail

in Sec. III of [11], the Ωð0Þ
q̄q ðT; μqÞ fermion part of the grand

potential can be calculated from the partition function,

Zð0Þ
q̄q ¼ e−βVΩ

ð0Þ
q̄q ; ð18Þ

where

Ωð0Þ
q̄q ðT; μqÞ ¼ Ωð0Þv

q̄q þΩð0Þ T
q̄q ðT; μqÞ; ð19Þ

consists of a vacuum and a thermal part. In this approxi-
mation, basically the quarks propagate on a constant gluon
background, which amounts to adding a color-dependent
contribution the chemical potentials of the quarks in the
thermal part. The calculation can be easily generalized to
Nc > 3 (see also [12]) leading to

Ωð0Þv
q̄q ¼ −2Nc

X
f¼u;d;s

Z
d3p
ð2πÞ3 EfðpÞ; ð20Þ

Ωð0Þ T
q̄q ðT; μqÞ

¼ −2T Trc
X

f¼u;d;s

Z
d3p
ð2πÞ3 × ½lnð1þ L†e−βðEfðpÞ−μqÞÞ

þ lnð1þ Le−βðEfðpÞþμqÞÞ�

≡ −2T
X
f

Z
d3p
ð2πÞ3 ½ln g

þ
f ðpÞ þ ln g−f ðpÞ�; ð21Þ

where we have introduced g�f ,

ln gþf ðpÞ≡ Trc ln ½1þ L†e−βðEfðpÞ−μqÞ�
¼ lnDetc½1þ L†e−βðEfðpÞ−μqÞ�;

ln g−f ðpÞ≡ Trc ln ½1þ Le−βðEfðpÞþμqÞ�
¼ lnDetc½1þ Le−βðEfðpÞþμqÞ�: ð22Þ

Introducing E�
f ≡ EfðpÞ ∓ μq, the quantity gþf can be

written for a general Nc as

gþf ¼ Detc½1þ L†e−βE
þ
f �

¼ ð1þ e−iq1e−βE
þ
f Þ � � � ð1þ e−iqNc e−βE

þ
f Þ

¼ 1þ e−i
P

j
qje−NcβE

þ
f þ

X
j

e−iqje−βE
þ
f

þ
X
j

e−i
P

k≠j
qke−ðNc−1ÞβEþ

f

þ ½terms with 2 toNc − 2 phases�; ð23Þ

where we have separated terms that contain 0, Nc, 1, and
Nc − 1 number of qj phases. The remaining terms contain
minimum 2, maximum Nc − 2 number of phases. One can
use that

P
j qj ¼ 0,

P
k≠j qk ¼ −qj and the Eq. (17)

definition of the Polyakov-loop variables to get

gþf ¼ 1þ e−NcβE
þ
f þ Nc½Φ̄1e

−βEþ
f þΦ1e

−ðNc−1ÞβEþ
f �

þ ½terms with 2 to Nc-2 phases�; ð24Þ

where the first line agrees with the result in [12] and [11]
for Nc ¼ 3, in which case the last line vanishes.
The expression for g−f is given by interchanging Φ1 and

Φ̄1 and changing Eþ
f to E−

f in gþf . For Nc > 3 not only Φ1

and Φ̄1 but also otherΦks will appear. One can calculate for
instance terms that contain 2 and Nc − 2 different phases.
After some calculations they read

1

2
ðN2

cΦ̄2
1 − TrcL†2Þe−2βEþ

f ; for 2 phases; ð25Þ

1

2
ðN2

cΦ2
1 − TrcL2Þe−ðNc−2ÞβEþ

f ; for Nc − 2 phases; ð26Þ

where TrcL2 and TrcL†2 cannot be expressed with Φ1 and
Φ̄1. According to Eq. (17), Φ2 and Φ̄2 appear,

gþf ¼ 1þ e−NcβE
þ
f þ Nc½Φ̄e−βE

þ
f þΦe−ðNc−1ÞβEþ

f �

þ 1

2
ðN2

cΦ̄2 − NcΦ̄2Þe−2βE
þ
f

þ 1

2
ðN2

cΦ2 − NcΦ2Þe−ðNc−2ÞβEþ
f

þ ½terms with 3 to Nc-3 phases�: ð27Þ

With increasing Nc more and more new unknown Φk and
Φ̄k also emerge.3 Accordingly, as Nc increases more and
more Polyakov-loop variables or order parameters are
needed, and consequently the number of field equations

3A new Φk appears whenever Nc ¼ 2k.
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to be solved is also increasing. At a given Nc there are
Nc þ 1 field equations, thus the task is not feasible already
for Nc ≳ 10. Consequently, we need a reasonable approxi-
mation, which can drastically reduce the number of
independent Polyakov-loop variables.

A. Uniform eigenvalue ansatz

To reduce the degrees of freedom in the Polyakov sector
of the model we will use the so-called uniform eigenvalue
ansatz (UEA), which was defined in [16] using group
theoretical considerations and was already used recently in
[55], where the deconfinement phase transition was inves-
tigated for Nc ¼ 2, 3, 4 in an SUðNcÞ effective model
approach. Within this ansatz the qj phases in the L operator
can be written as

qjðsÞ¼−π
Nc−2jþ1

Nc
s; 0≤ s≤ 1; j∈ 1…Nc ð28Þ

where the confining (L ¼ 1) and the perturbative (L ¼ 0)
vacua correspond to the points s ¼ 0 and s ¼ 1, respec-
tively.4 Here, the variable s plays a role of some external
parameter (like β). Notice that, in this approximation, the
eigenvalues of the Polyakov loop operator are points on
the unit circle with equally distributed angles, while in the
Nc → ∞ limit gives a uniform eigenvalue density for L in
the range of ð−πs; πsÞ.
To implement the UEA in our model one may express,

similarly to [55], the general qj angles of Eq. (16) in terms
of the Nc − 1 group angles of the Cartan subgroup of
SUðNcÞ

q⃗≡ ðq1;…; qNc
Þ ¼

XNc−1

j¼1

γjv⃗j; ð29Þ

with fv⃗jgNc−1
j¼1 being a set of basis vectors in the Cartan

subalgebra of suðNcÞ, hence forming a set of generators for
the Cartan subgroup of SUðNcÞ. Their Nc number of
elements sum up to zero to fulfill the condition

P
j qj ¼ 0

coming from the special unitarity. These basis vectors can
be written in such a way that the elements of v1 are
equidistant,5

Nc ¼ 3 v⃗1 ¼ ð−1; 0; 1Þ;
Nc ¼ 4 v⃗1 ¼ ð−1;−1=3; 1=3; 1Þ;
Nc ¼ 5 v⃗1 ¼ ð−1;−1=2; 0; 1=2; 1Þ;

..

.

Nc; v⃗1 ¼
�
−1;−

�
1 −

2

Nc − 1

�
;…;

−
�
1 − ðj − 1Þ 2

Nc − 1

�
;…; 1

�
;

j ¼ 1;…; Nc: ð30Þ

It is clear that, keeping as nonzero only the coefficient of
this vector, i.e., γ1 ≠ 0, γi ¼ 0; i ≠ 1, corresponds to the
uniform eigenvalue ansatz. This means that a single
direction is fixed in the Cartan subalgebra [of suðNcÞ]
and the Polyakov loop is calculated in this subspace.
Accordingly, the Polyakov loop can be written with the
help of a single γð≡γ1Þ parameter as

L ¼ diagðe−iγ; e−ið1− 2
Nc−1

Þγ; e−ið1−2
2

Nc−1
Þγ;…;

× ðe0Þ;…; eið1−2
2

Nc−1
Þγ; eið1−

2
Nc−1

Þγ; eiγÞ; ð31Þ

where e0 is part of the sequence only if Nc is odd. For
example, for Nc ¼ 6 and 7 one has

L ¼ diagðe−iγ; e−i3γ=5; e−iγ=5; eiγ=5; ei3γ=5; eiγÞ;
and

L ¼ diagðe−iγ; e−i2γ=3; e−iγ=3; e0; eiγ=3; ei2γ=3; eiγÞ; ð32Þ

respectively. Plugging Eq. (30) into Eq. (29) and comparing
to Eq. (28), the connection between γ and s is given
by γ ¼ π Nc−1

Nc
s.

It can be seen that the color trace of each power of L is
real, thus, the Polyakov loop variables are also such, i.e.,
Φn ¼ Φ̄n ∈ R for each n, and can be written explicitly as

Φn ¼
1

Nc

�
2
XbNc

2
c

j¼1

cos

��
1 − 2

j − 1

Nc − 1

�
nγ

�
þ α

�
ð33Þ

with α ¼ 1 if Nc is odd, and α ¼ 0 if Nc is even. It is
important to stress that in the UEA approximation every-
thing that is necessary for the calculation of the grand
potential can be expressed with the help of γ. Actually, it
turns out that, instead of Φ, it is much easier to work
directly with γ and calculate any Φn afterwards.
At vanishing chemical potential this approximation is

exact for Nc ≤ 3 in effective models with Zð3Þ andΦ ↔ Φ̄
symmetric Polyakov-loop potential, for which the
Polyakov-loop variables are real for any temperature.
Moreover, within the matrix model [16] it gives less than

4We stress that there is a difference between the notation
of the current work and the one of [16], where a 2π is factored out
from q⃗.

5In another way, this choice of the v1 can be considered
as a specific linear combination of the Nc − 1 generators of the
Cartan subalgebra.
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one percent deviation from the exact solution for Nc ¼ 7.
At finite μq the Polyakov loop variables are already
complex for Nc ≥ 3 (Φ3 ¼ Φ ≠ Φ̄ ¼ Φ̄3). At Nc ¼ 3,
one can test validity of the ansatz above by comparing
the thermodynamics of a model where the ansatz is used
and with another model with two (i.e., Nc − 1) independent
Polyakov-loop variables like in [11] (see later). Moreover,
in order to use the uniform eigenvalue ansatz within the
PLeLSM, we also need a Polyakov loop potential, which is
compatible with this approximation and applicable at
Nc > 3.

B. Polyakov-loop potential at large Nc

The Polyakov-loop potential, taken from [55], reads6

UPol ¼ Uconf þUglue; ð34Þ

where the two terms refer to a confining and a deconfining
part. The first term of the potential is explicitly given by

Uconf ¼ −
b
2
T ln H ð35Þ

with H being the invariant Haar-measure of the SUðNcÞ
group and b is a parameter. The potential in (35) is
confining in the sense that it has a minimum in the center
symmetric vacuum at Φ ¼ 0. The Haar-measure is
expressed via the qj phases as

H ¼
Y
j>k

jeiqj − eiqk j2 ¼
Y
j>k

4sin2
�
qj − qk

2

�
: ð36Þ

The deconfinement is induced by the second term in
(34), which is given by

Uglue ¼ nglueT
Z

d3p
ð2πÞ3 Tr ln ð1A − LAe−βEAðpÞÞ

¼ nglueT
Z

d3p
ð2πÞ3 ln Detð1A − LAe−βEAðpÞÞ

≡ nglueT
Z

d3p
ð2πÞ3 ln gA; ð37Þ

where gA ¼ Detð1A − LAe−βEAðpÞÞ, EAðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

A

p
,

1A is the N2
c − 1 dimensional identity, and LA is the

Polyakov-loop operator in the adjoint representation,

LA ¼ diagðeiQ1 ;…; e
iQN2

c−1Þ ð38Þ

with the Qj adjoint angles,

Q⃗ ¼ ð0;…; 0|fflfflffl{zfflfflffl}
Nc−1

; q1 − q2;…; ðqj − qkÞjj≠k;…qNc−1 − qNc|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NcðNc−1Þ

Þ:

ð39Þ

The adjoint angles are constructed from the root system
[16,55–57] and classified into a Cartan part with Nc − 1
zeros and a non-Cartan part with NcðNc − 1Þ phase
differences. Moreover, there are three unknown parameters
in the potential, namely b, nglue (the multiplicity of the
gluon field), and mA (the effective gluon mass). Their
values are taken from [55], namely, b ¼ ð0.1745 GeVÞ3,
nglue ¼ 2, and mA ¼ 0.756 GeV.
It is useful to express ln H in terms of the adjoint

operator LA as

ln H ¼ Tr0 ln ð1A − LAÞ ¼ ln Det0ð1A − LAÞ; ð40Þ

≡ ln g0A ð41Þ

where g0A is introduced and the prime on the Tr and Det
denotes a partial trace/determinant over the non-Cartan
roots only.
Besides the UEA described above, we have also

employed another approximation, according to which we
assumed thatΦn ¼ Φn. In this approximation the Polyakov
loop variables are complex for μq > 0, and this approxi-
mation gives very similar results as the UEA. Some details
of this approach can be found in Appendix B. The
qualitative picture emerging in the large-Nc limit remains
unchanged.

C. Field equations in the UEA approximation

The grand potential of Eq. (8) consist of three terms,
from which the first mesonic part (UðhMiÞ) is given
explicitly in Eq. (20) of [11]. The second fermionic term
has a vacuum and a matter part. The vacuum part [Eq. (20)]
needs to be renormalized (see the explicit expression in in
Eq. (31) of [11]). For the matter or thermal part [Eq. (21)],
ln g�f is needed in the UEA approximation. For this we start
from Eqs. (22) and (23) and use the fact that phase factors
always appear in pairs, i.e., same absolute value, but
opposite sign [see e.g., Eq. (32)], thus a general term
can be written as

ð1þ e−iθe−βE
�
f Þð1þ eiθe−βE

�
f Þ

¼ 1þ 2 cosðθÞe−βE�
f þ e−2βE

�
f ; ð42Þ

and there are bNc=2c number of such pairs. In case of Nc

being odd, there is an extra ð1þ e−βE
�
f Þ factor compared to

Nc being even. Moreover, it is clear that in the UEA
approximation g�f is real and its explicit form reads as

6Note, in [55] three possible forms are given; we use here their
model A.
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g�f ¼
YbNc=2c

j¼1

ð1þ 2 cosðθjÞe−βE
�
f þ e−2βE

�
f Þ

×

� ð1þ e−βE
�
f Þ for Nc odd

1 for Nc even
; ð43Þ

where θj are the bNc=2c different positive angles, i.e., the
positive qj’s

θj ¼
�
1 − ðj − 1Þ 2

Nc − 1

�
γ j ¼ 1…bNc=2c: ð44Þ

The gA and g0A determinants, introduced in Eq. (37) and
Eq. (41), are also real and can be formulated in a similar
fashion as g�f ,

gA ¼
YNcðNc−1Þ=2

j¼1

ð1 − 2 cosðQjÞe−βEAðpÞ þ e−2βEAðpÞÞ

× ð1 − e−βEAðpÞÞNc−1; ð45Þ

g0A ¼
YNcðNc−1Þ=2

j¼1

2ð1 − cosðQjÞÞ; ð46Þ

where Qj are the NcðNc − 1Þ=2 angles calculated as the
differences of two different qj’s, i.e., Qj ∈ fqk − qljk;
l ¼ 1…Nc; k < lg.
Consequently, the Polyakov-loop dependent part of the

grand potential of Eq. (8) (second and third terms), reads as

ΩjPol ¼ UPol þΩmatter
q̄q

¼ −
b
2
T ln g0A þ nglueT

Z
d3p
ð2πÞ3 ln gA

− 2T
X

f¼u;d;s

Z
d3p
ð2πÞ3 ½ln gþf þ ln g−f �: ð47Þ

As was mentioned above, by using the uniform eigen-
value ansatz one can express the Polyakov-loop variable
dependence as a function of solely the phase variable γ, that
gives rise to an additional field equation beside those for the
meson condensates,

0 ¼ ∂Ω
∂γ

¼ ∂UPol

∂γ
þ ∂Ωmatt

q̄q

∂γ
: ð48Þ

The field equations for the meson condensates are modified
only in the matter part of the fermion integral, which can be
written as

∂Ωmatt
q̄q

∂ϕN=S
¼ −4Nc

X
f¼u;d;s

mf
∂mf

∂ϕN=S
T matt

f ð49Þ

where the matter part of the tadpole integral7 is

T matt
f ¼ T

Nc

Z
d3p
ð2πÞ3

1

2mf

�
1

gþf

∂gþf
∂mf

þ 1

g−f

∂g−f
∂mf

�
: ð50Þ

Finally, the three field equations are

0 ¼ dUPol

dγ
− 2T

X
f¼u;d;s

Z
d3p
ð2πÞ3 ðh

þ
f ðpÞ þ h−f ðpÞÞ; ð51aÞ

0 ¼ m2
0ϕN þ

�
λ1 þ

λ2
2

�
ϕ3
N þ λ1ϕNϕ

2
S −

cffiffiffi
2

p ϕNϕS

− h0N þ gF
2

X
l¼u;d

hq̄lqliT; ð51bÞ

0 ¼ m2
0ϕS þ ðλ1 þ λ2Þϕ3

S þ λ1ϕ
2
NϕS −

ffiffiffi
2

p
c

4
ϕ2
N

− h0S þ
gFffiffiffi
2

p hq̄sqsiT; ð51cÞ

where, using the explicit form of g�f given in Eq. (43),

h�f ¼ 1

g�f

∂g�f
∂γ

¼
XbNc=2c

j¼1

−2 sinðθjÞe−βE
�
f

�
1 − ðj − 1Þ 2

Nc−1

�
1þ 2 cosðθjÞe−βE

�
f þ e−2βE

�
f

; ð52Þ

which is the modified Fermi-Dirac distribution function for
arbitrary Nc in case of the UEA approximation. Moreover,
the f flavored constituent quark tadpole is given by

hqfqfiT ¼ −4Ncmf

�
m2

f

16π2

�
1

2
þ ln

m2
f

M2
0

�
þ T matt

f

�
ð53Þ

with the matter part of the tadpole defined in (50).

V. RESULTS

A. Zero temperature

As already mentioned, at zero temperature the Polyakov-
loop variables are exactly zero, therefore at T ¼ 0 one has
to solve only Eqs. (51b) and (51c) from the system of
equations of Eq. (51).
We find that, upon using a parameter set that produces a

first-order phase transition along the μq axis (both param-
eter sets in Table I are like that), the first-order transition
turns into a crossover already for Nc ¼ 4. In Fig. 3 it is

7The factor of 4 in Eq. (49) is written to match the definition of
the tadpole integral of Eq. (28) in [44] for Nc ¼ 3with a modified
Fermi-Dirac distribution.
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shown how the first-order phase transition transforms into a
crossover for both parameter sets; here, for illustrative
purposes, Nc is treated as a continuous variable. If the
transition is of crossover type then there is no CEP.
Basically with increasing Nc the CEP goes toward the
μq axis and disappears; this happens around Nc ≈ 3.3.

B. Finite temperature and zero quark
chemical potential

At T ≠ 0, μq ¼ 0 all three equations of Eq. (51) are
nontrivial. Solving them for different T values starting from
T ¼ 0 and using the solution of the three unknowns γ, ϕN ,
and ϕS at T − ΔT as initial values at T the T dependence of
the condensates, the masses, and all the thermodynamic
variables can be determined at different Nc values. From
now on, if not said otherwise, all results are made using
parameter set B of Table I. First, we investigate the
temperature dependence of the ϕN condensate for different
Nc values. In Fig. 4 the normalized ϕN is depicted for
Nc ¼ 3; 20;…120. Actually, for Nc ¼ 3 there are two
curves, one made using set A of Table I and with a
Polyakov-loop potential used in [11] and the other one with
set B of Table I and with the Polyakov-loop potential
described in Sec. IV B. As it can be seen the difference
between the two curves at Nc ¼ 3 is very small, the values
of the pseudocritical temperatures are, Tc ¼ 178.6 MeV
and Tc ¼ 176.9 MeV for set A and set B, respectively.
It can also be seen that the crossover becomes more and

more abrupt with increasing Nc and it eventually turns into
a first-order phase transition at Nc ¼ 53. The curves get
close to each other for increasing Nc, which signals a

saturation in the (pseudo)critical temperature. This can be
seen directly in Fig. 5, where the Tc (pseudo)critical
temperatures are shown for different Nc values. These
calculations were done only at integer values of Nc (the
discrete points are connected to guide the eye). The
transitions are of crossover type on the left-hand side
and of first-order type on the right-hand side of the dashed
line at Nc ¼ 53. It is worth noting that the shoulder around
Nc ≈ 35 is due to the change of the dominant term in the
grand potential from Ωmatt

q̄q (scaling as Nc) to UPol (scaling
asN2

c). We note that this change of the dominant term in the
effective potential naturally leads to the appearance of a
first-order transition at μq ¼ 0 for large Nc, independently
of the actual choice of the form of the Polyakov potential.
The Polyakov-loop potential alone supports a first-order
transition, that is melted to a crossover by the continuous
behavior of the mesonic and fermionic contributions to the
grand potential at Nc ¼ 3, as it can be seen in [58].
For sufficiently large Nc, the Polyakov sector becomes

dominant and forces the chiral condensate ϕN=S to
develop a first-order transition. To find the Nc → ∞ limit
of the critical temperature one may fit the function
TcðNcÞ ¼ α=ðNc þ βÞ þ T∞ in the range Nc ¼ 53…100,
where the first-order transition starts and already the UPol
dominates the grand potential. This fit gives α ¼ −1.4865,
β ¼ −0.5554, and T∞ ¼ 0.3192 MeV, which is also
shown in Fig. 5 with the horizontal line.
Next, let us turn to the pressure, which is usually

defined as

pðT; μqÞ ¼ −ðΩðT; μq;ϕN=SðT; μqÞ; γðT; μqÞÞ
−Ωð0; 0;ϕN=Sð0; 0Þ; γð0; 0ÞÞÞ; ð54Þ

where it is explicitly written that the grand potential
depends, both explicitly and implicitly, on the three order
parameters, ϕN , ϕS, and γ—on T and μq. It turns out that if
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we use this definition for small temperatures the pressure
has a leading linear T dependence from

UconfðT ≪ Tc; γÞ ∝ T ln Hðγ ¼ γ0Þ ¼ T ln NNc
c : ð55Þ

It is common to remove this linear part and use Uconf ∝
T ln ðH=NNc

c Þ form in the Polyakov potential as in [59–61].
On the other hand, if we do this by redefining the potential
in Eq. (47), the pressure eventually becomes negative on
some intervals, a feature that is physically not acceptable.
This nonmonotonic behavior of the pressure is a known
problem for this kind of potentials, see e.g., [60]. However,
the definition

pðT; μqÞ ¼ −ðΩðT; μq;ϕN=SðT; μqÞ; γðT; μqÞÞ
− ΩðT; μq;ϕN=Sð0; 0Þ; γð0; 0ÞÞÞ ð56Þ

solves both the problem of the linear temperature
dependence and the negative pressure, since a nontrivial
temperature dependent term is subtracted. Moreover, this

term is independent of the order parameters, therefore the
field equations, and thus, the resulting phase structure,
remain the same. The normalized rescaled pressure
( pT4 ð 3

Nc
Þ2) as a function of the reduced temperature

[t ¼ ðT − TcÞ=Tc] is shown in Fig. 6 for different Nc
values. It can be seen that the curves converge to the same
curve for large Nc above Tc, which shows the N2

c scaling of
the pressure in the deconfined region. This behavior can
also be seen in the bottom figure of Fig. 7 at t ¼ 1. Here, in
the top figure the N0

c scaling is realized in the confined
region for sufficiently large Nc at t ¼ −0.5.

C. The phase diagram and the fate
of the critical end point(s)

Now we turn to the investigation of the phase diagram on
the T-μq plane, see Fig. 8. Three different setup are shown
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for Nc ¼ 3, two of them with the same Polyakov-loop
potential used in [11] and with parameters of set A and set
B of Table I, while the third one with Polyakov-loop used in
the uniform eigenvalue ansatz [see Eq. (34)] and with set B.
The dashed parts of the curves refer to crossover type phase
transitions, while the solid ones refer to first-order type phase
transitions. The phase boundary lines are defined as the set of
inflection points of the subtracted condensate defined as

ΔðT; μfixq Þ ¼



ϕN − hN

hS
ϕS

����
T;μfixq


ϕN − hN
hS
ϕS

����
T¼0;μfixq

: ð57Þ

This quantity can be measured on the lattice [62] and was
already implemented in the PLeLSM in in [11]. In addition,
this definition is applied when moving along the T direction
at a given fixed μfixq . Similarly, we also calculate this quantity
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along the μq direction for a givenTfix, forwhich the definition
is the samewithT and μq interchanged. It is worth to note that
location of inflection points of the subtracted condensate Δ
and the nonstrange condensate ϕN are very close to
each other.
It can be noticed that there is a very small difference

between curves made with the two different parameter
sets and with the same Polyakov-loop potential, while the
third curve using the UEA approximation is just a little
above the other two. The large dots mark the critical end
points on the different curves which are at ðμCEPq ; TCEPÞ ¼
ð294; 50Þ MeV, (295,53) MeV, and (289,72) MeV from
bottom to top. While the change in the value of μCEPq is less
than 5%, the change in the value of TCEP is more than 40%
for the two different Polyakov-loop potential.
In Fig. 9 the phase boundaries are shown for the

subtracted condensate [Eq. (57)] and for the Polyakov-
loop variables for different Nc values. In this way we can
distinguish different regions on the phase diagram,
namely confined and chirally broken, confined and
chirally symmetric, and deconfined and chirally symmet-
ric. For Nc ¼ 3 there are basically two regions besides a
small region (which is deconfined, but chirally broken)
one which is confined and chirally broken, i.e., the normal
baryonic matter and a deconfined, chirally symmetric
quark-gluon plasma phase. The phase boundary is a
crossover up to the large μq and small T region, where
the phase transition is of first order. The two regions are
separated by a second-order critical endpoint or CEP.
With the increase of Nc, this picture changes very rapidly,
the CEP disappears already for Nc ¼ 4, as it was already
shown in Sec. VA. For the illustrative value of Nc ¼ 33
there are only crossover type of transitions. In this case
the confined and chirally broken phase shrink and a
chirally symmetric but still confined phase appears. Quite
interestingly, this phase can be interpreted as the quar-
kyonic phase of [21]. It should be noted here that when we

define the phase boundary we either go along the T
direction starting from T ¼ 0 at some given μq0 or along
the μq direction starting from μq ¼ 0 at some given T0. In
case of crossover the location of inflection points of
ΔðT; μqÞ along the two different directions (T or μq)
usually not coincide.
If we further increase Nc, at around Nc ¼ 53 a new CEP

appears at μq ¼ 0 along the T axis, then this CEP starts to
wander along the phase boundary towards larger μq and,
compared to Tcðμq ¼ 0Þ, smaller T values. This can be
seen on the bottom left figure of Fig. 9. The right set of
figures in Fig. 9 show the phase boundary surfaces of the Δ
subtracted condensate for the correspondingNc values. The
phase diagram for Nc ¼ 33 and 63 on a wider μq interval is
displayed in Fig. 10 to show the high chemical potential
behavior of the deconfinement phase transition. When the
new CEP appears, there is a first-order transition for high T,
as a closer look to the case for Nc ¼ 63 in the left figure of
Fig. 11 shows.
Here the peculiarly shaped crossover line, defined via the

inflection point along the μq direction, is also shown.
Additionally, the right figure shows the subtracted con-
densate and its derivative along the horizontal lines of the
left figure. There is a region in T, where Δ has multiple
inflexion points (extrema of its derivative) which results in
this unusual shape of the phase boundary. This means that,
with increasing μq and after entering the chirally symmetric
phase, the system would go back to the chirally broken
region although the condensate is monotonically decreas-
ing. This behavior highlights the limitation of defining the
phase boundary univocally in case of a crossover. On the
other hand, using the inflexion point is still the most
common method to define a phase boundary both in the
first-order and the crossover region, thus being applicable
in the whole phase diagram.
As already mentioned, the “new” large-Nc induced CEP

moves to higher-quark chemical potential, as can be seen in
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the top figure of Fig. 12. The calculations were done again
only at integer values of Nc (the discrete points are
connected for a better illustration). As the top figure of
Fig. 12 shows, μCEPq is increasing and no saturation can be
seen. However, TCEP does saturate (bottom figure of
Fig. 12) for large Nc. In the inset of the bottom figure
TCEP=Tcðμq ¼ 0Þ is displayed, which shows that TCEP is
decreasing less and less compared to the pseudocritical
temperature at μq ¼ 0 with increasing Nc. This behavior
is also in agreement with the quarkyonic phase at large-
Nc, according to which the first-order line becomes a

horizontal line of the type T ¼ Tc, since the CEP moves
toward an infinitely large chemical potential. Thus, our
model realizes the expectations of quarkyonic matter.
The schematic phase diagram for largeNc can be seen on

Fig. 13, where the Nc scaling of the various phases are also
marked. For small T and μq one finds a meson dominated
(confined and chirally broken) phase with p ∝ N0

c pressure.
It is separated by a first-order chiral and deconfinement
phase boundary around Tc ≈ 320 MeV from the high
temperature phase of quarks and gluons with p ∝ N2

c.
The first-order line ends in a second-order critical endpoint
that moves to higher chemical potential with the growing
Nc. This CEP separates the first-order and crossover
boundaries both for the chiral and the deconfinement phase
transitions. However, while the deconfinement boundary
continues to larger chemical potentials and slowly
approaching to smaller temperatures, the chiral boundary
turns first to smaller μq then to small T reaching the axis
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around μcq ≈ 160 MeV and marks the start of a low
temperature, higher chemical potential phase of confined
but chirally restored matter. This region has a p ∝ N1

c (see
Fig. 14) scaling, as expected for a quarkyonic phase. Note
however, that this quarkyoniclike phase is separated from
the deconfined phase with only either a very smooth
crossover (large μq) or a first-order boundary with nonzero
Polyakov loop even in the low-temperature side.

VI. CONCLUSIONS

In this work, we investigated the large-Nc behavior of
the Polyakov loop extended linear sigma model
(PLeLSM). When the parameters of the model are
properly rescaled, the PLeLSM reproduces correctly the
expected Nc scaling of the physical quantities in the
vacuum, such as the meson masses, decay widths, and
the pion and kaon decay constants.
Then, we concentrated on the phase diagram on the

μq − T plane with increasingNc as well as on other relevant
thermodynamic quantities, such as the Nc scaling of the
pressure. In particular, we have shown that the phase
diagram at large-Nc is substantially different from the
physical case for Nc ¼ 3.
Along T ¼ 0—where the Polyakov loop decouples and

the phase structure can be studied only with mesonic d.o.f.
and their condensates—the chiral phase transition along the
μq axis turns out to be a crossover already at Nc ¼ 4, which
suggests that the critical end point disappears by then. This
picture is confirmed when the whole phase diagram is
studied and also the Polyakov loop, besides the meson
condensates, plays an important role. Upon using the
uniform eigenvalue ansatz [16] (needed to reduce the
number of d.o.f. and to cast the fermion determinant in
a manageable form) as well as the Polyakov-loop potential
of [55], we verified that the CEP actually disappears
already at Nc ¼ 4 resulting in a crossover type transition
on the whole T-μq plane. This is the phase diagram for

intermediate values of Nc; a crossover in all directions. In
turn, this result implies that the CEP separating a crossover
on its left and first order on its right is only a peculiarity of
our natural world for Nc ¼ 3.
Next, when Nc is sufficiently large (Nc ¼ 53 within our

model) the transition at μq ¼ 0 eventually turns to a first
order. This give rise to a new large-Nc driven critical
endpoint, which for increasing Nc approaches a Nc-
independent critical temperature Tc of about 0.3 GeV
and moves to higher chemical potential (eventually
approaching infinity along the μq line). Note, the fact that
the critical temperature Tcðμq ¼ 0Þ (and similarly for each
μq) is large-Nc independent, is due to the presence of the
Polyakov loop and quark d.o.f., which resolve an apparent
paradox emerging when only mesons are considered [31],
which would, erroneously, imply that the critical temper-
ature scales as T1=2

c .
In the confined and chirally broken region at low μq and

T, the pressure scales as N0
c, while in the deconfined region

(T > Tc ∼ 0.3 GeV) it scales as N2
c. This is in agreement

with basic expectations, since the confined phase is
dominated by mesons, while the deconfined phase is
dominated by gluons for Nc → ∞. The numerical value
Tc ∼ 0.3 GeV is also in agreement with the pure Yang-
Mills results of [4]. Moreover, for large chemical potential
μq > μcq ∼ 0.16 GeV and T < Tc there is a confined and
chirally symmetric phase, whose pressure is proportional to
Nc: this is an explicit model realization of the quarkyonic
phase at large-Nc. This is depicted in Fig. 13 that
summarizes the phase diagram in the large-Nc limit.
In the future, studying the restoration of dilatation

invariance in the QGP phase diagram within the framework
of the PLeLSM and neutron star matter [63–65] is
promising.
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APPENDIX A: TERMS IN g�f UP TO Nc ≥ 8

In this appendix we list more contributions to gþ which
was introduced in Sec. IV. One can continue with the n ¼ 3
and Nc − 3 phases and then the n ¼ 4 and Nc − 4 phases,
where the calculations become more and more compli-
cated, because it is harder to express everything with the
Polyakov-loop parameters of Eq. (17). Accordingly, one
finds for the n ¼ 3 part of gþ,
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gþjn¼3 ¼
1

6

�X
a;b;c

e−iðqaþqbþqcÞ − 3
X
a;b

e−iðqaþ2qbÞ þ 2
X
a

e−i3qa
�
e−3βE

þ
f

¼ 1

6
ðN3

cΦ̄3 − 3N2
cΦ̄Φ̄2 þ 2NcΦ̄3Þe−3βE

þ
f : ðA1Þ

Similarly, for the n ¼ Nc − 3 part of gþ, one has

gþjn¼Nc−3 ¼
1

6

�X
a;b;c

eiðqaþqbþqcÞ − 3
X
a;b

eiðqaþ2qbÞ þ 2
X
a

ei3qa
�
e−ðNc−3ÞβEþ

f

¼ 1

6
ðN3

cΦ3 − 3N2
cΦΦ2 þ 2NcΦ3Þe−ðNc−3ÞβEþ

f : ðA2Þ

Continuing this procedure the contribution to the color determinant from the terms with n ¼ 4 phases is

gþjn¼4 ¼
1

24
ðN4

cΦ̄4 − 6N3
cΦ̄2Φ̄2 þ 8N2

cΦ̄Φ̄3 þ 3N2
cΦ̄2

2 − 6NcΦ̄4Þe−4βE
þ
f ; ðA3Þ

while for n ¼ Nc − 4 (changing to n0 ¼ Nc − n ¼ 4)

gþjn¼Nc−4 ¼
1

24
ðN4

cΦ4 − 6N3
cΦ2Φ2 þ 8N2

cΦΦ3 þ 3N2
cΦ2

2 − 6NcΦ4Þe−ðNc−4ÞβEþ
f : ðA4Þ

Consequently, for Nc ≥ 8 one gets

gþ ¼ 1þ e−NcβE
þ
f þ Nc½Φ̄e−βE

þ
f þΦe−ðNc−1ÞβEþ

f � þ 1

2
ðN2

cΦ̄2 − NcΦ̄2Þe−2βE
þ
f þ 1

2
ðN2

cΦ2 − NcΦ2Þe−ðNc−2ÞβEþ
f

þ 1

6
ðN3

cΦ̄3 − 3N2
cΦ̄Φ̄2 þ 2NcΦ̄3Þe−3βE

þ
f þ 1

6
ðN3

cΦ3 − 3N2
cΦΦ2 þ 2NcΦ3Þe−ðNc−3ÞβEþ

f

þ 1

24
ðN4

cΦ̄4 − 6N3
cΦ̄2Φ̄2 þ 8N2

cΦ̄Φ̄3 þ 3N2
cΦ̄2

2 − 6NcΦ̄4Þe−4βE
þ
f þ 1

24
ðN4

cΦ4 − 6N3
cΦ2Φ2 þ 8N2

cΦΦ3

þ 3N2
cΦ2

2 − 6NcΦ4Þe−ðNc−4ÞβEþ
f þ ½terms with 5 to Nc-5 phases�; ðA5Þ

and the expression for g− differs again from gþ only in
changing Φ̄ ↔ Φ and −μq → þμq.

APPENDIX B: Φn ≈Φn APPROXIMATION

The uniform eigenvalue ansatz is a very useful tool to
study the large Nc limit of the PLeLSM. However, in
this approximation it is assumed that the Polyakov loop
variables are purely real, which is not the case for the μq > 0

calculations already at Nc ¼ 3. In general, one needs to
allowΦn ≠ Φ̄n. Therefore we investigated another approxi-
mation, where the original fermion determinant is expressed
in terms of the Polyakov-loop parameters as in Eq. (A5) but
the emerging higher powers are simply replaced by using the
Φn ¼ Φn ansatz. This is clearly not exact for Nc ≥ 4, but it
can be shown that the error jΦn −Φnj is limited, while in the
coefficients of g�f it is suppressed by an extra factor of Nm

c

with 1 ≤ m ≤ n − 1. In the Φn ≈Φn approximation gþf in
Eq. (A5) can be rewritten as8

gþ ¼ 1þe−NcβE
þ
f þ

XN
n¼1

�
Nc

n

�
ðΦ̄ne−nβE

þ
f þΦne−ðNc−nÞβEþ

f Þ;

ðB1Þ

while g− can be written again from gþ only by changing
Φ̄ ↔ Φ and−μq → þμq.We note that the same form can be
obtained by replacing each e�iqα phase factors in the sum of
phases in Eq. (23) to its averaged value

PNc
i¼1 e

�iqi=Nc ¼
1
Nc
TrcL� ¼ Φ�, where L− ¼ L, Lþ ¼ L†, Φ− ¼ Φ and

Φþ ¼ Φ̄. For the Polyakov-loop potential in this approxi-
mation we use the same form employed in [11] with an
additional artificial N2

c scaling

UPol ¼ T4

�
Nc

3

�
2
�
−
1

2
aðTÞΦΦ̄þ bðTÞ lnð1 − 6ΦΦ̄

þ 4ðΦþ Φ̄3Þ − 3ðΦΦ̄Þ2Þ
�
; ðB2Þ

with the coefficients

8Note that due to the sum this numeric calculation takes a
longer time and the factorials lead to very large number therefore
only Nc ≤ 170 is applicable to avoid the overflow.
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aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

; bðTÞ ¼ b3

�
T0

T

�
3

;

ðB3Þ

where the values of the constants are a0 ¼ 3.51,
a1 ¼ −2.47, a2 ¼ 15.22 and b3 ¼ −1.75. This Nc scaling
is expected to reproduce the Nc dependence of the pressure
in the deconfined phase. This is also supported by the
leading N2

c scaling of the Polyakov potential in Eq. (34).
At Nc ¼ 3 the Φn ≈Φn approximation reduces to the

model employed in [11], whose corresponding phase
diagram is shown in Fig. 8.
With growing Nc the transition become crossover for the

entire phase boundary9 and a second critical end point
separating a first-order transition emerges for low μq just
as in the case of the uniform eigenvalue ansatz, thus, showing
the same qualitative behavior. On the other hand, the appear-
ance of the second CEP takes place already for Nc ¼ 15
due to the artificial scaling of the Polyakov potential being
stronger for intermediate Nc values than the scaling of the
potential in Eq. (34). For a comparison, Fig. 15 shows the
phase diagram for both of our approximations at anNc ¼ 63
and Nc ¼ 25 for the UEA and the Φn ≈Φn approximation.
TheNc values were chosen to bewell above, but not far from
the appearance of the second critical end point, and the qualitative similarity is not influenced by the actual choice of

Nc. Note that the range of the temperature axis differs
significantly since the critical temperature at vanishing
chemical potential (and therefore the first-order line) saturates
at a different value in the large Nc limit.
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