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The photon is the paradigm for a massless particle, and current experimental tests set severe upper
bounds on its mass. Probing such a small mass, or equivalently large Compton wavelength, is challenging
at laboratory scales, but planetary or astrophysical phenomena may potentially reach much better
sensitivities. In this work, we consider the effect of a finite photon mass on Schumann resonances in the
Earth-ionosphere cavity, since the transverse magnetic modes circulating Earth have eigenfrequencies of
order Oð10 HzÞ that could be sensitive to mγ ≈ 10−14 eV=c2. In particular, we update the limit from Kroll
[Phys. Rev. Lett. 27, 340 (1971)], mγ ≤ 2.4 × 10−13 eV=c2, by considering realistic conductivity profiles

for the atmosphere. We find the conservative upper boundmγ ≤ 2.5 × 10−14 eV=c2, a factor 9.6 more strict
than Kroll’s earlier projection.
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I. INTRODUCTION

At the end of the 19th century, Maxwell unified
electricity and magnetism and realized that electromagnetic
waves propagate at a fixed speed determined by the
properties of the vacuum, c ¼ 1=

ffiffiffiffiffiffiffiffiffi
ε0μ0

p
. Hertz proved that

light moves at this speed, thereby showing that light is an
electromagnetic wave with energy E carrying linear
momentum p ¼ E=c. In Einstein’s 1905 annus mirabilis,
he showed, among other things, that the photoelectric effect
could be explained if light would also behave as a particle.
He also demonstrated that mass and energy are related via
the dispersion relation E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ p2c2

p
, wherem is the

particle’s rest mass. Thus, these results indicate that light
is a particle—the photon—and its rest mass, mγ , must be
identically zero.
This prediction is of fundamental consequence and may

lend itself to experimental verification. The most obvious
consequence of a finite photon mass is a change in
the dispersion relation of light causing violet and red
radiation to move at different speeds, an effect that could
be tested with astrophysical observations. Field configu-
rations are also modified: a point electric charge produces

a screened Yukawa—rather than Coulomb—potential
with a screening scale λγ ∼m−1

γ , which is also the photon’s
Compton wavelength. Given the purported smallness of
the photon mass, λγ is expected to be very large, so only
large distance scales—or long time periods—are relevant.
Therefore, the most promising way to probe a finite
photon mass is to use long-range, quasistatic electromag-
netic phenomena.
Recent limits on the photon mass are listed in Ref. [1].

The tightest limit, mγ ≤ 10−18 eV=c2, was obtained using
solar wind data from the Voyager missions at Pluto’s orbit
[40 astronomical units (A.U.)] [2]. Other strong upper
bounds were extracted through the analysis of fast
radio bursts [3–5], solar wind data at 1 A.U. [6], Jovian
magnetic-field measurements [7], and null tests of
Coulomb’s law [8]. For comprehensive reviews, see
Refs. [9–12]. As previously indicated, the strongest limits
required either exquisitely precise or large-scale experi-
ments, a general tendency when constraining a finite
photon mass [12,13].
Measurements of terrestrial phenomena have also been

used to establish robust upper bounds. Fischbach et al. found
mγ ≤ 8 × 10−16 eV=c2 by studying geomagnetic fields in
light of the modified Ampère’s law [14]. Füllekrug used the
variations in the speed of radio waves in the terrestrial
atmosphere due to changes in the reflection height to obtain
mγ ≤ 2 × 10−16 eV=c2 [15], though this result has been
criticized [12]. Finally, Kroll studied Schumann resonances
on Earth to obtain mγ ≤ 2.4 × 10−13 eV=c2 [16,17]. Let us
discuss this last result in more detail.
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Since the 1890s, it has been conjectured that electric
excitations in the atmosphere would produce resonating
waves parallel to and between the conducting surface at
r ¼ R⊕ ≈ 6371 km and the lower layers of the ionosphere
at heights z ≈ 100 km (D region). Inside a conductor, the
electric field is zero, and its tangential component is
continuous across boundaries. Keeping in mind that, in
the context of a spherical wave guide, transversality is
defined relative to the radial direction, transverse electric
(TE) modes must have a variation of at least half a
wavelength to fulfill the boundary conditions at R⊕ and
R⊕ þ z, meaning that the resonant frequencies are fTE ∼
c=z ∼ kHz. Transverse magnetic (TM) modes, on the other
hand, have electric fields satisfying the boundary condi-
tions with much less variation, so that fTM ∼ c=R⊕ ∼ Hz.
In fact, for an empty cavity with z ≪ R⊕, the eigenfre-
quencies are

fl ¼ c
2πR⊕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
; ð1Þ

giving 10.6, 18.4, and 25.9 Hz for l ¼ 1, 2, 3, respectively.
These are the so-called Schumann frequencies [18], though
Schumann was not the first to obtain this result [19,20].
These extremely-low frequency (ELF) waves were

measured by Balser and Wagner in 1960, and the frequen-
cies of the first three modes were found to be 7.8, 14.1,
and 20.3 Hz [21], i.e., ∼20% lower than those predicted by
Eq. (1). This is due to the fact that neither Earth’s surface
nor the atmosphere is a perfect conductor, meaning that
the quality factor of the cavity is finite, thus shifting the
resonant frequencies downward [22]. Furthermore, the
cavity is not empty but filled with air possessing a finite
conductivity profile. This last remark is fundamental, since
the details of the profile heavily influence the propagation
of ELF waves in the atmosphere.
The study of Schumann resonances offers interesting

applications. The most common sources are large electric
transients, such as cloud-to-ground lightning [23]. It has
been suggested to track worldwide lightning activity
through precise measurements of the ELF spectrum,
allowing the inference of temperature fluctuations in the
atmosphere. Schumann resonances could then act as a
global thermometer [24,25] as well as a monitor of the
tropospheric water vapor concentration [26]. It has also
been suggested that earthquakes could be forecast by
searching for preseismic perturbations in the ELF spectrum
caused by ionospheric depressions around the epicenter
[27]. Disturbances in the ELF spectrum have also been
observed after the Johnston Island high-altitude nuclear test
of July 9, 1962 (“Starfish Prime” test at an altitude of
400 km) [28]. Also noteworthy are possible effects of ELF
waves on human health [29–31].
Let us now return to Kroll’s works. In Ref. [16], wave

guides and resonant cavities are discussed in the context of

a massive photon, showing that the empty-space dispersion
relation of a massive photon,1 k02 ¼ k2 þ κ2, is not gen-
erally valid, though this relation is approximately correct
for a spherical cavity. However, this is no longer the case in
a cavity composed of two conducting spherical shells [17].
Consequently, he writes k02 ¼ k2 þ gκ2, with g being a
mass sensitivity coefficient depending on the radii of the
shells and k, and proceeds to obtain the limit λγ=2π ≥
8.3 × 107 cm, or mγ ≤ 4.8 × 10−46 g.
It is important, however, to mention a few caveats of his

approach. Even though he works out the boundary con-
ditions for the now physically meaningful scalar and vector
potentials for the case of finite conductivity, his limit does
not take relevant features of the Earth-ionosphere cavity
into consideration, namely, finite conductivities at the
boundaries and a conductivity profile for the atmosphere.
In fact, he explicitly assumes perfectly conducting shells
and a nominal height of 70 km for the (empty) ionosphere.
In his own words, the author confines himself “to a crude
approximation,” where he uses the mass sensitivity coef-
ficient g obtained in the limit of infinite conductivity. It is
the goal of this paper to improve Kroll’s limit by taking
these important points into account.
This paper is organized as follows. In Sec. II, we discuss

the de Broglie-Proca theory in a conducting medium.
In Sec. III, we present realistic conductivity profiles,
extracting the eigenfrequencies and quality factors as a
function of the photon mass. Comparing these results with
observations, we set upper bounds on the photon mass.
Our concluding remarks are presented in Sec. IV. We use
Systeme International units and spherical coordinates
ðr; θ;φÞ throughout.

II. THEORETICAL SETUP

The photon, Aμ ¼ ðϕ=c;AÞ, now with mass mγ , is
described by the de Broglie-Proca Lagrangian [32–36]

L ¼ −
1

4μ0
FμνFμν þ

μ2γ
2μ0

AμAμ − JμAμ; ð2Þ

where Jμ ¼ ðcρ; JÞ is the 4-current density. The antisym-
metric field-strength tensor is Fμν ¼ ∂μAν − ∂νAμ with the
electric and magnetic fields given by F0i ¼ Ei=c and
Fij ¼ −εijkBk, respectively. The fields are defined in terms
of the potentials as usual (B ¼ μ0H),

H ¼ 1

μ0
∇ ×A and E ¼ −∇ϕþ iωA: ð3Þ

From Eq. (2), we obtain the de Broglie-Proca equation

∂μFμν þ μ2γAν ¼ μ0Jν; ð4Þ

1The frequency of the photon is kc and ℏκ=c is its rest mass.
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and the constraint ∂μAμ ¼ 0 is automatically enforced if
local charge conservation, ∂μJμ ¼ 0, is valid. Note that this
is a subsidiary condition, not a gauge choice, and the lack
of gauge symmetry of Eq. (4) implies that both potentials
and field strengths are physically meaningful.
Here, μγ ¼ mγc=ℏ is the reciprocal (reduced) Compton

wavelength and may be conveniently expressed as

μγ ¼
0.3
R⊕

�
mγ

10−14 eV=c2

�
ð5Þ

with Earth’s mean radius R⊕ ≈ 6371 km. This indicates
that experiments and phenomena at planetary scales will be
sensitive to photon masses mγ ∼ 10−14 eV=c2.
The current density is J ¼ Jcon þ Jext. The first term

represents the current due to the local atmospheric con-
ductivity, given by Ohm’s law: Jcon ¼ σE. The second
describes external sources, but our main focus here is to
determine the (generally complex) frequencies of the
normal modes, so we set Jext ¼ 0 [22,37]. The main
sources are lightning events, which incoherently excite
the Earth-ionosphere cavity roughly 40 times per second
(global average) [38], with flashes lasting ≲0.5 s (median)
[39,40]. Knowledge of the external sources (e.g., current
spectrum and location) is nonetheless required to realisti-
cally assess field amplitudes and spectra at a receiver [41]
(see also Sec. III).
Returning to the de Broglie-Proca equations, let us

assume a harmonic e−iωt time dependence for fields and
potentials. With this, Eq. (4), together with the usual
Bianchi identities, becomes

∇ ·E ¼ ρ

ε0
− μ2γϕ; ð6aÞ

∇ ·H ¼ 0; ð6bÞ

∇ ×E ¼ iμ0ωH; ð6cÞ

∇ ×H ¼ −iε0ωn2E −
μ2γ
μ0

A; ð6dÞ

where the position-dependent refraction index (squared) is
given by

n2ðrÞ ¼ 1þ iσðrÞ
ε0ω

: ð7Þ

Finally, it is necessary to state the appropriate boundary
conditions for the de Broglie–Proca electrodynamics.
As discussed in Ref. [16], the scalar and vector potentials
are continuous everywhere, thus implying that the electric
and magnetic fields are subject to the same boundary
conditions as in Maxwell’s electrodynamics [22], inde-
pendently of the photon mass. Furthermore, the energy

input (e.g., lightning) lies within the bulk of the cavity and
is dissipated outward, requiring that adequate conditions be
imposed on outgoing waves. Let us now turn our attention
to the regions of interest, namely, the interior of the Earth
and the atmosphere.

A. Earth’s interior (r ≤ R⊕)

The terrestrial surface represents the lower boundary of
the resonating Earth-ionosphere cavity. Measured values for
the conductivity of the crust (depth ≲30 km) at the ELF
range vary considerably due to different ground composition
with σ ≈ 10−4–10−2 S=m, whereas σ ≈ 4 S=m for seawater
at depths ≲10 km [42,43]. The net negative charge at the
terrestrial surface is ≈106 C [44]. Also, the upper and lower
mantles at depths in the range ∼30–1000 km have relatively
high conductivities: σ ≈ 10−2−10 S=m [45–47]. These val-
ues are much larger than those found in the atmosphere,
particularly near the ground; cf. Sec. II B.
As already stated, the boundary conditions for the electric

and magnetic fields in massive electrodynamics are the same
as in the massless case. It is thus interesting to determine
the respective equations of motion inside Earth, where we
assume a very large and, for all practical purposes, constant
conductivity. Taking the curl of Eq. (6d) and plugging
Eq. (6c), we find

∇2Hþ ðk2n2 − μ2γÞH ¼ 0; ð8Þ

where k ¼ ω=c. The electric field satisfies

∇2Eþ ðk2n2 − μ2γÞ E ¼ −ðn2 − 1Þ∇ð∇ · EÞ: ð9Þ

Most relevant to our present discussion is the observation
that, in regions of high conductivity (or formally jn2j→∞),
Eqs. (8) and (9) indicate that both electric and magnetic
fields vanish, independently of mγ [17]. The situation is
analogous to that of Maxwell’s electrodynamics, in which
the electromagnetic fields are zero inside a perfect con-
ductor. This fact will be useful in Sec. III, when we set
the boundary conditions at r ¼ R⊕. Note, however, that
this conclusion is not valid for the vector and scalar
potentials, which are finite and carry energy within Earth’s
interior [9,17].
Given that σ ≳ 10−3 S=m for r ≤ R⊕, let us investigate

how deep the fields penetrate Earth in the massive case.
Naively assigning ∇ → iβ to Eq. (8), we get

β2 ¼ ðω2=c2 − μ2γÞ þ iμ0ωσ; ð10Þ

whose square root is β ¼ βþ þ iβ− with
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β� ¼ ω

c
ffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

c2μ2γ
ω2

�
2

þ
�

σ

ε0ω

�
2

s
�
�
1 −

c2μ2γ
ω2

�vuut :

ð11Þ

This rough estimate does not take the exact geometry of the
problem into consideration. Nonetheless, it clearly shows
that the magnetic field displays a diffusive behavior in a
region of very high conductivity, being damped within the
conducting medium with a characteristic length L ¼ 1=β−,
the so-called skin depth [22]. The electric field is similarly
damped, also exhibiting a diffusive character.
As in the massless Maxwell case, the penetration length

depends on the frequency of the impinging radiation and
on the conductivity of the medium. In the present case,
however, the photon mass also plays a role through the
dimensionless ratio

�
cμγ
ω

�
2

¼ 0.059

�
10 Hz
f

�
2
�

mγ

10−14 eV=c2

�
2

: ð12Þ

It is clear that effects of a finite photon mass are only relevant
for low enough conductivities. For large photon masses
(μγ ≫ ω=c), if σ ≪ μ2γ=μ0ω, the skin depth becomes inde-
pendent of frequency and conductivity, being given by
L ≈

ffiffiffi
2

p
=μγ. This is illustrated in Fig. 1, as well as the

general behavior for different values of the photon mass.
At ELF and with conductivities in the range character-

istic of our problem, cf. Fig. 2, if mγ ≲ 10−13 eV=c2, the
usual result from Maxwell’s electrodynamics remains a
good approximation. Furthermore, for the values quoted
above for the Earth (r≤R⊕), we have L≲Oð10 kmÞ≪R⊕,
cf. Fig. 1, and we are therefore able to assume Earth to be a
perfect conductor, in particular when compared to the lower
atmosphere; cf. Sec. II B. In fact, even if we use the actual,
finite conductivity of Earth’s surface, we expect the results
to be essentially independent of it [48].

B. Atmosphere (r > R⊕)

The most relevant feature of the atmosphere is its electric
conductivity. Unfortunately, direct experimental data are
scarce. Aircraft measurements can be made only up to
15 km or with meteorological balloons up to 35 km;
between 35 and 100 km, only geophysical rockets may be
used [50]. Thus, one may not rely entirely on experimental
input, and one typically solves the inverse problem: given
the measured Schumann spectrum, theoretical modeling
is used to validate tentative conductivity profiles. If the
projected properties (such as frequencies, quality factors,
etc.) agree well with observations, the profile is validated.
Earth’s atmosphere may be roughly divided in two

regions. The lower region is dominated by ions and has
a conductivity σ ≈ 10−13 S=m due to ground radioactivity.
The conductivity rapidly increases with height, and the
upper layer is dominated by free electrons due to solar
and cosmic irradiation [51]. The transition from ion- to
electron-dominated regions happens at ≈60–70 km at the
so-called conductivity height where σ ≈ ε0ω—here, radi-
ation moves from a wavelike to a diffusionlike behavior.
At heights ∼100 km, the conductivity varies from σ ≈ 10−6

S/m at night to σ ≈ 10−3 S/m during the day, and radio
waves are effectively reflected [52].
In what follows, we shall ignore such day-night asym-

metries (and also those from the geomagnetic field) and
model the conductivity of the atmosphere through iso-
tropic, spherically stratified profiles, i.e., as scalar functions
of the altitude, σ ¼ σðzÞ, with z ¼ r − R⊕, since such
profiles fit measured data well. For the sake of concrete-
ness, we consider the recent numerical estimates of the
conductivity profiles from Refs. [49,50] as well as the
analytical model from Cole (profile III in Ref. [48]).
The chosen profiles, illustrated in Fig. 2, support the
features discussed above and display the well-known
“knee” at ≈60 km.

FIG. 1. Skin depth in units of Earth’s radius as a function of
conductivity, cf. Eq. (11), with f ¼ 10 Hz.

FIG. 2. Conductivity profiles. Profile I [49] ranges from
z ¼ 0–99 km; profile II [50] goes from z ¼ 2–98 km. Both were
extended to z ¼ 0–100 km by linearly extrapolating log10 σ.
Profile III is from Cole [48].
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The isotropic and inhomogeneous atmosphere supports
the propagation of TM modes [53], and the radial variation
of the index of refraction will play a crucial role. The wave
equation for the vector potential is

∇2Aþ ðk2 − μ2γÞA ¼ −μ0J; ð13Þ

but, using Ohm’s law, we may rewrite it as [37,54]

∇ × ∇ ×A ¼ i
kn2

c
∇ϕþ ðk2n2 − μ2γÞA: ð14Þ

As it stands, this equation is also valid in Maxwell’s theory
by setting μγ ¼ 0.
We are interested in the Schumann resonances, i.e., the

cavity modes with lowest eigenfrequencies. Given that the
boundary conditions satisfied by the electric and magnetic
fields are the same as in massless electrodynamics, these
ELF waves will also correspond to TM modes, for which
Hr ¼ 0. Contrary to Refs. [16,17], we retain generality
and allow φ-dependent fields and potentials. Thus, from
Eq. (3), we have

μ0Hr ¼
1

r sin θ

�
∂ðsin θAφÞ

∂θ
−
∂Aθ

∂φ

�
¼ 0; ð15Þ

which must be valid for all r; θ;φ. For this to be true in
general, we require that Aθðr; θ;φÞ ¼ Aφðr; θ;φÞ ¼ 0, so
that Aðr; θ;φÞ ¼ Arðr; θ;φÞêr.
A single scalar function, Arðr; θ;φÞ, controls the electro-

dynamics, acting as a Hertz potential [22,53]. Since the
vector potential points along the radial direction, the
following identity holds:

∇ ×∇ ×A ¼ lðlþ 1Þ
r2

ArðrÞYlmðθ;φÞêr þ
1

r
dArðrÞ
dr

×

�
∂Ylm

∂θ
êθ þ

1

sin θ
∂Ylm

∂φ
êφ

�
: ð16Þ

Here, radial and angular variables were separated as usual,
Arðr; θ;φÞ ¼ ArðrÞYlmðθ;φÞ, with Ylmðθ;φÞ being the
standard spherical harmonics [55]. Moreover, because of
the subsidiary condition, the scalar potential may be
similarly split into ϕðr; θ;φÞ ¼ ϕrðrÞYlmðθ;φÞ.
With this, from Eq. (14), we obtain the so-called height-

gain functions [54]

dAr

dr
¼ i

kn2

c
ϕr and

dϕr

dr
¼ ick

�
1 −

γ2

k2n2

�
Ar; ð17Þ

where we defined

γ2 ¼ μ2γ þ
lðlþ 1Þ

r2
: ð18Þ

Decoupling the system above, we get

d2Ar

dr2
þ ðn2∇n−2Þ dAr

dr
þ ðk2n2 − γ2ÞAr ¼ 0 ð19Þ

with a similar equation for ϕrðrÞ, which is omitted.
As a closing comment, we would like to mention that,

besides the locally varying conductivity, also the radial
profile of the electric permitivity could have been taken into
account by making ε0 → ε0εrðrÞ. In the case of Schumann
resonances on Earth, we are allowed to ignore any spatial
variations, as the pressures and temperatures involved are
relatively low and do not significantly impact ELF waves.
Incidentally, this is not a good approximation for ELF
waves in other planets such as Venus [56].

III. ANALYSIS

Equation (19) is identical in Maxwell’s theory, provided
k2n2 → k2n2 − μ2γ [54]. This similarity allows us to follow
the method outlined in Ref. [53] and conveniently rewrite
Arðr; θ;φÞ in terms of a new scalar function (Hertz
potential) Uðr; θ;φÞ as

Arðr; θ;φÞ ¼ −
iω

ffiffiffiffiffi
n2

p

c2
rUðr; θ;φÞ: ð20Þ

Since Arðr; θ;φÞ ∼ Ylmðθ;φÞ, we have Uðr; θ;φÞ ¼
ulðrÞYlmðθ;φÞ, so that Eq. (19) becomes

�
d2

dr2
þ ðk2n2 − γ2Þ −

ffiffiffiffiffi
n2

p d2

dr2

�
1ffiffiffiffiffi
n2

p
��

ðrulðrÞÞ ¼ 0:

ð21Þ

This equation could be used to extract the Schumann
spectrum within a so-called full-wave treatment [57],
where the atmosphere is sliced in thin spherical shells
within which the conductivity is approximately constant.
Equation (21) is then solved within each slab using the
adequate boundary conditions, thus producing a system of
coupled algebraic equations for the amplitudes of the vector
potential. Here, we follow an alternative approach.
Instead of solving Eq. (21) in terms of the less familiar

vector potential via the full-wave method, let us consider
the normalized spherical impedance defined as [53]

δlðrÞ ¼
ffiffiffiffiffi
ε0
μ0

r
Eθðr; θ;φÞ
Hφðr; θ;φÞ

: ð22Þ

This approach is advantageous since the electromagnetic
fields satisfy the same boundary conditions as in the
massless case [16]. Using Eq. (20), from Eqs. (6d) and (3),
we find
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Eθ ¼
1

rn2
∂
2ð

ffiffiffiffiffi
n2

p
rUÞ

∂r∂θ
and Hφ ¼ iωε0

r
∂ð

ffiffiffiffiffi
n2

p
rUÞ

∂θ
;

ð23Þ

which do not contain mγ explicitly and give

δlðrÞ ¼ −
i

kðn2Þ3=2ruðrÞ
dð

ffiffiffiffiffi
n2

p
rulðrÞÞ
dr

: ð24Þ

Differentiating Eq. (24) and using Eq. (21), we get

dδlðrÞ
dr

þ ikn2δ2lðrÞ − ik

�
1 −

γ2

k2n2

�
¼ 0; ð25Þ

where it is clear that the effects of a finite photon mass are
suppressed in regions of high conductivity such as the
upper atmosphere, cf. Fig. 2, or Earth’s interior.
Let us now work out the boundary conditions on δlðrÞ.

The tangential components of the electric field are con-
tinuous across the boundary, irrespective of mγ . The
tangential components of the magnetic field, however,
are discontinuous. Since the electromagnetic fields are
zero inside Earth (cf. Sec. II A), directly above the ground,
we have Eθðr; θ;φÞ ¼ 0, whereas Hφðr; θ;φÞ ≠ 0.
Therefore, we have that δlðR⊕Þ ¼ 0.
The upper boundary at r ¼ rtop is an idealization, since

the atmosphere is an unbounded medium. While positive
and negative ions prevail at lower altitudes [51], the lower
layers of the ionosphere (D region) are dominated by free
electrons, therefore characterizing a plasma with electron
number density ne ≈ 1010–1012=m3 [58]. The plasma
frequency is ω2

p ¼ nee2=meε0, so that fp ¼ ωp=2π ∼O
ð1 MHzÞ, thus implying that ELF waves with fl ≪ fp are
reflected. This effect is explored in the global transmission
of long-wave radio signals.
The atmospheric layers above this top height will then

have negligible effect on the results given some desired
precision. Therefore, for r ≥ rtop, we have an effectively
homogeneous ionosphere with jn2topj ≫ 1, a constant. At,
say, rtop≈R⊕þ90 km andwith f ¼ 10 Hz, we have jn2topj≈
4 × 104, cf. Fig. 2, and jkj2 ≈ 4 × 10−8 km−2, whereas
μ2γ ≈ 2 × 10−9 km−2; cf. Eq. (5). With these values, we
have that k2n2top ≫ μ2γ , and we may disregard the photon
mass at the upper atmospheric layers. The boundary con-
dition at r ¼ rtop is then [53]

δlðrtopÞ ≈ 1=
ffiffiffiffiffiffiffiffi
n2top

q
: ð26Þ

We now solve Eq. (25) from rtop ¼ R⊕ þ ztop, where
Eq. (26) must be satisfied, until r ¼ R⊕ with δlðR⊕Þ ¼ 0.
Starting at some chosen rtop, we may obtain the frequencies
via Newton-Raphson’s method

kðjþ1Þ
l ¼ kðjÞl −

δlðR⊕; k
ðjÞ
l Þ

∂

∂k ½δlðR⊕; kÞ�jk¼kðjÞl

ð27Þ

with j ¼ 0; 1; 2;… indexing the iteration step.
Conveniently defining δl;kðrÞ≡ ∂δlðrÞ=∂k and differenti-
ating Eq. (25), we find

dδl;kðrÞ
dr

þ 2ikn2δlðrÞδl;kðrÞ þ i

�
δ2lðrÞ−

γ2

ðkn2Þ2 − 1

�
¼ 0;

ð28Þ

which must be solved concurrently with Eq. (25) subject to
the boundary conditions δl;kðR⊕Þ ¼ 0 and

δl;kðrtopÞ ¼
n2top − 1

2k
½n2top�−3=2: ð29Þ

The initial guesses for Eq. (27) are taken from Eq. (1) for
a lossless cavity. Advancing with steps Δz ¼ 1 km from
the arbitrarily chosen top height ztop ¼ 70 km, we find that
the frequencies are stable (within <1%) for a maximum
height zmax

top ≥ 95 km, consistent with the findings from
Refs. [50,59]. For mγ ¼ 0, profile II [50], cf. Fig. 2, offers
the best match to measurements and will be adopted
henceforth. Next, we include a finite photon mass by
writing μγ ¼ ð0.3=R⊕Þm̃γ , cf. Eq. (5), and sampling the
range m̃γ ¼ 0.1–7 at steps of 0.1. For each mode, we
then determine which m̃γ causes a deviation from the
measured frequency that saturates the estimated experi-
mental uncertainties.
At this point, it is worth noting that in Ref. [17] a fixed

height of 70 km is assumed. Here, on the contrary, we
iteratively find an effectively maximum height beyond
which no improvement in the results is attained—we could
work with any height higher than this, but with no further
benefit. Moreover, at z ¼ 70 km, we have σ ≈ 10−7 S=m, a
factor ∼104 lower than on the surface (or ∼107 than on the
oceans); cf. Fig. 2. To be consistent with our assumption—
also made in Ref. [17]—that Earth is a perfect conductor,
the upper boundary of the cavity should be placed at a
height ≳90 km.
Before we discuss the experimental uncertainties, let us

briefly describe how Schumann-resonance data are typi-
cally taken and processed. Sensitive magnetometers [60]
or ball antennas [61–63] are set up to measure determined
components of the ambient electric or magnetic fields.
These fields represent the (incoherent) superposition of the
effects from several sources at different locations world-
wide at a frequency of ∼40 events per second [38], each
with a different current spectrum modulating its amplitude.
The raw data in the time domain are then Fourier trans-
formed into the frequency domain, whereupon undesirable
noise may be filtered from the resulting spectra (e.g., noise
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from anthropogenic sources such as the electricity grid
at 50 Hz).
The amplitude spectra display several broad peaks

around the eigenfrequencies of the cavity, as expected
on theoretical grounds [41]. The eigenfrequencies, as well
as the respective quality factors, are then read from the
positions and widths of the maxima of the distributions
[64]. This task is typically accomplished via numerical
fitting procedures (e.g., by employing Lorentz-like
[60–62,65] or Gaussian [66] fitting curves).
Let us now return to the estimation of the experimental

uncertainties. Monthly averaged daily variations of the
fundamental mode are typically ≈0.5 Hz [61,62,67],
though smaller changes in the range 0.04–0.14 Hz have
been reported during strong solar events [68]. For the
second and third modes, larger variations of, respectively,
≈1.0 and ≈1.2 Hz may be inferred, particularly from
Ref. [62]. We thus take δfexpl ¼ �0.25;�0.5 and �0.6 Hz
for l ¼ 1, 2, 3 as optimistic estimates for the uncertainties.
Note that the word “uncertainty” here refers not to the
numerical error related to a certain data point (eigenfre-
quencies in a given spectra) but rather to the variability of
the determined eigenfrequencies in the spectra obtained in
different days, months, etc.
A second estimate may be obtained by noting that, due

to the finite atmospheric conductivity, the kl obtained via
Eq. (27) are complex. The quality factor of a resonating
cavity, defined asQl ¼ ReðklÞ=2ImðklÞ [22], is a measure
of how lossy the cavity is—a lossless cavity has real
eigenfrequencies and therefore an infinite quality factor.
The measured noise power spectra display spaced peaks
with relatively broad widths. These spectra are typically
fitted by Lorentzian curves with the eigenfrequencies being
identified as the central peaks for each mode. For real
cavities, the peaks in amplitude are not infinitely sharp, and
a full width at half maximum Δfl may be extracted from
the data. Interestingly enough, the quality factor can also
be expressed in terms of Δfl as Ql ≈ fl=Δfl, which in
practice allows an indirect assessment of the quality factors
[22,63]. With the pairs ðfexpl ; Qexp

l Þ from Ref. [21], we then
set Δfexpl ¼ �fexpl =2Qexp

l as conservative estimates for the
size of meaningfully measurable variations around the
central frequencies.
Setting zmax

top ¼ 100 km for definitiveness, typical runs of
Newton-Raphson’s procedure require ∼5 iterations to reach
relative differences below 10−7 in frequency. The results for
mγ ¼ 0 (black stars) and mγ > 0 (color scale) are shown in
Fig. 3. Clearly, finite photon masses tend to increase both
frequencies and quality factors. We are then able to derive
two upper bounds per mode: an optimistic (mopt

γ ) and a
conservative (mcon

γ ), corresponding to the calculated
ðfl; QlÞ pairs crossing the 1-σ lines fexpl þδfexpl and fexpl þ
Δfexpl , respectively. From Fig. 3, we see that the tightest
limits come from the fundamental mode (l ¼ 1) and read

mopt
γ ≤ 1.4 × 10−14 eV=c2; ð30aÞ

mcon
γ ≤ 2.5 × 10−14 eV=c2: ð30bÞ

The latter represents an almost tenfold improvement
upon Kroll’s earlier conservative assessment [1,17].

IV. CONCLUDING REMARKS

In this paper, we discussed Schumann resonances in
the context of a finite photon mass. To constrain mγ ,
we considered realistic atmospheric conductivity profiles,
determining the eigenfrequencies and quality factors of
the Earth-ionosphere cavity. For mγ ¼ 0, these are in good
agreement with data inferred from observations. We
numerically determine the influence of a finite photon
mass on the eigenfrequencies, and upon comparison with
experimental data, we are able to place the competitive

FIG. 3. General results for the first three modes (l ¼ 1, 2, 3).
Experimental data [21] and calculated pairs ðfl; QlÞ obtained
with profile II [50] are shown with black crosses and stars,
respectively (both with mγ ¼ 0). The shaded regions correspond
to fexpl � δfexpl , whereas the dashed lines indicate the regions
within fexpl � Δfexpl (see the text for details). The colored points
represent ðfl; QlÞ assuming a finite photon mass with the color
scale depicting mγ in units of 10−14 eV=c2.
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bounds (30a) and (30b), superseding the latest (reliable)
estimate by this method [12,17].
Our direct approach to the bounds is based on the fact

that the observed data are compatible with Maxwell’s
massless electrodynamics. We then assume that any con-
tribution from new physics must be hidden within the
uncertainties (defined in terms of the variability of the
Schumann-resonance parameters as discussed in Sec. III).
A more involved analysis would require the inclusion of the
photon mass in the calculation of the theoretical amplitude
spectra (e.g., following Ref. [41])—for this, one must
explicitly take the sources and their distribution worldwide
into account. The next step would be to compare the
theoretical spectra with the processed (observed) spectra
searching for the maxima (the eigenfrequencies), the
bandwidths (related to the Q factors) and the maximum
value of the photon mass compatible with the data. This
task would require an in-depth reanalysis of the data-taking
and -processing procedures, and we do not expect a
significant improvement on the bounds (30a) and (30b).
Further qualitative improvements could be attained by

including day-night asymmetries (mainly due to reduced
ion production from the solar wind at night [44,69]) and the
geomagnetic field. Such a treatment is in principle possible
in two or three dimensions via numerical techniques such
as finite-difference time domain analysis [70].

As a final remark, we note that larger systems are more
sensitive to smaller photon masses. It could thus be
interesting to expand our present analysis to Schumann
resonances in other planets of the solar system. Particularly
relevant would be the gas giants, the largest of which is
Jupiter with RJup ≈ 69911 km. Since RJup=R⊕ ≈ 11, the
Jovian eigenfrequencies are expected to be an order of
magnitude lower than on Earth, but sensitive enough
instruments placed on orbiters (such as those on board
of the Communications/Navigation Outage Forecasting
System, C/NOFS, satellite [71]) could remotely detect
Schumann spectra. From Eq. (5), we may naively expect
a sensitivity to photon masses around mγ ≲ 10−15 eV=c2,
but a more realistic estimate would need to take into
account several factors, especially concerning the theoreti-
cal modeling of the Jovian electromagnetic environment
[72] and the uncertainties in the data from instruments
onboard satellites.
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