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We solve the long-standing problem of operator basis construction for fields with all masses and spins.
Based on the on-shell method, we propose a novel method to systematically construct a complete set of
lowest dimensional amplitude bases at any given dimension through semistandard Young tableaus of
Lorentz subgroup SUð2Þr and global symmetry UðNÞ (N is the number of external legs), which can be
directly mapped into physical operator bases. We first construct a complete set of independent monomial
bases whose dimension is not the lowest and a redundant set of bases that always contains a complete set of
amplitude bases with the lowest dimension. Then we decompose the bases of the redundant set into the
complete monomial bases from low to high dimension and eliminate the linear correlation bases. Finally,
the bases with the lowest dimension can be picked up. We also propose a matrix projection method to
construct the massive amplitude bases involving identical particles. The operator bases of a generic massive
effective field theory can be efficiently constructed by the computer programs. A complete set of four-
vector operators at dimensions up to six is presented.
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I. INTRODUCTION

Effective field theory (EFT) of massive fields is widely
applied in particle physics, such as lower energy QCD [1–5],
Higgs EFT (HEFT) [6,7], dark matter EFT [8–12], and low
energy EFT [13]. Compared with massless EFTs, massive
EFTs have many advantages in new physics (NP) study.
For example, HEFT can fully describe the IR effects of the
NP models in which electroweak symmetry is nonlinearly
realized, but standard model EFT (SMEFT) cannot [6,7].
Massive EFT is more convenient for studying IR effects of
NP theory at the electroweak symmetry breaking (EWSB)
phase. For example, there is no field normalization issue, and
generally, low point (three- and four-point) operator bases
are enough for most low-energy phenomenology studies.

Constructing a generic massive EFT is still a long-
standing problem. A complete set of EFT bases is essential
to fully categorize and parametrize the infrared (IR) effects
of any ultraviolet (UV) theory. Nevertheless, constructing
independent EFT bases is challenging in traditional field
theory because of operator redundancy from the equation of
motion (EOM) and integration by part (IBP).
On-shell scattering amplitude is efficient in dealing with

some problems of EFT, such as calculating the running
of EFT operators [14–20], deriving EFT selecting rules
[21–23], and constructing scalar EFT with nontrivial
soft-limit [24–27]. Especially it is very efficient in con-
structing EFT bases of massless fields (called amplitude
bases) [20,28–31]. A complete set of the amplitude bases
without the EOM and IBP redundancy can be systemati-
cally constructed by the semistandard Young tableaus
(SSYTs) of the global symmetry of massless spinors
[32] (more applications can be found in [33,34]).
However, this method is not applicable in constructing

amplitude bases for massive fields. In massive EFT, besides
the issues of EOM and IBP redundancy, the dimension of
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massive amplitude bases should be minimized so that they
can describe the leading IR effects of a UV theory (some
primary explorations can be found in [35–38].). Therefore,
we propose a novel method based on our previous work
[39] to systematically construct a complete set of amplitude
bases with the lowest dimension. We first construct a
complete set of amplitude bases through the SSYTs of
Lorentz subgroup SUð2Þr (SOð3; 1Þ ≃ SUð2Þl × SUð2Þr)
and global symmetry UðNÞ (N is the number of external
particles), and then systematically construct an over redun-
dant set of amplitude bases that always contains a complete
set of amplitude bases with the lowest dimension based on
polarization tensor classification. Then we decompose the
bases of this redundant set from low to high dimension into
the simplified amplitude bases and eliminate the linear
correlation bases. Finally, the complete set of bases with the
lowest dimension can be picked up. We also prove that the
leading order decomposition without including the terms
containing mass factors is enough to determine the inde-
pendence of bases. So the decomposition can be very
efficient, and a complete set of operator bases at any
dimension can be easily constructed.
Within the framework of this theory, we propose a matrix

projection method to get the amplitude bases involving
identical particles. Instead of constructing the gauge struc-
ture and kinematic part separately [33], we act with the
matrix representation of the Young operator on a complete
set of amplitude bases, and the bases satisfying Bose/Fermi
statistics can be projected out. Based on our theory, we write
a Mathematica code that can construct a complete set of
massive amplitude bases at any dimension and explicitly list
all bases of four massive vectors at dimension-four and six.
The paper is organized as follows. Section II, briefly

introduces the spinors and LG symmetry of on-shell
scattering amplitudes. Section III demonstrates in detail
how to construct systematically massive amplitude bases
and gives some examples. Section IV explains how to
construct the simplified amplitude bases and prove their
independence and completeness. Section V illustrates how
to decompose a polynomial of spinor products into a
complete set of simplified amplitude bases. Section VI
discusses how to systematically construct the redundant set
of amplitude bases that contains a complete set of ampli-
tude bases with minimal dimension and gives an example
to explain how to obtain the minimal dimension bases.
Section VII briefly discusses how to construct amplitude
bases involving identical particles. We conclude in
Sec. VIII. The appendices explain how to deal with
identical particles and show some proofs. We also list all
the independent operator bases of four vectors at dimen-
sion-four and six.

II. MASSLESS AND MASSIVE SPINORS

In this section, we briefly discuss the massive and
massless spinors and the basic property of on-shell

scattering amplitudes. For a particle-i, its momentum can
be written as a product of two spinors [40,41],

ðpiÞ _αα ≡ ðpiÞμðσμÞ _αα ¼ jiI� _αhiIjα;
ðpiÞα _α ≡ ðpiÞμðσ̄μÞα _α ¼ jiI�αhiIj _α; ð1Þ

where σμðσ̄μÞ≡ f1; ð−Þσig, σi is Pauli matrices, and the
right-handed and left-handed spinors jiI� _α and jiIiα are in
the fundamental representation of Lorentz subgroup
SUð2Þr and SUð2Þl respectively [the Lorentz group
SOð3; 1Þ is isomorphic to SUð2Þl ⊗ SUð2Þr)]. I is the
index of little group (LG) SUð2Þi for massive particle-i
[I ¼ 1, 2 is summed over in Eq. (1)]. For the massless
spinor, its index I is trivial and can be neglected. The
massive right-handed and left-handed spinors jiI� _α and jiIiα
are both in the fundamental representation of massive LG
SUð2Þi. The massless right-handed and left-handed spinors
ji� _α and jiiα take þ and − unit charge of massless LG
Uð1Þi. Two spinors with same chirality can contract their
Lorentz indices with the two-index Levi-Civita tensor ϵ _α _β

(ϵαβ) to form a Lorentz singlet, and the spinor products of
different chiral spinors usually are denoted by square spinor
bracket ½ij� and angle spinor bracket hiji,

½ij�IJ ≡ ϵ _α _βjiI� _βjjJ� _α; hijiIJ ≡ ϵαβjiIiβjjJiα: ð2Þ

The left- and right-handed massive spinors can be related to
each other through EOM,

pijiI� ¼ mijiIi; pijiIi ¼ −mijiI�: ð3Þ

The on-shell scattering amplitudes are the functions of the
angle and square brackets (also include the gauge structures
determined by gauge symmetry of external legs). For an
external massive particle-i with spin si, its scattering
amplitude should be in the 2si indices symmetric repre-
sentation of SUð2Þi (i.e., (2si þ 1)-dimension representa-
tion). For example, the amplitude of a massive vector
particle-i should transform under LG SUð2Þi as [41]

MfI1;I2gðwi
II0 jiI

0 �; wi
II0 jiI

0 i;…Þ
¼ wi

I1I01
wi
I2I02

MfI0
1
;I0
2
gðjiI0 �; jiI0 i;…Þ; ð4Þ

where wi is LG SUð2Þi element and the superscript bracket
fIi1;…; Ii2sig means that these 2si indices of SUð2Þi should
be totally symmetric. For the external massless particle-i
with helicity hi, its amplitudes should take 2hi charge of
massless LG Uð1Þi [40].

III. CONSTRUCTING AMPLITUDE BASIS

According to the LG transformation of the scattering
amplitude, its general structure can be factorized into two
parts: the massive little group tensor structure (MLGTS)
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and the massive little group neutral structure (MLGNS),
which are charged and neutral under LGs of massive
particles, respectively. This indicates that to get the com-
plete amplitude bases, we can separately construct the
complete sets of MLGTS bases and the corresponding
MLGNS bases and then contract them. We find that
MLGTS and MLGNS bases can be constructed completely
through the Lorentz subgroup SUð2Þr and a UðNÞ global
symmetry, respectively (N is the number of external
particles) without the EOM and IBP redundancy. In this
section, we will discuss how to construct these two parts
systematically.

A. Massive LG tensor structures

As said before, the scattering amplitudes of m massive
and nmassless particles can be factorized into MLGTS part
A and MLGNS part G,

MI
m;n ¼

X
f _αg

AfIg
f _αgðfϵigÞGf _αgðjj�; jji; piÞ; ð5Þ

where ϵi ≡ ji�fI1_α1
;…; ji�I2sig_α2si

is the polarization tensor of

massive particle-i with spin si, fIg generally denotes the
LG indices and f _αg collectively denote Lorentz indices.
The LG indices of ϵi are required to be total symmetric,
so its quantum number under SUð2Þi ⊗ SUð2Þr is
ð2si þ 1; 2si þ 1Þ. Since the massive left and right handed
spinors are related by the EOMs in Eq. (3), the MLGTS A
can always be made the holomorphic function of right-
handed massive spinors jiI� without losing generality. Since
the A is in the same massive LG representation as
polarization ϵi, A should be the linear function of ϵi.
Moreover, since all the spinors jiI� in A are totally
symmetric, two jiI�s cannot be contracted together by
antisymmetric Levi-Civita tensor. So A is free of the
EOM redundancy. It is also free of the IBP redundancy
because it does not contain any momentum. The MLGNS
Gðjj�; jji; piÞ is only charged under massless LG and
neutral under massive LG so it is the function of massless
spinors (jj� and jji) and massive momentums (pi).
Since A is linear in each polarization tensor, all

the MLGTS bases must belong to the outer product
of all the polarization tensors’ SUð2Þr representations,
A ⊂⊗m

i¼1 ð2si þ 1Þ. A complete set of A bases can be
constructed by finding all the possible SUð2Þr irreducible
representations decomposed from this ⊗m

i¼1 ð2si þ 1Þ rep-
resentation. Next, we will discuss in detail how to system-
atically construct the complete MLGTS bases.
As said before, the quantum number of massive right-

handed spinor jiI� _α under SUð2Þi ⊗ SUð2Þr is (2,2),
represented by Young diagram (YD) as

ð6Þ

where we use i filled in the box to label YD of spinor jiI� _α
and the subscript i or r to label SUð2Þi or SUð2Þr YD. Thus
any YD of massive LGs and SUð2Þr corresponds to a
holomorphic function of right-handed spinors and can be
written down according to the group indices permutation
symmetry in the YD. For example, two massive right-
handed spinors product can be read from the following YD
of the group SUð2Þi ⊗ SUð2Þj ⊗ SUð2Þr,

ð7Þ

The massive polarization tensor ϵi in the ð2si þ 1; 2si þ 1Þ
representation of SUð2Þi ⊗ SUð2Þr can be read from the
direct product of two YDs with one row and 2si columns,

ð8Þ

Since the LG indices of these m polarization tensors in A
should be bare, only the different contraction patterns of
their SUð2Þr indices can give the different structures of A.
So MLGTS can be classified by Lorentz SUð2Þr irreducible
representations of these polarization tensors. To construct
the complete MLGTS A, we just need to find all the
irreducible SUð2Þr representations decomposed from the
outer product of these m massive polarizations’ YDs in
Eq. (8), based on Littlewood-Richardson rule. Then, we
can read out the expressions of A bases from the YDs
according to SUð2Þr indices permutation symmetry.
Next, we will demonstrate how to use YD to construct

MLGTS A bases. Take the 4-point vertices of massive
fermion-fermion-vector-scalar ψψ 0Vh as an example. As
said before, the massive polarization tensor ϵi is in the
ð2si þ 1Þ representation of SUð2Þr, so the SUð2Þr YDs of
these particles’ polarizations are

ð9Þ

where the number in the box is used to label the SUð2Þr
indices of different polarization tensors, and the bullet •
represents the SUð2Þr singlet. Then we can reduce the outer
product of these 4SUð2Þr tensors to the irreducible repre-
sentations by Littlewood-Richardson rule and get four
representations,

ð10Þ

where the subscript ½r1; r2;…; rn� denotes the shape of the
YD, having n rows and rj boxes at the jth row, and
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superscripts in ½ð3; 1Þ1;2� denote two different SSYTs in the
same shape. Then the complete MLGTS bases can be read
out from the above YDs filled with numbers. For example,
according to the SUð2Þr index permutation symmetry of
the YD, the first base AI

½2;2� is given by

ð11Þ

We find that the amplitude bases A · G with MLGTS bases
in different SUð2Þr representations must be independent.
Because if the MLGTSs of any two amplitude bases are in
different SUð2Þr YD representations, they must be two
linearly independent tensors of massive LGs ⊗m

i¼1 SUð2Þi.
So, no matter the SUð2Þr representations of their G bases,
they must be two independent SUð2Þr singlet states.
We can also use group theory to systematically construct

the complete independent G bases by embedding the
spinors of the N ≡mþ n external legs into a global
symmetry UðNÞ representation. Similar to the above
discussion, G can be classified by UðNÞ representation.
Each G corresponds to a basis of a particular UðNÞ
representation, so all the G are independent. Also, this
method can systematically get rid of the redundancy from
the EOM and IBP. In the next subsection, we will discuss
them in detail.

B. Massive LG neutral structures

The amplitude bases of massless particles can automati-
cally get rid of the EOM redundancy because any basis
containing this redundancy should vanish (=pjjj� ¼ 0). So
the only issue for constructing massless amplitude bases is
to remove the IBP redundancy, which is systematically
solved by YD method. However, the situation is different
when constructing on-shell massive EFT. Since the EOM
of massive spinors is not as trivial as the massless spinor,
pijiI� ¼ mijiIi. A redundant on-shell basis can not only
be expressed as the combination of the independent bases
with the same dimension through the IBP (i.e., momentum
conservation) but also the combination of lower-
dimensional bases multiplied by the mass factors through
the EOM. So both redundancies from the EOM and IBP
should be removed in constructing on-shell massive EFTs.
Since the MLGTS basis is the linear function of massive
polarization tensor, having these two kinds of redundancy
is impossible. Thus only MLGNS basis can suffer from the
EOM and IBP redundancy. This subsection will explain
how to get rid of them systematically.
We first discuss how to remove the EOM redundancy in

massive amplitude bases. Since MLGNSG is neutral under
massive LGs ⊗m

i¼1 SUð2Þi and charged under massless

LG ⊗N
j¼mþ1 Uð1Þj, it must be the polynomial function of

massless spinors jj� or jji with j ¼ mþ 1;…; mþ n, and
massive momentum pi; _αα ≡ jiI� _αhiIjα with i ¼ 1;…; m. As
discussed above, the massless amplitude basis is automati-
cally free of the EOM redundancy, so it is possible to get
rid of it if we first construct the complete set of massless
limit bases of MLGNT G and then construct the G bases
from them. Since Gðjj�; jji; piÞ is massive LG singlet, one
Gðjj�; jji; piÞ will smoothly go to a definite massless limit
if all massive momentums go to massless limit,

pi; _αα → ji� _αhijα∶Gðjj�; jji; piÞ → gðjj�; jji; ji�hijÞ; ð12Þ

where ji� _αhijα is the massless limit of massive momentum
pi;α _α and g≡ Gðjj�; jji; ji�hijÞ is the limit of G when
pi; _αα → ji� _αhijα. We know that the difference between
two different G, which are related to each other through
EOM, must be proportional to terms with mass factors, so
their massless limits must be the same. Conversely, the
massless spinor polynomial bases fgg can be one-to-one
mapped to the independent MLGNS bases fGg without the
EOM redundancy just through replacing massless limit
spinors ji� and jii with the corresponding massive spinors
jiI� and jiI0 i and choosing one pattern of LG index
contraction between jiI� s and jiI0 i s (equivalent to momen-
tum replacement ji� _αhijα → pi; _αα). Notice that different LG
indexes contractions in g produce different G bases, but
only one is independent, and the others are EOM redundant
because they have the same massless limit. Based on these
discussions, we find that to construct the complete MLGNS
G bases without the EOM redundancy; we should first
construct the complete set of its massless limit basis g and
then map g to G by restoring the original massive spinors
from their massless limits. In the rest of this subsection, we
will discuss how to construct the complete massless basis g
without the IBP redundancy.
For an MLGTS A basis, its partner G bases should be in

the same SUð2Þr representation and also should be SUð2Þl
singlet to form Lorentz singlets with the A basis, which
means that the total number of left-handed spinors should
be even

P
N
k¼1 nk ¼ even≡ L, where nk is the number of

massive spinors jkIi or massless spinors jki in the G bases.
To be massive LG neutral, the number of massive spinors
jiI� and jiIi should be equal. And massless LG symmetry
requires that the difference between the number of massless
spinors jj�s and jjis in G should equal the twice massless
particle-j’s helicity,

ñi − ni ¼ 0; with i ¼ 1;…; m

ñj − nj ¼ 2hj; with j ¼ mþ 1;…; N; ð13Þ

where hj is the helicity of particle-j and ñi is the number of
right-handed spinors jiI� (same for ñj). The massless limit g
basis should also satisfy these constraints.
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For the g basis, its LGs are just trivial Abelian group
⊗N

k¼1 Uð1Þk so we can embed them into a global symmetry
UðNÞ ⊃⊗N

k¼1 Uð1Þk through embedding the massless
spinor λ̃k_α ≡ jk� (λkα ≡ jki) into the (anti-) fundamental
representation of UðNÞ symmetry with k ¼ 1;…; N. So a
g basis can be a basis of UðNÞ representation, which
corresponds to an SSYT of the UðNÞ representation.
Conversely, it can also be written down through this
SSYT based on the permutation symmetry of the UðNÞ
indices. For example, the product of a right-/left-handed
spinor pair can be obtained from the 2=ðN − 2Þ rows and 1
column UðNÞ SSYT

ð14Þ

Notice that the columns in the SSYT associated with the
UðNÞ indices of λ are in blue to distinguish with λ̃ indices.
Since g can have the IBP redundancy, the spinor

polynomials g from some UðNÞ representations may not
be independent. What kind of SSYT is free of IBP? Next,
we will briefly discuss how to obtain these independent
SSYTs. If some bases gðλ̃Þ are holomorphic functions of
right-handed spinors and furnish a UðNÞ representation,
these bases are independent, and their UðNÞ YD is in the
same shape as its SUð2Þr YD. For example, if these gðλ̃Þ
bases have (R ¼ r1 þ r2) right-handed spinors and are in
the (r1 − r2 þ 1) symmetric representation of SUð2Þr, their
UðNÞ YD is in the shape of ½r1; r2�,

ð15Þ

While, if some bases gðλÞ in a UðNÞ representation are a
holomorphic function of L left-handed spinor λs and also
Lorentz singlets, their UðNÞ YD has N − 2 rows and L=2
columns,

ð16Þ

These bases gðλÞ are also independent. This is because
these holomorphic bases gðλ̃Þ (gðλÞ) do not contain
momentum factors.
For the nonholomorphic case, if some bases gðλ; λ̃Þ are in

the reducible UðNÞ representation which is the out product
of the representations of gðλ̃Þ and gðλÞ in Eqs. (15) and (16),
their UðNÞ representation can be decomposed into UðNÞ
irreducible representations via Littlewood-Richardson rules

ð17Þ

where ⊕ � � � represents the other irreducible representa-
tions. Only the first irreducible YD does not contain an
overall factor of total momentum P ¼ P

N
k¼1 pk, so the

gðjk�; jkiÞ bases from the first YD, which is obtained by just
gluing the blue and white YD simply without shifting
around white YD, are independent [32]. Then the complete
MLGNS Gðjj�; jji; piÞ bases without the EOM and IBP
redundancy can be obtained from their massless limit
gðjj�; jji; ji�hijÞ bases by restoring massive spinors and
their LG index contractions (equivalent to restoring the
massive momentums from their massless limits),

Gðjj�; jji; piÞ ¼ gðjj�; jji; ji�hijÞjji�hij→pi
: ð18Þ

We have demonstrated how to construct the complete bases
of A and G through the YD method separately. Thus the
complete massive amplitude bases can be obtained by
contracting the complete set of fAg bases with the
corresponding complete fGg bases. Moreover, we prove
that the amplitude bases constructed in this way are
independent because of the independence of fAg and
fgg bases [39].

C. Some examples

In this section, we explicitly construct all the 3-point
amplitude bases of the massive gauge boson through the
YD method discussed above. The general procedure is to
first construct the complete MLGTS bases via SUð2Þr YDs,
then construct their corresponding MLGNS bases with the
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same SUð2Þr quantum number viaUðNÞ SSYT, and finally
contract them to get the independent amplitude bases.
For the 3-pt massive gauge boson bases WþW−Z∂n,

since the polarization tensor of each gauge boson is SUð2Þr
triplet, their MLGTS A bases can be obtained through
decomposing the outer product of these three SUð2Þr triplet
representations. We can get seven independent A bases in
the following SUð2Þr YD representations,

ð19Þ

Then we can read out the tensor structures based on the
permutation symmetry of SUð2Þr indices from above YD
(the number i ¼ 1, 2, 3 in the YD represent the Lorentz
indices of spinor jiI� _α). Take the first YD as an example.
According to the permutation symmetry of their SUð2Þr
indices, we can get the expression of the first MLGTS basis,

ð20Þ

Its corresponding partners G should also be Lorentz scalar.
For three particles dynamics, Mandelstam variable sij is
trivial and just a constant function of mass, e.g.,

s12 ¼ ðp1 þ p2Þ2 ¼ m2
3: ð21Þ

SinceGmust be the function of Mandelstam variables sij,G
is just a constant. Meanwhile, we also cannot construct
a valid SSYT as in Eq. (17), which means it is not a
dynamical polynomial. So all the amplitude bases with
MLGTS AI

½3;3� are just AI
½3;3� itself.

Next, we will consider the nontrivial case, such as the
basis A½ð4;2Þ1�. Its expression is

ð22Þ

To guarantee its partner G bases to be in the same SUð2Þr
quantum number and also LG neutral, they at least contain
two right-handed massive spinors to contract with the bare

Lorentz indices of AI
½ð4;2Þ1�, and the number of the left-

handed massive spinors should be same as right-handed
spinors [see Eq. (13)]. Therefore, the SSYT of G satisfying
this constraint can only be the Uð3Þ SSYT which contains
one column of blue boxes and two columns of white boxes

. Then we can write down thisG basis following its
permutation symmetry,

ð23Þ

Notice that after reading out g from Uð3Þ SSYT, G can be
obtained by restoring the LG indices of the massive spinors
and arbitrarily choosing one kind of LG contraction pattern.
In this case, the massive LG indices only have one
contraction pattern. For the g polynomials with larger mass
dimensions, we cannot construct a valid YD, so higher
dimensional g cannot be independent. This can be seen
directly through its dynamics: the extra mass dimension of
Ghigher bases must come from Mandelstam variables sij
compared with G½3�, which is just mass constant, so Ghigher

is descendent from G½3�. In this case, there is only one
independent basis totally which is AI

½4;2� ·G
½3�.

For the same reason, the independent partners G½η� of the
reset A bases are also unique, so there is a total of seven
bases for 3-pt Wþ −W− − Z. Following the same proce-
dures, we list all the G bases for all the A bases,

ð24Þ

IV. SIMPLIFICATION OF EFT AMPLITUDE BASIS

However, the SSYT’s horizontal permutations make the
A and G bases very long polynomials. In order to
efficiently decompose any polynomial of spinor products
into a complete set of fA ·Gg bases, we should first
simplify fA · Gg amplitude bases to make each basis a
monomial of spinor products. We find that a set of spinor
monomials can be read off from the SUð2Þr YDs of a
complete set of A bases without considering the horizontal
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permutation symmetry (HPS). Moreover, these monomials
are independent of each other because of the Fock con-
dition.1 Then we can get the simplified MLGTS bases,
called B bases, which are equivalent to A basis. Following
the same logic, we can also get a complete set of
monomials from the UðNÞ SSYTs of G bases, which is
also equivalent to G bases and is called H bases. After
contracting the B bases with the correspondingH bases, the
complete set of simplified amplitude basis fB ·Hg can be
obtained (the SUð2Þr Lorentz index contraction convention
between B and H can be fixed in the following discussion).
We find that different from fA · Gg basis construction,

fB ·Hg can be easily constructed from the enlarged
SSYTs. For the SSYT of a g basis without HPS (see
Eq. (17)), the blue sub-SSYT and white sub-SSYT corre-
spond to two monomials, two holomorphic functions of
left-handed and right-handed spinors, and their product
gives theH basis. Since the shape of the white sub-SSYTof
g is the same as its SUð2Þr YD, we can equivalently treat
the white sub-SSTY of UðNÞ as a SUð2Þr YD. So one of
SUð2Þr indices contraction patterns betweenH and B bases
can be obtained by gluing the white sub-SSYT of H with
the SUð2Þr YD of B via counterclockwise rotating the YD
of B by 180°. After that, we find that a fB ·Hg basis
corresponds to an enlarged Young tableau (YT). In order to
distinguish the H part from the B part in this enlarged YT,
we require the boxes representing spinor jiI� in B to be
labeled by number with prime superscript i0. But the
numbers filled in the boxes associated with H do not take
prime superscripts, ranging from 1 to N. Since the sub-YTs
associated with B bases are rotated by 180° to glue with
H SSYTs, in order to make the enlarged YT be “SSYT,”
we define the size order of the numbers filled in the
enlarged YT as 1 < � � � < N < m0 < � � � < 20 < 10. Since
the i0-boxes in the enlarged SSYT are only associated with
right-handed spinors, the enlarged SSYTs of fB ·Hg bases
should not have blue boxes filled in i0. Conversely, we can
easily find that the enlarged SSYTs without HPS satisfying
this condition one-to-one correspond to B ·H bases.
As we said before, to get a complete set of amplitude

bases with the lowest dimension (a complete set of bases
with the lowest dimension means that the EOM cannot
further reduce the dimension of the bases in it), we should
first find the complete but redundant bases, which contain
all the lowest dimension bases. Then decompose them
into fB ·Hg bases to pick up the independent and lowest
dimension monomials as amplitude bases. For the

convenience of this decomposition, we renumber the
external legs: the m massive legs are labeled by number
f1;nþ2;…;Ng, and the n massless legs are labeled by
number f2;…;nþ1g according to their spins in descend-
ing order. As before, we define the size order of the
numbers filled in the enlarged YT as

1 < � � � < N < N0 < � � � < ðnþ 2Þ0 < 10; ð25Þ

and thus, each enlarged SSYT without blue boxes filled in
number-i0 and HPS still one-to-one corresponds to a B:H
basis. Moreover, we will see that any polynomial of spinor
products can be systematically decomposed into the B:H
bases constructed from this kind of enlarged SSYTs.

A. General property of fB ·Hg bases and an example

The complete set of fB ·Hg bases can be constructed
from the enlarged SSYTs satisfying the following conditions:

(i) Fill the YDs ½ðLþ RÞ=2; ðLþ RÞ=2; ðL=2ÞN−4�
with L=2 number-i and 2si number-i0 for massive
particle-i with spin-si (i ¼ f1; nþ 2;…; Ng); and
ðL=2þ 2hjÞ number-j for massless particle-j with
helicity-hj (j ¼ f2;…; nþ 1g).

(ii) The number-i0 can only appear in the white boxes,
corresponding to the right-handed spinors in polari-
zation tensors.

Notice that the power of ðN=2ÞN−4 in the above YD shape
½; ; ðN=2ÞN−4� represents the number of columns with N=2
boxes. For a specific B:H basis with dim-D, its SSYT shape
should satisfy the following conditions:

R ¼ D − N þ
X

si þ
X

hj;

L ¼ D − N −
X

si −
X

hj: ð26Þ

Here the dimension D of a B:H basis is defined to be the
dimension of its corresponding operator, D≡ ½B:H� þ N,
where ½B:H� is dimension ofB:H amplitude andN is external
leg number.

P
si and

P
hj are the sums of all massive

particle spin and massless particle helicity, respectively.
We take interactions of four massive fields, fermion-

fermion-scalar-scalar (ψ1ψ2ϕ3ϕ4), as an example to explain
how to systematically construct a complete set of their fB:Hg
bases at a given dimension D through enlarged SSYTs.
The polarization tensors of ψ1 and ψ2 are just spinor j1I�

and j2J� so their enlarged SSYTs should contain two white
boxes filled with numbers 10 and 20 representing their
polarization tensors. Besides the two polarization tensors,
fB:Hg basis can also contain any number of massive
momentums pi. It can contain at least zero momentum
factor, corresponding to D ¼ 5 bases. According to the
conditions in Eq. (26), we get R ¼ 2 and L ¼ 0 for D ¼ 5.
So, based on the above two properties of fB:Hg SSYT, its
SSYT is in the shape of [1, 1] and is only filled with the
number f20; 10g. Fill in this YD with the numbers f20; 10g in

1For a general Af _αg basis, assuming it has n bare indices, its
terms from horizontal permutation are not Semi-standard. Using
the Fock condition, which is equivalent to the Schouten identity
for spinor calculation, we can convert A to B, Af _α1;…; _αng ¼
B _α1;…; _αn þ ϵ _αi _αjB…; _αi−1; _αiþ1… _αj−1; _αjþ1… þ � � � Since all polynomial
A could be decomposed into fBg, fAg ⊂ fBg; and they have the
same number of bases (SSYT), rankfAg ¼ rankfBg. Then we
can say that these two sets are equivalent, fAg ¼ fBg.
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the semistandard pattern according to the number size
defined in Eq. (25), and we only get one SSYT,

ð27Þ

Then for higher dimension bases, it may contain two
momenta and its dimension D ¼ 7. Similarly, we can find
that R ¼ 4 and L ¼ 2. So the YD shape is [3, 3], and the
number-i and i0 only appear once. We should fill the
number f1; 2; 3; 4; 20; 10g once in this YD in the semi-
standard pattern and get five bases at D ¼ 7:

ð28Þ

where sij≡pi ·pj is the Mandelstam variable, and the bracket
½1I322J� is defined as ½1I322J�≡ ½1Ijσμσ̄νj2J�ðp3Þμðp2Þν.
Nowwe get the complete set of fB:Hg bases atD ¼ 5 and 7.
Following the same procedure, the complete set of bases at
higher D can be systematically obtained.

V. DECOMPOSITION

In this section, we will systematically discuss how to
decompose any polynomial into the fB ·Hg basis. Since
the massive polarization tensors of fB ·Hg basis are the
holomorphic functions of right-handed spinors, any left-
handed spinors in the massive polarization tensors of a
polynomial should be replaced by right-handed spinors
through EOM (jiIiα ¼ piα _αjiI� _α=mi) for the decomposition.
Since fB ·Hg bases are constructed from enlarged SSYTs
without HPS, the momentum p1α _α and Lorentz scalar
h2I3Ji½3K2L� cannot appear in semistandard H bases.2

So to decompose a polynomial into fB ·Hg bases, all
the p1α _α and h2I3Ji½3K2L� in it should be eliminated by
some identities (see below). After decomposition, each
generated spinor monomial can be mapped to an enlarged
SSYT, which means this polynomial is correctly decom-
posed into fB ·Hg bases. Otherwise, do not stop using the
Schouten identity until the polynomial is converted into the
correct one that can be mapped into the enlarged SSYTs
(this can always be realized).
In the following, we summarize how to systematically do

the decomposition, which is also shown in Fig. 1. Note that
all the polarization’s spinors jiIiα in the input polynomial
are replaced with piα _αjiI� _α=mi.

(i) Step-1: using momentum conservation, replace all
the momentum p1α _α ¼ j1Iiα½1Ij _α by −

P
N
k¼2 pk in

this polynomial and then simplify it by EOMs,

ðpiÞα _αðpiÞ _αβ ¼ m2
i ϵαβ; ðpiÞα _αðpiÞα_β ¼ m2

i ϵ _α _β;

hjji ¼ ½jj� ¼ 0: ð29Þ

To guarantee that the polarization tensor is always
jiI�2si , we do not apply EOM pijiI� ¼ mijiIi to the
polarization’s spinor. If some terms get an overall
factor m2

i from EOMs, these terms should be
discarded (we will see that these terms do not affect
finding a set of lowest dimension bases).

FIG. 1. Decomposition procedures of any polynomial into
fB ·Hg bases.

2The Schouten Identity guarantees that the interior of the blue
or white part is semistandard. Now the only nonsemistandard part
is the place where blue and white boxes meet. Since particle-1 is
massive, there are a total of L=2 numbers-1 that need to be filled
in the UðNÞ conjugating Young tableau (left-handed spinors are
in the antifundamental representation of UðNÞ), and they are just
filled in all the boxes in the first row. So after turning this
conjugating Young Tableau into the blue boxes by using UðNÞ
epsilon tensor to raise λUðNÞ index, there will be no blue boxes
with number-1 in SSYT. This indicates that there is no momen-
tum j1I�h1I j in B ·H. In the absence of p1, the only possible
nonsemistandard Young tableau where blue and white meet is

, which corresponds to polynomials with a factor h23i½23� in
massless limit.
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(ii) Step-2: If one monomial contains h2I3Ji½3J2I�,
directly replace it with the identity

p2 · p3 ¼ −
m2

2 þm2
3 −m2

1

2
−
ðPN

k¼4 pkÞ2
2

− ðp2 þ p3Þ ·
XN
k¼4

pk: ð30Þ

Suppose one monomial contains h2I3Ji and ½2K3L�
simultaneously, and their LG indices are not bare
(these spinors come frommomentums p2 and p3). In
that case, we use Schouten identity to adjust the LG
indices of h2I3Ji and the other two spinors, j2iK and
j3iL, in this monomial to generate factor p2:p3.
However, in practice, we can directly exchange
the LG indices of h2I3Ji with the spinor j2iK and
j3iL (if particle-2 or 3 is massless, ignore this step).
This is because each time we use Schouten identity
to adjust the LG index, an additional term with mass
factor will be generated, which we should discard.
The following is the proof,

h2I3Jih2Kxih3Lyi½2K3L�
¼ h2K3Jih2Ixih3Lyi½2K3L� þOðm2

2Þ
¼ h2K3Lih2Ixih3Jyi½2K3L� þOðm2

2Þ þOðm2
3Þ:

ð31Þ

Then we can get p2 · p3 factor and replace it
by Eq. (30).

(iii) Step-3: Since fB ·Hg basis is constructed based on
the SSYT, its spinor contractions are arranged in the
order of Eq. (25) (called semistandard). Generally,
after step-2, the generated polynomial is not semi-
standard. So to be decomposed into fB ·Hg bases,
the spinor contraction pattern in this polynomial
should be adjusted by Schouten identity to become
semistandard. There is only one kind of spinor
contraction pattern that is not semistandard. That
is ½ij�½kl� (hijihkli) if i < k < l < j. We can easily
convert it into the semistandard pattern as

½ij�½kl� ¼ ½il�½kj� − ½ik�½lj�: ð32Þ
The two terms on the right side of this equation can
be mapped into the sub-SSYT, which indicates that
any nonsemistandard polynomial can be converted
into the combination of semistandard monomials by
Schouten identity.

(iv) Step-4: Repeat step-2 and -3 until there are no p2:p3

factors in the generated polynomial, and each term is
the semistandard monomial, which is fB ·Hg base.

Following the above four steps, we can systematically
decompose any monomial into fB ·Hg bases and get its
coordinate in fB ·Hg base space.

VI. OVERREDUNDANT fC · Fg BASIS

Now we know how to systematically decompose any
polynomial into fB ·Hg bases and determine their inde-
pendence. The only problem is systematically constructing
a complete but redundant set of amplitude bases that always
contains all lowest dimensional amplitude bases. After
constructing such a basis set, we can decompose its bases
into fB ·Hg bases in the ascending order of dimension
and eliminate the linear correlation bases according to
their coordinates. Finally, we get a complete set of lowest
dimensional amplitude bases from the redundant basis set.
This section will discuss how to construct this kind of basis
set systematically.

A. Lowest dimension basis fC · Fg
In this subsection, we briefly discuss why the simplified

fB ·Hg bases or fA · Gg bases cannot be directly mapped
into the physical operator bases. The complete set of physical
operator bases always refers to the basis set with the lowest
dimension (EOM or other identities cannot further reduce
the dimension of the bases). Since the polarization tensors
of fB ·Hg bases are always the holomorphic function of
massive right-handed spinors, they cannot be mapped into
the operator bases whose polarization tensors contain left-
handed spinors. If we replace the left-handed spinors in
polarizations through EOM jiIi ¼ pijiI�=mi, the operator
basis is the linear combination of the fB ·Hg bases
with higher dimensions. We can take four massive particle
vertex fermion-fermion-scalar-scalar (ψ1ψ2ϕ3ϕ4) as an
example. Obviously, it has two dim-5 operator bases
fψ̄1Lψ2Rϕ3ϕ4; ψ̄1Rψ2Lϕ3ϕ4g, corresponding to the lowest
dimensional amplitude bases f½1I2J�; h1I2Jig respectively.
As said above, h1I2Ji base does not exist in fB ·Hg set,
which can be expressed as the combination of fB ·Hg bases,

h1I2Ji ¼ m2½1I2J�
m1

þ ½1I322J�
m1m2

þ ½1I422J�
m1m2

: ð33Þ

Clearly, the last two fB ·Hg bases on the right side of this
equation have higher dimensions than the h1I2Ji basis.
In order to find the lowest dimensional operator bases,

we need to know how the amplitude bases are mapped into
operator bases and the correlation between the dimension
of operator bases and amplitude bases. Generally, the maps
between these two kinds of bases follow the rules,

ϕi ↔ 1; ψ iL ↔ jiIi; ψ iR ↔ jiI�; Fþ
i _α _β

↔ jifI1 �jiI2g�;

Aiμ ↔
jifI1 �hiI2gj

m
; F−

iαβ ↔ jifI1ijiI2gi; ∂i ↔ pi; ð34Þ

where ϕi is scalar, ψ iL;R is left-handed or right-handed
massive fermion, Aiμ is massive vector, F�

i _α _β
≡ 1=2ðFiμν�

iϵμνρσF
ρσ
i Þ, and Fiμν is field strength of Aiμ. We find that
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when the operator contains bare vector fields Aiμ (not refer
to Aμ in F�), the operator dimension d is not equal to the
dimension of the corresponding amplitude basis plus the
number of external legs N, but equal to its amplitude base
dimension plus the number of external legs and minus the
number of bare vector fields,

d ¼ ½M� þ N − nA; ð35Þ

where ½M� is the dimension of amplitude baseM, N is the
number of external legs, and nA is the number of Aiμ vector
fields.
For a scattering process involving massive external

particle-i with spin-si, we can classify all of its possible
amplitude bases according to the particle-i’s polarization
tensor configuration (PTC),

ϵlii ≡ ðjifIiÞliðjiIg�Þ2si−li ; ð36Þ

where li ∈ ½0; 2si� is the number of left-handed spinors in
the polarization tensor, all the LG indices should be totally
symmetric. So different sets of li values represent different

PTCs. We use the symbol fC · Fgf…;li;liþ1;…g
d to denote the

complete set of dim-d bases with PTC f…; ϵlii ; ϵ
liþ1

iþ1;…:g.
In this kind of set, the basis can also be generally factorized
into two parts, similar to fB ·Hg bases,

ðC · FÞf…;li;liþ1;…g

¼ Cf::;li;::gðjifI�2si−liÞ · Ff::;li;::gðjiIgili ; pi; jj�; jjiÞ; ð37Þ

where the Cf::;li;::g part is a holomorphic function of massive
right-handed spinors and is required to be a linear function
of ð2si − liÞ right-handed spinors jiI�, while the Ff::;li;::g
part takes both massive and massless LG charges, and the
massive LG indices of its ðliÞ left-handed spinors jiIi are
bare. Similar to fB ·Hg bases, we can first construct
Cf::;li;::gðjifI�2si−liÞ bases and Ff::;li;::gðjiIg�li ; pi; jj�; jjiÞ
bases separately, and then the complete set of fC ·
Fgf…;li;liþ1;…g bases can be obtained by contracting these
two sets of bases. Same as the construction of fBg and fHg
bases, Cf::;li;::gðjifI�2si−liÞ bases can be constructed by
SUð2Þr YDs, and Ff::;li;::gðjiIili ; pi; jj�; jjiÞ bases can be
obtained by first constructing their massless limit bases
fff::;li;::gg via UðNÞ SSYTs and then restoring the massive
spinors’ LG indices in fff::;li;::gg bases to obtain
Ff::;li;::gðjiIili ; pi; jj�; jjiÞ bases. The massless limit of an
Ff::;li;::gðjiIili ; pi; jj�; jjiÞ basis is defined to be that the LG
indices of all its massive spinors are stripped,

ff::;li;::gðjiili ; jii½ij; jj�; jjiÞ
≡ Ff::;li;::gðjiIili ; pi; jj�; jjiÞjjiIi→jii;jiI �→ji�: ð38Þ

Notice that fff::;li;::gg basis is not rigorously the massless
limit of fFf::;li;::gg basis, but rather like a particular LG
component of fFf::;li;::gg basis. So independent ff::;li;::g

bases one-to-one correspond to independent Ff::;li;::g

bases. If some Ff::;li;::g bases correspond to the same
ff::;li;::g basis, these bases must be related by EOM so
only one of them is independent. Since the proof of
Ff::;li;::g bases independence is the same as fHg bases, we
will not discuss it in detail (similar proof can be found
in [39]).
So in this way, a complete set of fC · Fgf…;li;liþ1;…g with

one kind of PTC f…; li; liþ1;…g can be constructed.3

The redundant but complete set of fC · Fg bases is the
one that contains all the complete basis sets, each with a
different PTC,

fC:Fg ¼
X…;0≤li≤2si;…

f…;li;liþ1;…g
ffC:Fgf…;li;liþ1;…gg: ð39Þ

Since fC · Fg contains the complete bases for each PTC,
all the lowest dimensional bases must be contained in
it (each lowest dimension basis with a kind of PTCs
must belong to the fC · Fgf…;li;liþ1;…g with the same PTC).
Note that there is redundancy between different sets
fC · Fgf…;li;liþ1;…g, while the bases within each set are
independent.
Same as B ·H bases, the massless limit bases fC ·

fgf…;li;liþ1;…g with L0=2 (R0=2) left-handed (right-handed)
spinor products can also be constructed through the
enlarged SSYTs with only vertical permutation (without
HPS) satisfying the following conditions:

(i) Fill YD ½ðL0 þ R0Þ=2; ðL0 þ R0Þ=2; ðL0=2ÞN−4� with
ðL0=2 − liÞ number-i, ð2si − liÞ number-i0 for
massive particle-i (i ¼ f1; nþ 2;…; Ng), and
(L0=2þ 2hj) number-j for massless particle-
j (j ¼ f2;…; nþ 1g).

(ii) Number-i0 can only be filled in white boxes corre-
sponding to the right-handed spinors in polarization
tensor.

For a fC · Fg basis with physical dim-d, its SSYT should
satisfy the following conditions:

R0 ¼ d − N þ nA þ
X

ðsi − liÞ þ
X

hj;

L0 ¼ d − N þ nA −
X

ðsi − liÞ −
X

hj: ð40Þ

Finally the fC · Fgf…;li;liþ1;…g bases can be obtained from
fC · fgf…;li;liþ1;…g enlarged SSYTs as follows. We assign

3Any polynomial with the polarization in Eq. (36) can be
expressed as the inner product of tensors C and F. As long as we
construct complete set fCf::;li;::gg and fFf::;li;::gg, then fC:Fgmust
be complete (may not be independent).
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the totally symmetric SUð2Þi LG indices fI1;…; I2sig
to the first li left-handed spinors jii in f and ð2si − liÞ
right-handed spinors ji0� in C (spinor ji0� represents the
massive spinor jiI�) and treat them as massive polarization
tensor ϵlii . Then pair all the remaining jii s and ji� s into
massive momentums in any way, jiiji� → piα _α ¼ jiIiα½iIj _α.
The procedures to systematically construct fC · Fg bases is
the same as fB ·Hg bases. An example to explain fC · Fg
base construction is shown in Sec. VI C.

B. Decompose fC · Fg into fB ·Hg
After obtaining the complete fC · Fg bases, we can do

the decomposition fC · Fg → fB ·Hg following the pro-
cedure in Fig. 1, and then eliminate the linear correlation
bases. As said before, when doing the decomposition, all
the left-handed spinors jiIi in ϵlii should be replaced by
pijiI�=mi to convert ϵlii to holomorphic tenser ϵ0i , which
results in the dimension of fC · Fg amplitude bases being
increased. The generated amplitude bases, denoted as
fC0 · F0g (called holomorphic bases), are equivalent to
fC · Fg, and the C0 and F0 part is defined the same as B
and H. After converting fϵlii g to fϵ0i g, we can define the

operator dimension of fC0 · F0gf…;li;…g
d as the fake dimen-

sion D0 of fC · Fgf…;li;…g
d bases,

D0 ¼ dþ
X

li þ nA; ð41Þ

where d is the operator basis dimension defined in Eq. (35)
and

P
li is the total number of left-handed spinors in the

polarization tensors (fake dimension D0 of a fB ·Hg base
equals to its operator dimension D).

We can easily find that a fC · Fgf…;li;…g
d basis with fake

dimension D0 ¼ DC·F can be decomposed into the fB ·Hg
bases with the highest fake dimension equal to DC·F,

fC ·Fgflgd → fC0 ·F0gflgd

→ fB ·HgD¼DC·F þm2fB ·HgDC·F−2þ�� � : ð42Þ

So decompose fC · Fgd into fB ·Hg bases in the ascending
order of d, and remove all the linear correlation bases
according to their coordinates in fB ·Hg space. Finally, we
can obtain a complete set of amplitude bases with the
lowest dimension, denoted as fOphyg.
The above full decomposition of fC · Fgd bases is

very inefficient. We find that their coordinates in the
fB ·HgD¼DC·F basis space is enough to pick up the
independent fOphyg bases (proof is shown in
Appendix A). Therefore, we can discard all terms with
mass factors in Eq. (42) during the decomposition,

fC · Fgflgd → fC0 · F0gflgd → fB ·HgD¼DC·F : ð43Þ

That is to say, any mass factors that appear in the
decomposition procedures discussed in Sec. V should be
discarded.

C. Example

In this subsection, we explain how to systematically
construct fC · Fg bases and do the decomposition. We still
take four-point interactions ψ1 − ψ2 − ϕ3 − ϕ4 as the
example.
According to above discussions, since ψ1;2 and ϕ1;2 are

fermions and scalars, the range of their polarization
parameters li is [see Eq. (36)]

l1;2 ∈ ½0; 1�; l3;4 ¼ 0: ð44Þ

So there is a total of four different PTCs. To obtain all the
d ≤ 7 physical operators, we need to construct all the

related fC · fgflgd bases in ascending order of d ≤ 7.
According to Eq. (40), since L0 and R0 are even integers,
we can determine the allowed PTCs for different dimen-
sions d ≤ 7, and all are listed as follows,

D0 ¼ 5∶ fC · Fg00005 :

D0 ¼ 7∶ fC · Fg11005 ; fC · Fg01006 ; fC · Fg10006 ; fC · Fg00007 :

D0 ¼ 9∶ fC · Fg11007 ; � � � ð45Þ

where the sets in the same line have the same fake
dimension-D0. Then, following the procedures in Fig. 1
and Eq. (43), decompose the sets in the three lines into
fB ·HgD¼5, fB ·HgD¼7, and fB ·HgD¼9 respectively
(discard all the mass factors during the decompositions).
Here we explicitly show how to construct the above bases
at second line (D0 ¼ 7) and decompose them. Following

Eq. (40), we can find that the SSYTs of all these fC · fgflgd
bases are

ð46Þ
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Read out all the massive amplitude bases fC · Fgflgd
according to the discussions in Sec. VI A and convert

them into holomorphic bases fC0 · F0gflgd by EOMs. And
then decompose them into fB ·HgD¼7 in the ascending
order of d following the four steps in Sec. V (see Fig. 1),

h1I2Ji→ h12i½11I�½22J�¼ h23i½31I�½22J�þh24i½41I�½22J�;
h2J3i½31I�→ h23i½31I�½22J�¼ h23i½31I�½22J�;=h42Ji½41I�→ h42i½41I�½22J�¼−h24i½41I�½22J�;

� �� ; ð47Þ

where the bases in the left-side of the arrow are fC · Fgflgd

bases, and the right-side are holomorphic bases fC0 · F0gflgd .
Here since the decomposition is at the leading order in mass
factor, the LG indices of all the spinors can be neglected
except the ones of polarization tensor. We can see that these
three bases are linearly correlated, so we should remove
the third redundant base with higher d. After removing all
the linear correlation terms in Eq. (45) and recovering the
massive momentums from the massless limit, we get the
bases with the lowest dimension, which is equivalent to
fB ·Hg bases,

fB ·Hg5 → f½1I2J�g;
fB ·Hg7 → fh1I2Ji; ½1I32Ji; h1I32J�; s24½1I2J�; s34½1I2J�g;
fB ·Hg9 → fs34h1I2Ji; h1I342Ji; � � �g: ð48Þ

With these lowest dimensional bases at dimension d ¼ 5, 6,
7 on the right-hand side (“� � �” refer to higher dim-d
operators), we can directly map them into operator bases
following the rules in Eq. (34).

VII. IDENTICAL PARTICLES

If the scattering process involves n identical bosons
(fermions), the scattering amplitude should be in the totally
(ant-) symmetric representation of the permutation group
Sn (correspond to the Sn YD [n] (½1n�)). Next, we will
discuss systematically constructing the complete set of
amplitude bases involving identical particles.
The Young operator Y½Rn� of the Sn representation ½Rn� ¼

½n� or ½1n� is the permutation operation that make the wave
function of the n identical particles totally symmetric or
anti-symmetric. So the eigenstate of Y½Rn� must be in the
½Rn� representation. Thus, the basic idea to construct a
complete set of amplitude bases in the representation ½Rn�
is that: first, use the Young operator Y½Rn� to act on the
space of the complete bases fMdg at dim-d, then get
the representation matrix M½Rn� of Y½Rn�, and finally the
eigenvectors with nonzero eigenvalues (actually is 1)
correspond to the amplitude bases in the ½Rn�

representation. In contrast, the eigenvectors with zero
eigenvalues correspond to the bases that vanish under
identical particle permutations.
Generally, an amplitude base consists of two parts: the

gauge structure (T) and Lorentz structure (D),

M ¼ T ×D: ð49Þ

So the complete set of amplitude bases can be constructed
by combining the complete sets of gauge structure and
Lorentz structure bases, fTg and fDg,

fMg ¼ fTg × fDg: ð50Þ

Notice that any Young operator of the permutation group Sn
can be expressed as a function of permutation elements (12)
and ð1…nÞ, so we only need to get their representation
matrices in fTg and fDg space, denoted asMT

ð12Þ;ð1;…;nÞ and
MD

ð12Þ;ð1;…;nÞ. So representation matrix M½Rn� is determined

by the outer product of matrices MT
ð12Þ;ð1;…;nÞ and

MD
ð12Þ;ð1;…;nÞ. For example, the matrix of totally symmetric

representation ½3� of S3 group can be expressed as

ð51Þ

where Ma
ð12Þ;ð123Þ is the representation matrix of (12) or

(123) in a ∈ fT;Dg space. In Appendix B, we present the
systematical method to calculate their representation
matrices.
Similarly, suppose that the amplitude bases have differ-

ent identical bosons (fermions). In that case, we only need
to multiply the matrix M½Rn� of each permutation group
together to get a total matrix, and the eigenvectors with
nonzero eigenvalues are the bases allowed by identical
particle statistics.
Generally, the amplitude bases fMidg satisfying iden-

tical particle statistics are polynomials of monomial bases
fOphyg. When we map these amplitudes into operator bases
through the relations in Eq. (34), the operator bases are
also very long polynomials. Practically, when a monomial
amplitude basis, which is not in ½Rn� representation, is
mapped into an operator, this operator automatically
satisfies identical particle statistics (the Feynman rule of
any operator automatically enforces identical particle
permutation symmetries in this operator). So we do not
need to map all the terms of the Mid basis into operators,
but one of its independent monomial terms into an operator
basis. Obviously, this amplitude monomial’s operator
must be equivalent to the operator fully mapped from
the amplitude basis Mid. So, in this way, we can get a
complete set of simplest operator bases equivalent to
fMidg, and they can be used more conveniently in
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calculations. In Appendix C, we list a complete set of four-
vector operator bases at dimension-4 and 6.

VIII. CONCLUSION

EFT of massive fields is widely applied in various fields
of physics. However, how to systematically construct the
complete set of EFT bases of massive fields is still a long-
standing problem. We propose a novel theory based on on-
shell scattering amplitude to construct the complete set of
lowest dimensional amplitude bases at any given dimension
for massive fields with any spins. These bases can be
directly mapped into physical operator bases without any
redundancy.
The massive amplitude bases with the lowest dimension

can be constructed through three steps. First, we system-
atically construct a complete set of massive amplitude
bases fB ·Hg by the enlarged SSYTs without horizontal
permutation symmetries, which are constructed by gluing
the SSYTs of Lorentz subgroup SUð2Þr and global
symmetry UðNÞ. These bases are just monomials of
spinor products but not the lowest dimensional amplitude
bases. Second, since massive amplitude bases can be
classified by the configurations of massive polarization
tensors, we can systematically construct a complete but
redundant basis set fC · Fg that consists of all the
complete sets of massive amplitude bases with different
polarization configurations. Since the bases with the
lowest dimension must have a kind of polarization
configuration, this redundant set always contains a com-
plete set of lowest dimensional amplitude bases. Finally,
since fB ·Hg bases are complete and independent mono-
mials, we can systematically decompose the fC · Fg bases
into fB ·Hg bases from low to high dimension and
eliminate the linear correlation bases through their coor-
dinates in fB ·Hg space. After these procedures, we can
always obtain a complete set of the lowest dimensional
amplitude bases. We also give an example to explain how
to get this kind of base systematically.
The amplitude bases involving identical particles can

also be systematically constructed. First, we find the
representation matrices of the Young operators, associated
with the permutation symmetry representations required
by spin-statistics, in the amplitude basis space and then
multiply these matrices together to get a total matrix.
Finally, the eigenvectors with nonzero eigenvalues of this
matrix correspond to the bases satisfying spin statics.
Based on this theory, we write the Mathematica codes

that can automatically construct a complete set of lowest
dimensional amplitude bases at a given dimension. We
show the complete set of all four-vectors operator bases at
dimension-4 and 6 in Appendix C (also the complete bases
involving identical particles). A complete set of other kinds
of massive operator bases will be presented in the later
work [42].

Within this theory, constructing massive EFT is not a
problem. Our work provides an efficient tool to study the
low energy effects of UV theories at the EWSB phase.
The wave function normalization of massive particles at
the EWSB phase does not need to be cared about, and the
complete sets of three-point and four-point massive EFT
bases are enough for phenomenology study generally. So
when doing the massive operator matching, we do not need
to deal with the high point EFT bases, which can simplify
the calculations very much. While in massless EFT, such as
SMEFT, many higher point bases involving Higgs doublets
always contribute to wave functions of particles, three-
point, and four-point interactions at the EWSB phase,
which makes EFT calculations complicated. We can also
use them to study dark matter interactions with experi-
mental detections and analyze the dark matter signals from
different UV models. Massive EFT could have some
advantages in various scenarios of physics, and a lot of
its exciting applications deserve to be explored in the
future.
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Note added.—While our paper was being finalized,
Ref. [43] appeared, which presents a similar topic. This
work uses a graphic method to construct the massive
amplitude bases, equivalent to the Young tableaux method
used here. Nevertheless, some of the assumptions in
Ref. [43] are only numerically checked without rigorous
proof. On the contrary, our work has a solid mathematical
foundation.

APPENDIX A: PROOF OF LEADING ORDER
DECOMPOSITION

In this section, we prove that the independence of
physical amplitude bases fOphyg with fake dimension
D0 ¼ DOphy is determined by their coordinates in the space
of fB:HgD¼DOphy bases with same fake dimension.
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For the first case, we suppose that two physical bases
Ophy

1;2 with the same PTC and the same fake dimension
D0 ¼ DOphy are independent (for simplicity only li in their
PTC is assumed to be nonzero ⃗l ¼ f…; 0; li; 0…g) and
their coordinates in the fB ·HgD¼DOphy space are assumed
to be the same. So, after converting the Ophy

1;2 into hol-

omorphic bases Ophy
1;2 → O0phy

1;2 ¼ ð½iJiI�ÞliOphyfJlig
1;2 (Jli rep-

resents the LG indices of li jiJi s in PTC), we can get the
decomposition of their difference,

ð½iJiI�Þli
�
OphyfJlig

1 −OphyfJlig
2

�

→ fB ·HgD¼DOphy−2 þ fB ·HgD¼DOphy−4 þ � � � : ðA1Þ

Since the PTCs at both sides are the same, the decom-
position is only determined by the MLGNSs of the
holomorphic bases O0phy

1;2 . If their MLGNSs go to massless
limit (massive momentums go to massless limit) and the
spinors in PTCs keep intact, above decomposition should
become null,

ð½iJiI�Þli
�
OphyfJlig

1 −OphyfJlig
2

�
jpi→jiiji�

¼ ð½iiI�Þli
�
ðC:fÞ⃗l

Ophy
1

− ðC:fÞ⃗l
Ophy

2

�
¼ 0; ðA2Þ

where ðC:fÞ⃗l
Ophy

1;2

are the massless limits of Ophy
1;2 defined

in Sec. VI A. This is because the coordinates in
fB ·HgD≤DOphy−2 space always proportional to mass factor
due to fake dimension mismatch at both sides of Eq. (A1)
and the mass factor is only generated from spinor EOMs in
O0phy

1;2 MLGNSs. Since the identity in Eq. (A2) is indepen-
dent of the spinors in PTCs, the factor ð½iiI�Þli
can be treated as independent variables. So the only

solution to above equation is ðC:fÞ⃗l
Ophy

1

¼ ðC:fÞ⃗l
Ophy

2

, which

means the two basesOphy
1;2 are the same (see the discussions

in Sec. VI A). It conflicts with our assumption, so we prove
that the independence of lowest dimensional bases fOphy

1;2 g
with the same PTC is determined by leading decomposi-
tion. Above proof can be easily generalized to the case for
any number bases.
For the second case, we assume that the two physical

bases Ophy
10;20 with different PTCs and the same fake

dimension D ¼ D0
Ophy have the same coordinates in the

fB ·HgD¼D0
Ophy space. For simplicity we assume that, only

li and lj in their PTCs are nonzero respectively, ⃗l1 ¼
f0;…; 0; li; 0;…; 0g and ⃗l2 ¼ f0;…; 0; lj; 0;…; 0g.
Following the same logic, decomposing their difference
into fB ·Hg space, we can also get the similar massless
limit identity,

�
ð½iI0 iI�ÞliOphyfðI0Þlig

10 − ð½jJ0jJ�ÞljOphyfðJ0Þljg
20

�
jpi→jiiji�

¼ ð½iiI�ÞliðC:fÞ⃗l1
Ophy

1

− ð½jjJ�ÞljðC:fÞ⃗l2
Ophy

2

¼ 0; ðA3Þ

where ðC:fÞ⃗l1
Ophy

1

(ðC:fÞ⃗l2
Ophy

2

) is the massless limit of Ophy
1

(Ophy
2 ) defined in Sec. VI A. As discussed above, since

ð½iiI�Þli and ð½jjJ�Þlj are two independent LG tensors, their

massless limit bases ðC:fÞ⃗l1
Ophy

1

and ðC:fÞ⃗l2
Ophy

2

should contain

the tensor factor ð½jjJ�Þlj and ð½iiI�Þli respectively to
guarantee that this identity can be satisfied. If so, it means

that the massive basisOphy
10 ¼ ðC:FÞ⃗l1

Ophy
1

(Ophy
20 ¼ ðC:FÞ⃗l2

Ophy
2

)

should contain factor ð½jJ0jJ�Þlj (ð½iI0 iI�Þli). However this
factor is proportional to mass, so it means thatOphy

10;20 are not

the lowest dimension bases, conflicting with Ophy
10;20 defi-

nition. So the independence of two lowest dimensional
bases with the same fake dimension and different PTCs

is only determined by the coordinates in fB ·HgD¼D0
Ophy

space.
The above two proofs can be easily generalized to the

case for any number of bases. So in summary the fOphyg
bases can be picked up just through the leading decom-
position of fC · Fgd in Eq. (42),

fC · Fgflgd → fC0 · F0gflgd → fB ·HgD¼DC·F : ðA4Þ

Since the coefficients of this leading decomposition are
independent of mass factors, any mass factors that appear in
the decomposition procedures discussed in Sec. V should
be discarded.

APPENDIX B: REPRESENTATION
MATRIX FOR Sn

1. Gauge part

In this section we explain how to calculate the Young
operator matrix MT

½Rn� of Sn representation ½Rn� in gauge
structure fTg space. For concreteness, we take the SUð3Þc
color group as an example.
We suppose that the amplitude bases contain QCD

quarks, antiquarks, and gluons. According to their SUð3Þc
quantum numbers, the YDs of their SUð3Þc representation
are in the forms,

ðB1Þ

where λi refer to the eight Gell-Mann matrices. The
complete set of SUð3Þc fTg bases consists of all the
Standard Young tableaus (SYTs) in the shape of ½x; x; x�
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(SUð3Þc singlet) satisfying above SUð3Þc index permuta-
tion symmetries of all ψ̄as and gis. In the following, we will
discuss how to systematically construct the fTg bases and
then discuss how to get the matrices MT

½Rn�.
We can first find a set of SUð3Þc gauge structure bases

fT 0g consists of all the SYTs with the shape of ½x; x; x�,
where the length x of each row is determined by the SUð3Þc
quantum numbers of external fields. The set of fT 0g bases
contain the fTg base we need. Then we can use the
projection matrix P (see below) to project out the structures
whose indices satisfy the permutation symmetry of all ψ̄as’
and gis’ SUð3Þc indices. So these projected out bases are
the fTg bases. Next, we will list the procedures to get
matrices MT

½Rn�.
(i) Get the representation matrix MT 0

ð12Þ=ð1…nÞ of Sn
element (12) or ð1…nÞ in fT 0g space: Since there
are totally nY ≡ 2ð3xÞ!

x!ðxþ1Þ!ðxþ2Þ! SYTs with shape

½x; x; x�, the number of fT 0g bases is equal to nY .
The ðnY × nYÞ representation matrix MT 0

ð12Þ of (12)
can be obtained by first using permutation element
(12) to act on the color indices of fT 0g base
associated with particle-1 and -2 and then decom-
posing them into the nY SYTs. MT 0

ð1…nÞ can also be
obtain in the same way.

(ii) Get the projection matrix P: P is the product of
adjoint (anti-fundamental) Young operators of each
external particle gs’ (ψ̄s) YDs.

ðB2Þ

The amplitude gauge structure bases fTg can be projected
out from the enlarged fT 0g bases by acting P on the nY
SYTs and decomposing them back to the nY SYTs. Finally
we can get the ðnY × nYÞ matrix representation P of P in
fT 0g space. The eigenvectors with nonzero eigenvalues of
P are the fTg bases consistent with SUð3Þc quantum
number of external legs.
The method used in the above decompositions is using just
the Fock condition. Using this method, we can turn any
Young Tableau into a combination of SYTs. Finally, we
get the SUð3Þc representation matrix for (12) and ð1 � � � nÞ
in the space of fTg bases (P is to project out fTg bases
from fT 0g),

MT
ð12Þ=ð1���nÞ ¼ MT 0

ð12Þ=ð1���nÞ · P: ðB3Þ

SinceMT 0
and P are commutative, we can commutate all P

in Eq. (51) to the most right position, which can simplify
the calculation. Finally, the totally symmetric representa-
tion of S3 can be expressed as

ðB4Þ

2. Lorentz part

To get MD
ð12Þ in bases fOphyg space, we need to act the

permutation element (12) on fOphyg and then decompose
the generated bases back into the combinations of fOphyg
bases,

ð12ÞðOphyÞDd ¼
X

mðd−d0ÞðOphyÞD0
d0 ; ðB5Þ

where the superscript D and D0 are fake dimensions. And
due to the following reasons,

(i) No matter whether using Schouten identity or
momentum conservation, it will only lower its fake
dim-D;

(ii) fOphy
d g is the complete set of bases with the lowest

dimension, so ð12ÞðOphy
d Þ could only be decom-

posed into some bases with dimension lower than d,
each term on the right-hand side of Eq. (B5) should satisfy
the following constraints,

d0 ≤ d; D0 ≤ D: ðB6Þ

It means that the representation matrixMD
ð12Þ is a partitioned

upper triangular matrix in the space of the bases arranged in
the ascending order of both dim-D and dim-d, as shown in
Fig. 2. This property tells us that the eigenvectors with
nonzero eigenvalues of the diagonal sub-matrix MD

Dð12Þ in
the base space with a certain fake dimension D one-to-one
correspond to the eigenvectors with nonzero eigenvalues of
the full matrixMD

ð12Þ. So these diagonal sub-matricesMD
Dð12Þ

in MD
ð12Þ are enough to project out the bases involving

identical particles (MD
Dð12Þ correspond to the diagonal gray

boxes in Fig. 2). Using the following steps, we can get the
submatrix MD

Dð12Þ for a certain dim-D (the box within blue

circle in Fig. 2).

FIG. 2. Partitioned upper triangular matrix MD
ð12Þ=ð1���nÞ.
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(i) Decompose ð12ÞfOphygD to fB ·HgD, and get the
matrix MBH←O

ð12Þ
(ii) Decompose fOphygD to fB ·HgD, and get the

matrix MBH←O
e

(iii) Finally MD
Dð12Þ ¼ ½MBH←O

e �−1 ×MBH←O
ð12Þ

SinceMD
Dð12Þ is still partitioned upper triangular matrix, now

we only need to calculate the eigenvectors of its diagonal
blocks (the diagonal blue boxes), which have certain dim-D
and dim-d. When we map an independent monomial of an
amplitude basis to an EFT operator, this operator will
automatically satisfy identical particle statistics enforced
by Feynman rules. So we do not need to map the full
eigenvectors with nonzero eigenvalues (correspond long
polynomials of spinor products) into operators but just need
to find one independent component of each eigenvector and
map it into an EFT operator, which is the simplest operator
basis satisfying spin statistics.

APPENDIX C: CODE OUTPUT: 4-PT GAUGE
BOSON EFT OPERATORS

In this section, we list all the four-point amplitude bases
and the corresponding operator bases for massive gauge
boson Z and W� at dim-4 and 6. Notice that for simplicity,
we do not symmetrize the expressions of the amplitude
bases involving identical particles, and the full expressions
can be obtained by just symmetrizing these amplitude bases
in the following tables. In the first column of the following
Tables, the bold bracket is defined as ½ij�≡ ½iIjJ� (we
follow the conventions in [41]).
For the vertex D2nZZWþW− (Dμ is the QED covariant

derivative), we have 2 physical dim-4 operators and 29
dim-6 operators, and we define

F́μν ≡ Fμν þ iF̃μν F̀μν ≡ Fμν − iF̃μν: ðC1Þ

Amplitude Operator D2nZZWþW−

h13ih24i½42�½31� ZμZνWþ
μ W−

ν

h13ih24i½43�½21� ZμZμWþνW−
ν

h34i½42�½31�½21� ŹμνZμνWþρW−
ρ − iϵμνρσZμγZ

γ
νWþ

ρ W−
σ

h24i½42�½31�2 ŹμνWþ
μνZρW−

ρ

h24i½43�½31�½21� ŹμνðWþ
μνW−

ρZρ þ 2ZμWþ
ρνW−ρ − 2W−

μWþ
ρνZρÞ

h23i½42�½41�½31� ŹμνðW−
μνZρWþ

ρ þ 2Wþ
μ W−

ρνZρ − 2ZμW−
ρνWþρÞ

h23i½43�½41�½21� ŹμνðW−
μνWþ

ρ Zρ þ 2ZμW−
ρνWþρ − 2Wþ

μ W−
ρνZρÞ

h12i½43�½42�½31� ẂþμνW−
μνZρZρ

h24ih34i½31�½21� ŹμνðW−
μνZρWþ

ρ − 2Wþ
μ W−

ρνZρ − 2ZμW−
ρνWþρÞ

h23ih34i½41�½21� ŹμνðWþ
μνZρW−

ρ − 2W−
μWþ

ρνZρ − 2ZμWþ
ρνW−ρÞ

h23ih24i½41�½31� ŹμνðZμνWþρW−
ρ − 2W−

μZρνWþρ − 2Wþ
μ ZρνW−ρÞ

h14ih24i½32�½31� ẂþμνðW−
μνZρZρ − 4ZμW−

ρνZρÞ
h13ih23i½42�½41� Ẃ−μνðWþ

μνZρZρ − 4ZμWþ
ρνZρÞ

h12ih24i½43�½31� ẂþμνðZμνW−ρZρ − 2ZμZρνW−ρ − 2W−
μZρνZρÞ

h12ih23i½43�½41� Ẃ−μνðZμνWþρZρ − 2ZμZρνWþρ − 2Wþ
μ ZρνZρÞ

h13ih24ih34i½21� ẀþμνW−
μνZρZρ

h13ih24i2½31� Z̀μνW−
μνWþρZρ

h12ih24ih34i½31� Z̀μνðW−
μνWþρZρ þ 2ZμW−

ρνWþρ − 2Wþ
μ W−

ρνZρÞ
h13ih23ih24i½41� ẀþμνðZμνW−ρZρ þ 2ZμZρνW−ρ − 2Wþ

μ ZρνZρÞ
h12ih23ih34i½41� Z̀μνðWþ

μνW−ρZρ þ 2ZμWþ
ρνW−ρ − 2W−

μWþ
ρνZρÞ

h12ih13ih24i½43� Z̀μνðZμνW−ρWþ
ρ þ 2Wþ

μ ZρνW−ρ − 2W−
μZρνWþρÞ

h323�h24i½41�½21� iŹμνW−
μ ðDρZνÞWþ

ρ

h424�h23i½31�½21� iŹμνWþ
μ ðDρZνÞW−

ρ

h134�h24i½32�½31� iDρðẂþμρgνσ þ Ẃþρσgμν þ Ẃþρνgμσ þ Ẃþσμgνρ þ ẂþνμgρσÞW−
μZνZσ

h234�h13i½42�½31� iẂ−μνZνðDμWþ
ρ ÞZρ

h423�h13ih24i½21� iðẀ−μρgνσ þ Ẁ−ρσgμν þ Ẁ−ρνgμσ þ Ẁ−σμgνρ þ Ẁ−νμgρσ þ Ẁ−σνgμρÞðDσZνÞZρWþ
μ

h424�h13ih23i½21� iẀþμνðDρZμÞZνW−ρ

(Table continued)
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(Continued)

Amplitude Operator D2nZZWþW−

h234�h13ih24i½31� iZ̀μνW−
μ ðDνWþ

ρ ÞZρ

h434�h12ih23i½31� iZ̀μνZμðDρWþ
ν ÞW−ρ

h232�h423�h13i½41� ðiϵμνρσ þ gμσgνρ − gμρgνσ þ gμνgρσÞðDξWþ
μ ÞW−

ρ ðDνZξÞZσ

h424�h242�h13i½31� ZρWþ
ρ ðDμW−νÞðDνZμÞ

And for vertex D2nWþWþW−W−, we have 2 physical dim-4 operators, and 18 dim-6 operators,

Amplitude Operator D2nWþWþW−W−

h13ih24i½42�½31� WþμWþνW−
μW−

ν

h13ih24i½43�½21� WþμWþ
μ W−νW−

ν

h34i½42�½31�½21� ẂþμνWþ
μνW−ρW−

ρ

h24i½42�½31�2 ẂþμνW−
μνWþρW−

ρ

h24i½43�½31�½21� ẂþμνðW−
μνW−ρWþ

ρ þ 2Wþ
μ W−

ρνW−ρ − 2W−
μW−

ρνWþρ

h12i½43�½42�½31� Ẃ−μνW−
μνWþρWþ

ρ

h24ih34i½31�½21� ẂþμνðW−
μνWþρW−

ρ − 2W−
μW−

ρνWþρ − 2Wþ
μ W−

ρνW−ρÞ
h23ih24i½41�½31� ẂþμνðWþ

μνW−ρW−
ρ − 4W−

μWþ
ρνW−ρÞ

h14ih24i½32�½31� Ẃ−μνðW−
μνWþρWþ

ρ − 4Wþ
μ W−

ρνWþρÞ
h12ih24i½43�½31� Ẃ−μνðWþ

μνW−ρWþ
ρ − 2Wþ

μ Wþ
ρνW−ρ − 2W−

μWþ
ρνWþρÞ

h13ih24ih34i½21� Ẁ−μνW−
μνWþρWþ

ρ

h13ih24i2½31� Ẁ−μνWþ
μνW−ρWþ

ρ

h12ih24ih34i½31� ẀþμνðW−
μνW−ρWþ

ρ þ 2Wþ
μ W−

ρνW−ρ − 2Wþ
μ W−

ρνWþρÞ
h12ih13ih24i½43� ẀþμνWþ

μνW−ρW−
ρ

h323�h24i½41�½21� iẂþμνW−
μ ðDρWþ

ν ÞW−
ρ

h134�h24i½32�½31� iDρðẂ−μρgνσ þ Ẃ−ρσgμν þ Ẃ−ρνgμσ þ Ẃ−σμgνρ þ Ẃ−νμgρσÞW−
μWþ

ν Wþ
σ

h423�h13ih24i½21� iðẀ−μρgνσ þ Ẁ−ρσgμν þ Ẁ−ρνgμσ þ Ẁ−σμgνρ þ Ẁ−νμgρσ þ Ẁ−σνgμρÞðDσWþ
ν ÞWþ

ρ W−
μ

h234�h13ih24i½31� iẀþμνW−
μ ðDνW−

ρ ÞWþρ

h232�h423�h13i½41� ðiϵμνρσ þ gμσgνρ − gμρgνσ þ gμνgρσÞðDξW−
μ ÞW−

ρ ðDνWþξÞWþ
σ

h424�h242�h13i½31� WþρW−
ρ ðDμW−νÞðDνWþμÞ

Finally, for vertex D2nZZZZ, we only have 1 physical dim-4 operator, and 4 dim-6 operators,

Amplitude Operator D2nZZZZ

h13ih24i½42�½31� ZμZνZμZν

h34i½42�½31�½21� ŹμνZμνZρZρ

h24ih34i½31�½21� ŹμνðZμνZρZρ − 4ZμZρνZρÞ
h13ih24ih34i½21� Z̀μνZμνZρZρ

h232�h423�h13i½41� ðDμZνÞðDνZμÞZρZρ
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