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In this work, a modified Nambu-Jona-Lasinio (NJL) model with proper-time regularization is employed
to study the properties of hypothetical nonstrange quark stars. The coupling constant of the four-fermion
interaction in the conventional NJL model is modified as G ¼ G1 þ G2hψ̄ψi to highlight the feedback of
the quark propagator to the gluon propagator. To study the dependence of the equation of state (EOS) on
this modification as well as the vacuum pressure, we choose nine representative EOSs for comparison. It is
found that a smaller G1 leads to a stiffer EOS, and a higher vacuum pressure (i.e., a smaller bag constant)
yields a softer EOS at low energy density. It is further shown that the heaviest quark star under this modified
NJL model satisfies not only the recent mass measurement of PSR J0740þ 6620, but also the radius
constraints from x-ray timing observations. The corresponding tidal deformability is also in agreement with
the observations of GW170817.
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I. INTRODUCTION

The structure of neutron stars and quark stars is largely
determined by the equation of state (EOS) of dense matter.
Given a particular EOS, the corresponding mass-radius
(M − R) and mass-central energy density (M − ϵc) relations
can be obtained by solving the Tolman-Oppenheimer-
Volkoff (TOV) equation. Since neutron stars and quark
stars are composed of strongly interacting matter at high
densities under a relatively low temperature, nonperturbative
quantum chromodynamics (QCD) is deeply involved in
exploring the EOS and structure of these compact stars.
There are two critical features in QCD, i.e., color confine-
ment and dynamical chiral symmetry breaking. At low
chemical potentials, quarks are confined in hadrons under a
low temperature. However, at high chemical potentials,
quarks become deconfined. As a result, the observed highly
compact pulsars could be quark stars rather than normal
neutron stars.
In light of the hypothesis that strange quark matter might

be the ground state of strongly interacting matter [1–4],

many authors have extensively studied the characteristics of
strange quark stars, either pure quark stars or hybrid neutron
stars with a quark core [5–12]. Interestingly, a recent study
[13] shows that stable quark matter might not be strange so
that nonstrange quark stars can exist. Further studies have
been carried out based on this viewpoint [14–18]. In
Refs. [14,15], a new self-consistent mean-field approxima-
tion is employed to study the properties of nonstrange quark
stars, such as theM − R relation and the tidal deformability.
Note that the difference between Ref. [14] and Ref. [15] is
that the authors of Ref. [14] adopted the proper-time
regularization, while a three-momentum cutoff regulariza-
tion is used in Ref. [15]. A recent study [19] demonstrated
that both the nonstrange and strange quark matter could
be absolutely stable under the combination of the quark
vector interaction and exchange interaction. Therefore, for
two-flavor quark matter and three-flavor quark matter,
which one is more stable is still an open question at present.
In this study, wewill investigate the properties of nonstrange
quark stars in depth, providing useful constraints to the
EOS of nonstrange quark matter with recent astronomical
observations.
Since Joycelyn Bell and Antony Hewish discovered PSR

B1919þ 21 in 1967, a large number of pulsar mass
measurements have been obtained till now. Among these
measurements, PSR J0348þ 0432 and PSR J0740þ 6620
are two special examples characterized by their large
masses, i.e., 2.01� 0.04 M⊙ (solar mass) [20] and
2.14þ0.10

−0.09 M⊙ [21], respectively. In recent years, the radii
of a few pulsars were also measured at unprecedented
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precision using data acquired by the Neutron Star Interior
Composition Explorer (NICER) [22–24]. For example, in
Ref. [22], the radius of a typical 1.44 M⊙ pulsar is found to
be larger than 10.7 km. Additionally, the recently discov-
ered gravitational wave (GW) event GW170817 has opened
a new era of multimessenger astronomy [25–40], and the
LIGO-VIRGO collaboration provided useful constraints on
the dimensionless tidal deformability (Λ) of neutron stars
through GW waveform observations during the inspiral
phase of the binary neutron star (BNS) merger. For the star
of low-spin priors, it is estimated asΛð1.4 M⊙Þ ≤ 800 [25],
and the Λ1 − Λ2 relation of GW170817 is also constrained
by considering particular waveform models, such as the
TaylorF2 waveform [41].
Lattice regularized QCD calculations are troubled by the

famous “sign problem” at finite chemical potentials, mak-
ing it difficult to perform calculations based on the first
principles. As a result, we have to resort to some effective
models to calculate the EOS of quark matter. Astronomical
observations can then be used to test these hypothetical
EOSs. In general, the EOS should not be too soft since it
will fail to produce the massive stars of ∼2 M⊙ as
observed. At the same time, the EOS also should not be
too stiff when the upper limit of the tidal deformability is
considered, as hinted by the observational results of
GW170817.
In this work we apply a modified Nambu-Jona-Lasinio

(NJL) model to the case study of nonstrange quark stars.
Inspired by the operator product expansion (OPE)
approach, the traditional constant coupling coefficient of
the 2-flavor NJL model is modified as G ¼ G1 þG2hψ̄ψi
with G2hψ̄ψi accounting for the feedback of the quark
propagator to the gluon propagator (see for instance
Refs. [7,42–48]). The EOS of nonstrange quark matter
derived in this framework will be used to study the
properties of quark stars, especially the M − R relation
and the tidal deformability.
Many studies have focused on the NJL model with

’t Hooft interaction [6,19]. Although our gap equation in
the SU(2) case looks similar to previous SU(3) studies
which possesses a quadratic dependence on the quark
condensate, we would like to point out that the reason is
different here. In Refs. [6,19], the t’ Hooft interaction term
leads to the above quadratic dependence. But in this study,
the modification of the coupling constant G is responsible
for the effect.
This paper is organized as follows. In Sec. II, a brief

introduction on the modified 2-flavor NJL model is
presented, and nine representative EOSs for nonstrange
quark matter are introduced. In Sec. III, the tidal deform-
ability and the M − R, M − ϵc relations are calculated for
quark stars, and compared with astronomical observations.
Finally, a brief summary and discussion is presented
in Sec. IV.

II. EOS OF NONSTRANGE QUARK MATTER

The NJL model is widely used as an effective model to
describe cold dense quark matter in neutron stars and quark
stars [49,50]. The general form of the Lagrangian for the
2-flavor NJL model is

L ¼ ψ̄ði=∂ −mÞψ þG½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2�; ð1Þ

where m denotes the current quark mass, and G is the four-
fermion coupling constant.1 The interaction termG½ðψ̄ψÞ2þ
ðψ̄iγ5τψÞ2� includes the scalar-isoscalar and pseudoscalar-
isovector channels.
In general, the effective quark mass meff can be obtained

by the self-consistent gap equation of

meff ¼ m − 2Ghψ̄ψi; ð2Þ

where hψ̄ψi is the quark condensate. At a zero temperature
and zero chemical potential, it can be calculated as

hψ̄ψi ¼ −
Z

d4p
ð2πÞ4 Tr½iSðp

2Þ�

¼ −Nc

Z þ∞

−∞

d4p
ð2πÞ4

8imeff

p2 −m2
eff

; ð3Þ

where the trace “Tr” is evaluated in color, flavor, and Dirac
spaces, and Sðp2Þ ¼ 1

=p−meff
represents the quark propagator.

To proceed, we need to convert our equations from the
Minkowski space to the Euclidean space and employ some
kinds of regularization. In this study, we adopt the proper-
time regularization (PTR), a covariant regularization that
has a “soft” cutoff to avoid the ultraviolet divergence when
the momentum integration is to infinity. The formula of
PTR is

1

Xn ¼
1

ðn − 1Þ!
Z

∞

0

dττn−1e−τX

⟶
UVcutoff 1

ðn − 1Þ!
Z

∞

τUV

dττn−1e−τX; ð4Þ

where the integral limit τUV is related to the ultraviolet
cutoff ΛUV: τUV ¼ Λ−2

UV. Adopting the PTR regularization,
Eq. (3) becomes

1An exact isospin symmetry between u and d quark is adopted
in this work so that mu ¼ md ¼ m.
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hψ̄ψi ¼ −Nc

Z þ∞

−∞

d4pE

ð2πÞ4
8imeff

ðpEÞ2 þm2
eff

¼ −
Nc

ð2πÞ4
Z þ∞

−∞

Z þ∞

−∞
d3p⃗dp4

8meff

p2
4 þ p⃗2 þm2

eff

¼ −
6meff

π2

Z þ∞

0

dp
p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
eff

p

¼ −
6meff

π
2
5

Z
∞

τUV

Z þ∞

0

dτdpτ−
1
2p2e−τðm2

effþp2Þ

¼ −
6meff

4π2

Z
∞

τUV

dτ
e−τm

2
eff

τ2
; ð5Þ

where the superscript Emeans the parameter is measured in
the Euclidean space.
The coupling constantG from the NJL model can be seen,

under our current understanding of strong interactions, as a
representation of an effective gluon propagator. Note that the
quark and gluon propagators satisfy different Dyson-
Schwinger (DS) equations, but they should couple with
each other in view of QCD theory. As we know, quark
propagators in the Nambu phase and Wigner phase are very
different from each other [51–53], so the corresponding
gluon propagators in these two phases should also be
different. However, in the normal NJLmodel,G is simplified
as a constant and remains the same in both the Nambu and
the Wigner phases. Additionally, simulations of lattice QCD
have shown that the gluon propagator should vary with
temperature, while its dependence on the chemical potential
is more uncertain. In most NJL calculations, the effective
gluon propagator G is usually assumed to be “static,” which
thus does not depend on the temperature and chemical
potential. This can be argued to be in contradiction with the
requirements exerted on an effective gluon propagator.
The plane wave method in the QCD sum rule approach is

used in Ref. [54]. It is argued that the full Green’s function
(which is unknown) can be divided into two parts: the
nonperturbative part and the perturbative part. The con-
densates are then expressed as various moments of the
nonperturbative Green’s function. Therefore, the most
general form of the “nonperturbative” gluon propagator is

Dnpert
μν ≡Dfull

μν −Dpert
μν ≡ c1hψ̄ψi þ c2hGμνGμνi þ � � � ; ð6Þ

where hGμνGμνi is the gluon condensate, c1 and c2 are
coefficients that can be calculated with the QCD sum rule
approach [55,56], and the ellipsis refers to the contribu-
tions from other condensates (e.g., the mixed quark-gluon
condensate).
Among all the condensates, the quark condensate has the

lowest dimension, and a nonzero value of this quantity, in the
chiral limit, just signals the dynamical chiral symmetry
breaking. Therefore, it is the elementary item and plays the
most important role in the QCD sum rule approach. In this
study, we will treat its contribution separately, while the

contribution of other condensates is included in the pertur-
bative part of the gluon propagator. In the framework of the
NJL model, it is equivalent to a modification of

G → G1 þ G2hψ̄ψi; ð7Þ
which is quite similar to the approach in Refs. [7,42–48].
Under this modification, the coupling strengthGwill depend
on both u and d quark condensates.G2 can be regarded as an
effective coupling strength, reflecting the relative weight of
the influence of the quark propagator and gluon propagator.2

In this study, we will take three representative sets of
(G1, G2) and then constrain the corresponding EOSs with
astronomical observations (see Sec. III for more details). The
current quark mass is taken as m ¼ ðmu þmdÞ=2 ¼
3.5 MeV [57]. Similar to Ref. [49], we fix the parameters
(ΛUV,G) to reproduce the experimental data (fπ ¼ 92 MeV,
mπ ¼ 135 MeV). The complete parameter sets adopted,
including G1 and G2, are presented in Table I.
Here, we will also extend our calculations to zero

temperature and finite chemical potential, which is equiv-
alent to performing a transformation in the Euclidean space
as [58]

p4 → p4 þ iμ: ð8Þ

The quark condensate and number density, in the vanishing
temperature case, can then be derived as

hψ̄ψi¼−Nc

Z þ∞

−∞

d4p
ð2πÞ4

8meff

ðp4þiμÞ2þm2
effþp⃗2

¼−
6meff

π3

Z þ∞

0

dp
Z þ∞

−∞
dp4

p2

ðp4þiμÞ2þm2
effþp2

¼

8><
>:
−6meff

π2

Rþ∞ffiffiffiffiffiffiffiffiffiffiffiffi
μ2−m2

eff

p dp
½1−Erfð

ffiffiffiffiffiffiffiffiffiffiffiffi
m2

effþp2
p ffiffiffiffiffiffi

τUV
p Þ�p2ffiffiffiffiffiffiffiffiffiffiffiffi

m2
effþp2

p ; meff<μ

3meff
2π2

½−m2
effEið−m2

effτUVÞ−e
−m2

eff
τUV

τUV
�; meff>μ

ð9Þ

TABLE I. Parameters adopted in this study.

m ΛUV meff −hψ̄ψi13 G G1 G2

[MeV] [MeV] [MeV] [MeV] ½GeV−2� ½GeV−2� ½GeV−5�
1.935 −1.582

3.5 1324 180 353 2.005 2.005 0
2.100 2.161

2In a conventional two-flavor NJL model, the thermodynam-
ical potential is obtained based on the mean-field approximation,
see, e.g., Eq. (2.46) in Ref. [50] (neglecting the contribution of the
vector interaction). The modification here can be regarded as a
scheme beyond the mean-field approach, and it is hard to find a
closed and easily tractable effective potential (a more detailed
analysis can be found in Sec. 2 of Ref. [43]).
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ρiðμÞ ¼ hψþψii
¼ −Nc

Z
d4p
ð2πÞ4 tr½iSiγ0�

¼ 2Nc

Z
d3p
ð2πÞ3 θðμ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

eff

q
Þ

¼
�

1
π2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

eff

p
Þ3; μ > meff

0; μ < meff

ð10Þ

where the subscript “i” denotes the quark of flavor i, and the
trace “tr” is calculated in the Dirac space. The effective
quark mass meff as a function of the chemical potential at
zero temperature is shown in Fig. 1. The number density
ρu;d is correspondingly illustrated in Fig. 2.
In the framework of the NJL model, many researchers

[50,59,60] have demonstrated that whether there is a first
order chiral phase transition at zero temperature (when
mu ≠ 0) depends on the regularization being employed,
even though the modification G → G1 þ G2hψ̄ψi was not
adopted in their studies. In Ref. [50], three dimensional
(3D) momentum cutoff regularization was used and a first
order phase transition was reported to happen at T ¼ 0.
However, in Ref. [59], the authors used the PTR and
only got a crossover transition at T ¼ 0. In particular,
Ref. [60] studied the effects of regularization on the
phase diagram by using the NJL model. In the case of
low current quark mass, such as mu ¼ 3 MeV, only a
crossover could be observed at T ¼ 0 for both PTR and 3D
regularization.
In this study, the PTR is also used for the case of low

current quark mass (mu ¼ 3.5 MeV). The parameter set
with G1 ¼ 2.005 GeV−2 just corresponds to the normal
2-flavor NJL model. Figure 1 shows that when the chemical
potential increases from 0 to 700 MeV, we could only

observe a crossover for the parameter sets in Table I, but not
the first order phase transition.
In fact, we have also varied the value of G1 between 1.0

and 3.0 GeV−2 to study the properties of the phase
transition at T ¼ 0. When G1 < 1.8 GeV−2, a first order
phase transition happens, and the critical chemical potential
is μc ¼ 180 MeV. However, when G1 > 1.8 GeV−2, a
crossover would be obtained, and the pseudocritical
chemical potential increases together with G1. Different
from the meaning of the so-called “critical chemical
potential” in the first order phase transition, the “pseudoc-
ritical chemical potential” here refers to the crossover
condition, corresponding to the inflection point in the
curves of condensate and the effective quark mass.
Here we present some further explanations on how the

three representative values are chosen for G1 in Table I. In
Sec. III, we could see that all the EOSs with B1=4 ¼
115 MeV can support massive nonstrange quark stars of
two solar mass. However, a too large or too small value of
G1 can make the EOS conflict with the tidal deformability
measurement of GW170817. To roughly meet this require-
ment, we finally take the parameter as G1 ¼ 1.935, 2.005
(the normal NJL model), and 2.100 GeV−2 in this study.
Note that the chemical potential of the pseudocritical

point is different for the three lines in Fig. 1, as marked in
Fig. 1. It can also be seen that at zero temperature and zero
chemical potential, the effective quark masses are the same
for the three parameter sets. This is easy to understand.
Under such a condition, G1 þ G2hψ̄ψi simply reduces to
G, which is exactly the coupling constant of conventional
NJL model. In Fig. 2, we see that the quark densities differ
only in the crossover region of μ ∼ ð200; 400Þ MeV for the
three parameter sets.
Considering the electrical neutrality of neutron stars and

quark stars as well as electroweak reactions in them, we
should take the beta equilibrium and electric charge
neutrality conditions into account,

FIG. 1. The effective quark mass versus μ at T ¼ 0. The lines
marked with G1935, G2005, and G2100 correspond to the three
parameter sets in Table I, with G1 ¼ 1.935, 2.005, 2.100 GeV−2,
respectively. The pseudocritical point is also marked on each line,
at μ ¼ 263, 293, 336 MeV, respectively.

FIG. 2. The number density of u, d quarks versus μ at T ¼ 0 for
the three parameter sets in Table I. Line styles are the same as
those in Fig. 1.
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μd ¼ μu þ μe;

2

3
ρu −

1

3
ρd − ρe ¼ 0; ð11Þ

where the number density of electrons at zero temperature

is ρeðμeÞ ¼ μ3e
3π2

. The number densities of quarks and
electrons incorporating these conditions are displayed in
Fig. 3. We can see that in each case, the density of d quarks
is larger than that of u quarks when μu > 180 MeV. In fact
ρd approximately equals 2ρu, because the electron density
is much smaller. Figure 3 also shows that as G1 increases,
the constituent particle number density decreases for the
same μu when μu ≥ 180 MeV. This is expected as it is the
value for the dynamical mass of the quarks in the vacuum
and therefore the chemical potential at which we see
changes in the system at zero temperature.
It is well known that under the beta equilibrium and

electric charge neutrality conditions, the quark conden-
sates, dynamical masses, and densities are different for u
quarks and d quarks. But note that these quantities are
connected with each other, and the relations between them
should be considered when calculating the EOS.
By definition, the EOS of QCD for T ¼ 0 and μ ≠ 0

is [61]

PðμÞ ¼ Pðμ ¼ 0Þ þ
Z

μ

0

dμ0ρðμ0Þ; ð12Þ

where Pðμ ¼ 0Þ represents the negative vacuum pressure
and is independent on the chemical potential. In general, it is
treated as a phenomenological parameter which cannot be
calculated model-independently. The parameter of Pðμ ¼ 0Þ
in QCD is equivalent to the vacuum bag constant (−B) of
the MIT bag model. Generally, B

1
4 should be in a range of

100–200 MeV [62,63]. More specifically, in Ref. [33] and
Ref. [64], it is suggested to be 134.1–141.4 MeV and

166.16–171.06 MeV, respectively. Therefore, in this study,
we will choose three representative values of B

1
4 to calculate

the nonstrange quark EOS, i.e., B
1
4 ¼ 115, 135, 165 MeV.

Note that the parameter B
1
4 has to be fixed when calculating

the EOS, and it does not affect the gap equation as well as the
meff − μ relation in the former step.
The results of nine representative EOSs are illustrated in

Fig. 4. We see that the pseudocritical baryonic chemical
potential μBC,

3 referring to the condition that the pressure
begins to be nonzero with “pseudo” related to the crossover,
increases as B

1
4 or G1 increases. Additionally, we see that

the EOS is largely determined by the bag constant, while
the parameter of G1 does not affect the EOS significantly.
The relation between the energy density and pressure is

[65,66]

ϵ ¼ −Pþ
X
i

μiρi: ð13Þ

To illustrate the rationality of the nine quark EOSs as well
as their stiffness, we calculate the sound velocity, which is

ν ¼
ffiffiffiffiffiffi
dP
dϵ

r
: ð14Þ

The results are shown in Fig. 5. We see that the sound
velocity does not exceed the conformal limit in all the
cases, i.e., ðν=cÞ2 ≤ 1=3, where c is the speed of light.
Usually, a smaller G1 leads to a stiffer EOS. Also, note that
at low energy densities, a higher vacuum pressure (i.e., a
smaller B

1
4) yields a softer EOS, but at high energy

densities, the case is opposite.

FIG. 3. The number densities of u, d quarks and electrons
versus μu at T ¼ 0. The matter here is in beta equilibrium and
electric charge neutrality. The parameter sets are described in
Table I. The inset shows a zoom-in of the electron densities.

FIG. 4. The pressure as a function of the baryonic chemical
potential (μB) for nine representative EOSs at T ¼ 0. B115,
B135, B165 refers to B

1
4 ¼ 115, 135, 165 MeV, respectively.

3For 2-flavor quark matter, the baryonic chemical potential is
μB ¼ μu þ μd.
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III. STRUCTURE OF NONSTRANGE
QUARK STARS

To study the structure of neutron stars and quark stars,
we need to solve the TOV equation below,

dPðrÞ
dr

¼ −
Gðϵþ PÞðM þ 4πr3PÞ

rðr − 2GMÞ ;

dMðrÞ
dr

¼ 4πr2ϵ: ð15Þ

Using the nine representative EOSs, we have solved the
equation numerically. Our results of M − R and M − ϵc
relations are presented in Figs. 6 and 7, respectively. To
constrain the EOSs, we have also plotted some astronomi-
cal measurements in Fig. 6, including the largest pulsar
masses (i.e., 2.01� 0.04 M⊙ for PSR J0348þ 0432 [20],
and 2.14þ0.10

−0.09 M⊙ for PSR J0740þ 6620 [21]), and the
radii measured through NICER x-ray timing observations

(1, R1.44M⊙
> 10.7 km [22]; 2, R1.4 M⊙

¼ 11.0þ0.9
−0.6 km [23];

3, M ¼ 1.34þ0.15
−0.16 M⊙ and R ¼ 12.71þ1.14

−1.19 km for PSR
J0030þ 0451 [24]). From Fig. 6, we see that only the
EOS with G1 ¼ 1.935 GeV−2 and B

1
4 ¼ 115 MeV satisfies

all the above constraints, and the corresponding maximum
mass of quark stars is 2.10 M⊙, with a radius of 11.69 km.
When G1 is fixed, the EOS with a smaller bag constant
produces a larger maximum star mass. In Fig. 7, a higher
maximum mass generally corresponds to a smaller central
energy density.
We have also calculated the tidal deformability of quark

stars. To do so, we need to solve a set of differential
equations [67],

dH
dr

¼ β;

dβ
dr

¼ 2

�
1− 2

mr

r

�
−1
H

�
−2π½5ϵþ 9Pþ fðϵþPÞ�

þ 3

r2
þ 2

�
1− 2

mr

r

�
−1
�
mr

r2
þ 4πrP

�
2
�

þ 2β

r

�
1− 2

mr

r

�
−1
�
mr

r
þ 2πr2ðϵ−PÞ− 1

�
; ð16Þ

where P and HðrÞ represent the pressure and the metric
function, respectively, and f ¼ dϵ=dP. Let us further define
a parameter (y) as y ¼ RβðRÞ=HðRÞ − 4πR3ϵ0=M, where
ϵ0 is the energy density at the surface of the star. Then the
dimensionless tidal Love number k2 for l ¼ 2 can be
calculated as

k2 ¼
8C5

5
ð1− 2CÞ2½2þ 2Cðy− 1Þ− y�

× f2C½6− 3yþ 3Cð5y− 8Þ�
þ 4C3½13− 11yþCð3y− 2Þ þ 2C2ð1þ yÞ�
þ 3ð1− 2CÞ2½2þ 2Cðy− 1Þ− y� lnð1− 2CÞg−1; ð17Þ

FIG. 5. The sound velocity versus energy density for the nine
representative EOSs. Line styles are the same as in Fig. 4.

FIG. 6. M − R relations for the nine representative EOSs. The
mass constrains of PSR J0348þ 0432 [20] and PSR J0740þ
6620 [21], and the radius constraints from NICER x-ray timing
observations [22–24] are also plotted.

FIG. 7. M − ϵc relations for the nine representative EOSs.
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where C ¼ M=R is the compactness of the star. According
to Ref. [67], the tidal deformability is related to k2 as

Λ ¼ 2

3
k2R5: ð18Þ

Note that the quark matter in quark stars is in a
deconfined state. It produces a positive pressure at the
surface. Due to the negative vacuum pressure in Eq. (12),
the surface quark density should be nonzero.
Our numerical results on the tidal deformability of non-

strange quark stars for the nine representative EOSs are
shown in Fig. 8. We see that the tidal deformability
decreases monotonically as the mass increases. EOSs with
B

1
4 ¼ 115, 135 MeV satisfy the constraint of Λð1.4 M⊙Þ ≤

800 derived from the observations of GW170817 for the
low-spin priors [25]. Furthermore, based on the waveform
model of TaylorF2, the chirp mass M ¼ ðM1M2Þ3=5ðM1 þ
M2Þ−1=5 is restricted to be 1.186� 0.0001 M⊙, providing
further constraint on companion mass of M1 and M2 for
GW170817 [41]. Thus the Λ1 − Λ2 relation of the BNS can

be obtained for our nine representative EOSs, which is
shown in Fig. 9. Here, the constraint from GW170817 based
on the TaylorF2 waveform model [41] is also plotted for a
direct comparison. We see that every EOS with Mmax ≥
1.36 M⊙ (i.e., the EOSs with B

1
4 ¼ 115, 135 MeV) fulfills

the constraint except for the EOS withG1 ¼ 2.1 GeV−2 and
B

1
4 ¼ 115 MeV. In addition to that, a larger B

1
4 makes the

curve closer to the lower left corner of the figure.
For the sake of completeness, the properties of nonstrange

quark stars for the nine representative EOSs are summarized
in Table II. The parameters listed include the mass, radius,
surface and central energy densities of the heaviest star, and
the tidal deformability and radius of a 1.4 M⊙=1.6M⊙ star.
From Figs. 6, 9, and Table II, we can see that the parameter
sets with B

1
4 ¼ 115 MeV support more massive stars, while

the EOSs with G1 ¼ 2.005 GeV−2 correspond to the
original 2-flavor NJL model. Although the EOSs of the
normal NJL model can satisfy the constraints of the tidal
deformability from GW170817, they are not consistent with
the mass constraint from PSR J0740þ 6620 and the radius
constraint from PSR J0030þ 0451. In particular, for
B

1
4 ¼ 115 MeV, both increasing and decreasing the value

ofG1 can increase the maximum mass, but a too large or too
small value of G1 makes the EOS conflict with the tidal
deformability measurement of GW170817. Among the nine
representative EOSs, only the one with B

1
4 ¼ 115 MeV and

G1 ¼ 1.935 GeV−2 is in agreement with all current astro-
nomical measurements considered in this study. Based on
these analyses, we argue that nonstrange quark stars might
exist in the universe.

IV. SUMMARY AND DISCUSSION

The EOS of a modified 2-flavor NJL model with PTR is
introduced to investigate the properties of nonstrange quark
stars. Since the coupling constant G in the normal NJL
model is an indication of the effective gluon propagator, it
should not be “constant” according to the simulation of
lattice QCD. The corresponding DS equation should be
coupled with that of quarks by QCD in essence. Inspired by
the OPE method, the coupling constant G is modified as
G ¼ G1 þ G2hψ̄ψi in this study, similar to the treatment in
Refs. [7,42–48]. The electric charge neutrality and beta
equilibrium are considered in our calculations. Nine repre-
sentative EOSs are obtained for nonstrange quark stars,
corresponding to different combinations of G1 and B (the
bag constant) parameters. The pseudocritical point on the
P − μB plane just refers to the surface of the quark star
where the pressure becomes nonzero (the pressure inside the
star is higher than that). A larger B (or G1) leads to a larger
surface baryonic chemical potential. To illustrate the stiff-
ness and rationality of the EOSs, the sound velocity is
calculated. It is found that the sound velocity is ubiquitously
smaller than the speed of light, not exceeding the conformal
limit for dense matter. It is also found that a smaller G1

FIG. 8. Tidal deformability of nonstrange quark stars for the
nine representative EOSs. The constraint of Λð1.4 M⊙Þ ≤ 800
from Ref. [25] is also plotted.

FIG. 9. Λ1 − Λ2 relations for the nine representative EOSs. The
observational constraint from GW170817 based on the TaylorF2
waveform model is also plotted for comparison [41].
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usually leads to a stiffer EOS. Interestingly, for the bag
constant, a smaller B parameter yields a softer EOS at low
densities; but at high densities, the case is opposite.
The M − R, M − ϵc relations and the tidal deformability

of quark stars are calculated based on our new EOSs. The
results are directly compared with recent astronomical
observations, including the mass measurements of PSR
J0740þ 6620 (2.14þ0.10

−0.09 M⊙) [21] and PSR J0348þ 0432

(2.01� 0.04 M⊙) [20], the radius measurements by
NICER (R1.44 M⊙

> 10.7 km [22], R1.4 M⊙
¼ 11.0þ0.9

−0.6 km
[23], M ¼ 1.34þ0.15

−0.16 M⊙ and R ¼ 12.71þ1.14
−1.19 km for PSR

J0030þ 0451 [24]), and the tidal deformability constraints
from GW170817 [25,41]. It is found that when the two
key parameters are taken as G1 ¼ 1.935 GeV−2 and
B

1
4 ¼ 115 MeV, the corresponding EOS can satisfy all

the observational constraints listed above, strongly sup-
porting the possible existence of nonstrange quark stars. In
this case, the nonstrange quark star can have a maximum
mass of 2.1 M⊙, with a radius of 11.69 km.
In the future, more and more astronomical measurements

will be available, which can help better constraining the
EOS of QCD. Note that only the relatively simple case of
four-fermion interactions is considered here. But the
method could also be extended to include more inter-
actions, such as the ’t Hooft and eight-quark interactions.
To do that, we need to consider how to deal with their

coupling consistently. For the normal SU(3) case, more free
parameters (the current masses of u, d, s quarks, the
coupling constants of four-, six-, eight-quark interactions,
and the ultraviolet cutoff) would be introduced to character-
ize the six- and eight-quark interactions in the NJL model.
They should be determined through various laboratory
experiments and astronomical observations, and should be
considered in future theoretical studies.
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