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Real-time quantum simulation of quantum field theory in ð3þ 1ÞD requires large quantum computing
resources. With a few-qubit quantum computer, we develop a novel algorithm and experimentally study the
Schwinger effect, the electron-positron pair production in a strong electric field, in ð3þ 1ÞD. The resource
reduction is achieved by treating the electric field as a background field, working in Fourier space
transverse to the electric field direction, and considering parity symmetry, such that we successfully map
the three spatial dimension problems into one spatial dimension problems. We observe that the rate of pair
production of electrons and positrons is consistent with the theoretical predication of the Schwinger effect.
Our work paves the way towards exploring quantum simulation of quantum field theory beyond one spatial
dimension.
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I. INTRODUCTION

Historically, the development of quantum electrodynam-
ics (QED) significantly advances the understanding of
quantum field theory (QFT) in its early stage. Quantum
simulation of QFT [1–5] has a great potential to revolu-
tionize fundamental physics, in part because it can simulate
highly entangled quantum systems. The quantum simula-
tion may solve the problems that are hard to achieve by
analytical calculations, e.g., high-energy hydrogen colli-
sion, a nonperturbative preheating process in the early
universe [6–8], and many-body problem for collective
neutrino oscillations [9–11]; and it may help us understand
the dynamics of quantum systems, since the Monte Carlo
simulations using lattice-field-theory techniques in
classical computers are limited by the sign problem
[12,13]. Currently, it is in its very early stage and QED
can play a similar role to make progress in simulating QFT
in quantum computers.
The Schwinger mechanism [14], as a textbook example

in QED, is employed to improve our knowledge of
quantum algorithms for QFT. The mechanism describes
electron-positron pair production from a strong electric
field E. The pair production is viewed as a nonperturbative
phenomenon of vacuum decay. Also, it can be understood
from a QED effective action by considering quantum
corrections from the interactions of the electric field and
virtual electron-positron pairs. It has been invoked to gain
insights on particle production in QCD [15–19] and on
black hole physics [20,21]. To produce the electron-
positron pair in the laboratory, the electric field needs to

reach the critical value Ecritical ∼ 1018 volts=meter, which is
extremely strong and not accessible by current experi-
ments. All these motivate us to study the Schwinger effect
with quantum computers.
We are in the noisy intermediate-scale quantum (NISQ)

era [22], in which the quantum computing power is limited
by its size and the imperfect control of noises. Even with
the imperfect quantum hardware, some progress of QFT
simulation has been made in both developing quantum
algorithms [23–40] and performing quantum simulation
[41–54]. However, limited by the small-scale quantum
computers, most of the simulations for QFT are demon-
strated in ð1þ 1ÞD. In particular, the previous realization of
the Schwinger effect on quantum computers is only done in
ð1þ 1ÞD [47,48]. Going beyond one spatial dimension is a
crucial step towards exploring more fundamental questions
in QFT. In this article, we present a novel method to
simulate the Schwinger effect in ð3þ 1ÞD only with a few
qubits. This method can apply to other field theory
questions beyond one spatial dimension.
Because of the significance of the Schwinger mecha-

nism, it is worthwhile to run a real-time simulation and
compare the results to the theoretical predication. To
simulate the Schwinger pair production, we discretize
the space along the direction of the electric field and scan
the momentum space along the direction perpendicular
to the electric field. Inspired by [48], we impose the parity
symmetry to further reduce the number of qubits by half,
and eventually the algorithm is implemented on an IBM
digital quantum computer with 5 qubits. The particle-
antiparticle pair production is observed in the real-time
simulation as expected, and the production rate agrees
with the predication of the Schwinger effect within
uncertainties.
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The article is structured as follows. In Sec. II we
introduce the theoretical setup for quantum simulation of
the Schwinger mechanism. A detailed description of the
algorithm is presented in Sec. III. We show the main results
of our algorithm and analyze the errors in Sec. IV. Finally,
we conclude and discuss our anticipation for future works
in Sec. V.

II. THEORETICAL SETUP

In the NISQ era, quantum simulation is limited to a few
qubits and has large quantum noises, which challenges the
quantum simulation of QFT in ð3þ 1ÞD. To experimen-
tally study the Schwinger pair production in ð3þ 1ÞD, we
introduce several techniques to simplify and parallelize the
quantum simulation, including the background field
method, dimension reduction, parity symmetry, etc.
We treat the gauge field Aμ as a classical background

field since we are not concerned with the dynamics of Aμ. A
fermion field ψ interacting with the gauge field Aμ is
described by the following action,

S ¼
Z

d4x½ψ̄ði=D −mÞψ �; ð1Þ

where =D ¼ ð∂μ þ ieAμÞγμ. Here we choose the axial gauge
with Az ¼ 0 and A0 ¼ −Ejzj to give a static electric field E
in the z direction. The background field approach is in
accord with the principle of the Euler-Heisenberg
Lagrangian derived from the effective action to predict
the Schwinger pair creation rate, where Aμ is a background
field and fermions are integrated out. This approach also
implies that we neglect the backreaction of the produced
electrons and positrons to the electric field and interactions
among the electrons and positrons.
We observe that the Hamiltonian can be diagonalized by

a unitary transformation. Thus a ð3þ 1ÞD simulation is
decomposed into a summation of several ð1þ 1ÞD simu-
lations, which dramatically reduce the number of qubits in
the quantum simulation. The reduction is realized by
working in the Fourier space of ðx; yÞ and the real
space of z. The Fourier decomposition of fermions takes
the form

ψðxÞ ¼
Z

dpxdpy

ð2πÞ2
X
s

ψ sðpx; py; zÞeiðpxxþpyyÞ; ð2Þ

with summation over the spin s. By taking a unitary
transformation,

U ¼

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0 þm

p
− pxσxþpyσyffiffiffiffiffiffiffiffiffi

m0þm
p

pxσxþpyσyffiffiffiffiffiffiffiffiffi
m0þm

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0 þm

p

1
CA ð3Þ

with m0 ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

p
and p⊥ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
, the fermion

field is rotated as ψ̃ sðpx; py; zÞ ¼ U†ψ sðpx; py; zÞ, and the
Hamiltonian is converted into a 2D form,

H ¼
Z

dz
dpxdpy

ð2πÞ2
X
s

ψ̃†
sð�i∂zγ̃0γ̃1 þm0γ̃0 þ eA0Þ

⊗ I2×2ψ̃ s; ð4Þ

where � correspond to spin-up and -down, respectively.
The reduction is achieved by transforming the 4 × 4 matrix
in the Hamiltonian into a 2 × 2 γ̃ matrix times the identity
matrix I2×2. γ̃i happen to have the same form of gamma
matrices in 2D. For a detailed derivation, see Appendix A
from Eq. (A3) to (A15). In the new Hamiltonian, m0 is an
effective mass in ð1þ 1ÞD. Therefore, the Schwinger pair
production rate in ð3þ 1ÞD is given by integrating the rate
in ð1þ 1ÞD over the transverse momentum and summing
over the spin,

Γ3þ1ðmÞ ¼ 2

Z
d2p⊥
ð2πÞ2 Γ1þ1

�
m0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

q �
: ð5Þ

After reducing to two dimensions, we spatially discretize
the Hamiltonian with the Kogut-Susskind formulation [55–
57], mapping electrons (positrons) into even (odd) lattice
sites [see Eq. (A19) in Appendix A]. With the lattice
spacing a, the discretized free Hamiltonian H0 and inter-
action HI describing the dynamics of one component of
fermion field ϕðnÞ with periodic boundary condition,

H0 ¼ H0;m þH0;k ¼ m
X
n

ð−1Þnϕ†ðnÞϕðnÞ

þ i
2a

X
n

½ϕ†ðnÞϕðnþ 1Þ − ϕ†ðnþ 1ÞϕðnÞ�; ð6Þ

HI ¼
X
n

eA0ðnaÞϕ†ðnÞϕðnÞ; ð7Þ

where H0;m is the mass term and H0;k is the kinetic term
with nearest-neighbor lattice-site interactions.
Furthermore, by considering the parity symmetry of

QED, the Hamiltonian is decomposed into the parity
even and odd one. And the parity even/odd fermion fields
are ψ� ¼ ðψðxÞ � γ0ψð−xÞÞ= ffiffiffi

2
p

for the continuum case
and the staggered lattice fields ϕ� are given in the
Appendix. The number of spatial sites is reduced by half
and the parity even and odd fermions are simulated
separately. Eventually these parity even or odd fermions
are mapped into Pauli spin operators by using the Jordan-
Wigner transformation [58].

BIN XU and WEI XUE PHYS. REV. D 106, 116007 (2022)

116007-2



III. QUANTUM COMPUTING ALGORITHM

As shown in the previous section that the ð3þ 1ÞD
Schwinger pair production problem is simplified to 1D
lattice, we proceed to simulate this nonperturbative process
in digital quantum computers. We start from 10 lattice sites
(0, 9), where electron (positron) states are at the even (odd)
lattice sites. Then reduce the lattice to (0, 4) by considering
parity symmetry. The parity symmetry and ground states
are shown in Fig. 1. The gauge field A0 ¼ naE with n as
the lattice number (0, 4). Under the parity transformation,
A0 ¼ ð10 − nÞaE in the lattice of (5, 9).
The simulation consists of the following main steps: the

ground state preparation, time evolution of the parity even
Hamiltonian e−iHþt, and measurement with the interaction
turned off, which is illustrated by the schematic quantum
circuit,

Before and after the time evolution, adiabatic turn-on and
turn-off of interactions are essential steps, which are
substituted by VQE transformations, UVQE and U†

VQE.

A. Ground state

The ground state of the Hamiltonian with only mass term
H0;m ¼ P

4
n¼0ð−1Þnmϕ†ðnÞϕðnÞ denoted as j10101i has

no electron and positron, which is set as the initial state of

our simulation. An excited electron changes j1i to j0i on
the 0th, 2nd, or 4th qubit, while an excited positron changes
j0i to j1i on the 1st or 3rd qubit. Since charge is conserved,
there exists a physical subspace in which the states contain
three 1’s and two 0’s given the charge-zero initial state.
Such principle turns out to be the key to solve the
eigenstates of the system and to reduce hardware noises.
After having the initial state j10101i, we will turn

on the nearest-neighbor lattice-site interactions H0;k. One
approach is to adiabatically turn on the kinetic term H0;k

[3], but this is a resource-consuming procedure since we
need gradually turn on the kinetic term, requiring circuit
depth exceeding the limits of hardware available in the
NISQ era. Instead, we use the variational quantum eigen-
solver (VQE) [59] method to find the ground state of the
Hamiltonian H0 with a much shallower circuit. The ansatz
of the VQE circuit mimics the Hamiltonian of the system
and contains nine parametrized gates which are rotational
operators along the y and z axis of the Bloch sphere. The 9
parameters are optimized via minimizing the expectation
value of the free HamiltonianH0 to obtain the vacuum state
jΩVQEi. The vacuum state is compared to the exact
numerical solutions of the vacuum states of H0, jΩexacti.
As a result of the VQEmethod, the fidelity jhΩVQEjΩexactij2
to be larger than 99%. Hence the VQE method finds a
correct vacuum with great accuracy but a few quantum
gates. Note that in the VQE method the operators in the
circuit are all charge conserved, such that the states will
stay in the physical subspace.

B. Time evolution

We start with the VQE vacuum state jΩVQEi at the
beginning of the simulation, t ¼ 0. The state is evolved
with the full Hamiltonian H ¼ H0 þHI . The parity even
(odd) Hamiltonian Hþ (H−) is a function of Pauli spin
operators with the Jordan-Wigner transformation [58], and
is further decomposed into three parts for constructing the
quantum algorithm,

Hþ1 ¼
X4
n¼0

½ð−1Þnmþ eEan� σ3ðnÞ
2

; ð8Þ

Hþ2 ¼
1ffiffiffi
2

p
a
½σþð0Þσ−ð1Þ þ σþð1Þσ−ð0Þ�;

þ 1

2a
½σþð2Þσ−ð3Þ þ σþð3Þσ−ð2Þ� ð9Þ

Hþ3 ¼
1

2a

X
n¼1;3

½σþðnÞσ−ðnþ 1Þþ σþðnþ 1Þσ−ðnÞ�; ð10Þ

with σ�ðnÞ ¼ ½σ1ðnÞ � iσ2ðnÞ�=2. See Eqs. (A23) to (A31)
in Appendix A for more details. The unitary time evolution
UðtÞ can be expanded by using Suzuki-Trotter formulas
with nt steps [60,61],

FIG. 1. The ground state of the free Hamiltonian, j10101i. The
dotted line connects the site 0 and the site 5. It implies the parity
symmetry maps n site to (10 − n) site and makes the upper and
lower part of the figure equivalent.
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UðtÞ ¼ e−iHþt ¼
�Y3

j¼1

e−iHþjδt

�nt

þOðt2=ntÞ; ð11Þ

where δt ¼ t=nt. The Hamiltonian decomposition in
Eqs. (8) to (10) is optimized by the quantum gate
implementation. For each time step, expð−iHþ1δtÞ is
implemented by the rotation gate along the z-axis, Rz,
while expð−iHþ2δtÞ and expð−iHþ3δtÞ are realized by two
CNOT and one controlled x-axis rotation gate Rx. In the
simulation, the number of time steps is determined by
trading off between Trotterization errors and hardware
quantum noises.

C. Measurement

After nt steps of evolution, we should turn off the kinetic
term adiabatically then measure the probability of being the
vacuum state. Such adiabatic turn-off is equivalent to
applying an inverse VQE operator that we employed
previously to make jΩVQEi. The vacuum persistence
probability is measured by the frequency of the state
j10101i:

Pvac;raw ¼ nvac
nshot

; ð12Þ

where nshot is the total number of measurements, nvac is the
number of the vacuum state j10101i within the measure-
ment outcomes.
Although all of the previous procedures in our algorithm

are charge conserved, the quantum noises can give nonzero
charge final states. We propose to consider the physical
states and remove the nonzero charge states because it will
reduce the hardware errors. We obtain the number of
created electrons and positrons by counting the number
of j0i on the 0th, 2nd, and 4th qubits and the number of j1i
on the 1st and 3rd qubits. It is because a charged-zero state
always has equal numbers of electrons and positrons. In
other words, there are always three j1i and two j0i out of
the five qubits. Now we have

Pvac;corrected ¼
nvac
nQ¼0

; ð13Þ

where nQ¼0 is the total number of final states jϕi satisfying
hϕjQþjϕi within the measurement outcomes. Qþ is the
charge operator defined by Eq. (A33) in Appendix A. From
the definition of Qþ we see that a charge-zero state has
exactly three j1i and two j0i out of the five qubits. Using
this approach in the measurement, we remove charge-non-
zero states from the subspace. Suppose that the probability
of a single bit flip error is ofOðϵÞ, then it needs at least two
bit flips to return to the physical subspace. Therefore, when
we measure the vacuum persistence probability by the
frequency of j10101i restricted in the physical subspace,
the hardware error is suppressed from OðϵÞ to Oðϵ2Þ.

IV. SCHWINGER PAIR PRODUCTION RESULTS

In this section, we analyze the numerical results of the
Schwinger pair production with IBM quantum computers.
Our analysis is based on the simulations running on an IBM
machine, ibm_lagos, and on the simulations given by
simulators from QISKIT [62] by turning off the quantum
noises. The quantum simulation results are compared to the
theoretical predication, and they are consistent within the
experimental uncertainties. On the IBM quantum computer,
following the dimension reduction method in the previous
sections, we simulate the ð1þ 1ÞD Schwinger effect with
different effective masses m0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

p
in parallel. By

repeating the experiments and measuring the final states a
large number of times, we deduce the vacuum persistent
probability PvacðtÞ and the ð1þ 1ÞD vacuum decay rate
Γ1þ1. The decay rate in ð3þ 1ÞD is obtained by integrating
the decay rate Γ1þ1 over the transverse momentum as
Eq. (5). In the end, we discuss the uncertainties from the
quantum simulation.
Abenchmark point is chosen to demonstrate thevalidity of

the quantum algorithm, where the parameters are given as

eE ¼ 20; a ¼ 0.45; ð14Þ
the number of lattice sites (qubits) N ¼ 5 and the time step
nt ¼ 3 for the Suzuki-Trotter expansion. Here we setm ¼ 1
as a unit, the spacing a is determined by restricting the error
within 10%, and eE ¼ 20 represents a strong electric field.A
weaker electric field takes a longer time in simulations to
observe the vacuum decay, while a much stronger electric
field will quickly populate quite a few electrons and
positrons, such that the correction to the decay rate is not
negligible both in theory and experiments. Hencewe choose
this intermediate value of eE.
The probability of the final states being the vacuum state

j10101i denoted as the vacuum persistence probability
PvacðtÞ, is measured at different times. As an example, the
probability for m0 ¼ 1.4 is shown in Fig. 2, and PvacðtÞ for
other masses is presented in the Appendix. In Fig. 2, the
numerical solution of the Hamiltonian in Eqs. (8) to (10) is
shown in the dotted line. The numerical calculation gives the
expected results for simulations to compare to. Also, it tells
whether the parameters, a, eE, and N is a proper choice by
comparing to the Schwinger pair production rate derived
from the continuous spacetime, which is given as [63]

Γ1þ1ðmÞ ¼ eE
2π

logð1 − e−
πm2

eE Þ: ð15Þ

We perform the simulation in two systems: IBM’s quantum
simulators and quantum computers. The IBM simulators are
designed to simulate and test the quantum computers, where
we turn off quantum noises in the simulators to validate our
quantum algorithm in an ideal situation. As shown in Fig. 2,
the noiseless simulation results are aligned with the “exact
numerical calculation.” The quantum simulation results
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shown in the red hollow squares deviate from the exact
solution due to the large noises. After removing the states
having nonzero charges to restrict the final states in the
physical subspace, we obtain the corrected quantum simu-
lation results close to the theoretical ones.
For a given effective mass m0, the persistent vacuum

probabilityPvacðtÞ data are fitted by an exponential function
of c1 expð−Γ1þ1ðm0Þ × volume × tÞ with a normalization
factor c1 and volume ¼ aN. The fitting results give the
decay rate per volume Γ1þ1ðm0Þ and are shown in Fig. 3.
Note that we choose a time range to fit the exponential
curve and the normalization c1 is set as a free parameter. In
the case of m0 ¼ 1.4, the time region is taken as
0.10 < t < 0.45; for other masses, the range is given in
the caption of Fig. 4 in the Appendix C. The time range is set
by considering that there is a transient effect at the beginning
of time due to suddenly turning on the electric field and back
reactions for a large time due to finite spatial size.
Integrating the Γ1þ1ðm0Þ over the transverse momentum

as Eq. (5) gives the electron-positron pair production rate in
ð3þ 1ÞD. Here we only consider the electron-positron pair
production with the transverse momentum p2⊥ ≤ 3, i.e.,
m0 ≤ 2, due to larger quantum noises for larger m0. The
decay rate from the theoretical predication of QED is 0.58,
the noiseless simulator result is 0.56, and the corrected
quantum computer gives the decay rate 0.60.
There are various uncertainties in the quantum simu-

lation, originated from space and time discretization,
statistical error, and hardware noises, in which the hardware

noises are the dominant ones. First, modeling the
Schwinger effect in a lattice as Eqs. (8) to (10) introduces
discretization error and truncation error by choosing the
spacing a and the finite size L ¼ Na. The errors from
spacing and finite size are of orders OðaÞ and Oð1=L2Þ,
respectively. Here taking N ¼ 5, a ¼ 0.45 in the bench-
mark model gives the numerical solution of the
Hamiltonian close to the theoretical predication of QED,
which can be seen from comparing the Schwinger results to
the noiseless simulation results in Fig. 3. Second, we
experience statistical error of order Oð1= ffiffiffiffiffiffiffiffiffi

nshot
p Þ either

on a simulator or a quantum computer with nshot meas-
urement shots. We take nshot ¼ 8192 to make sure the
statistical error is subdominant compared to the other ones.
Third, nt Trotter steps in time introduces an error of order
Oðt2=ntÞ. Here we choose nt ¼ 3 to give accurate enough
simulation results and moderate circuit depth. Finally,
hardware noises, especially readout errors and CNOT gate
errors, in the NISQ era are quite large. On the ibm_lagos
quantum computer the readout errors and CNOT gate errors
are both about 1%. The VQE transformation as well as each
Trotter step takes 8 CNOT gates, such that the whole circuit
contains 40 CNOT gates. Hardware noises are relieved by
restricting to the charge-conserved subspace. We could also
apply readout error mitigation [64] or CNOT gate noise
mitigation [65] to further reduce hardware noise, which we
would like to explore in future works.

V. CONCLUSION

In this article, we demonstrate a quantum algorithm to
simulate the nonperturbative phenomenon of the Schwinger
effect in ð3þ 1ÞD by using IBM’s digital quantum

FIG. 2. Vacuum persistent probability for the effective mass
m0 ¼ 1.4, eE ¼ 20, a ¼ 0.45, the number of lattice sites (qubits)
N ¼ 5 and the time step nt ¼ 3 for the Suzuki-Trotter expansion.
The dashed curve corresponds to the exact numerical solution of
the Hamiltonian. The simulation results on a noiseless simulator
are shown in the gray dots. The ibm_lagos quantum computer
results given by Eq. (12) are shown in the hallow square. The
solid squares given by Eq. (13) are the corrected results to the
quantum simulation by restricting to the charger-conserving
subspace.

FIG. 3. Vacuum decay rates versus effective masses m0. The
solid curve corresponds to the theoretical predications from QED
in continuous space-time given by Eq. (15). The fitting results of
the noiseless simulator are shown in the gray dots. The results
from the IBM ibm_lagos are shown in the square data points.
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computers. The number of qubits, the depth of the circuit are
reduced suitable to the NISQ area, and the quantum noise is
under control to get the Schwinger pair production rate. We
manage to perform the quantum simulation in 5-qubit, by
treating the gauge field Aμ as a background field, finding the
Hamiltonian diagonalization and further reducing the resour-
ces by parity symmetry. In the real-time quantum simulation,
we prepare the ground state, evolve it to a given time with a
few time-step and measure the final states. The depth of the
circuit is shortened by implementing the VQE algorithm
instead of adiabatic turn on(off). In the measurement, the
hardware noises are relieved by restricting to the charge-
conserving final states. We implement the algorithm on
IBM’s quantum computers also in the noiseless simulators.
By analyzing the results and comparing them to the exact
numerical calculation and theoretical predication of the
Schwinger effect, we conclude that the results are consistent
within uncertainties. This methodology can apply to some
quantum field theory questions related to effective actions.
We look forward to future studies of quantum simulation of
QFT beyond one spatial dimension.
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APPENDIX A: THEORETICAL SETUP

1. Continuum formulation, ð3 + 1ÞD to ð1 + 1ÞD
In this sectionwe show that theSchwinger pair-production

in an electric background field in ð3þ 1ÞD can be decom-
posed into a ð1þ 1ÞD QED problem (i.e., the Schwinger
model [66,67]).
First, we define the ð3þ 1ÞD Dirac field in the

Schrödinger picture

ψðx⃗Þ ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2ωp

p eip⃗·x⃗
X
s

ðasp⃗usðp⃗Þ þ bs−p⃗v
sð−p⃗ÞÞ

¼
Z

dpxdpy

ð2πÞ2 eiðpxxþpyyÞ
X
s

ψ sðz; px; pyÞ; ðA1Þ

where

ψ sðz;px;pyÞ ¼
Z

dpz

2π

1ffiffiffiffiffiffiffiffi
2ωp

p eipzzðasp⃗usðp⃗Þþbs−p⃗v
sð−p⃗ÞÞ:

ðA2Þ
The free Hamiltonian is of the form

H ¼
Z

d3xψ†ð−iγ0γ⃗ ·∇þmγ0Þψ

¼
Z

dz
Z

dpxdpy

ð2πÞ2
X
s

ψ†
shψ s; ðA3Þ

where gamma matrices are in the Dirac basis

γ0 ¼
�
I2×2 0

0 −I2×2

�
; γi ¼

�
0 σi

−σi 0

�
; ðA4Þ

and

h ¼

0
BBB@

m 0 −i∂z px − ipy

0 m px þ ipy i∂z
−i∂z px − ipy −m 0

px þ ipy i∂z 0 −m

1
CCCA:

ðA5Þ

By doing the unitary transformation

U ¼ 1ffiffiffiffiffiffiffiffi
2m0p

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0 þm

p
− pxσxþpyσyffiffiffiffiffiffiffiffiffi

m0þm
p

pxσxþpyσyffiffiffiffiffiffiffiffiffi
m0þm

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0 þm

p

1
CA; ðA6Þ

we obtain

h0 ¼ U†hU ¼
�
m0I2×2 −i∂zσz
−i∂zσz −m0I2×2

�
; ðA7Þ

where m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

x þ p2
y

q
and we define ψ̃ s ¼ U†ψ s.

One can easily find the eigenvectors of h0, which are also
the solutions to the free-particle Dirac equation, to be

u01
2

ðp⃗Þ ∝

0
BBB@

m0 þ ωp

0

pz

0

1
CCCA; v01

2

ðp⃗Þ ∝

0
BBB@

m0 þ ωp

0

−pz

0

1
CCCA;

u0−1
2

ðp⃗Þ ∝

0
BBB@

0

m0 þ ωp

0

−pz

1
CCCA; v0−1

2

ðp⃗Þ ∝

0
BBB@

0

m0 þ ωp

0

pz

1
CCCA;

ðA8Þ

which means the 2,4 components of ψ̃1=2 and the 1,3
components of ψ̃−1=2 are always zero. Thus it is natural to
define the following two-component spin states

ψ̃ ð2Þ
1=2 ¼

�
ψ̃1

ψ̃3

�
; ψ̃ ð2Þ

−1=2 ¼
�
ψ̃2

ψ̃4

�
: ðA9Þ

Now the Hamiltonian can be written as

H ¼
X
s

Z
dpxdpy

ð2πÞ2 H̃ð2Þ
s ; ðA10Þ

where
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H̃ð2Þ
s ¼

Z
dzψ̃ ð2Þ†

s ð�i∂zγ̃0γ̃1 þm0γ̃0Þψ̃ ð2Þ
s ðA11Þ

has exactly the same form of the Hamiltonian in ð1þ 1ÞD,
and

γ̃0 ¼
�
1 0

0 −1

�
; γ̃1 ¼

�
0 −1
1 0

�
ðA12Þ

are the gamma matrices in 2D; the sign ambiguity in
Eq. (A11) can be absorbed by redefining γ̃1.
Given a static electric background field along the z axis,

choosing the axial gauge A⃗ ¼ 0; A0 ¼ A0ðzÞ, we need to
add the following interaction term into the Hamiltonian:

HI ¼
Z

d3xeA0ψ
†ψ : ðA13Þ

Following the same procedure, the interaction term can
be written as

HI ¼
X
s

Z
dpxdpy

ð2πÞ2 H̃ð2Þ
I;s ; ðA14Þ

where

H̃ð2Þ
I;s ¼

Z
dzeA0ψ̃

ð2Þ†
s ψ̃ ð2Þ

s ðA15Þ

again exactly matches with the interaction term in 2D.
The charge operator, which can be directly read from

Eqs. (A13) and (A15), has the following form:

Qð4Þ ¼
Z

d3xψ†ψ ¼
X
s

Z
dpxdpy

ð2πÞ2 Qð2Þ
s ; ðA16Þ

where

Qð2Þ
s ¼

Z
dzψ̃ ð2Þ†

s ψ̃ ð2Þ
s ðA17Þ

is the charge operator in the 2D form.
Now the ð3þ 1ÞDQEDproblems are reduced to ð1þ 1ÞD

QED with the mass m replaced by m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

x þ p2
y

q
,

scanning over the momentum space along the x and y
direction and summing over spin.
It can be shown that the vacuum decay rates of the

Schwinger effect in ð3þ 1ÞD are related to the rate in
ð1þ 1ÞD [63]

Γ3þ1ðmÞ ¼ 2

Z
dpxdpy

ð2πÞ2 Γ1þ1ðm0Þ: ðA18Þ

2. Lattice formulation of ð1 + 1ÞD fermions

Having shown that the Schwinger pair production of
fermions with mass m and momentum p⃗ in ð3þ 1ÞD is
equivalent with the pair production of ð1þ 1ÞD fermions

with mass m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

x þ p2
y

q
and momentum p ¼ pz,

in this section we present the discretization of the ð1þ 1ÞD
Hamiltonian Eqs. (A11) and (A15) on a lattice grid periodic
boundary condition. We place the fermion field on a 1D
lattice with spacing a, labeled by n. To avoid the fermion
doubling problem, we adopt the staggered fermion approach
[55,56], where the upper(lower) component of ψ̃ s is mapped
to the fermion field ϕðnÞ at even (odd) lattice sites

ϕðnÞ= ffiffiffi
a

p
→

8<
:

ψ̃ ð2Þ
upperðnaÞ n even;

ψ̃ ð2Þ
lowerðnaÞ n odd:

ðA19Þ

Fermion fields on each site satisfy the following anti-
commutation relation

fϕ†ðmÞ;ϕðnÞg ¼ δmn; fϕðmÞ;ϕðnÞg ¼ 0; n∈ ½0;N − 1�:
ðA20Þ

The fermion fields have the boundary condition
of ϕð0Þ ¼ ϕðNÞ.
The Hamiltonian Eqs. (A11) and (A15) are then dis-

cretized to be

H0 ¼
i
2a

X
n

½ϕ†ðnÞϕðnþ 1Þ − ϕ†ðnþ 1ÞϕðnÞ�

þm
X
n

ð−1Þnϕ†ðnÞϕðnÞ; ðA21Þ

HI ¼
X
n

eA0ðnaÞϕ†ðnÞϕðnÞ: ðA22Þ

We adopt A0ðzÞ ¼ −Ejzj with origin mapped at the site
N=2. Observing that the Hamiltonian H ¼ H0 þHI is

invariant under the parity transformation P∶ ψ̃ ð2Þ
s ðzÞ →

γ̃0ψ̃ ð2Þ
s ð−zÞ for continuum or P∶ ϕðmÞ→ ð−1ÞmϕðN −mÞ

for discrete, we could define the parity even and odd field

ϕ�ðmÞ ¼ ϕðmÞ � ð−1ÞmϕðN −mÞffiffiffi
2

p ;

m ¼ 1; 2;…;
N
2
− 1; ðA23Þ

ϕþð0Þ ¼ ϕð0Þ; ϕ−ð0Þ ¼ 0;

ϕ�

�
N
2

�
¼ 1� ð−1ÞN=2

2
ϕ

�
N
2

�
: ðA24Þ

which satisfy the anticommutation relations

fϕ†
�ðmÞ;ϕ�ðnÞg ¼ δ�δmn: ðA25Þ

The Hamiltonian is further divided into two parts
H ¼ Hþ þH−, which can be simulated separately
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Hþ ¼ i
2a

XN=2−2

m¼1

½ϕ†ðmÞϕðmþ 1Þ − ϕ†ðmþ 1ÞϕðmÞ�

þ iffiffiffi
2

p
a
½ϕ†ð0Þϕð1Þ − ϕ†ð1Þϕð0Þ�

þ
XN=2−1

m¼0

½ð−1ÞmM þ eEam�ϕ†ðmÞϕðmÞ; ðA26Þ

H− ¼ i
2a

XN=2−2

m¼1

½ϕ†ðmÞϕðmþ 1Þ − ϕ†ðmþ 1ÞϕðmÞ�

þ iffiffiffi
2

p
a

�
ϕ†

�
N
2
− 1

�
ϕ

�
N
2

�
− ϕ†

�
N
2

�
ϕ

�
N
2
− 1

��

þ
XN=2

m¼1

½ð−1ÞmM þ eEam�ϕ†ðmÞϕðmÞ: ðA27Þ

The fermion field operators can be written in terms
of spin operators by applying the Jordan-Winger trans-
formation [58]

ϕðnÞ ¼
Y
l<n

½iσ3ðlÞ�σ−ðnÞ; ðA28Þ

ϕ†ðnÞ ¼
Y
l<n

½−iσ3ðlÞ�σþðnÞ; ðA29Þ

where σ�ðnÞ ¼ ½σ1ðnÞ � iσ2ðnÞ�=2.
The Hamiltonian is then converted to

Hþ ¼ 1

2a

XN=2−2

n¼1

½σþðnÞσ−ðnþ 1Þ þ σþðnþ 1Þσ−ðnÞ�

þ 1ffiffiffi
2

p
a
½σþð0Þσ−ð1Þ þ σþð1Þσ−ð0Þ�

þ
XN=2−1

n¼0

½ð−1Þnmþ eEan� σ3ðnÞ þ 1

2
; ðA30Þ

H− ¼ 1

2a

XN=2−2

n¼1

½σþðnÞσ−ðnþ 1Þþ σþðnþ 1Þσ−ðnÞ�

þ 1ffiffiffi
2

p
a

�
σþ

�
N
2
− 1

�
σ−

�
N
2

�
þ σþ

�
N
2

�
σ−

�
N
2
− 1

��

þ
XN=2

n¼1

½ð−1Þnmþ eEan�σ3ðnÞþ 1

2
; ðA31Þ

which is ready to be simulated on a digital quantum
computer.
The charge operators, which again can be read from

Eq. (A22) and Eqs. (A30)–(A31), are given by

Q ¼
X
n

ϕ†ðnÞϕðnÞ ðA32Þ

for the staggered fermion fields, and

Qþ ¼
� XN=2−1

n¼0

σ3ðnÞ
2

�
þ 1

2
; ðA33Þ

Q− ¼
�XN=2

n¼1

σ3ðnÞ
2

�
−
1

2
ðA34Þ

for the spin operators with even and odd parity, where the
� 1

2
are chosen for convenience to make sure that

h10101jQþj10101i ¼ h01010jQ−j01010i ¼ 0 ðA35Þ
for N ¼ 10.

APPENDIX B: DEMONSTRATION
OF QUANTUM CIRCUITS

We decompose the parity even Hamiltonian into 3 pieces
Hþ ¼ Hþ1 þHþ2 þHþ3:

Hþ1 ¼
XN=2−1

n¼0

½ð−1Þnmþ eEan� σ3ðnÞ
2

; ðB1Þ

Hþ2 ¼
1ffiffiffi
2

p
a
½σþð0Þσ−ð1Þ þ σþð1Þσ−ð0Þ�

þ 1

2a

XN=2−3

n¼2

½σþðnÞσ−ðnþ 1Þ þ σþðnþ 1Þσ−ðnÞ�;

ðB2Þ

Hþ3 ¼
1

2a

XN=2−2

n¼1

½σþðnÞσ−ðnþ 1Þ þ σþðnþ 1Þσ−ðnÞ�;

ðB3Þ
on which we could apply Suzuki-Trotter formula and
simulate the time evolution.
The quantum circuit for each Trotter step is shown below

(N=2 ¼ 5)

where αk ¼ ð−1Þkmþ eEak. Single qubit gates
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RPðθÞ ¼ e−i
σP
2
θ; where P ¼ x; y; z; ðB4Þ

represent rotations along the axis P of the Bloch sphere.
The exponential of the operator σþðnÞσ−ðnþ 1Þ þ σþðnþ 1Þσ−ðnÞ in the kinetic term can be implemented by the

following gates:

where a controlled-x rotation is sandwiched by two CNOT gates, and is further transpiled into basic gates of ibm_lagos in
the following structure with two CNOT gates

Note that

½Qþ; σ3ðnÞ� ¼ ½Qþ; σþðnÞσ−ðnþ 1Þ þ σþðnþ 1Þσ−ðnÞ� ¼ 0; ðB5Þ
which means the Hamiltonian Hþ commutes with the charge operator Qþ, thus the time evolution process is charge
preserving.
The VQE ansatz we used to generate the ground state for H0 is the following circuit with 9 parameters:

where we use controlled-y rotations sandwiched by two CNOT gates to generate entanglements between adjacent qubits,
which can be represented by the exponential of the operator iσþðnÞσ−ðnþ 1Þ − iσþðnþ 1Þσ−ðnÞ,

We then insert five z rotations in the middle to generate phases.
Note that

½Qþ; σþðnÞσ−ðnþ 1Þ − σþðnþ 1Þσ−ðnÞ� ¼ ½Qþ; σ3ðnÞ� ¼ 0; ðB6Þ
The VQE operator is also charge preserving.
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APPENDIX C: PLOTS OF VACUUM PERSISTENCE PROBABILITY FOR DIFFERENT MASSES

FIG. 4. Vacuum persistent probability for the effective masses m0 ¼ 1.0; 1.2; 1.4, 1.6, 1.8, and 2.0, eE ¼ 20, a ¼ 0.45, the number of
lattice sites (qubits) N ¼ 5 and the time step nt ¼ 3 for the Suzuki-Trotter expansion. The dashed curve corresponds to the exact
numerical solution of the Hamiltonian. The gray dots show the simulation results on a noiseless simulator. The hollow squares show
results from the ibm_lagos quantum computer given by Eq. (12). The solid squares given by Eq. (13) are the corrected results to the
quantum simulation by restricting to physical subspace. The time regions we choose are 0.15 < t < 0.35 for m ¼ 1.0 and 2.0,
0.15 < t < 0.40 for m ¼ 1.2, 1, 4, and 1.8, 0.15 < t < 0.42 for m ¼ 1.6.
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