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We explore the connection between tree-level Dirac neutrino masses and axion physics in a scenario
where the Peccei-Quinn (PQ) symmetry enforces lepton number conservation perturbatively. Requiring
that the PQ scale fa is the only heavy scale to play a role in neutrino mass generation, we are led to the
construction of a Kim–Shifman–Vainshtein–Zakharov-type model where Dirac neutrino masses are
inversely proportional to fa, provided a real scalar triplet (zero hypercharge) is added to the standard model
scalar sector. We analyze this extended scalar sector, focusing on the stabilization of the electroweak
vacuum. The contribution of the triplet vacuum expectation value to the W mass may also be responsible
for the recent hint of beyond-the-SM physics by the CDF collaboration.
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I. INTRODUCTION

Despite its many successes, the Standard Model (SM)
cannot be a final description of Nature. It must be extended
in order to clarify the origins of neutrino masses and dark
matter. Moreover, the SM by itself does not offer an
explanation to the nonobservation of the neutron electric
dipole moment. This so-called strong CP problem can be
solved via the Peccei-Quinn (PQ) mechanism [1–4],
whereby an axion is introduced in the theory (for a recent
review see [5]). From the point of view of a UV completion,
this QCD axion arises as the pseudo-Nambu-Goldstone
boson of a spontaneously broken, anomalous Uð1ÞPQ
symmetry.
Depending on its properties, the axion can provide the

desired dark matter candidate. On the other hand, axion
physics may directly connect to the generation of neutrino
masses. In the case of Majorana neutrinos, the PQ scale fa
is naturally identified with the type-I seesaw scale [6–10].
The lepton-number-violating right-handed (RH) neutrino
Majorana mass term is thus generated from a coupling of
the type σνcRνR, where σ is the PQ scalar field. In this case,

light neutrino masses are suppressed by the PQ scale,
mν ∼ v2=fa, with v ≃ 246 GeV.
At present, the nature of neutrino masses is not known.

Dirac neutrinos remain a viable and interesting possibility.
In this context, however, the connection to axion physics is
not so direct as in the Majorana case. This link has been
explored in models where Dirac neutrino masses are
generated at the tree level [11–16] and at the one-loop
level [14,17–19].1 Focusing on the tree-level case, one
typically finds mν ∼ vfa=ΛUV [13], i.e., neutrino masses
are proportional to the PQ scale and inversely proportional
to an (in general) unrelated scale of new physics ΛUV, e.g.,
the GUT scale. Here, the suppression of mν with respect to
the electroweak scale arises from the smallness of Yukawa
couplings and of the ratio fa=ΛUV. If an additional mass
scale μ is present in the theory, one can instead obtain a
relation of the type mν ∼ μvfa=Λ2

UV [11,12,14], with the
ratio μ=ΛUV possibly providing a further source of
suppression.
In this work, we look into the possibility of identifying

the Dirac seesaw scale with the PQ scale fa, so that the
Dirac neutrino masses are suppressed by fa as in the
Majorana case.2 To avoid introducing an independent
heavy scale ΛUV, we focus on the diagram of Fig. 1 as
the main contribution to neutrino masses, which effectively
corresponds to a dimension-5 operator. In this case, one
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1The baryon asymmetry of the universe may be generated in
such a setup by the neutrinogenesis mechanism (aka Dirac
leptogenesis) [20,21], see, e.g., [11].

2Recently Ref. [16] appeared, where the relation mν ∼ v3=f2a
for Dirac neutrino masses is obtained.
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obtains a relation of the type mν ∼ μv=fa, where μ
corresponds to the vacuum expectation value (VEV)
of a new neutral scalar. Such a relation was also found
in the 3-3-1 setup of Ref. [15], with μ ¼ 104 GeV.
Moreover, we find that the PQ symmetry by itself is

enough to explain the Dirac nature of neutrino masses in
such a setup. Namely, one does not need to impose an
additional lepton-number symmetry, since PQ charges
forbid Majorana mass terms at all perturbative orders.
Such an economical possibility was previously explored
in Refs. [13,14] for different classes of models. Unlike these
models, which consider Dine-Fischler-Srednicki-Zhitnitsky
(DSFZ)-type axions [22,23], we develop a scenario where
the scalar fields (apart from σ) are not charged underUð1ÞPQ.
Thereby the SM Higgs doublet is not charged under this
symmetry (neither are the SM quarks) and our axion is of the
Kim–Shifman–Vainshtein–Zakharov (KSVZ) type [24,25].
The considered extension of the scalar sector naturally
warrants an analysis of the stability of the electroweak
vacuum.
In Sec. II we describe our framework, detailing the field

content and neutrino masses. We further comment on the
solution to the strong CP problem and on the possibility of
explaining the recent CDF anomaly due to the contribution
of the new scalar VEV to theW boson mass. In Sec. III we
analyze the scalar sector of the theory. In particular, we look
into the constraints imposed by vacuum stability on the
discussed model. Finally, we present our conclusions
in Sec. IV.

II. FRAMEWORK

A. Axionic Dirac seesaw

1. Field content

We start by setting the field content. Aiming at identify-
ing the seesaw scale with the PQ-breaking scale, i.e.,
Λseesaw ∼ fa, first of all we introduce one complex singlet
PQ field σ. Maintaining a minimal field content, we
introduce 2 generations of RH neutrinos νR and are led
to the dimension-5 operator of the form νRLHχ=fa,
where L and H are the SM lepton and Higgs doublets,

respectively. Here, χ can be either a singlet scalar or an
SUð2ÞL triplet, with zero hypercharge. In order to generate
the Dirac neutrino masses at tree level, we open up the
dimension-5 operator by introducing a vectorlike fermion,
ΔF ¼ ΔFR

þ ΔFL
which gains a mass after PQ-symmetry

breaking, i.e., mΔF
∼ fa. This corresponds to the seesaw

diagram shown in Fig. 1.
Going forward, we consider the case when χ ¼ Δχ is an

SUð2ÞL triplet, whereas the singlet possibility will be
explored elsewhere [26].3 The minimal choice then corre-
sponds a real Y ¼ 0 scalar triplet (see, e.g., [27–30]) instead
of a complex one. It follows that the fermion fields ΔFR

and
ΔFL

must also be triplets. We are thus dealing with a type-
III Dirac seesaw, in the terminology of Refs. [11,31]. The
triplets of the model are defined as

Δχ ≡1

2

 
χ0

ffiffiffi
2

p
χþffiffiffi

2
p

χ− −χ0

!
; ΔFR

≡1

2

 
F0
R

ffiffiffi
2

p
Fþ
Rffiffiffi

2
p

F−
R −F0

R

!
;

ΔFL
≡1

2

 
F0
L

ffiffiffi
2

p
Fþ
Lffiffiffi

2
p

F−
L −F0

L

!
; ð1Þ

where χ0 is real and ðχþÞ� ¼ χ−. Notice that Δχ ¼ Δ†
χ .

For ΔFR
and ΔFL

, the component fields are all complex
and ðFþ

R;LÞ� ≠ F−
R;L.

The leading-order contribution to the light neutrino mass
scale can be read from the considered diagram. One has

mν ∼
vχv

vσ
; ð2Þ

where we assume that the neutral components of the scalars
all acquire VEVs, i.e., hH0i ¼ v=

ffiffiffi
2

p
, hχ0i ¼ vχ , and

hσi ¼ vσ=
ffiffiffi
2

p ¼ ffiffiffi
2

p
Nfa, with N being the QCD anomaly

coefficient. Note that at least 2 copies of the vectorlike
fermions ΔF are required to generate both Δm2

⊙ and Δm2
atm

neutrino mass-squared differences. To obtain a sub-eV
mass for the light neutrinos, we need vχ=vσ ∼ 10−12. It is
curious that the experimental constraints on vχ , suggesting
vχ ∼OðGeVÞ at most (see Sec. II C), together with a
typical scale of fa ∼ 109–1012 GeV for axionic dark matter
leads to viable neutrino mass scales for Oð10−3 − 1Þ
Yukawa couplings.
Finally, to address the strong CP problem we introduce a

vectorlike quark Q ¼ QL þQR, such that the SM quarks
need not be charged under the PQ symmetry. Our model is
therefore of the KSVZ-type (see also Sec. II B).

FIG. 1. Tree-level Feynman diagram giving rise to PQ-sup-
pressed Dirac neutrino masses. The seesaw partners ΔFL

and ΔFR

have masses proportional to fa, enabling the identification of the
(Dirac) seesaw and PQ scales.

3Note that to preserve the structure of the diagram in Fig. 1 in
the absence of extra symmetries, this SUð2ÞL singlet would have
to carry a nonzero PQ charge and thus be complex, in order to
forbid a direct Majorana-type νcRΔFR

σ coupling.
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2. PQ as a lepton number symmetry

Having set the field content, we show that it is
possible to impose no other symmetry aside from the
PQ symmetry—especially no independent global lepton
number symmetry—to guarantee Diracness. This requires
that we charge the fields properly. To start, the PQ field is
charged PQðσÞ ¼ 1, while PQðQL;RÞ ¼ �1=2 for the
vectorlike quark, as usual. Since we work in a KSVZ-
type model, the SM Higgs is not charged under the PQ
symmetry and, consequently, the SM lepton doublet needs
to carry a charge PQðLÞ≡ α ≠ 0 to forbid a Weinberg-
operator contribution to light neutrino masses. The charge
assignments for all relevant fields are collected in Table I.
They follow from requiring that the interactions contained
in the diagram of Fig. 1 are allowed. One has PQðΔχÞ ¼ 0,
since it is a real scalar triplet.
Note that the direct Dirac coupling L H̃ νR is automati-

cally forbidden. To ensure that light neutrino masses are
generated by the described Dirac seesaw mechanism, one
also needs to forbid other possible Majorana contributions.
This puts some additional constraints on the PQ charge α,
namely

(i) α ≠ −1 to avoid a direct RH neutrino Majorana
mass term νcRνR, automatically forbidding higher-
dimensional νcRνRΔn

χ terms (n even, to form SUð2ÞL
singlets), and more generally

(ii) α ≠ k=2 (k ∈ Z) to forbid (possibly higher-
dimensional) νcRνRðσð�ÞÞn Majorana terms and their
variants with additional H or Δχ insertions.

This last requirement of 2α ∉ Z contains the previous ones.
It forbids Weinberg-operator contributions with any num-
ber of σð�Þ insertions. Other possible Majorana-like con-
tributions such as Δc

FR
ΔFR

, Δc
FL
ΔFL

, and Δc
FR
νRΔn

χ (n odd)

are also not allowed, even with an arbitrary number of σð�Þ
insertions, since these carry integer PQ charge.
Making, for definiteness, the choice α ¼ −1=3 (in a

parallel with SM quark e.m. charges), one finds that
neutrinos are Dirac particles in this model. Lepton number
conservation is hence enforced (perturbatively) by the PQ
symmetry.
The relevant Lagrangian L, extending the SM one, is

L ¼ Lkin − LYuk − VðH;Δχ ; σÞ; ð3aÞ

Lkin ¼ j∂μσj2 þTrjDμΔχ j2 þ νRi=∂νR þQi=DQþΔFi=DΔF;

ð3bÞ

LYuk ¼ YQQLQRσ þ L H̃ YLΔFR
þ TrðΔFL

YFΔFR
Þσ

þ TrðΔFL
Δ�

χÞYRνR þ H:c:; ð3cÞ

where the covariant derivative for the zero-hypercharge
triplets Δ of Eq. (1) acts as DμΔ ¼ ∂μΔþ ig2½Wμ;Δ�, with
Wμ ¼ Wa

μTa containing the SUð2ÞL gauge bosons Wa
μ and

g2 being the corresponding gauge coupling. Here, YQ is a
Yukawa coupling, while YL, YF, and YR are Yukawa
coupling matrices. In the minimal setup, YL is a 3 × 2
matrix, while YF and YR are 2 × 2 matrices.
The scalar potential reads

VðH; σ;ΔχÞ ¼ −μ2HH†H − μ2χTrðΔ2
χÞ − μ2σσ

�σ þ κH†ΔχH

þ λ

2
ðH†HÞ2 þ λχ

2
TrðΔ4

χÞ þ
λσ
2
ðσ�σÞ2

þ λa
2
ðH†HÞTrðΔ2

χÞ þ
λb
2
ðH†HÞðσ�σÞ

þ λc
2
ðσ�σÞTrðΔ2

χÞ; ð4Þ

where all the couplings are real. Note also that
Δ2

χ ¼ ½ððχ0Þ2=2þ χþχ−Þ=2�1, directly implying that the
terms ½TrðΔ†

χΔχÞ�2 ¼ 2TrðΔ4
χÞ and H†Δ†

χΔχH ¼ ðH†HÞ
TrðΔ2

χÞ=2 are not new. As is mentioned in Ref. [32],
in the limit of vanishing κ the potential possesses a
global symmetry Oð4ÞH ×Oð3ÞΔχ

and a discrete symmetry
Δχ → −Δχ .

4 Thus κ is protected by these symmetries and a
small but nonvanishing κ corresponds to their soft breaking.
One may fix the sign of κ via a sign flip of Δχ and νR. We
consider the convention κ > 0 in what follows.

B. The axion and the solution to the strong CP problem

The solution to the strong CP problem in our model is
identical to that of the KSVZ model [24,25], which we
briefly review here. Anticipating the spontaneous break-
down of the PQ symmetry, one can parametrize the PQ
field as

σ ¼ 1ffiffiffi
2

p ðvσ þ ρσÞeia=vσ ; ð5Þ

where a is the Goldstone field, i.e., the axion, and ρσ is the
radial mode. The vectorlike quark gets a mass from its
interaction with the PQ field, mQ ¼ YQvσeia=vσ=

ffiffiffi
2

p
. By

performing an axial transformation Q → e−iγ5a=ð2vσÞQ, the
field-dependent phase inmQ gets rotated away. TheQ field

TABLE I. Charge assignments of the considered Dirac seesaw
model (α ≠ 0).

Field L eR νR ΔFR
ΔFL

QR QL H σ Δχ

SUð3Þc 1 1 1 1 1 3 3 1 1 1
SUð2ÞL 2 1 1 3 3 1 1 2 1 3
Uð1ÞY − 1

2
−1 0 0 0 0 0 1

2
0 0

Uð1ÞPQ α α αþ 1 α αþ 1 − 1
2

1
2

0 1 0

4Our potential also has an additional Oð2Þσ global symmetry.
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is thus disentangled from the axion field and can be
integrated out. The axial transformation is anomalous,
leading to the aGG̃=vσ term, where G is the SUð3Þc field
strength tensor. This term can be used to cancel the θ term,
in a dynamical solution to the strong CP problem.
Comparing the generated aGG̃ term to the correspond-

ing one in the axion effective Lagrangian, it follows that
vσ ¼ 2Nfa, as indicated in Sec. II A 1. Note that there are
fields other than σ that are charged under the PQ symmetry.
The QCD anomaly coefficient is N ¼ 1=2 in our model,
and thus vσ ¼ fa. It is more transparent to look back at
Eq. (2) with vσ ¼ fa. Since the domain wall number is
NDW ¼ 2N ¼ 1, this model is free from the cosmological
domain wall problem.
The electromagnetic anomaly coefficient E is also

independent of the charge α. We find it is given by
E ¼ 2nF, where nF denotes the number of generations
of vector-like seesaw partners ΔF. We consider the
minimal case (recall Section II A 1), for which nF ¼ 2
and E ¼ 4. This E=N ¼ 8 value is safe from current axion
experimental search bounds for large regions of the
parameter space, as shown in Fig. 2. The allowed values

of fa are constrained from below (fa ≳ 108 GeV) due to
the SN 1987A bound on the axion-nucleon couplings [33],
which for our model implies the bound gap ≲ 3 × 10−9 on
the axion-proton coupling. On the other hand, one expects
an upper bound on fa from the relation in Eq. (2).
In particular, requiring perturbative Yukawa couplings
of at most Oð1Þ and taking a triplet VEV vχ of at
most Oð5 GeVÞ, one sees that neutrino masses become
suppressed beyond what is phenomenologically viable,
i.e., mν <

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p
≃ 0.05 eV, unless fa ≲ 1013−14 GeV.

Therefore, we take fa ∈ ½108; 1013� GeV as our viable
range of interest. As shown in Fig. 2, large portions of the
viable parameter space are expected to be probed by
upcoming axion experiments.

C. A heavier W mass?

Due to the engagement of Δχ in SUð2ÞL gauge inter-
actions, the triplet extension of the Higgs sector can be
constrained by electroweak precision measurements. In
particular, a nonzero VEV vχ in our model modifies the ρ
parameter, which at tree-level is calculated as

FIG. 2. Allowed axion parameter space for the considered model, with E=N ¼ 8 (green line) and future detection prospects, in the
plane of the axion mass ma vs the axion-photon coupling gaγ . Vertical dotted lines show representative values of the axion-proton gap
(gray) and axion-electron gae (red) couplings for this model. Present data (CAST [34], ADMX [35–38], CAPP [39–41], HAYSTAC
[42]) and projected sensitivities (IAXO [43], ABRACADABRA [44], KLASH [45], ADMX [46] and MADMAX [47]) are represented
by solid and dashed lines, respectively (see also [5,48]).
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ρ≡ M2
W

M2
Z cos

2 θW
¼ 1þ 4

v2χ
v2

; ð6Þ

given the tree-level expressions for the squared masses of
weak gauge bosons,

M2
W ¼ g22

4
ðv2 þ 4v2χÞ; M2

Z ¼ g22v
2

4 cos2 θW
: ð7Þ

Unlike in the SM case, custodial symmetry is not recovered
in the limit g0 → 0. We keep our discussion at the tree level
in order to arrive at a plausible and illustrative benchmark
for vχ. At this level, the scalar triplet VEV does not
affect MZ.
Significant attention has recently been given to models

with hyperchargeless triplet scalars in light of the new W
mass measurement given by the CDF collaboration [49]
(see, e.g., [50–64]).5 Taking the CDF II result as a hint for
new physics, we reexpress the ρ parameter as

ρ ¼ ðMCDF
W Þ2

M2
Z cos

2 θW
≃
�
MCDF

W

MSM
W

�
2

ρSM; ð8Þ

where MCDF
W ¼ 80433.5� 9.4 MeV is the CDF measure-

ment, while the SM value is MSM
W ¼ 80357� 6 MeV [70].

Using central values, we obtain ρ ≃ 1.0019. Note that the
change in ρ has the correct positive sign in our model, at
the tree level. Equation (6) then gives vχ ≃ 5.36 GeV. In the
next section, we analyze the scalar potential of the model,
taking vχ ¼ 5.4 GeV as a benchmark value.

III. VACUUM STABILITY

The real and complex scalars introduced in the previous
section will have nontrivial effects on the vacuum structure.
In this section, we analyze the vacuum structure in detail,
taking the potential in Eq. (4) as our starting point, with an
emphasis on electroweak vacuum stability.

A. Mass spectrum

Assuming all the VEVs ðv; vχ ; vσÞ are nonzero, we find
the stationarity conditions as

μ2H ¼ 1

4
ð2λv2 þ λav2χ þ λbv2σ − 2κvχÞ; ð9aÞ

μ2χ ¼
1

4vχ
ðλav2vχ þ λcv2σvχ þ λχv3χ − κv2Þ; ð9bÞ

μ2σ ¼
1

4
ðλbv2 þ 2λσv2σ þ λcv2χÞ; ð9cÞ

under the parametrizations H ¼ ðϕþ; ðϕ0 þ vþ iGHÞ=ffiffiffi
2

p ÞT , σ ¼ ðϕσ þ vσ þ iGσÞ=
ffiffiffi
2

p
. With these conditions,

we find the mass matrix for the neutral scalars in the basis
ðϕ0; χ0;ϕσÞ to be

M2
CP-even¼

0
BBBBBBB@

λv2
1

2
λavvχ−

1

2
κv

1

2
λbvvσ

1

2
λavvχ−

1

2
κv

κv2

4vχ
þλχv2χ

2

1

2
λcvσvχ

1

2
λbvvσ

1

2
λcvσvχ λσv2σ

1
CCCCCCCA
;

ð10Þ
The VEVs ðv; vχ ; vσÞ correspond to a minimum of the
potential in Eq. (4) when this M2

CP-even matrix is positive
definite. The CP-odd mass matrix vanishes, corresponding
to two Goldstone bosons. One of them becomes the
longitudinal component of Z boson and the other one is
the axion, which becomes massive when the chiral axion
potential is considered, as in the KSVZ model.
The three CP-even mass eigenstates have masses mHi

(i ¼ 1, 2, 3). These obeymH1
∼mH2

≪ mH3
, where the last

one is much larger than the first two due to the large vσ and
the corresponding eigenstate effectively decouples. Indeed,
from the considerations of the previous section, we have
vχ=vσ ≲ 10−8, which indicates the hierarchy of the VEVs,
vχ < v ≪ vσ. As a result, we further decompose the 3 × 3

mass matrix into four blocks

M2
CP-even ¼

 
M2

h M2
hσ

ðM2
hσÞT M2

σ

!
; ð11Þ

with

M2
h ≡

0
BBB@

λv2
1

2
λavvχ −

1

2
κv

1

2
λavvχ −

1

2
κv

κv2

4vχ
þ λχv2χ

2

1
CCCA;

M2
hσ ≡

0
BB@

1

2
λbvvσ

1

2
λcvσvχ

1
CCA; M2

σ ≡ λσv2σ: ð12Þ

The masses of the neutral scalars receive contributions from
couplings to σ. In the limit of vanishing M2

h, the couplings
to σ contribute to the 2 × 2M2

h block in the diagonalization
and can be calculated in a seesawlike approximation as

ðMσ
hÞ2 ≡−

1

M2
σ
M2

hσðM2
hσÞT ¼ −

1

4λσ

 
λ2bv

2 λbλcvvχ

λbλcvvχ λ2cv2χ

!
:

ð13Þ
5See also, e.g., [65–69] for models with a Y ¼ 1 Higgs triplet

addressing the CDF result.
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A rough estimate tells us that this contribution is of the
same order as that of M2

h. Consequently, the leading-order
mass matrix for the two light scalars ðϕ0; χ0Þ reads

M2
hχ≡M2

hþðMσ
hÞ2

¼

0
BBB@

λv2−
λ2bv

2

4λσ
−
κv
2
þλavvχ

2
−
λbλcvvχ
4λσ

−
κv
2
þλavvχ

2
−
λbλcvvχ
4λσ

κv2

4vχ
−
λ2cv2χ
4λσ

þλχv2χ
2

1
CCCA;

ð14Þ

which leads to an estimate for the neutral scalar mixing
angle α of

tan 2α ¼ 2vvχð2κλσ − 2λaλσvχ þ λbλcvχÞ
v3χðλ2c − 2λσλχÞ − v2½κλσ þ vχðλ2b − 4λλσÞ�

; ð15Þ

such that OTM2
hχO ¼ DiagfðmLO

H1
Þ2; ðmLO

H2
Þ2g with O being

a 2 × 2 rotation matrix parametrized by the angle α. This
approximation will be useful in understanding the parameter
correlations discussed in Sec. III C. While one can solve for
mLO

H1
and mLO

H2
starting from Eq. (14), the expressions are

lengthy and we do not show them here. Although the block-
diagonalization procedure discussed so far is convenient to
understand the leading-order contributions, in our numeric
study we take into account the full 3 × 3 matrix as given
in Eq. (10).
The mass matrix for the charged scalars in the basis

ðϕ�; χ�Þ is

M2
charged ¼

 
κvχ

κv
2

κv
2

κv2
4vχ

!
: ð16Þ

One of the two charged-scalar masses is zero, corresponding
to the charged Goldstone boson that becomes the longi-
tudinal component ofW�. The only nonzero squaredmass is

m2
H� ¼ κðv2 þ 4v2χÞ

4vχ
; ð17Þ

which grows with κ. The mixing is given by tan 2β ¼
4vvχ=ðv2 − 4v2χÞ. Inputting vχ constrained by the CDF
result, we find a value of β ≃ 0.044 for the mixing angle.

B. Constraints

The model parameter space is subject to many con-
straints. To start with, the potential should be bounded from
below in any direction of large field values. This condition
can be quantified by requiring the copositivity of the quartic

coupling matrix [71]. In our model, the copositivity
conditions read

λ ≥ 0; λχ ≥ 0; λσ ≥ 0; ð18aÞ

λaþ
ffiffiffiffiffiffiffiffiffi
2λλχ

q
≥ 0; λbþ 2

ffiffiffiffiffiffiffi
λλσ

p
≥ 0; λcþ

ffiffiffiffiffiffiffiffiffiffiffi
2λσλχ

q
≥ 0;

ð18bÞ

λa
ffiffiffiffiffiffiffi
2λσ

p
þ λb

ffiffiffiffiffi
λχ

q
þ λc

ffiffiffiffiffi
2λ

p
þ 2

ffiffiffiffiffiffiffiffiffiffiffi
λλχλσ

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðλa þ

ffiffiffiffiffiffiffiffiffi
2λλχ

q
Þðλb þ 2

ffiffiffiffiffiffiffi
λλσ

p
Þðλc þ

ffiffiffiffiffiffiffiffiffiffiffi
2λχλσ

q
Þ

r
≥ 0:

ð18cÞ

The perturbativity bound requires instead that all the
quartic couplings remain perturbative at any scale, i.e.,
jλij < 4π (with i being a pseudoindex running over all the
quartic couplings). There are also constraints from requir-
ing the unitarity of the S-matrix [30,72]:

jλj; jλσj < 8π; jλaj; jλbj; jλcj; jλχ j < 16π: ð19Þ

Unitarity gives three additional constraints, namely upper
bounds on the quantities in Eq. (A3) of Appendix A, where
more details on the unitarity bounds can be found.
Additionally, we are interested in identifying the regions

of parameter space where the desired vacuum configuration
ðv; vχ ; vσÞ with all VEVs nonzero is a global minimum. We
therefore need to exclude deeper minima from alternative
configurations ðv0; v0χ ; v0σÞ with one or more vanishing
VEVs. Confining our attention to such charge-conserving
VEVs, a direct minimum depth comparison results in a
difference ΔV ¼ V 0 − V with

ΔV ¼ 1

16
½2λðv4 − v04Þ þ λχðv4χ − v04χ Þ þ 2λσðv4σ − v04σ Þ

þ 2λcðv2χv2σ − v02χ v02σ Þ þ 2v2ðλav2χ þ λbv2σ − κvχÞ
− 2v02ðλav02χ þ λbv02σ − κv0χÞ�; ð20Þ

which we require to be non-negative for all seven patterns
ðv0; v0χ ; v0σÞ ¼ ð0; 0; 0Þ, ðv0; 0; 0Þ, ð0; v0χ ; 0Þ, ð0; 0; v0σÞ,
ðv0; v0χ ; 0Þ, ðv0; 0; v0σÞ, ð0; v0χ ; v0σÞ, in case these lead to a
positive definite mass-squared matrix. Note that the primed
VEVs in this equation are constrained to satisfy stationarity
conditions of their own, but with the same μ2H, μ

2
χ and μ2σ as

given in Eq. (9) in terms of unprimed VEVs. We also check
that the minima candidates are not locally destabilized by
turning on charge-breaking VEVs (see [73] for an in-depth
analysis in the Y ¼ 1 triplet case).
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Constraints from the experimental side arise mainly from
two sources: electroweak precision measurements and
collider experiments. For the former, we consider the
constraint on the triplet VEV vχ from the ρ parameter,
taking into account the latest measurement of the W mass
(see Sec. II C). The bounds on oblique parameters, i.e., on
the Peskin-Takeuchi parameters S, T, and U [74], also
impose stringent constraints on models of new physics
above the electroweak scale. The contributions beyond the
tree level from the hyperchargeless triplet to a modified
version of these parameters, adapted to this context, are
[28,29]

S ≃ 0; ð21aÞ

T ¼ 1

8π

1

sin2 θW cos2 θW

�
m2

H2
þm2

H�

m2
Z

−
2m2

H�m2
H2

m2
Zðm2

H2
−m2

H�Þ log
�
m2

H2

m2
H�

��

≃
1

6π

1

sin2 θW cos2 θW

ðΔmÞ2
m2

Z
; ð21bÞ

U ≃ −
1

3π

�
m4

H2
log

�
m2

H2

m2
H�

�
3m2

H� −m2
H2

ðm2
H2

−m2
H�Þ3

þ 5ðm4
H� þm4

H2
Þ − 22m2

H2
m2

H�

6ðm2
H2

−m2
H�Þ2

�

≃
Δm

3πmH�
; ð21cÞ

where mZ is the Z boson mass, θW is the Weinberg angle,
and Δm≡mH2

−mH� . The last approximations hold for
jΔmj ≪ mH� . To be consistent with the updated fits of
Refs. [50,75], we require that mH� ∼mH2

≫ mH1
, where

mH1
is assumed to be the SM Higgs. To be more specific,

given that the benchmark vχ ¼ 5.4 GeV already produces a
large tree-level contribution T tree ¼ β2=αe:m: ≃ 0.25, the
fitted CDF value of T ¼ 0.27� 0.06 [75] (under the
assumption of negligible U) requires the additional loop-
level contributions of Eq. (21) to be small, leading to the
bound jΔmj < 50 GeV.
As for collider constraints, an important channel is that

of Higgs decay into two photons, corresponding to a signal
strength of μγγ ¼ 1.14þ0.19

−0.18 [76]. In our model, the novel
contribution to μγγ is dominated by λa=m2

H� and can be
made negligible if mH� > 300 GeV [30]. Additionally,
LEP provides the most stringent bound on the mass of a
neutral scalar which is produced in association with the Z
boson, mh > 114 GeV [77,78]. However, it is possible to
evade this bound in a hyperchargeless triplet model since

the coupling of the new neutral scalar to the Z may be
suppressed [72]. Therefore, in case there is a scalar lighter
than the SM Higgs, we impose the constraint

j sin αj < 0.05; ð22Þ

which implies that j cos αj ≃ 1 and the LEP bound is not
violated. If the lightest scalar has a mass below half the SM
Higgs mass, it can contribute to the Higgs invisible decay
rate and is subject to further constraints. Meanwhile, χ0 also
couples to theW boson and has the potential to be produced
via such an interaction. A full analysis of the parameter
space taking into consideration all Higgs search limits is
beyond the scope of the current work. In a simplified
analysis, we focus on Eq. (22) as the main constraint on a
light scalar spectrum. Finally, the vectorlike fermion triplets
ΔF acquire masses proportional to the PQ symmetry
breaking scale and are thus safe from otherwise stringent
low-energy limits (see, e.g., [79]).

C. Numerical results and discussion

Following the analysis of the mass spectrum and the
above discussion on constraints, we are ready to search for
the viable parameter space at the electroweak scale. We
express the potential parameters μ2H; μ

2
χ ; μ2σ in terms of the

nonzero VEVs ðv; vχ ; vσÞ and the quartic and trilinear
couplings using the stationarity conditions in Eq. (9). The
constraints to the quartic couplings can be directly applied.
Meanwhile, there are constraints expressed in terms of the
masses, which are also functions of the VEVs and the
quartic and trilinear couplings, according to Eqs. (10) and
(16). There are two possible mass spectra with some
differences in constraints (mH is the SM Higgs mass):

(i) “Heavy spectrum,” with mH1
¼ mH < mH2

, refer-
ring to the case where the new scalar has mass mH2

and is heavier than the SM Higgs. In this case, the
oblique parameter constraints of Eq. (21) require
mH� ∼mH2

≫ mH, as mentioned before.
(ii) “Light spectrum,” with mH1

< mH2
¼ mH, referring

to the case where the new scalar has massmH1
and is

lighter than the SM Higgs. Oblique parameter
constraints, which assume the scale of new physics
to be large with respect to the electroweak scale, do
not apply. Instead, we consider the bound of Eq. (22)
to suppress the coupling to the Z boson such that the
LEP bound is not violated.

Numerically, we fix the VEVs to be

v ¼ 246 GeV; vσ ¼ 1012 GeV; vχ ¼ 5.4 GeV;

and randomly scan the trilinear and the quartic couplings in
the ranges
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κ ∈ ½10; 100� GeV; λ; λχ ; λσ; jλaj; jλbj; jλcj ∈ ½0; 4π�:

In practice, for quartic couplings we take a flat logarithmic
prior with a lower limit of 10−6. We also require that the
mass of the SM Higgs-like scalar lies in the 3σ range of
125.25� 0.51 GeV [70], and scan for both possibilities,
mH1

¼ mH < mH2
and mH1

< mH2
¼ mH.

The parameter ranges for points satisfying both the
theoretical and experimental constraints are shown in
Table II. For these points, we will further check if they
allow the desired vacuum ðv; vχ ; vσÞ to be the global one.
This is done by numerically checking whether the potential
defined by the scanned parameters admits other types of
vacua. If so, we compare the depth of the latter with that of
the desired vacuum to guarantee they are not deeper, see
Eq. (20). For the heavy spectrum, we find that the desired
vacuum can be the global one, while for the light spectrum,
it may only be a local one. In particular, for a light
spectrum, the vacuum of the type ð0; v0χ ; 0Þ is always
deeper than the desired one. The difference ΔV is

Vð0;v0χ ;0Þ − Vðv;vχ ;vσÞ ¼
1

16
½2λv4 þ 2v2ðλbv2σ þ λav2χ − κvχÞ

þ 2λσv4σ þ 2λcv2σv2χ þ λχðv4χ − v04χ Þ�

≃
1

16
ð2λσv4σ − λχv04χ Þ: ð23Þ

Numerically, we find the points passing all the other
constraints lead to v0χ ∼Oð1013Þ GeV, and thus to a
negative value of the difference, given positive λσ and λχ .
Although not being stable, it is still possible that the desired
vacuum is meta-stable in the sense that the tunneling time to
other, deeper vacua is longer than the age of the Universe.
We do not investigate this possibility here.

We require the couplings to remain perturbative and that
the desired vacuum stays stable up to the PQ breaking
scale, where other new physics is expected to come in. The
evolution of the couplings is governed by the one-loop
renormalization group equations (RGEs), which are cal-
culated using SARAH [80,81], see Appendix B. As a first
approximation, we analyze the RGE-improved tree-level
potential (see also, e.g., [82,83]). The parameter space
shown in Table II gets further constrained by perturba-
tivity, copositivity and unitarity at the PQ scale. Roughly
speaking, large values of the quartic couplings are ruled
out.
The final viable parameter space of our model is

presented in the form of two-parameter projections in
Figs. 3 and 4. For both spectra, we find regions of viable
parameter space at the PQ scale, meaning that the desired
vacuum can be stable at least up to this scale. For the heavy
spectrum (Fig. 3) several comments are in order:

(i) The top-left plot in Fig. 3 shows the mass spectrum
with varying λσ . As one may expect from the
discussion of Sec. III A, the approximate relation
m2

H3
≃ λσv2σ holds. Other scalar masses do not seem

to be sensitive to λσ, even after taking into account
all the discussed constraints, especially those on the
mass spectrum (matching the SM Higgs mass and
satisfying the upper limit on the charged-neutral
mass splitting Δm). The upper bound of mH3

is set
by the upper bound of λσ. There is no lower bound
on mH3

, which can be made smaller at the cost of
tuning λσ to very small values.

(ii) The top-right plot shows the correlations between
the Higgs quartic λ and the σ-related quartic cou-
plings λb and λσ. These are not affected by the
requirement of having a global minimum. The
bottom-left plot shows instead the dependence of
the scalar mass mH2

on κ. Since the charged-scalar
mass mH� depends solely on κ [see Eq. (17)] and
jΔmj is bounded, mH2

is expected to grow with
ffiffiffi
κ

p
.

We find this dependence becomes rather sharp, i.e.,
the numerically allowed values of mass splitting
become quite small (jΔmj≲ 0.1 GeV), after exclud-
ing points not leading to a global minimum. The
bottom-right plot shows the relation between λχ and
λc. The λχ-dependent upper bound on λc arises only
after applying the global minimum filter.

(iii) Comparing the plotted parameter ranges with those
in Table II, we see that all the quartic coupling
ranges shrink. Indeed, running up to the PQ scale
and imposing the relevant constraints at that scale
excludes the large-quartic portion of the parameter
space, as previously mentioned. As we have seen in
the previous point, asking for a global minimum also
imposes nontrivial restrictions. This requirement
further excludes the region λa < 0.5 for points with

TABLE II. The viable parameter space at the electroweak scale.

Light spectrum
ðmH2

¼ mHÞ
Heavy spectrum
ðmH1

¼ mHÞ
λ [0.0011, 0.26] [0.26, 1.22]
λχ ½1.01 × 10−6; 0.10� ½1.01 × 10−6; 10.89�
λσ ½1.05 × 10−6; 8.99 × 10−4� ½1.08 × 10−6; 11.53�
λa [0.03, 3.15] ½−1.27; 12.14�
λb ½−0.0044;−0.0001� ½1.11 × 10−6; 5.40�
λc [0.10, 3.68] ½1.34 × 10−6; 12.17�
κ [GeV] [32.06, 99.93] [32.07, 99.90]

mH1
ðmH2

Þ
[GeV]

[0.25, 123.15] [258.34, 529.29]

mH3
[GeV] ½1.00×109;3.00×1010� ½1.04×109;3.40×1012�

mH� [GeV] [300.01, 529.63] [300.04, 529.55]
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Δm < 0, and the upper bound on λc becomes more
stringent overall, going from λc ≲ 3 to λc ≲ 0.8.

For the light spectrum (Fig. 4), we also plot the final
viable parameter space in terms of its projections in planes
of two parameters, and several comments are in order:

(i) The top-left plot in Fig. 4 shows the mass spectrum
with varying λ. Only mH1

grows with λ while
the other masses are mostly insensitive to it.
In contrast to the case of the heavy spectrum, the
heaviest neutral scalar mH3

now spans a much
narrower range, roughly from 109 GeV to 1010 GeV,
which results from a much more stringent upper
bound on λσ (cf. Table II and the other subplots in the
figure).

(ii) The top- and bottom-right plots involve parameters
directly related to σ and can be read together to

understand the upper limit on mH3
. The mass mH3

grows with λσ and thus with jλbj and λc, due to their
correlations. However, λc grows with λσ rather fast,
easily leading to exclusion when the RGE running is
accounted for, bounding λσ and consequently mH3

from above. The dependence of mH3
on λσ is

otherwise similar to that of the heavy mass spectrum
and has no lower bound if we allow λσ, jλbj and λc to
be vanishingly small.

(iii) The bottom-left plot shows the relation between κ
and λσ. The lower bound on κ is set by the lower
bound on the charged Higgs mass. Besides the
chosen cut at 100 GeV, we see that there is an upper
bound on κ, which becomes more stringent for
larger λσ. This rough bound can be understood
from the formula of Eq. (15) for the light scalar

FIG. 3. Two-dimensional projections of the viable parameter space for the heavy spectrum, mH1
¼ mH < mH2

, satisfying all the
constraints while having the desired vacuum as a global minimum.
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mixing and the requirement that said mixing is
small, see Eq. (22). In particular, tan 2α depends
on κ via the product κλσ, which determines the
observed exclusion.

IV. CONCLUSIONS

In this work, we investigate the connection between tree-
level Dirac neutrino masses and axion physics in a scenario
where the PQ scale fa is the only heavy scale to play a role
in neutrino mass generation. To realize such a connection,
we focus on the diagram of Fig. 1 as the main contribution
to neutrino masses and build the model based on it. The
minimal construction leads us to a KSVZ-type model, in
which the SM scalar sector is extended by a real triplet Δχ

and by the PQ field σ. Scalars other than σ are not charged
under PQ. We find the PQ symmetry by itself is enough to

explain the Dirac nature of neutrino masses in such a setup,
i.e., the PQ symmetry enforces lepton number conservation
perturbatively.
The scale fa suppresses Dirac neutrino masses and is

consequently bounded from above, fa ≲ 1013 GeV. The
QCD axion in the model addresses the strong CP problem,
while being a potential dark matter candidate. Future
prospects for its detection have been discussed (see
Fig. 2). In turn, the real scalar triplet contributes to the
W boson mass via its VEV and may be responsible for the
recent hint of beyond-the-SM physics by the CDF col-
laboration. Finally, we look into the scalar sector of the
model. We identify the regions in parameter space com-
patible with the desired VEV structure, taking into account
electroweak precision constraints and the requirements of
copositivity and perturbativity up to the PQ scale. Besides
the SM-like Higgs, there is another light neutral scalar that

FIG. 4. Two-dimensional projections of the viable parameter space for the light spectrum, mH1
< mH2

¼ mH , satisfying all the
constraints, but with the desired vacuum as a local minimum (see text).
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can be either heavier or lighter than the former. The two
possible spectra are dubbed “heavy” and “light,” respec-
tively. We find that for the heavy spectrum the desired EW
vacuum can be the global one up to the PQ scale, while it is
only found to be a local one in the case of the light
spectrum.
This work can be extended in many ways. On the one

hand, a full survey of the light-spectrum parameter space,
as well as the heavy-spectrum one, may lead to interesting
collider phenomenology. On the other hand, there are rich
Yukawa structures to be explored, which, working, e.g.,
with flavor symmetry, have the potential to address the
neutrino mixing pattern and enhance the predictive power.
Last but not least, it would be interesting to examine
whether neutrinogenesis is viable in this context.
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APPENDIX A: UNITARITY BOUNDS ON THE
QUARTIC COUPLINGS

The unitarity of the scattering matrix for 2 → 2 process
puts constraints on the model parameters. At high energies,
according to the Goldstone boson equivalence theorem,
scattering amplitudes of the longitudinal gauge boson can
be well approximated by those of the corresponding
Goldstone boson. Dominant contributions to the scattering
amplitudes come from the quartic couplings of the scalars.
In the following, we compute all possible 2 → 2 scattering
matrices, classified by the total charges of the initial/final
state particles.
Considering the total electric charge of the initial states is

zero, the S-matrix can be written as a direct sum of the
following two matrices:

Mð0Þ
1 ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

λ 0 0 0 0 0 0 0 0 0 0 0

0 λσ 0 0 0 0 0 0 0 0 0 0

0 0 λa
2

0 0 0 0 0 0 0 0 0

0 0 0 λa
2

0 0 0 0 0 0 0 0

0 0 0 0 λa
2

0 0 0 0 0 0 0

0 0 0 0 0 λa
2

0 0 0 0 0 0

0 0 0 0 0 0 λb
2

0 0 0 0 0

0 0 0 0 0 0 0 λb
2

0 0 0 0

0 0 0 0 0 0 0 0 λb
2

0 0 0

0 0 0 0 0 0 0 0 0 λb
2

0 0

0 0 0 0 0 0 0 0 0 0 λc
2

0

0 0 0 0 0 0 0 0 0 0 0 λc
2

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

; ðA1Þ

for the initial state basis ðϕ0GH;ϕσGσ; χ0GH;ϕ0χ0;
ϕþχ−; χþϕ−;ϕ0Gσ;ϕ0ϕσ;ϕσGH;GHGσ; χ0Gσ;ϕσχ

0Þ, and

Mð0Þ
2 ¼

0
BBBBBBBBBBBBBBBB@

3λ
2

λb
4

λ
2

λb
4

λffiffi
2

p λa
2
ffiffi
2

p λa
4

λb
4

3λσ
2

λb
4

λσ
2

λb
2
ffiffi
2

p λc
2
ffiffi
2

p λc
4

λ
2

λb
4

3λ
2

λb
4

λffiffi
2

p λa
2
ffiffi
2

p λa
4

λb
4

λσ
2

λb
4

3λσ
2

λb
2
ffiffi
2

p λc
2
ffiffi
2

p λc
4

λffiffi
2

p λb
2
ffiffi
2

p λffiffi
2

p λb
2
ffiffi
2

p 2λ λa
2

λa
2
ffiffi
2

p

λa
2
ffiffi
2

p λc
2
ffiffi
2

p λa
2
ffiffi
2

p λc
2
ffiffi
2

p λa
2

λχ
λχ
2
ffiffi
2

p

λa
4

λc
4

λa
4

λc
4

λa
2
ffiffi
2

p λχ
2
ffiffi
2

p 3λχ
4

1
CCCCCCCCCCCCCCCCA

; ðA2Þ

for the initial states ðϕ0ϕ0=
ffiffiffi
2

p
;ϕσϕσ=

ffiffiffi
2

p
; GHGH=ffiffiffi

2
p

; GσGσ=
ffiffiffi
2

p
;ϕþϕ−; χþχ−; χ0χ0=

ffiffiffi
2

p Þ. Here, the factor
1=

ffiffiffi
2

p
takes care of the statistics for identical particles.

The eigenvalues of the matrixMð0Þ
2 are λ (with multiplicity

2), λσ, λχ=2, and

1

12
Aþ 1

2

ffiffiffiffi
B
3

r
cos

�
1

3
cos−1

�
3C
2

ffiffiffiffiffiffi
3

B3

r �
þ 2kπ

3

�
; with

k ¼ 0; 1; 2; ðA3Þ

where

A ¼ 12λþ 8λσ þ 5λχ ; ðA4aÞ

B ¼ A2

3
− 96λλσ − 60λλχ þ 12λ2a þ 8λ2b þ 6λ2c − 40λσλχ ;

ðA4bÞ

C ¼ A
3

�
B −

A2

9

�
: ðA4cÞ
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For the charge þ1 initial states ðϕþϕ0;ϕþGH; χþχ0;
ϕþχ0; χþϕ0; χþGH;ϕþGσ;ϕþϕσ; χþϕσ; χþGσÞ, we obtain
the following 10 × 10 diagonal S-matrix

Mðþ1Þ ¼

0
BBBBBBBBBBBBBBBBBBBBBBB@

λ 0 0 0 0 0 0 0 0 0

0 λ 0 0 0 0 0 0 0 0

0 0
λχ
2

0 0 0 0 0 0 0

0 0 0 λa
2

0 0 0 0 0 0

0 0 0 0 λa
2

0 0 0 0 0

0 0 0 0 0 λa
2

0 0 0 0

0 0 0 0 0 0 λb
2

0 0 0

0 0 0 0 0 0 0 λb
2

0 0

0 0 0 0 0 0 0 0 λc
2

0

0 0 0 0 0 0 0 0 0 λc
2

1
CCCCCCCCCCCCCCCCCCCCCCCA

: ðA5Þ

Finally, the S-matrix of the charge þ2 initial states
ðϕþϕþ=

ffiffiffi
2

p
; χþχþ=

ffiffiffi
2

p
;ϕþχþÞ is

Mðþ2Þ ¼

0
B@

λ 0 0

0
λχ
2

0

0 0 λa
2

1
CA: ðA6Þ

Unitarity constraints on the S-matrices force the absolute
values of the eigenvalues of the matrices to be less than 8π.
This implies the following upper bounds on the quartic
couplings

jλj; jλσj < 8π; jλaj; jλbj; jλcj; jλχ j < 16π; ðA7Þ

and, on top of these, extra constraints are imposed by

bounding the eigenvalues of the matrix Mð0Þ
2 , given

in Eq. (A3).

APPENDIX B: ONE-LOOP RGES

In this work, we calculate the RGEs up to the one-loop
level using the Mathematica package SARAH [80,81]. The
beta function of the coupling X is defined as

βX ¼ μ
∂X
∂μ

¼ 1

16π2
βð1ÞX : ðB1Þ

The beta functions for the gauge couplings read

βð1Þg1 ¼ 41

10
g31; ðB2aÞ

βð1Þg2 ¼ 5

2
g32; ðB2bÞ

βð1Þg3 ¼ −
19

3
g33: ðB2cÞ

Here, g1 ≡
ffiffiffiffiffiffiffiffi
5=3

p
g0. Note that the (high-energy) beta

function for g2 is modified not just by the new scalar
triplet but also by the new triplet fermions ΔF. The beta
function of g3 is instead modified with respect to the SM
one due to the presence of the vectorlike quark Q. The beta
functions for the Yukawa couplings are

βð1ÞYF
¼ 1

8
ð2YFY

†
FYF þ 2YFY

†
LYL þ 6YFð−16g22 þ 4jYQj2 þ TrðYFY

†
FÞÞ þ YT

RY
�
RYFÞ; ðB3aÞ

βð1ÞYL
¼ 1

8
ð5ð4YeY

†
eYL þ YLY

†
LYLÞ þ YLY

†
FYFÞ

þ YL

�
3TrðYdY

†
dÞ þ 3TrðYuY

†
uÞ − 33

4
g22 þ

3

4
TrðYLY

†
LÞ −

9

20
g21 þ TrðYeY

†
eÞ
�
; ðB3bÞ

βð1ÞYu
¼ 3

2
ðYuY

†
uYu − YdY

†
dYuÞ þ Yu

�
3TrðYdY

†
dÞ þ 3TrðYuY

†
uÞ

− 8g23 −
17

20
g21 þ

3

4
TrðYLY

†
LÞ −

9

4
g22 þ TrðYeY

†
eÞ
�
; ðB3cÞ

βð1ÞYQ
¼ 4Y2

QY
�
Q − 8g23YQ þ 3

4
YQTrðYFY

†
FÞ; ðB3dÞ

βð1ÞYR
¼ 1

8
YRY�

FY
T
F þ YR

�
−6g22 þ

1

2
TrðYRY

†
RÞ
�
þ YRY

†
RYR; ðB3eÞ

PENEDO, REYIMUAJI, and ZHANG PHYS. REV. D 106, 115035 (2022)

115035-12



βð1ÞYd
¼ 1

4
ð6ðYdY

†
dYd − YuY

†
uYdÞ þ Ydð12TrðYdY

†
dÞ þ 12TrðYuY

†
uÞ − 32g23

þ 3TrðYLY
†
LÞ þ 4TrðYeY

†
eÞ − 9g22 − g21ÞÞ; ðB3fÞ

βð1ÞYe
¼ 1

8
ð3ð4YeY

†
eYe þ 5YLY

†
LYeÞ þ Yeð24TrðYdY

†
dÞ

þ 6ð−3ðg21 þ g22Þ þ 4TrðYuY
†
uÞ þ TrðYLY

†
LÞÞ þ 8TrðYeY

†
eÞÞÞ: ðB3gÞ

The beta functions for the quartic scalar couplings are

βð1Þλ ¼ 27

100
g41 þ

9

10
g21g

2
2 þ

9

4
g42 −

9

5
g21λ − 9g22λþ 12λ2 þ 3

4
λ2a þ

1

2
λ2b þ 12λTrðYdY

†
dÞ

þ 4λTrðYeY
†
eÞ þ 3λTrðYLY

†
LÞ þ 12λTrðYuY

†
uÞ − 12TrðYdY

†
dYdY

†
dÞ − 4TrðYeY

†
eYeY

†
eÞ

− 4TrðY†
eYLY

†
LYeÞ −

5

4
TrðYLY

†
LYLY

†
LÞ − 12TrðYuY

†
uYuY

†
uÞ; ðB4aÞ

βð1Þλσ
¼ 10λ2σ þ 12λσjYQj2 − 12jYQj4 þ 3λσTrðYFY

†
FÞ þ

3

4
λ2c −

3

4
TrðYFY

†
FYFY

†
FÞ þ λ2b ðB4bÞ

βð1Þλχ
¼ − 24g22λχ þ 2λ2a þ 2λχTrðYRY

†
RÞ − 2TrðYRY

†
RYRY

†
RÞ þ

19

2
λ2χ þ λ2c; ðB4cÞ

βð1Þλb
¼ −

9

10
g21λb −

9

2
g22λb þ 6λλb þ 2λ2b þ

3

2
λaλc þ 4λbλσ þ 6λbjYQj2 þ 6λbTrðYdY

†
dÞ

þ 2λbTrðYeY
†
eÞ þ 3

2
λbTrðYFY

†
FÞ þ

3

2
λbTrðYLY

†
LÞ þ 6λbTrðYuY

†
uÞ − 3

2
TrðY†

FYFY
†
LYLÞ; ðB4dÞ

βð1Þλa
¼ −

9

10
g21λa −

33

2
g22λa þ 6λλa þ 2λ2a þ λbλc þ

5

2
λaλχ þ 6λaTrðYdY

†
dÞ þ 2λaTrðYeY

†
eÞ

þ 3

2
λaTrðYLY

†
LÞ þ λaTrðYRY

†
RÞ þ 6λaTrðYuY

†
uÞ; ðB4eÞ

βð1Þλc
¼ 2λaλb − 12g22λc þ 2λ2c þ 4λcλσ þ

5

2
λcλχ þ 6λcjYQj2 þ

3

2
λcTrðYFY

†
FÞ þ λcTrðYRY

†
RÞ − TrðY†

RYRY�
FY

T
FÞ: ðB4fÞ

Finally, the beta function for the trilinear scalar coupling is

βð1Þκ ¼ 1

10
κð−9g21 − 105g22 þ 20λþ 20λa þ 60TrðYdY

†
dÞ þ 20TrðYeY

†
eÞ þ 15TrðYLY

†
LÞ

þ 5TrðYRY
†
RÞ þ 60TrðYuY

†
uÞÞ: ðB5Þ
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