
Pseudo-Nambu-Goldstone dark matter from non-Abelian gauge symmetry

Hajime Otsuka ,1,* Takashi Shimomura ,1,2,† Koji Tsumura ,1,‡ Yoshiki Uchida ,1,§ and Naoki Yamatsu 3,∥
1Department of Physics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

2Faculty of Education, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
3Department of Physics, National Taiwan University, Taipei, Taiwan 10617, Republic of China

(Received 17 October 2022; accepted 22 November 2022; published 28 December 2022)

We propose a pseudo-Nambu-Goldstone boson (pNGB) dark matter (DM) model based on an additional
non-Abelian gauge symmetry SUð2ÞD. The gauge symmetry SUð2ÞD is spontaneously broken to a global
custodial symmetry Uð1ÞV via the nonvanishing vacuum expectation values of SUð2ÞD doublet and triplet
scalar fields. Due to the exact global symmetry Uð1ÞV, the lightest Uð1ÞV charged particle becomes stable.
We assume that the lightest charged particle in the model is the charged complex pNGB, which we regard
as DM. It avoids the strong constraints from current DM direct detection experiments due to the property of
NGB. We find that the measured energy density of DM can be reproduced when the DMmass is larger than
the half of the Higgs mass, where the lower limit generally comes from the constraint of DM invisible decay
and the upper limit from DM direct detection experiments depends on the model parameters.
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I. INTRODUCTION

The standard model (SM) in particle physics is able to
explain the results of accelerator experiments with the
exception of a few anomalies. However, some phenomena
that cannot be explained within the scope of the SM have
emerged. One of the important issues in modern particle
physics and cosmology is the search for the identity of
dark matter (DM). The existence of dark matter (DM)
has been confirmed by several astronomical observations
such as spiral galaxies [1,2], gravitational lensing [3], cosmic
microwave background [4], and collision of bullet cluster [5].
There are a lot of DM candidates since the nature of DM is

not yet understood. One such candidate is called the weakly
interacting massive particle (WIMP). An attractive property
ofWIMPDM is that it can be generated thermally, which can
be experimentally verified by introducing a nongravitational
effect. In order to achieve theDM’s relic abundance, themass
of WIMPs is expected to be in the range of Oð10Þ GeV to
Oð100Þ TeV.Because of the nongravitational interactions of
WIMPs, direct and indirect detections are expected. There is

still no clear signal for WIMPs, and hence direct detections
yield strong constraints on WIMP masses and interactions.
Several mechanisms in WIMP DM models are proposed

to avoid the severe constraints of the direct detection by
considering, e.g., a fermion DM with pseudoscalar inter-
actions [6–11] and a pseudo-Nambu-Goldstone boson
(pNGB) DM with additional global Uð1Þ group symmetry
[12–27]. As pointed out in the original pNGB DM model
[14], the DM has the property of Nambu-Goldstone (NG)
mode, so the coupling of the DM with the SM Higgs boson
is proportional to its momentum. As a result, the scattering
cross sections of the DM with the SM particles via the
Higgs bosons are strongly suppressed, while the annihila-
tion cross sections of the DM to the SM particles are kept.
Recently, a pNGB DM model based on gauged GSM ×

Uð1ÞB−L symmetry, which extends the softly broken Uð1Þ
global symmetry to the gauged Uð1ÞB−L symmetry, was
proposed [22,23], where GSM ≔ SUð3ÞC × SUð2ÞW ×
Uð1ÞY . The DM direct detection cross section is naturally
suppressed as the same as the original pNGB DM model.
On the other hand, the pNGB DM decays into SM particles
mediated by the Uð1ÞB−L gauge boson. As a result, the
Uð1ÞB−L symmetry breaking scale is greater than 1013 GeV
for the DM mass < 1 TeV to escape the constraint from
DM stability, where the bound from gamma-ray observa-
tions is strong as roughly the DM lifetime ≳1027 s for two
body decays [28]. In addition, the GSM ×Uð1ÞB−L pNGB
DM model has been extended to SOð10Þ grand unified
theory (GUT) [29,30]. In this model, the vacuum expect-
ation value (VEV) of the intermediate symmetry breaking
scale is greater than 1010 GeV and the DM mass is only
allowed to be slightly below half the Higgs bosonmass from
the requirements of DM stability and grand unification and
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also the constraints of the Higgs invisible decay and the
gamma-ray observations for DM annihilations.
The purpose of this paper is to propose a new pNGB DM

model based on non-Abelian gauge symmetry SUð2ÞD.1
Unlike the GSM ×Uð1ÞB−L and SOð10Þ pNGB DMmodel,
we will confirm that the DM is stabilized due to the residual
Uð1Þ symmetry of the SUð2Þ custodial symmetry [32].2 We
will show that in our pNGB DMmodel the VEVof SUð2ÞD
breaking scale can be allowed to be roughly Oð1Þ TeV
without introducing very high energy scale.
The paper is organized as follows. In Sec. II, we introduce

an SUð2Þ pNGBDMmodel. In Sec. III, we analyze vacuum
structures and symmetry breaking patterns of the model. In
Sec. IV, we analyze the scalar potential of the system. In
Sec. V, we investigate the mass spectra of scalar fields in this
model. In Sec. VI, we examine the constraints from direct
detection experiments and the thermal relic abundance of
DM for our DM candidate. Section VII is devoted to
summary and discussions. In Appendix, we show the
detailed calculation of DM-quark scattering amplitude.

II. THE MODEL

The model consists of the SM gauge fields, an SUð2ÞD
gauge fieldW0a

μ (a ¼ 1, 2, 3), a complex scalar field in 2 of
SUð2ÞD Φ, and a real scalar field in 3 of SUð2ÞD Δ. The
matter content in the non-Abelian pNGB DM model is
summarized in Table I.
The Lagrangian is given by

L ¼ −
1

2
tr½GμνGμν� − 1

2
tr½WμνWμν� − 1

4
BμνBμν

−
1

2
tr½W0

μνW0μν� þ ðDμHÞ†ðDμHÞ þ ðDμΦÞ†ðDμΦÞ

þ 1

2
tr½ðDμΔÞðDμΔÞ� − VðH;Φ;ΔÞ

þ Q̄i=DQþ uci=Duc þ dci=Ddc þ Li=DLþ eci=Dec

− ðyuQucH þ ydQdcH† þ yeLecH† þ H:c:Þ; ð2:1Þ

whereDμ ¼ ∂μ þ igsGμ þ ig2Wμ þ ig1Bμ þ ig02W
0
μ; Fμν ¼

∂μFν − ∂νFμ þ ig½Fμ; Fν�, where F ¼ G;W;B;W0 and gs,
g2, g1, g01 are gauge fields and gauge coupling constants of
SUð3ÞC, SUð2ÞW , Uð1ÞY , SUð2ÞD, respectively. The scalar
potential VðH;Φ;ΔÞ contains quadratic, cubic, and quartic
coupling terms,

VðH;Φ;ΔÞ ¼ −μ2HH†H − μ2ΦΦ†Φ −
1

2
μ2ΔTrðΔ2Þ

þ
ffiffiffi
2

p
ððκ1 þ iκ2ÞΦ̃†ΔΦþ ðκ1 − iκ2ÞΦ†ΔΦ̃Þ

þ 2
ffiffiffi
2

p
κ3Φ†ΔΦþ λHðH†HÞ2 þ λΦðΦ†ΦÞ2

þ 1

4
λΔTrðΔ2Þ2 þ λHΦðH†HÞðΦ†ΦÞ

þ λHΔðH†HÞTrðΔ2Þ þ λΦΔðΦ†ΦÞTrðΔ2Þ;
ð2:2Þ

where Φ̃ðxÞ ¼ iσ2ΦðxÞ�; μ2H, μ2Φ, and μ2Δ are real param-
eters with dimension 2, κa (a ¼ 1, 2, 3) are real parameters
with dimension 1, and λH, λΦ, λΔ λHΦ, λHΔ, and λΦΔ are
dimensionless real parameters. We use the following
notation:

Δ ¼ 1ffiffiffi
2

p
�

η3 η1 − iη2
η1 þ iη2 −η3

�
;

Φ ¼ 1ffiffiffi
2

p
�
ϕ1 þ iϕ2

ϕ3 þ iϕ4

�
: ð2:3Þ

Under the SUð2ÞD transformation, ΦðxÞ and ΔðxÞ
behave as

ΦðxÞ → UðxÞΦðxÞ; ΔðxÞ → UðxÞΔðxÞUðxÞ†; ð2:4Þ

where UðxÞ is the SUð2ÞD unitary transformation
UðxÞ ¼ exp ½iθaðxÞ σa2 �; θaðxÞ (a ¼ 1, 2, 3) are the param-
eters of the SUð2ÞD gauge transformation and σa stand for
the Pauli matrices. Note that it is easy to check invariant
terms under GSM × SUð2ÞD by using GroupMath [34] and
Sym2Int [35,36]. (For Lie groups, see, e.g., Ref. [37].)
We will analyze the relations between vacuum structures

and symmetry breaking patterns in the next section. In the
model, the invariant terms that contain only the scalar field
ΦðxÞ in 2 of SUð2ÞlocalD are invariant under a larger global
symmetry SUð2ÞglobalΦL × SUð2ÞglobalΦR . To check this extended

TABLE I. The field content in the pNGB DM model is shown in the GSM × SUð2ÞD basis, where the fermions
belong to ð1=2; 0Þ under SLð2;CÞ.

Q uc dc L ec H Φ Δ Gμν Wμν Bμν W0
μν

SUð3ÞC 3 3̄ 3̄ 1 1 1 1 1 8 1 1 1
SUð2ÞW 2 1 1 2 1 2 1 1 1 3 1 1
Uð1ÞY þ1=6 −2=3 þ1=3 −1=2 þ1 þ1=2 0 0 0 0 0 0
SUð2ÞD 1 1 1 1 1 1 2 3 1 1 1 3

1A pNGB DM model based on non-Abelian global symmetry
SUð2Þg and Abelian gauge symmetry Uð1ÞX has been proposed
in Ref. [31]. This model can be regarded as a low-energy effective
model that is realized in a special parameter region in our model.

2A DM model using custodial symmetry emerging from non-
Abelian gauge symmetry SUð2ÞD for DM stability has been
proposed in Ref. [33], although it is not a pNGB DM model.
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global symmetry, it is convenient to introduce a bidoublet
or 2 × 2 matrix notation for ΦðxÞ as

ΣðxÞ ≔ ð Φ̃ðxÞ ΦðxÞ Þ: ð2:5Þ

This notation is convenient to understand so-called SUð2Þ
custodial symmetry [32]. We will find that the stability of
the DM is realized by a “Uð1ÞglobalV custodial symmetry,”
which is a Uð1Þ subgroup of the SUð2ÞglobalΦL × SUð2ÞglobalΦR

diagonal subgroup SUð2ÞglobalV .
By using the complex scalar field in 2 of SUð2ÞD ΣðxÞ

instead of ΦðxÞ, the scalar potential in Eq. (2.2) can be
written as

VðH;Σ;ΔÞ ¼ −μ2HH†H −
μ2Φ
2
TrðΣ†ΣÞ− 1

2
μ2ΔTrðΔ2Þ

−
ffiffiffi
2

p
κ1Trðσ1Σ†ΔΣÞ−

ffiffiffi
2

p
κ2Trðσ2Σ†ΔΣÞ

−
ffiffiffi
2

p
κ3Trðσ3Σ†ΔΣÞ þ λHðH†HÞ2

þ λΦ
4
ðTrðΣ†ΣÞÞ2 þ 1

4
λΔTrðΔ2Þ2

þ 1

2
λHΦðH†HÞTrðΣ†ΣÞ þ 1

2
λHΔðH†HÞTrðΔ2Þ

þ 1

2
λΦΔTrðΣ†ΣÞTrðΔ2Þ; ð2:6Þ

where we used a relation ð−iσ2ÞΣ�ðiσ2Þ ¼ Σ.
We verify what kind of global symmetry exists in the

potential given in Eq. (2.6). First, the potential Vð0;Σ; 0Þ is
invariant under SUð2ÞglobalΦL × SUð2ÞglobalΦR . Σ is the bidoublet
representation under SUð2ÞglobalΦL × SUð2ÞglobalΦR :

Σ → UΦLΣU
†
ΦR; UΦL ¼ eiθ

a
ΦLσa ; UΦR ¼ eiθ

a
ΦRσa ;

ð2:7Þ

where θaΦL and θaΦR are parameters of SUð2ÞglobalΦL and
SUð2ÞglobalΦR transformations, respectively. Second, the
potential Vð0; 0;ΔÞ is invariant under SUð2ÞglobalΔ
transformation. Δ is the adjoint representation under
SUð2ÞglobalΔ :

Δ → UΔΔU
†
Δ; UΔ ¼ eiθ

a
Δσa ; ð2:8Þ

where θaΔ is a parameter of SUð2ÞglobalΔ , and the global
transformation corresponds to a global subgroup trans-
formation of the gauge group SUð2ÞlocalD transformation.

Third, under SUð2ÞglobalΔ × SUð2ÞglobalΦL × SUð2ÞglobalΦR , each
κa term transforms as

TrðσaΣ†ΔΣÞ → TrðU†
ΦRσaUΦRΣ†U†

ΦLUΔΔU
†
ΔUΦLΣÞ:

ð2:9Þ

This term is invariant under SUð2ÞglobalL × Uð1ÞglobalΦRa , where
SUð2ÞglobalL represents SUð2ÞΔ ¼ SUð2ÞΦL, and Uð1ÞglobalΦRa

corresponds to the σa direction of SUð2ÞglobalΦR . The combi-
nation of the κ1, κ2, and κ3 terms is also invariant under
SUð2ÞglobalL ×Uð1ÞglobalΦR :

Trððκ1σ1 þ κ2σ2 þ κ3σ3ÞΣ†ΔΣÞ
→ TrðU†

ΦRðκ1σ1 þ κ2σ2 þ κ3σ3ÞUΦRΣ†ΔΣÞ; ð2:10Þ

where the Uð1ÞglobalΦR transformation is associated with the
ðκ1σ1 þ κ2σ2 þ κ3σ3Þ direction in SUð2ÞglobalΦR . Therefore,
the potential is invariant under SUð2ÞglobalL ×Uð1ÞglobalΦR .
Without losing generality, we can choose the κaσa direction
associated with the remaining Uð1ÞglobalΦR symmetry.
Therefore, in the following we will take the κ3σ3 direction
and denote κ3 as κ and Uð1ÞglobalΦR3 as Uð1ÞglobalR . In other
words, we remove κ1 and κ2 by using the SUð2ÞglobalΦR
transformation. Therefore, the potential in Eq. (2.6) is
invariant under SUð2ÞglobalL ×Uð1ÞglobalR . The global sym-
metry SUð2ÞglobalΔ × SUð2ÞglobalΦL × SUð2ÞglobalΦR breaking pat-
tern associated with the explicit breaking terms is shown
in Fig. 1.

III. VACUUM STRUCTURE

We consider vacuum structures of ΣðxÞ and ΔðxÞ. The
system we are currently considering has SUð2ÞlocalD (or
SUð2ÞglobalL ) and Uð1ÞglobalR symmetry. By using a total of
four degrees of freedom of SUð2ÞlocalD gauge and Uð1ÞglobalR
transformations, without loss of generality, we take the
VEVs of Σ and Δ as hΔi ¼ ðvη1σ1 þ vη3σ3Þ=

ffiffiffi
2

p
and

hΣi ¼ vΦI=
ffiffiffi
2

p
, i.e.,

hΔi ¼ 1ffiffiffi
2

p
�
vη3 vη1
vη1 −vη3

�
; hΣi ¼ 1ffiffiffi

2
p

�
vΦ 0

0 vΦ

�
;

ð3:1Þ

where we remove the VEVs of η2, ϕ1, ϕ2, and ϕ4. The
gauge symmetry SUð2ÞlocalD breaking patterns are shown in

FIG. 1. The global symmetry SUð2ÞglobalΔ × SUð2ÞglobalΦL × SUð2ÞglobalΦR breaking pattern is shown. The κ term stands for the soft
symmetry breaking term. In the figure, the superscript, global, is omitted.
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Fig. 2. As is well known, the nonvanishing VEV of a
complex scalar field in 2 of SUð2Þ breaks SUð2Þ symmetry
completely, so a total of three Nambu-Goldstone (NG) or
pseudo NG (pNG) modes appear. More specifically, when
SUð2Þ global symmetry is exact, three NG modes appear;
when SUð2Þ global symmetry is softly broken to Uð1Þ
global symmetry by explicit breaking terms, one NG and
two pNG modes appear; when SUð2Þ global symmetry is
completely softly broken by explicit breaking terms, three
pNG modes appear. The nonvanishing VEVof a real scalar
field in 3 of SUð2Þ breaks SUð2Þ symmetry to Uð1Þ
symmetry, so a total of two NG or pNG modes appear.
Furthermore, when κ ¼ 0, the system has SUð2ÞglobalΔ ×

SUð2ÞglobalΦL × SUð2ÞglobalΦR symmetry. By using the degrees
of freedom of SUð2ÞglobalΔ , SUð2ÞglobalΦL , and SUð2ÞglobalΦR
transformations, we can take the VEVs of Σ and Δ as

hΔi ¼ 1ffiffiffi
2

p
�
vη3 0

0 −vη3

�
; hΣi ¼ 1ffiffiffi

2
p

�
vΦ 0

0 vΦ

�
;

ð3:2Þ

Here we check what kind of symmetry is preserved by
the VEVs of Σ and Δ in Eqs. (3.1) and (3.2). First, we
consider the VEV of Σ as hΣi ¼ vΦ=

ffiffiffi
2

p
I. Under

SUð2ÞglobalΦL × SUð2ÞglobalΦR , the VEV transforms as

hΣi → UΦLhΣiU†
ΦR ¼ eiθΦLaσa

vΦffiffiffi
2

p Ie−iθΦRaσa

¼ vΦffiffiffi
2

p IeiðθΦLa−θΦRaÞσa ¼ hΣieiðθΦLa−θΦRaÞσa : ð3:3Þ

Therefore, only for θΦLa ¼ θΦRa, the VEV is invariant.
That is, only SUð2ÞglobalΦV remains. In the case, a total of
three NG or pNG modes appear.
Next, we consider the VEVof Δ in Eqs. (3.1) and (3.2).

When κ ¼ 0, under SUð2ÞglobalΔ , the VEV in Eq. (3.2)
transforms as

hΔi → UΔhΔiU†
Δ: ð3:4Þ

For θΔ1 ¼ θΔ2 ¼ 0, the VEV is invariant because
½UΔ; hΔi� ¼ 0. That is, only Uð1ÞglobalΔ associated with

σ3 remains. Under SUð2ÞglobalΔ , the VEV in Eq. (3.1)
transforms as

hΔi → UΔhΔiU†
Δ: ð3:5Þ

When κ ≠ 0, for θΔ3 ¼ vη3
vη1

θΔ1, θΔ2 ¼ 0, the VEV is

invariant because ½UΔ; hΔi� ¼ 0. That is, Uð1ÞglobalΔ asso-
ciated with a linear combination of σ1 and σ3 remains.
From the above discussion, regardless of the configuration
of the VEV of Δ, SUð2ÞglobalΔ symmetry is broken to
Uð1ÞglobalΔ . Therefore, a total of two NG or pNG modes
appear.
We summarize NG or pNG modes in this model. When

ΣðxÞ in 2 of SUð2Þ acquires a nonvanishing VEV, a total of
three NG or pNG mode appear. When ΔðxÞ in 3 of SUð2Þ
acquires a nonvanishing VEV, a total of two NG or pNG
mode appear. In the dark SUð2ÞD sector, a total of up to five
NG or pNG modes appear.

IV. ANALYZING THE POTENTIAL

We summarize how to find the vacuum that satisfies the
global minimum of the potential for each set of model
parameters below.
(1) Write down the most general potential of fields such

as ΣðxÞ and ΔðxÞ. The potential V depends on some
degrees of freedoms vX such as vΦ and vη3 :

VðfvXgÞ ¼ VðvΦ; vη1 ; vη3Þ: ð4:1Þ

(2) Calculate the first derivatives of the potential
VðfvXgÞ with respect to all the variables fvXg.
We find three stationary conditions as

∂

∂vX
VðfvXgÞ ¼ 0: ð4:2Þ

(3) Solve the simultaneous equations derived from the
stationary conditions.
We find that the variables vX are expressed as

model parameters such as μ2Φ and λΦ. Note that in
some cases a VEV is related with another VEV, and
some flat directions exist. This situation occurs when
symmetry is unbroken.

(4) Compare the values of the potential at all extrema
and saddle points.
We find true vacua of the potential VðfvXgÞ at

each parameter region, where all the VEVs at the
true vacuum must be real in our convention.

(5) Check what kind of symmetry is realized at each
vacuum for each parameter region.

(Note that the same procedure is commonly used, e.g.,
to analyze the vacuum structures of SUðNÞ symmetry
breaking by elementary scalar fields [38,39] and

FIG. 2. The gauge symmetry SUð2ÞlocalD breaking patterns are
shown. hΣi ≠ 0 and hΔi ≠ 0 represent the spontaneous symmetry
breaking (SSB) by the VEVof Σ and Δ in 2 and 3 of SUð2ÞlocalD .
Uð1ÞD is a local subgroup of SUð2ÞlocalD . In the figure, the
superscript, local, is omitted.

HAJIME OTSUKA et al. PHYS. REV. D 106, 115033 (2022)

115033-4



E6, SUðNÞ and SOðNÞ symmetry breaking by composite
scalar fields [40–44].)
To understand the vacuum structure of this system, we

first consider the case κ ¼ 0. After that, we will discuss the
case κ ≠ 0.

A. Without soft symmetry breaking term (κ= 0)

We take the VEVs of ΣðxÞ and ΔðxÞ given in Eq. (3.2).
Substituting the VEVs into the potential of ΣðxÞ and ΔðxÞ
given in Eq. (2.6) with κ ¼ 0

VðΣ;ΔÞ ¼ −
μ2Φ
2
TrðΣ†ΣÞ − 1

2
μ2ΔTrðΔ2Þ

þ λΦ
4
ðTrðΣ†ΣÞÞ2 þ 1

4
λΔTrðΔ2Þ2

þ 1

2
λΦΔTrðΣ†ΣÞTrðΔ2Þ; ð4:3Þ

the potential is given by

VðvΦ; vΔÞ ¼ −
1

2
μ2Φv

2
Φ −

1

2
μ2Δv

2
Δ þ 1

4
λΦv4Φ

þ 1

4
λΔv4Δ þ 1

2
λΦΔv2Φv

2
Δ; ð4:4Þ

where we denote vη3 as vΔ. This potential is invariant

under SUð2ÞglobalΔ ×SUð2ÞglobalΦL ×SUð2ÞglobalΦR and SUð2ÞlocalD
transformations shown in Figs. 1 and 2.
Next, we calculate the first derivatives of the potential

VðvΦ; vΔÞ with respect to vΦ and vΔ.

∂

∂vΦ
VðvΦ; vΔÞ ¼ vΦð−μ2Φ þ λΦv2Φ þ λΦΔv2ΔÞ;

∂

∂vΔ
VðvΦ; vΔÞ ¼ vΔð−μ2Δ þ λΔv2Δ þ λΦΔv2ΦÞ: ð4:5Þ

From the first derivatives, we find the following stationary
conditions:

0 ¼ vΦð−μ2Φ þ λΦv2Φ þ λΦΔv2ΔÞ; ð4:6Þ

0 ¼ vΔð−μ2Δ þ λΔvΔ þ λΦΔv2ΦÞ: ð4:7Þ

We analytically solve the simultaneous equations given
in Eqs. (4.6) and (4.7) below.

(i) From Eq. (4.6), we find

vΦ ¼ 0 or − μ2Φ þ λΦv2Φ þ λΦΔv2Δ ¼ 0: ð4:8Þ

(ii) First, for vΦ ¼ 0 case, from Eqs. (4.6) and (4.7), we
find

vΔ ¼ 0 or vΔ ¼ �
ffiffiffiffiffiffi
μ2Δ
λΔ

s
: ð4:9Þ

For the first case, vΔ ¼ 0, the VEVs are located at
the origin

vΦ ¼ vΔ ¼ 0: ð4:10Þ

SUð2ÞlocalD is unbroken, and SUð2ÞglobalΔ ×
SUð2ÞglobalΦL × SUð2ÞglobalΦR is also unbroken.

For the second case, vΔ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2Δ=λΔ

p
, the VEVs

are given by

vΦ ¼ 0; vΔ ¼ �
ffiffiffiffiffiffi
μ2Δ
λΔ

s
: ð4:11Þ

SUð2ÞlocalD is broken to its subgroup Uð1ÞlocalD , and
Uð1ÞglobalΔ × SUð2ÞglobalΦL × SUð2ÞglobalΦR remains.

(iii) Next we consider the second condition in Eq. (4.8).
From Eq. (4.7), we find

vΔ ¼ 0 or − μ2Δ þ λΔvΔ þ λΦΔv2Φ ¼ 0: ð4:12Þ

For the first case vΔ ¼ 0, we find

vΦ ¼ �
ffiffiffiffiffiffi
μ2Φ
λΦ

s
; vΔ ¼ 0: ð4:13Þ

SUð2ÞlocalD is completely broken. SUð2ÞglobalΦL ×
SUð2ÞglobalΦR is broken to the SUð2ÞglobalΦV custo-
dial symmetry that is the diagonal subgroup
of SUð2ÞglobalΦL × SUð2ÞglobalΦR , so SUð2ÞglobalΔ ×
SUð2ÞglobalΦV remains.

(iv) Finally, we consider the following simultaneous
equations:

0 ¼ −μ2Φ þ λΦv2Φ þ λΦΔv2Δ;

0 ¼ −μ2Δ þ λΔv2Δ þ λΦΔv2Φ: ð4:14Þ

Since the simultaneous equations can be decom-
posed into two quadratic equations of vΦ and vΔ, it
can be solved as

vΦ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΔμ

2
Φ−λΦΔμ

2
Δ

λΔλΦ−λ2ΦΔ

s
; vΔ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΦμ

2
Δ−λΦΔμ

2
Φ

λΔλΦ−λ2ΦΔ

s
;

ð4:15Þ

where all sign combinations exist. SUð2ÞlocalD is
completely broken. SUð2ÞglobalΔ is broken to
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Uð1ÞglobalΔ and SUð2ÞglobalΦL × SUð2ÞglobalΦR is broken to
the SUð2ÞglobalΦV custodial symmetry. Therefore
Uð1ÞglobalΔ × SUð2ÞglobalΦV remains.

We summarize the extrema and saddle points in the
potential given in Eq. (4.4) in Table II. In the table, the
potential energy at each extremum or saddle point, remain-
ing gauge and global symmetry, and a total number of NG
modes are also listed, where V1, V2, V3, and V4 represent
the names of the stationary points and the potential energies
at SUð2ÞlocalD , Uð1ÞlocalD , SUð2ÞglobalΔ × SUð2ÞglobalΦV , and
Uð1ÞglobalΔ × SUð2ÞglobalΦV stationary points, respectively.
Next, we consider the correspondence between the

parameter domain and the symmetry realized in the
vacuum. First of all, the quartic coupling constants λΔ,
λΦ, and λΦΔ must satisfy the following conditions to
stabilize the potential VðvΦ; vΔÞ with finite values of the
VEVs:

λΔ > 0; λΦ > 0; λΔλΦ − λ2ΦΔ > 0: ð4:16Þ

There are four stationary points V1;2;3;4 given in Table II.
They are not always solutions in all parameter regions
because the VEVs vΦ and vΔ are defined as real numbers.
In fact, V1 is a solution in any μ2Φ and μ2Δ region; V2 is a
solution for μ2Δ > 0; V3 is a solution for μ2Φ > 0; and V4 is a
solution for μ2Δ > 0 and μ2Φ > 0.

We will find the true vacuum by comparing the potential
energies of stationary points. When μ2Δ > 0 and μ2Φ > 0, the
potential energy preserving Uð1ÞglobalΔ × SUð2ÞΦV is lower
than the other potential energies preserving SUð2ÞlocalD ,
Uð1ÞlocalD , and SUð2ÞglobalΔ × SUð2ÞglobalΦV because

V4 − V1 ¼ −
�

λΦ
4ðλΔλΦ − λ2ΦΔÞ

�
μ2Δ −

λΦΔ

λΦ
μ2Φ

�
2

þ μ4Φ
4λΦ

�
< 0; ð4:17Þ

V4 − V2 ¼ −
ðλΔμ2Φ − λΦΔμ

2
ΔÞ2

4λΔðλΔλΦ − λ2ΦΔÞ
< 0; ð4:18Þ

V4 − V3 ¼ −
ðλΦμ2Δ − λΦΔμ

2
ΦÞ2

4λΦðλΔλΦ − λ2ΦΔÞ
< 0 ð4:19Þ

from Eq. (4.16). For the other parameter spaces of ðμ2Φ; μ2ΔÞ,
it is easy to find that for μ2Φ < 0 and μ2Δ < 0, SUð2ÞlocalD

is realized at the vacuum; for μ2Φ < 0 and μ2Δ > 0, Uð1ÞlocalD

is realized at the vacuum; for μ2Φ > 0 and μ2Δ < 0,
SUð2ÞglobalΔ × SUð2ÞglobalΦV is realized at the vacuum. The
global symmetry SUð2ÞglobalΔ × SUð2ÞglobalΦL × SUð2ÞglobalΦR
breaking patterns are shown in Fig. 3.

TABLE II. The extrema and saddle points in the potential given in Eq. (4.4) for κ¼0 are shown. The potential energy at each
extremum or saddle point and remaining gauge and global symmetry are also listed. # of NG represents the total number of NG modes.
In the table, the superscript, local/global, is omitted.

Name V1 V2 V3 V4

ðvΦ;vΔÞ (0,0)
�
0;�

ffiffiffiffi
μ2Δ
λΔ

q � �
�

ffiffiffiffi
μ2Φ
λΦ

q
;0
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΔμ

2
Φ−λΦΔμ

2
Δ

λΔλΦ−λ2ΦΔ

r
;�ðΦ↔ΔÞ

�

VðvΦ;vΔÞ 0 − μ4Δ
4λΔ

− μ4Φ
4λΦ

−λΦμ
4
Δ−2λΦΔμ

2
Φμ

2
ΔþλΔμ

4
Φ

4ðλΔλΦ−λ2ΦΔÞ
Gauge symmetry SUð2ÞD Uð1ÞD None None

Global symmetry SUð2ÞΔ×SUð2ÞΦL×SUð2ÞΦR Uð1ÞΔ×SUð2ÞΦL×SUð2ÞΦR SUð2ÞΔ×SUð2ÞΦV Uð1ÞΔ×SUð2ÞΦV
# of NG 0 2 3 5

FIG. 3. The global symmetry SUð2ÞglobalΔ × SUð2ÞglobalΦL × SUð2ÞglobalΦR breaking patterns for κ ¼ 0 are shown. hΣi ≠ 0 and hΔi ≠ 0

represent the SSB by the VEVof Σ and Δ in ð1; 2; 2Þ and ð3; 1; 1Þ of SUð2ÞglobalΔ × SUð2ÞglobalΦL × SUð2ÞglobalΦR , respectively. In the figure,
the superscript, global, is omitted.
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B. With soft symmetry breaking term (κ ≠ 0)

We will now begin analyzing the potential for the case
κ ≠ 0. We take the VEVs of ΣðxÞ and ΔðxÞ given in
Eq. (3.1). Substituting the VEVs into the potential of ΣðxÞ
and ΔðxÞ given in Eq. (2.6)

VðΣ;ΔÞ ¼ −
μ2Φ
2
TrðΣ†ΣÞ − 1

2
μ2ΔTrðΔ2Þ −

ffiffiffi
2

p
κTrðσ3Σ†ΔΣÞ

þ λΦ
4
ðTrðΣ†ΣÞÞ2 þ 1

4
λΔTrðΔ2Þ2

þ 1

2
λΦΔTrðΣ†ΣÞTrðΔ2Þ; ð4:20Þ

the potential is given by

VðvΦ; vη1 ; vη3Þ ¼ −
1

2
μ2Φv

2
Φ −

1

2
μ2Δðv2η1 þ v2η3Þ − κv2Φvη3

þ 1

4
λΦv4Φ þ 1

4
λΔðv2η1 þ v2η3Þ2

þ 1

2
λΦΔv2Φðv2η1 þ v2η3Þ: ð4:21Þ

We recall that the κ term is invariant under SUð2ÞlocalD ,
but breaks SUð2ÞglobalΔ × SUð2ÞglobalΦL × SUð2ÞglobalΦR to
SUð2ÞglobalL ×Uð1ÞglobalR . Therefore, this system is invariant
under SUð2ÞlocalD gauge and SUð2ÞglobalL ×Uð1ÞglobalR global
transformations. Note that ΣðxÞ and ΔðxÞ belong to 2ð�1Þ
and 3ð0Þ of SUð2ÞglobalL ×Uð1ÞglobalR , respectively, where the
numbers in boldface denote SUð2ÞglobalL representation and
numbers in parentheses denote Uð1ÞglobalR charges.
Next, we calculate the first derivatives of the potential

VðvΦ; vη1 ; vη3Þ with respect to vΦ; vη1 ; vη3 .

∂

∂vΦ
VðvΦ; vη1 ; vη3Þ ¼ vΦð−μ2Φ − 2κvη3 þ λΦv2Φ

þ λΦΔðv2η1 þ v2η3ÞÞ;
∂

∂vη1
VðvΦ; vη1 ; vη3Þ ¼ vη1ð−μ2Δ þ λΔðv2η1 þ v2η3Þ þ λΦΔv2ΦÞ;

∂

∂vη3
VðvΦ; vη1 ; vη3Þ ¼ vη3ð−μ2Δ þ λΔðv2η1 þ v2η3Þ

þ λΦΔv2ΦÞ − κv2Φ: ð4:22Þ
From the first derivatives, we find the following stationary
conditions:

0 ¼ vΦð−μ2Φ − 2κvη3 þ λΦv2Φ þ λΦΔðv2η1 þ v2η3ÞÞ; ð4:23Þ

0 ¼ vη1ð−μ2Δ þ λΔðv2η1 þ v2η3Þ þ λΦΔv2ΦÞ; ð4:24Þ

0 ¼ vη3ð−μ2Δ þ λΔðv2η1 þ v2η3Þ þ λΦΔv2ΦÞ − κv2Φ: ð4:25Þ

We analytically solve the simultaneous equations given
by Eqs. (4.23)–(4.25) below.

(i) From Eq. (4.23), we find

vΦ ¼ 0 or

− μ2Φ − 2κvη3 þ λΦv2Φ þ λΦΔðv2η1 þ v2η3Þ ¼ 0:

ð4:26Þ
(ii) First, for vΦ ¼ 0 case, from Eqs. (4.23)–(4.25), we

find

vη1 ¼ vη3 ¼ 0 or − μ2Δ þ λΔðv2η1 þ v2η3Þ2 ¼ 0:

ð4:27Þ
For the first case, the VEVs are located at the origin

vΦ ¼ vη1 ¼ vη3 ¼ 0: ð4:28Þ

SUð2ÞlocalD is unbroken, and SUð2ÞglobalL ×Uð1ÞglobalR
is also unbroken.

For the second case, we can take the following
VEVs by using the SUð2ÞglobalL transformation:

vΦ ¼ 0; vη1 ¼ 0; vη3 ¼ �
ffiffiffiffiffiffi
μ2Δ
λΔ

s
: ð4:29Þ

SUð2ÞlocalD is broken to its subgroup Uð1ÞlocalD , and
Uð1ÞglobalL × Uð1ÞglobalR remains.

(iii) Next we consider the second condition in Eq. (4.26).
From Eq. (4.24), we find

vη1 ¼ 0 or − μ2Δ þ λΔðv2η1 þ v2η3Þ þ λΦΔv2Φ ¼ 0:

ð4:30Þ
From Eq. (4.25), the above second condition leads to
κ ¼ 0, but due to κ ≠ 0, vη1 ¼ 0. For vΦ ≠ 0 and
vη1 ¼ 0, we need to solve the following simulta-
neous equations:

0 ¼ −μ2Φ − 2κvη3 þ λΦv2Φ þ λΦΔv2η3 ; ð4:31Þ

0 ¼ vη3ð−μ2Δ þ λΔv2η3 þ λΦΔv2ΦÞ − κv2Φ: ð4:32Þ

The solutions of the simultaneous equations lead to
vΦ ≠ 0 and vη3 ≠ 0, so the vacuum of these solutions

breaks SUð2ÞglobalL ×Uð1ÞglobalR to Uð1ÞglobalV .
The simultaneous equations in Eqs. (4.31) and

(4.32) can be decomposed into a cubic equations for
vη3 and a quadratic equation for vΦ. From the
vacuum solutions listed in Table II and the soft
symmetry breaking κ term, the three solutions of
the cubic equation correspond to one SUð2ÞglobalΔ ×
SUð2ÞglobalΦV and two Uð1ÞglobalΔ × SUð2ÞglobalΦV global
symmetry vacuum solutions in the κ ¼ 0 case. We
can solve the exact solutions of the simultaneous
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equations because of just cubic and quadratic
equations, but they are too complicated to show
here. Instead, we can find approximate solutions
to the simultaneous equations by using the solu-
tions around the SUð2ÞglobalΔ × SUð2ÞglobalΦV and
Uð1ÞglobalΔ × SUð2ÞglobalΦV vacuum solutions. The de-
tailed values are not important for the discussion
here, so we omit the particular form, but there are
solutions around the κ ¼ 0 solution in Table II as
follows. From the solution for the SUð2ÞglobalΔ ×
SUð2ÞglobalΦV vacuum in the κ ¼ 0 case,

vΦ ¼ �
ffiffiffiffiffiffi
μ2Φ
λΦ

s
þOðκÞ; vη3 ¼ OðκÞ: ð4:33Þ

From the solution for the Uð1ÞglobalΔ × SUð2ÞglobalΦV
vacuum in the κ ¼ 0 case,

vΦ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΔμ

2
Φ − λΦΔμ

2
Δ

λΔλΦ − λ2ΦΔ

s
þOðκÞ;

vη3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΦμ

2
Δ − λΦΔμ

2
Φ

λΔλΦ − λ2ΦΔ

s
þOðκÞ: ð4:34Þ

Next, we consider the correspondence between the
parameter domain and the symmetry realized in the
vacuum. Since the κ term does not affect the shape of
the potential at infinity, the constraint of the parameter
region from the stability condition to potential is the same
for κ ≠ 0 as for κ ¼ 0, which is given in Eq. (4.16). In the
region where κ can be treated perturbatively, the true
vacuum does not change, so the results for the case κ ¼
0 are applicable. Therefore, for ∀ μ2Φ and μ2Δ > 0, Uð1ÞglobalV
is realized at the vacuum; for μ2Φ < 0 and μ2Δ < 0,
SUð2ÞlocalD is realized at the vacuum; for μ2Φ < 0 and
μ2Δ > 0, Uð1ÞlocalD is realized at the vacuum. The extrema
and saddle points in the potential are summarized in
Table III. The global symmetry SUð2ÞglobalΔ × SUð2ÞglobalΦL ×
SUð2ÞglobalΦR breaking patterns are shown in Fig. 4.
Before investigating the mass spectra of the scalar

sectors, we comment on the would-be NG and pNG modes.
For VI of Table III, there are no NG modes. For VII, there
are two NG modes, and they are absorbed by the
SUð2ÞlocalD =Uð1ÞlocalD gauge bosons. For VIII, there are three
NG modes, and they are absorbed by the SUð2ÞlocalD gauge
bosons. For VIV, there are five NG modes. Three of the
five NG modes are absorbed in the SUð2ÞlocalD gauge boson.

FIG. 4. The global symmetry SUð2ÞglobalΔ × SUð2ÞglobalΦL × SUð2ÞglobalΦR breaking patterns for κ ≠ 0 are shown. The κ term stands for a
soft symmetry breaking term; hΣi ≠ 0 and hΔi ≠ 0 represent the SSB by the VEVs of Σ and Δ in ð1; 2; 2Þ and ð3; 1; 1Þ of
SUð2ÞglobalΔ × SUð2ÞglobalΦL × SUð2ÞglobalΦR . ð1; 2; 2Þ and ð3; 1; 1Þ of SUð2ÞglobalΔ × SUð2ÞglobalΦL × SUð2ÞglobalΦR are decomposed into two 2 and
one 3 of SUð2ÞL, respectively. In the figure, the superscript, global, is omitted.

TABLE III. The extrema and saddle points in the potential given in Eq. (4.21) for κ ≠ 0 are shown. The potential
energy at each extremum or saddle point and remaining gauge and global symmetry are also listed, where vη1 ¼ 0. #
of NG represents the total number of NG and pNGBmodes. In the table, the superscript, local/global, is omitted. For
Uð1ÞglobalV case, we omit OðκÞ if there is already a value greater than κ.

Name VI VII VIII VIV

ðvΦ; vη3Þ (0,0)
�
0;�

ffiffiffiffi
μ2Δ
λΔ

q � �
�

ffiffiffiffi
μ2Φ
λΦ

q
; OðκÞ

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΔμ

2
Φ−λΦΔμ

2
Δ

λΔλΦ−λ2ΦΔ

r
;�ðΦ ↔ ΔÞ

�

VðvΦ; vη3Þ 0 − μ4Δ
4λΔ

− μ4Φ
4λΦ

− λΦμ
4
Δ−2λΦΔμ

2
Φμ

2
ΔþλΔμ

4
Φ

4ðλΔλΦ−λ2ΦΔÞ
Gauge symmetry SUð2ÞD Uð1ÞD None

Global symmetry SUð2ÞL × Uð1ÞR Uð1ÞL × Uð1ÞR Uð1ÞV
# of NG 0 2 3 5
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The remaining two NG modes are real scalar modes with
Uð1ÞglobalV charges and are identified as one complex scalar.
As can be seen from the above discussion, a charged

pNGB that can be regarded as a DM appears only when
μ2Φ > 0 and μ2Δ > 0. In the following, we consider such
a case.

V. MASS SPECTRUM

Here we investigate the mass spectra of the scalar fields
ΣðxÞ (or ΦðxÞ), ΔðxÞ, and HðxÞ for the parameter region
μ2Φ > 0 and μ2Δ > 0, where Uð1ÞglobalV symmetry is realized
at a vacuum. In particular, we confirm that there is a
Uð1ÞglobalV charged complex scalar with a mass proportional
to the κ parameter. It corresponds to the pNG mode, which
will be regarded as a DM candidate.
First, we check the potential terms associated with Σ and

Δ. Here we consider the following field expression at the
vacuum:

ΔðxÞ ¼ 1ffiffiffi
2

p
�
vΔ þ η3 η1 − iη2
η1 þ iη2 −vΔ − η3

�
;

ΣðxÞ ¼ 1ffiffiffi
2

p
�
vΦ þ ϕ3 − iϕ4 ϕ1 þ iϕ2

ϕ1 − iϕ2 vΦ þ ϕ3 þ iϕ4

�
; ð5:1Þ

where we denote the VEVof η3 as vΔ, and the values of vΔ
and vΦ for κ → 0 are given in Eq. (4.34). In our convention,
the generator of the remainingUð1ÞglobalV corresponds to the
σ3 direction. Therefore, η1, η2, ϕ1, and ϕ2 have the same

Uð1ÞglobalV charge, while η3, ϕ3, and ϕ4 have no Uð1ÞglobalV

charge. The Uð1ÞglobalV charge of fields can be checked by
using, e.g., the generator of the Uð1ÞglobalV charge σ3.
The stationary conditions in Eqs. (4.31) and (4.32) for

vΦ; vΔ ≠ 0 can be written as

μ2Φ ¼ −2κvΔ þ λΦv2Φ þ λΦΔv2η3 ; ð5:2Þ

μ2Δ ¼ λΔv2Δ þ λΦΔv2Φ − κ
v2Φ
vΔ

; ð5:3Þ

where we replaced vη3 as vΔ.
Substituting Eqs. (5.1)–(5.3) into the potential VðΣ;ΔÞ

given in Eq. (4.20), the potential is given as

Vðη1; η2; η3;ϕ1;ϕ2;ϕ3;ϕ4Þ ¼ V0 þ V2 þ V3 þ V4; ð5:4Þ

where V stands for VIV in Table III, and the subscript of Vj

(j ¼ 0, 2, 3, 4) denotes the mass dimension of the operator.
Note that the tadpole term of the potential V1 disappears
from the stationary conditions. The constant terms of the
potential of the real scalar fields ðη1; η2; η3;ϕ1;ϕ2;ϕ3;ϕ4Þ
are given by

V0 ¼ −
1

4
ðλΔv4Δ þ λΦv4Φ þ 2λΦΔv2Δv

2
Φ − 2κvΔv2ΦÞ: ð5:5Þ

The quadratic terms are given by

V2 ¼
1

2
ðϕ1 η1 Þ

� 4κvΔ 2κvΦ

2κvΦ
v2Φ
vΔ
κ

��
ϕ1

η1

�
þ 1

2
ðϕ2 η2 Þ

� 4κvΔ −2κvΦ

−2κvΦ
v2Φ
vΔ
κ

��
ϕ2

η2

�

þ 1

2
ðϕ3 η3 Þ

� 2λΦv2Φ 2λΦΔvΦvΔ − 2vΦκ

2λΦΔvΦvΔ − 2vΦκ 2λΔv2Δ þ v2Φ
vΔ
κ

��
ϕ3

η3

�
þ 0 × ϕ2

4: ð5:6Þ

Since the determinant of ðη1;ϕ1Þ is zero, one of the eigenvalues is zero. Furthermore, if κ is set to zero, both eigenvalues are
zero. The same is true for ðη2;ϕ2Þ. Since the determinant of ðη3;ϕ3Þ is non-zero, even for κ → 0 zero eigenvalues do not
appear. Instead of it, a Uð1ÞglobalV neutral scalar field ϕ4 is always massless. Therefore, we find that one of the two linear
combinations of η1 and ϕ1 is an NG mode that is absorbed by an SUð2ÞlocalD gauge boson, and the other is a pNG mode. The
same is true for η2 and ϕ2. ϕ4 is an NG mode, and η3 and ϕ3 are Higgs modes. Similarly, the cubic and quartic terms are
given by

V3 ¼ 2κðη1ϕ1ϕ3 − η2ϕ2ϕ3 þ η2ϕ1ϕ4 þ η1ϕ2ϕ4Þ þ κη3ðϕ2
1 þ ϕ2

2 − ϕ2
3 − ϕ2

4Þ
þ λΔvΔη3ðη21 þ η22 þ η23Þ þ λΦvΦϕ3ðϕ2

1 þ ϕ2
2 þ ϕ2

3 þ ϕ2
4Þ

þ λΦΔvΔη3ðϕ2
1 þ ϕ2

2 þ ϕ2
3 þ ϕ2

4Þ þ λΦΔvΦϕ3ðη21 þ η22 þ η23Þ; ð5:7Þ

V4 ¼
1

4
λΔðη21 þ η22 þ η23Þ2 þ

1

4
λΦðϕ2

1 þ ϕ2
2 þ ϕ2

3 þ ϕ2
4Þ2 þ

1

2
λΦΔðη21 þ η22 þ η23Þðϕ2

1 þ ϕ2
2 þ ϕ2

3 þ ϕ2
4Þ: ð5:8Þ
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For the calculation of the scattering amplitudes of SM
particles and a charged pNGB in the next section, here we
switch on the scalar field H in 2 of SUð2ÞlocalW listed in
Table I and rewrite charged scalar fields as follows:

H ¼ 1ffiffiffi
2

p
�

0

vþ h

�
; ϕð�Þ ≔

1ffiffiffi
2

p ðϕ1 � iϕ2Þ;

ηð�Þ ≔
1ffiffiffi
2

p ðη1 ∓ iη2Þ; ð5:9Þ

where the subscripts (positive and negative signs) enclosed
in parentheses indicate the sign of the Uð1ÞV charge,
and v stands for the VEV of the SM Higgs boson, which
breaks SUð2ÞlocalW ×Uð1ÞlocalY into Uð1ÞlocalEM . In the rest of
this section, we will examine the mass matrix when a

Uð1ÞglobalV neutral scalar field h is added to the mass matrix
given in Eq. (5.6), where the field h is a main component of
the SM Higgs boson.
First, we consider the mass eigenstates for the Uð1ÞglobalV

charged scalar fields ϕ1;2 and η1;2. When we rewrite ϕ1;2

and η1;2 in terms of ϕð�Þ and ηð�Þ as in Eq. (5.9), the mass
term of ϕ1;2 and η1;2 given in Eq. (5.6) can be rewritten as

V2 ∋
1

2
ðϕð∓Þ ηð∓Þ ÞM2

C

�
ϕð�Þ
ηð�Þ

�
; M2

C ≔
�4κvΔ 2κvΦ

2κvΦ
v2Φ
vΔ
κ

�
:

ð5:10Þ

The above mass matrix can be easily diagonalized, and the
mass and mixing matrix are given by

mGð�Þ ¼ 0; m2
φ ¼ κ

�
4vΔ þ v2Φ

vΔ

�
;

�
Gð�Þ
φð�Þ

�
≔

�
cos β sin β

− sin β cos β

��
ϕð�Þ
ηð�Þ

�
; ð5:11Þ

where

sin β ¼ vΦffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Φ þ 4v2Δ

p ; cos β ¼ 2vΔffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Φ þ 4v2Δ

p ; ð5:12Þ

Gð�Þ is the would-be NG modes of SUð2ÞlocalD , and φð�Þ is a Uð1ÞglobalV charged scalar mode that is a pNG mode of

SUð2ÞglobalV =Uð1ÞglobalV , which will be identified as a DM.
Second, even when h exists, there is no mass mixing of ϕ4 and h, so ϕ4 remains massless. That is, ϕ4 is a would-be NG

mode of SUð2ÞlocalD . Further, ϕ4 has no charge of Uð1ÞlocalD and Uð1ÞglobalV . Therefore, ϕ4 can be identified with the neutral
NG mode G0.

Finally, the mass matrix of a Uð1ÞglobalV neutral sector ðη3;ϕ3; hÞ is given by

M2
H ≔

0
BB@

2λHv2 λHΦvvΦ 2λHΔvvΔ
λHΦvvΦ 2λΦv2Φ 2λΦΔvΦvΔ − 2vΦκ

2λHΔvvΔ 2λΦΔvΦvΔ − 2vΦκ 2λΔv2Δ þ v2Φ
vΔ
κ − 2vΦκ

1
CCA: ð5:13Þ

Since this mass matrix is a real symmetric matrix, it
can be diagonalized by a unitary matrix (orthogonal
matrix) UH, where U†

HUH ¼ I and U†
H ¼ UT

H. That is,
UHM2

HU
†
H ¼ ðM2

HÞdiag, where ðM2
HÞdiag is a 3 × 3 diagonal

matrix. The mass eigenstates can be expressed from the
original basis as follows:0

B@
h1
h2
h3

1
CA ≔ UH

0
B@

h

ϕ3

η3

1
CA; ð5:14Þ

where hj (j ¼ 1, 2, 3) are mass eigenstates with no

Uð1ÞglobalV charge, and h1 is identified as the observed
SM Higgs mode with a mass of about 125 GeV. The exact
eigenvalues and eigenvectors are too complicated to show

here. Instead of it, we show the approximate mass eigen-
values and mass mixing matrix when vΔ is sufficiently
larger than v and vΦ. For vΔ ≫ vΦ; v, the mixing matrix
UH is given by

UH ¼

0
BBB@

1 0 − λHΔv
λΔvΔ

0 1 − λΦΔvΦ
λΔvΔ

λHΔv
λΔvΔ

λΦΔvΦ
λΔvΔ

1

1
CCCA
0
B@

cos α sin α 0

− sin α cos α 0

0 0 1

1
CA

þO

�
v2

v2Δ
;
v2Φ
v2Δ

�
;

tan 2α ≃
2vvΦðλHΦλΦ − λHΔλΦΔÞ

v2ðλ2HΔ − λHλΔÞ − v2Φðλ2SΦ − λΦλΔÞ
: ð5:15Þ
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The mass eigenvalues for hi are given by

m2
h1
≃ λHv2 −

λ2HΔλΦ − 2λHΦλHΔλΦΔ þ λΔλ
2
HΦ

λΦλΔ − λ2ΦΔ
v2Φ;

m2
h2
≃
λΦλΔ − λ2ΦΔ

λΔ
v2Φ þ ðλΔλHΦ − λHΔλΦΔÞ2

λΔðλΦλΔÞ − λ2ΔΦ
v2;

m2
h3
≃ λΔv2Δ: ð5:16Þ

Here we comment on the mass matrix in Eq. (5.13). The
similar mass matrix has been analyzed in GSM ×Uð1ÞB−L
and SOð10Þ pNGB DM models Refs. [22,23,29,30], but
only the case vΔ ≫ vΦ; v such as vΔ > Oð1010Þ GeV and
vΦ; v ¼ Oð102Þ GeV is allowed in those models due to the
DM stability problem. In this model, the stability of the DM
is guaranteed by Uð1Þ, but when we identify φð�Þ as the
DM, the direct detection leads to some constraints, which
we will discuss in the next section.

VI. DIRECT DETECTION AND RELIC
ABUNDANCE

In this section, we will show how the model intro-
duced in Sec. II is constrained by various DM experi-
ments. Firstly, we study the scattering amplitudes of a
DM candidate φð�Þ and SM fermions via the SM Higgs
and additional scalar fields shown in Fig. 5. In the
original pNGB DM model (Ref. [14] for Abelian and
Ref. [31] for non-Abelian case), the soft breaking term is
a scalar bilinear term and gives only an origin of pNGB
DM mass term. Such soft breaking terms preserve a
nature of NGB for DM and gives derivative portal

interactions, resulting in vanishing DM-nucleon scattering
amplitudes in t → 0 limit. In the model we introduced in
Sec. II, however, the soft breaking term found in
Eq. (4.20) is a scalar trilinear term, and gives not only
an origin of pNGB DM mass term but also additional
hiφðþÞφð−Þ portal interactions proportional to soft break-
ing parameter κ, just like Refs. [22,29]. These portal
interactions give rise to new contribution in addition to
canceling diagrams, resulting in a nonzero DM-nucleon
scattering process even in t → 0 limit. Therefore, we
must look into parameter regions that escape direct
detection constraints.
Apart from the vanishing part in t → 0 limit, the DM-

nucleon scattering amplitude Add in our model is propor-
tional to soft breaking parameter κ, which is replaced with
the DM mass mφ by using Eq. (5.11) as

Add∝∼
m2

φ

4v2Δ

mf

v

	
vΦ sin 2αz

�
1

m2
h1

−
1

m2
h2

�
þ 4vΔ

�
−

1

m2
h1

αy cos αz þ
1

m2
h2

αx sin αz

�

; ð6:1Þ

where mf denotes the mass of SM fermions f; αx, αy, and αz stand for the mixing angles of ϕ3-η3, h-η3, and h-ϕ3,
respectively;

0
B@

h1
h2
h3

1
CA ¼

0
B@

1 0 0

0 cos αx sin αx
0 − sin αx cos αx

1
CA
0
B@

cos αy 0 sin αy
0 1 0

− sin αy 0 cos αy

1
CA
0
B@

cos αz sin αz 0

− sin αz cos αz 0

0 0 1

1
CA
0
B@

h

ϕ3

η3

1
CA: ð6:2Þ

Note that the mixing angles αx and αy are expressed in
terms of VEVs of the scalar fields and four point interaction
coefficients as

αx ≃ −
λHΔv
λΔvΔ

; αy ≃ −
λΦΔvΦ
λΔvΔ

: ð6:3Þ

Note also that we retain only the first order term for v=vΔ
or vΦ=vΔ in Eq. (6.1). See Appendix for the detailed
derivation.

As commented in the previous section, the previous
models such as GSM × Uð1ÞB−L and SOð10Þ pNGB
DM models required a very high vΔ due to DM longevity.
The high vΔ also brings about a small DM-nucleon
scattering amplitude, because it is suppressed by 1=v2Δ.
In this model, on the other hand, the stability of the DM
is guaranteed by Uð1ÞV, so vΔ is expected to be allowed to
be a much smaller scale than Oð1010Þ GeV, as we will
see later.

FIG. 5. Tree-level scattering of φð�Þ and the SM fermions f via
the scalar fields h;ϕ3; η3 is shown.
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In the remainder of this section, we compare the spin-
independent (SI) DM-nucleon cross section σSI and show
limitations on vΔ from recent DM experiments [45,46].
In the model, the SI cross section σSI is approximately
given by

σSI ≃
1

16π

�
m2

φ

2v2Δ

mf

v

	
vΦ sin 2αz

�
1

m2
h1

−
1

m2
h2

�

þ 4vΔ

�
−

1

m2
h1

αy cos αz þ
1

m2
h2

αx sin αz

�
�
2

×
m4

pf2N
ðmφ þmpÞ2

; ð6:4Þ

where the proton mass mp ≃ 0.938 GeV, and fN ≃ 0.3.
Note that we retain only the first order term for v=vΔ
or vΦ=vΔ in Eq. (6.4). For the conversion formula from
DM-quark scattering to DM-nucleon scattering, see
e.g., Ref. [47].
The thermal relic abundance of DM in a model that can

be regarded as a low-energy effective description of this
model has been calculated in Ref. [31], and it has been
shown that the observed value can be reproduced when
the DM mass satisfies the condition mDM ≳mh1=2.
Furthermore, there is a constraint from Higgs invisible
decay when the DM mass is less than half of the Higgs
boson mass. Therefore, in the following, we mainly focus
on regions where the DM mass is more than half the Higgs
boson mass: mφ ≳mh1=2.
As a benchmark parameter set, we fix mass parameters

for the second and third neutral Higgs fields as mh2 ¼
300 GeV and mh3 ¼ 500 GeV, respectively. We take a
sample set ðsin αx; sin αy; sin αzÞ ¼ ð0.06; 0.05; 0.1Þ. We
assume that SUð2ÞD gauge bosons are heavy.
In Fig. 6, we show allowed parameter regions consistent

with various experimental constraints, varying the ratio of
the SUð2ÞD doublet and triplet VEV as vΦ=vΔ ¼ 1=4 and
1=10. Solid lines express parameter contours reproducing
an observed DM energy density, Ωh2 ¼ 0.12. Three dips in
solid lines correspond to the resonance contributions from
h1, h2, and h3. Therefore, they locate at the half of their
masses, mh1=2 ¼ 62.5 GeV, mh2=2 ¼ 150 GeV, and
mh3=2 ¼ 250 GeV, respectively. The small depression at
mφ ¼ 300 GeV is due to the opening of a new annihilation
channel, φðþÞφð−Þ → h2h2. Dashed lines represent con-
straints from a direct detection LUX-ZEPLIN experiment
[46] recasted to the upper limit for the VEV ratio v=vΦ. The
direct detection constraints become tight at large DM mass
region. That is because the DM-nucleon scattering ampli-
tude is proportional to a soft-breaking parameter, namely,
the DM mass square m2

φ, as we show in Eq. (6.1). The gray
shaded region satisfies mZ0 < 2mφ with mZ0 being mass of
the SUð2ÞD neutral gauge boson. In this region, the SUð2ÞD
neutral gauge boson can also become DM candidate, which

is not dealt with in this analysis for simplicity. The purple
shaded region is excluded by Higgs invisible decay con-
straints [48]. The Higgs invisible decay width in this model
shows vΦ=vΔ-dependence only through subleading terms.
Therefore, the excluded region colored in purple is
common for VEV ratio vΦ=vΔ ¼ 1=4 and 1=10.
We apply the same method in Refs. [47,49,50] to

calculate the DM-nucleon scattering cross-sections and
thermally averaged total annihilation cross sections. We
find that the relic abundance does not change so much
when we vary the VEV ratio vΦ=vΔ. We also find that there
are plenty of allowed parameter regions which escape the
direct detection constraints and reproduce a correct DM
relic abundance at the same time.

VII. SUMMARY AND DISCUSSIONS

We proposed a new pNGB DM model based on non-
Abelian gauge symmetry SUð2ÞD, in which scalars in 2 and
3 of SUð2ÞD are introduced. We analyzed the structure of
the symmetry and its breaking patterns in detail by
analyzing the scalar potential. We found that when the
mass parameters of the scalars μ2Φ and μ2Δ are positive in our
convention, the SUð2ÞD gauge symmetry is spontaneously
broken to the exactUð1ÞV global symmetry by the VEVs of
the scalars in 2 and 3 of SUð2ÞD. The charged pNGB under

FIG. 6. Constraints from a direct detection experiment and a
prediction for the relic abundance in our SUð2Þ pNGB DM
model. Solid lines express a parameter contour corresponding to
Ωh2 ¼ 0.12, while dashed line represents a direct detection
constraints from the LUX-ZEPLIN experiment [46]. The gray
shaded region is the region where the SUð2ÞD neutral gauge
boson can also become DM candidate, which is not dealt with in
this analysis for simplicity. The purple shaded region is excluded
by Higgs invisible decay constraints [48].
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the Uð1ÞV custodial symmetry appears, and is identified as
DM. The stability of the DM is guaranteed by the exact
Uð1ÞV custodial symmetry. From Fig. 6, we showed
that the relic abundance is correctly reproduced while
escaping the severe constraints from the direct detection
experiments.
We comment on the additional SUð2ÞD gauge symmetry

breaking scale. In the GSM ×Uð1ÞB−L and SOð10Þ pNGB
DM models [22,23,29,30], the VEV of the additional
Uð1ÞB−L gauge symmetry breaking scale must be higher
than Oð1010Þ GeV to suppress DM decay rate, while in
our new pNGB DM model the VEV of SUð2ÞD breaking
scale is allowed to be roughly Oð1Þ TeV or higher due to
the stability of DM guaranteed by the Uð1ÞV custodial
symmetry. Complementary verification by accelerator
experiments may be possible in some parameter regions
in our model.
In the SUð2Þg ×Uð1ÞX pNGB DM model [31], it has

been pointed out that an additional gauge coupling of
Uð1ÞX is not asymptotically free and there is a Landau pole
in the high-energy region, so this problem can be tackled by
extending to SUð2Þ gauge theory. However, it is not enough
to extend the additional gauge sector part to non-Abelian
gauge symmetry because the SM gauge group includes an
Abelian gauge symmetry Uð1ÞY. To address this issue, we
have to discuss extensions to grand unified theory (GUT)
[37,51,52]. The extension of this model to GUT models
will be left as future work.
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APPENDIX: DM-QUARK SCATTERING
AMPLITUDE

We will derive DM-quark scattering amplitude given in
Eq. (6.1). The scalar kinetic terms K and scalar potential V
parts of the Lagrangian in Eq. (2.1) are given as

K ¼ ðDμHÞ†DμH þ 1

2
TrððDμΣÞ†DμΣÞ þ 1

2
TrðDμΔDμΔÞ;

ðA1Þ

V ¼ −μ2HH†H −
1

2
μ2ΦTrðΣ†ΣÞ − 1

2
μ2ΔTrðΔ2Þ

−
ffiffiffi
2

p
κTrðσ3Σ†ΔΣÞ þ λHðH†HÞ2

þ λΦ
4
ðTrðΣ†ΣÞÞ2 þ λΔ

4
ðTrðΔ2ÞÞ2

þ λHΦ

2
ðH†HÞTrðΣ†ΣÞ þ λHΔ

2
ðH†HÞTrðΔ2Þ

þ λΦΔ

2
TrðΣ†ΣÞTrðΔ2Þ; ðA2Þ

where Σ ¼ ðΦ̃;ΦÞ and Δ are SUð2ÞlocalD bi-doublet and real
triplet fields, respectively.
For deriving relevant interactions for DM-quark scatter-

ing amplitude, we adopt nonlinear basis, because in the
nonlinear basis, the Higgs-portal interactions only come
from kinetic terms in Eq. (A1) and the soft breaking term in
the first line of Eq. (A2), which makes derivation of
DM-quark scattering amplitude much easier than that in
the linear basis. Note that the result Eq. (6.1) is the same
regardless of whether we choose a linear or no-linear basis.
The polar decomposition for bidoublet and real triplet fields
are given as

Σ ¼ vΦ þ ϕ3ffiffiffi
2

p ξΣ with

ξΣ ¼ exp

�
i
vΦ

ðϕðþÞσðþÞ þ ϕð−Þσð−Þ þ ϕ4σ3Þ
�
; ðA3Þ

Δ ¼ vΔ þ η3ffiffiffi
2

p ξ†Δσ3ξΔ with

ξΔ ¼ exp

�
−

i
2vΔ

ðηðþÞσðþÞ þ ηð−Þσð−ÞÞ
�
; ðA4Þ

where vΦ, and vΔ are VEVs for each scalar field. σð�Þ is
expressed in terms of the first and second Pauli matrices as
σð�Þ ¼ ðσ1 ∓ iσ2Þ=

ffiffiffi
2

p
. Note that SUð2Þ generators σð�Þ,

σ3 satisfy the normalization conditions TrðσðþÞσðþÞÞ ¼
Trðσð−Þσð−ÞÞ ¼ 0, TrðσðþÞσð−ÞÞ ¼ Trðσ3σ3Þ ¼ 2, and
bidoublet and real triplet fields satisfy

TrðΣ†ΣÞ ¼ ðvΦ þ ϕ3Þ2; TrðΔ2Þ ¼ ðvΔ þ η3Þ2: ðA5Þ

We evaluate scattering amplitudes of the DM φð�Þ and
the SM fermions f shown in Fig. 5. Substituting polar
decompositions Eqs. (A3) and (A4) into the potential V and
kinetic terms K given in Eqs. (A1) and (A2), and extracting
cubic scalar interactions relevant to DM-fermion scattering,
we get
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−VNL ⊃ −
2

vΦ
ϕ3ðϕð−Þ; ηð−ÞÞM2

C

�
ϕðþÞ
ηðþÞ

�

−
1

vΔ
η3ðϕð−Þ; ηð−ÞÞM2

C

�
ϕðþÞ
ηðþÞ

�
; ðA6Þ

KNL ⊃
�
1þ ϕ3

vΦ

�
2

∂μϕðþÞ∂μϕð−Þ þ
�
1þ η3

vΔ

�
2

∂μηðþÞ∂μηð−Þ:

ðA7Þ

where M2
C is given in Eq. (5.10). The cubic interactions

in Eq. (A6) can be rewritten in terms of mass eigenstate
φð�Þ as

−VNL ⊃
�
−2

m2
φ

vΦ
ϕ3 −

m2
φ

vΔ
η3

�
φðþÞφð−Þ: ðA8Þ

The cubic interactions in Eq. (A7) can be rewritten in terms
of φð�Þ as

KNL ⊃ 2

�
sin2 β
vΦ

ϕ3 þ
cos2 β
vΔ

η3

�
∂μφðþÞ∂μφð−Þ

¼
�

2

vΦ
ϕ3 þ

1

vΔ
η3

�
∂μφðþÞ∂μφð−Þ

−
�
2

vΦ
v2Φ þ 4v2Δ

ϕ3 þ
1

vΔ

4v2Δ − v2Φ
v2Φ þ 4v2Δ

η3

�
∂μφðþÞ∂μφð−Þ:

ðA9Þ

Combining the first term in the last line of Eq. (A9) with
Eq. (A8), we get3

�
2

vΦ
ϕ3 þ

1

vΔ
η3

�
∂μφðþÞ∂μφð−Þ

−
�
2
m2

φ

vΦ
ϕ3 þ

m2
φ

vΔ
η3

�
φðþÞφðþÞ

¼
�

2

vΦ
ϕ3 þ

1

vΔ
η3

�	
−
1

2
ð½∂2 þm2

φ�φðþÞÞφð−Þ

−
1

2
φðþÞð½∂2 þm2

φ�φð−ÞÞ



þ
�

2

vΦ
ð∂2ϕ3Þ þ

1

vΔ
ð∂2η3Þ

�
φðþÞφð−Þ: ðA11Þ

We find that all the terms appearing in Eq. (A11) are
irrelevant to the DM-fermion scattering in direct detection;
the first line vanishes due to on-shell conditions for pNGB
DM; the second line gives contributions proportional to
momentum-transfer t ¼ ðp2 − p1Þ2 with p1;2 being in-
coming and out-going DM momentum. This will also
vanish when we take t → 0 limit.
The remaining cubic interaction relevant to DM-fermion

scattering shown in Fig. 5 is the second term of Eq. (A9):

KNL ⊃ −
�
2

vΦ
v2Φ þ 4v2Δ

ϕ3 þ
1

vΔ

4v2Δ − v2Φ
v2Φ þ 4v2Δ

η3

�
∂μφðþÞ∂μφð−Þ:

ðA12Þ

Note that this term decouples when we assume vΔ ≫ vΦ.
Further, by using the relation in Eq. (A10), we obtain

LNL ⊃ −
1

2

�
2

vΦ
v2Φ þ 4v2Δ

∂
2ϕ3 þ

1

vΔ

4v2Δ − v2Φ
v2Φ þ 4v2Δ

∂
2η3

�
φðþÞφð−Þ

þ 1

2

�
2

vΦ
v2Φ þ 4v2Δ

ϕ3 þ
1

vΔ

4v2Δ − v2Φ
v2Φ þ 4v2Δ

η3

�
× ðð∂2φðþÞÞφð−Þ þφðþÞð∂2φð−ÞÞÞ; ðA13Þ

where we ignored the total derivative. The first term
vanishes for t → 0 limit. By replacing ∂

2φð�Þ to m2
φφð�Þ,

the effective DM-scalar interaction for the DM-fermion
scattering becomes for t → 0

�
2

vΦ
v2Φ þ 4v2Δ

ϕ3 þ
1

vΔ

4v2Δ − v2Φ
v2Φ þ 4v2Δ

η3

�
m2

φφðþÞφð−Þ

≕ ð κφφh κφφϕ3
κφφη3 Þ

0
B@

h

ϕ3

η3

1
CAφðþÞφð−Þ; ðA14Þ

where

3To obtain Eq. (A11), we used

ρ∂μφðþÞ∂μφð−Þ ¼
1

2
∂μ½ρð∂μφðþÞÞφð−Þ þ ρφðþÞð∂μφð−ÞÞ

− ð∂μρÞφðþÞφð−Þ� þ
1

2
ð∂2ρÞφðþÞφð−Þ

−
1

2
ρð∂2φðþÞÞφð−Þ −

1

2
ρφðþÞð∂2φð−ÞÞ ðA10Þ

with ρ ¼ ϕ3; η3. Total derivative terms in the first line of
Eq. (A10) are irrelevant, so we dropped them in Eq. (A11).
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0
B@

κφφh

κφφϕ3

κφφη3

1
CA ¼ m2

φ

v2Φ þ 4v2Δ

0
B@

0

2vΦ
4v2Δ−v

2
Φ

vΔ

1
CA: ðA15Þ

Next, Yukawa interaction terms of the scalar fields and
SM fermions f on the vacuum are given by

mf

v
hff ¼ mf

v
ð 1 0 0 Þ

0
B@

h

ϕ3

η3

1
CAf̄f; ðA16Þ

wheremf stands for a mass parameter of the SM fermion f.
By using the DM-scalar and scalar-fermion interactions

in Eqs. (A15) and (A16), we find that the scattering
amplitude shown in Fig. 5 for t → 0 is given by

Add ∝∼ ð κφφh κφφϕ3
κφφη3 ÞðM2

HÞ−1
mf

v

0
B@

1

0

0

1
CA; ðA17Þ

where ðM2
HÞ−1 ¼ U−1

H ½ðM2
HÞdiag�−1UH; the approximate

form of UH for vΔ ≫ vΦ; v is given in Eq. (5.15).
Substituting Eq. (A15) into Eq. (A17), we get

Add ∝∼
m2

φ

4v2Δ

mf

v

	
vΦ sin 2αz

�
1

m2
h1

−
1

m2
h2

�

þ 4vΔ

�
−

1

m2
h1

αy cos αz þ
1

m2
h2

αx sin αz

�

; ðA18Þ

which is identical to Eq. (6.1).
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