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We present the full one-loop supersymmetry-QCD corrections to stop-antistop annihilation into gluons
and light quarks within the Minimal Supersymmetric Standard Model including Sommerfeld enhancement
effects from the exchange of multiple gluons between the incoming particles. These corrections are
important as stop (co)annihilation becomes the dominant contribution to the relic density for scenarios with
a small mass difference between the neutralino and the stop which are less constrained by current LHC
searches and consistent with the observation of a 125 GeV SM-like Higgs boson. We discuss important
technical details of our one-loop, real emission, and resummation calculations where we pay particular
attention to the cancellation of infrared divergences and the associated application of the dipole formalism
for massive initial scalars. The corrections have been implemented in the dark matter precision tool
DM@NLO which allows us to study numerically the impact of these corrections on the annihilation cross
section. We find that for the chosen reference scenario the dominant correction comes from the Sommerfeld
effect and that the pure NLO correction is below 3%. The inclusion of these radiative corrections is still
large enough to decrease the relic density by more than 10% and shift the cosmologically preferred
parameter region by a few GeV relative to the standard MicrOMEGAs result. Therefore, the inclusion of these
corrections is mandatory if the experimental errors are taken as upper and lower bounds of the theory value.
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I. INTRODUCTION

There is compelling evidence from astrophysical obser-
vations that there is a yet unknown type of matter called
dark matter (DM) which does not interact electromagneti-
cally but manifests itself through its gravitational effects on
baryonic matter [1]. The most promising candidate for dark
matter is a weakly interacting massive particle (WIMP), as
it is consistent with structure formation due to its non-
relativistic velocity and naturally leads via the freeze-out
mechanism to the correct relic density of cold dark matter
(CDM)

ΩCDMh2 ¼ 0.120� 0.001 ð1Þ

as determined by the Planck satellite within the ΛCDM
model [2]. The indicated uncertainty corresponds to the 1σ
interval, and h stands for the present Hubble expansion rate
H0 in units of 100 km s−1 Mpc−1.
As the Standard Model (SM) does not accommodate a

suitable DM candidate, there is the need for physics beyond
the SM. A widely studied extension is the R-symmetric
Minimal Supersymmetric Standard Model (MSSM) [3], as
it not only contains an appropriate WIMP candidate in the
form of the lightest neutralino χ̃01, but also offers a solution
to the hierarchy problem and allows for the unification of
gauge couplings at high energies. In order to make a
theoretical prediction for the relic density of the neutralino
under the assumption of the freeze-out scenario, one has to
solve the Boltzmann equation

dnχ
dt

¼ −3Hnχ − hσeffviðn2χ − ðneqχ Þ2Þ ð2Þ
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for the DM number density nχ, where neqχ denotes the
density in chemical equilibrium and H the Hubble rate
[4,5]. Today’s neutralino relic density is then given by

Ωχ ¼
mχn0χ
ρc

∼
1

hσeffvi
; ð3Þ

where n0χ denotes the present value for the number density,
mχ the DM mass, and ρc today’s critical density. The
number density equation in Eq. (2) is only an all order
expression in the zero-temperature limit, since the phase-
space distribution functions of the SM particles are no
longer exponentially suppressed by energy conservation
for more than two particles in the initial or final state. This,
in principle, forbids the usage of Maxwell-Boltzmann
statistics and the neglect of Bose enhancement and Fermi
blocking factors for 2 → 3 processes appearing at the one-
loop level in the collision term. However, in Ref. [6], the
additional thermal corrections were found to be suppressed
by a factor TF=mχ≪1 compared to zero-temperatureOðαsÞ
corrections with TF being the freeze-out temperature. The
thermal corrections are, therefore, negligible at the current
level of experimental precision of the dark matter relic
density justifying the zero-temperature approach. The
thermally averaged effective cross section

hσeffvi ¼
X
i;j

hσijvi
neqi
neqχ

neqj
neqχ

ð4Þ

involves a sum over all supersymmetric particles with odd
R-parity, where σij corresponds to the cross section for the
annihilation of i and j into all possible SM particles. For the

following analysis, it is important to recall that the ratio neqi
neqχ

is Boltzmann suppressed:

neqi
neqχ

∼ exp
�
−
mi −mχ

T

�
ð5Þ

with T being the temperature at time t. A direct conse-
quence of Eq. (5) is that besides neutralino annihilation
only those processes involving other particles from the
odd sector in the initial state with a small mass difference to
the DM candidate can contribute significantly to hσeffvi.
Especially for large neutralino masses, the neutralino
annihilation cross section alone is for many scenarios in
the MSSM too small to be consistent with the measured
relic density. Therefore, the neutralino cross section needs
to be enhanced by some mechanism which could be
colored (co)annihilation.
In this paper, we focus on the case where the mass of

the lightest stop is very close to the one of the neutralino so
that stop-antistop annihilation and stop pair annihilation
become the dominant contribution to the effective cross
section and, thus, the relic density. This mass hierarchy is

not an unnatural assumption, since the tree-level mass of
the lightest Higgs boson in the MSSM is bounded from
above by mZ0 j cos 2βj, which requires large quantum
corrections to be consistent with the observation of a
SM-like 125 GeV Higgs boson [7,8]. The dominant
contribution to the Higgs mass comes from the stop sector
where a large trilinear coupling At is needed in order for
these corrections to be large enough, further indicating a
large mass splitting between mt̃1 and mt̃1 [9]. The mass
splitting is enhanced further through the fact that the off-
diagonal entries in the sfermion mixing matrix are propor-
tional to the associated masses of the SM partners,
indicating a rather light t̃1.
The very small experimental uncertainty of the relic

density in Eq. (1) requires the inclusion of radiative
corrections to the annihilation cross section so that the
theoretical precision matches the experimental one.
However, public tools for the calculation of the relic
density such as DarkSUSY [10] and MicrOMEGAs [11–13]
take into account only the tree-level cross section with
effective couplings that capture certain higher-order effects.
The importance of higher-order SUSY-QCD corrections

to the relic density has been shown for gaugino pair
annihilation into quarks [14–17], gaugino-squark coanni-
hilation into final states with a quark [18–20], squark-
antisquark annihilation into electroweak final states [21],
squark pair annihilation into quarks [22], and stau-antistau
annihilation into heavy quarks [23]. Furthermore, the
reduction of theoretical uncertainties from scheme
and scale variations have been examined systematically
[23,24]. Electroweak corrections to neutralino annihilation
have been computed in Refs. [25–27]. It should be noted
that the previous nonexhaustive list focuses only on one-
loop corrections for relic density calculations. However,
higher-order corrections in other contexts can also play an
important role. The supersymmetric one-loop corrections
in the strong coupling to the elastic neutralino-nucleon
cross section relevant for direct detection were, for exam-
ple, examined in Ref. [28], and one-loop electroweak
corrections to wino dark matter annihilation for indirect
detection signals were computed in Ref. [29].
Based on these findings, we present in this paper

corrections of OðαsÞ including Sommerfeld enhancement
effects to the processes

t̃1 t̃�1 → gg; ð6aÞ

t̃1t̃�1 → qq̄; ð6bÞ

with the effectively massless quarks q ∈ fu; d; c; sg. These
two processes are separate at tree level but have to be
merged into one at NLO accuracy in order to obtain an
infrared safe cross section.
The paper is organized as follows: In Sec. II, we present

the color-decomposed leading-order cross section and
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discuss the phenomenological relevance of stop-antistop
annihilation on the basis of a viable reference scenario.
Section III covers details on the calculation of the virtual
and real corrections, followed by the Sommerfeld resum-
mation. In Sec. IV, we discuss the impact of the corrections
on the corresponding cross section as well as the relic
density for the chosen reference scenario. We conclude
in Sec. V.

II. PHENOMENOLOGY OF SQUARK-
ANTISQUARK ANNIHILATION

To prepare for the subsequent discussion of the higher-
order corrections and to clarify the notation, we start with
the analytic computation of the tree-level cross section and
discuss the phenomenology of the processes in Eq. (6) in
the context of the neutralino relic density.

A. Leading-order cross section

The Feynman diagrams for the leading-order process are
displayed in Fig. 1 along with the naming convention for
momenta and other relevant indices. An important aspect of
the processes we investigate is that both initial- and final-
state particles are charged under SUð3ÞC. In order to be able
to distinguish between attractive and repulsive color poten-
tials in the context of the Coulomb corrections, it is

necessary to decompose the tensor product representations
under which the two incoming and outgoing particles
transform into their respective irreducible representations.
The (s)quark-anti(s)quark system can be decomposed into a
color octet and a color singlet:

3 ⊗ 3̄ ¼ 8 ⊕ 1; ð7Þ

whereas the decomposition of the two-gluon system reads

8 ⊗ 8 ¼ 1 ⊕ 8S ⊕ 8A ⊕ 10 ⊕ 10 ⊕ 27: ð8Þ

For the decomposition of the tree-level scattering ampli-
tudes

MTree
gg ¼

X
R

c½R�
gg MTree

gg;½R�; ð9aÞ

MTree
qq̄ ¼

X
R

c½R�
qq̄ M

Tree
qq̄;½R� ð9bÞ

into equivalent irreducible representations R that appear
simultaneously in the initial as well as final state, the
orthogonal and normalized multiplet basis elements c½R�
spanning the invariant subspaces R from Ref. [30] can be
used:

(a)

(b)
(c)

FIG. 1. Tree-level Feynman diagrams associated with the annihilation of a stop-antistop pair into gluons and quarks. Four-momenta
(pa; pb; k1; k2), sfermion indices ði; jÞ, colors (s,t,a,b,r,u), and Lorentz indices (μ, ν) are explicitly labeled in the respective first
diagrams. (a) Graphs for the annihilation into two gluons given by the amplitude Mgg, (b) graph for the annihilation into a massless
quark-antiquark pair given by the amplitude Mqq̄ and (c) graph for the annihilation into a ghost-antighost pair given by the ampltidue
STree
1 . The amplitude for STree

2 is obtained by reversing the ghost flow.
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c½1�gg ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NcðN2

c − 1Þ
p δstδab; ð10aÞ

c½8S�gg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Nc

CFðN2
c − 4Þ

s
dabcTc

st; ð10bÞ

c½8A�gg ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffi
1

N2
cCF

s
fabcTc

st; ð10cÞ

as well as

c½1�qq̄ ¼
1

Nc
δstδur; ð11aÞ

c½8�qq̄ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2
c − 1

p �
δsuδtr −

1

Nc
δstδur

�
ð11bÞ

with CF ¼ ðN2
c − 1Þ=2Nc and Nc ¼ 3.

Another important aspect in a non-Abelian theory is the
treatment of internal and external polarization states. In
order to include only the physical external gluon states in
the transition probability, we consider two different com-
putational approaches where we use the Feynman gauge for
internal gluon lines within both possibilities. The first one
is to explicitly sum only the transverse polarizations with
the help of the completeness relation

X
T

ϵμ�T ðkÞϵνTðkÞ ¼ −gμν þ kμnν þ kνnμ

n · k
− n2

kμkν

ðn · kÞ2 ; ð12Þ

which holds as an algebraic relation independently of the
gauge fixing condition used for the internal propagators
and where n is an arbitrary direction in momentum space
that fulfills n · k ≠ 0 and ϵTðkÞ · n ¼ 0. For some n with
n2 ¼ 0, this is also referred to as the light-cone gauge. As
there appear only two external gluons in the tree-level
process, it is instructive to choose n as the momentum of
the respective other gluon. The second possibility is to use
−gμν as polarization sum and subtract the longitudinal
polarizations by using ghosts. To arrive at the correspond-
ing expression, we derive the two Slavnov-Taylor identities

kμ1M
Tree
gg;μν ¼ −k2;νSTree

1 ; ð13aÞ

kν2M
Tree
gg;μν ¼ −k1;μSTree

2 ð13bÞ

from the invariance of a general n-point function in SUSY-
QCD under Becchi-Rouet-Stora (BRS) transformations
[31,32]. Consequently, Eq. (13) allows one to replace
the longitudinal polarizations corresponding to all the
terms proportional to k1 and k2 in Eq. (12) with ghost
amplitudes. This gives for the squared matrix element
summed over final-state polarizations

MTree
gg;μνðMTree�

gg Þμν − jSTree
1 j2 − jSTree

2 j2: ð14Þ
The fermion spin sum for the quark-antiquark final state is
performed in the usual way. After averaging (summing) over
initial- (final-) state colors and performing the remaining
phase-space integration, we obtain for the color-decomposed
tree-level cross sections describing the annihilation into two
gluons the expressions

ðσvÞTreegg;½1� ¼
16πα2s
27sβ

½βð1þ ρÞ þ ρðρ − 2ÞatanhðβÞ�;

ðσvÞTreegg;½8S� ¼
5

2
ðσvÞTreegg;½1�;

ðσvÞTreegg;½8A� ¼
8πα2s
9sβ

½βð1þ 8ρÞ − 3ρðρþ 2ÞatanhðβÞ�

with ρ ¼ 4m2
q̃=s and β ¼ ffiffiffiffiffiffiffiffiffiffiffi

1 − ρ
p

, where v ¼ 2β corre-
sponds to the relative velocity of the incoming squark-
antisquark pair in the c.m. system and s ¼ ðp1 þ p2Þ2 to the
squared c.m. energy. Only one color channel contributes to
the annihilation into a massless quark-antiquark pair, giving
the cross section

ðσvÞTreeqq̄;½8� ¼
16πα2sβ

2

27s
: ð15Þ

As we have to combine both processes at NLO, we define
already at tree level

ðσvÞTree ¼ ðσvÞTreegg þ NfðσvÞTreeqq̄ ; ð16Þ

where Nf ¼ 4 corresponds to the number of effectively
massless quark flavors.

B. Reference scenario and numerical discussion

To illustrate the importance of stop annihilation into
gluons, we introduce the reference scenario given in Table I
which has been found by performing a random scan in
the MSSM with 19 free parameters considering the most
important experimental constraints from searches for super-
symmetry. For this scan and throughout our analysis
SoftSUSY 4.1.9 [33–36] is used for the generation of the
mass spectrum and mixing parameters with the option of
including three-loop corrections to the mass of the CP-even
Higgs boson h0 provided by HIMALAYA 1.0 [37,38] turned
on. Only those points that obey the Higgs mass limit
123 GeV < mh0 < 127 GeV and feature the neutralino as
lightest supersymmetric particle (LSP) and a stop as next-
to-lightest supersymmetric particle (NLSP) are taken into
account. We use SModelS 2.2.0 [39–43] and SUSY-AI [44] to
exclude points that have been ruled out by LHC searches
for supersymmetry. The consistency of the Higgs sector
with measurements from LEP, Tevatron, and the LHC is
additionally checked with HiggsBounds 5.5.0 [45] and
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HiggsSignals 2.3.0 [46]. The module in MicrOMEGAs-5.2.13 [13]
is used to check against constraints from dark matter direct
detection experiments. However, unless stated otherwise
we use throughout this paper MicrOMEGAs 2.4.1 [11,12] with
the standard CalcHEP implementation of the MSSM for the
computation of the relic density and the contributions of
different (co)annihilation channels.
The latter are shown in Table II for the chosen reference

scenario. The largest contribution comes with 47% from stop-
antistop annihilation into gluons followed in decreasing order
by stop pair annihilation into top quarks and neutralino-stop
coannihilation into a gluon and a top quark which have been
previously analyzed in Refs. [22,20], respectively. In total,
DM@NLO provides full one-loop SUSY-QCD corrections to
77% of the effective cross section in Eq. (4).
The scenario features a bino-like neutralino, which is not

surprising as large wino and higgsino components would
lead to other gauginos being the NLSP and the mass
difference between the neutralino and the lightest stop is
approximately 11 GeV. The gluino and slepton sector are
chosen to be much heavier than the stop sector to ensure
that they do not influence the phenomenology discussed
here. In Fig. 2, the relative contributions of the three most
important channels to the relic density are displayed in the
M1-Mt̃R mass plane in different shades of green. We choose
these two parameters as the lightest neutralino is mostly
bino-like and its mass is consequently predominately given
by M1. The Mt̃R parameter enters the tree-level expression
of the t̃1 mass, and, therefore, these two parameters

correspond to a scan in the mχ̃0
1
-mt̃1 mass plane which,

in turn, allows one to investigate the dependence of the
relic density on the LSP-NLSP mass difference. For larger
mass splittings between the lightest neutralino and the stop
coannihilation becomes the dominant channel, whereas for
small mass splittings annihilation of stops is the dominant
contribution. In addition, the region where the neutralino
accounts for the whole dark matter content in the Universe
and lies within the 2σ range of the experimental value is
marked in orange. This region follows an almost straight
line parallel to the boundary where the neutralino is no
longer the LSP.
With the knowledge that stop annihilation into gluons is

important for large regions around the reference scenario,
we turn now to the numerical comparison between our
leading-order cross sections for the two processes in Eq. (6)
and the ones from MicrOMEGAs 2.4.1 which are all shown in
Fig. 3. As a reminder that the values of the cross section
impact the relic density only in a limited energy range,
the Boltzmann distribution which is involved in the
computation of the thermally averaged cross section at
freeze-out temperature is shown in gray in arbitrary units.
One observes that our result is about 6% larger for both
processes which has two reasons. First, we set the renorm-
alization scale which enters at tree level only through the
strong coupling to μR ¼ QSUSY, whereas MicrOMEGAs 2.4.1

sets the scale to twice the dark matter mass μMO ¼ 2mχ̃0
1
,

which is larger than μR for the investigated scenario and,
therefore, corresponds to a smaller strong coupling. Our
choice for μR is motivated by the fact that, besides the
masses of the virtual particles in the loop, the process
contains only two important scales: the mass of the lightest
stop and the collisional energy s. Since most annihilations
take place between s ¼ 4m2

t̃1
and the peak of the velocity

distribution at s ∼ ð3 TeVÞ2, QSUSY is a suitable choice
for the renormalization scale to avoid large logarithms.
Second, MicrOMEGAs 2.4.1 calculates the running of αs in the
MS scheme using the three-loop formula in Ref. [47] with
six active flavors and the SM particle content only, whereas
DM@NLO uses the four-loop formula from Ref. [48] in the
DR scheme [49] with six active flavors and contributions
from the complete MSSMmass spectrum [50]. Considering

TABLE I. DR parameters for the reference scenario in the pMSSM-19 defined at the scale QSUSY ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffimt̃1mt̃2
p , where mt̃1 and mt̃2 are

in this case the DR tree-level masses, the associated pole masses of relevant particles, the bino contribution Z11 to χ̃01, and the neutralino
relic density. All dimensionful quantities are given in GeV.

M1 M2 M3 Ml̃L
Mτ̃L Ml̃R

Mτ̃R Mq̃L Mq̃3L MũR

1437.9 2739.6 3079.5 4034.1 3620.2 4075.12 2605.9 1773.2 2172.7 1816.1

Mt̃R Md̃R
Mb̃R

At Ab Aτ μ mA0 tan β QSUSY

1424.3 1926.8 2913.0 2965.3 3050.7 2880.3 −1880.8 3742.2 34.9 1756.4

mχ̃0
1

mχ̃0
2

mχ̃�
1

mt̃1 mt̃2 mg̃ mτ̃1 mh0 mH0 Z11 Ωχ̃0
1
h2

1435.7 1884.4 1882.9 1446.3 2248.0 3059.3 2613.5 124.0 3742.9 0.9976 0.1201

TABLE II. Dominant annihilation channels contributing to
ðΩh2Þ−1 for the scenario in Table I. Further contributions below
2% are omitted.

Channel Contribution

t̃1 t̃�1 → gg 47%
t̃1 t̃1 → tt 23%
χ̃01 t̃1 → gt 7%
t̃1 t̃�1 → γg 7%
t̃1 t̃�1 → tt̄ 5%
t̃1 t̃�1 → Z0g 2%
DM@NLO total [20,22] 77%
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only these two differences in the computation, the ratio
should be identical for both processes, but this is not the
case, as MicrOMEGAs also takes into account electroweak
contributions with a photon or a Z0 propagator for the
process with a quark-antiquark pair in the final state. The
corresponding electroweak diagrams are not included in
our calculation, since the process with massless quarks is
numerically insignificant for the relic density as well as the

tree-level cross section compared to the annihilation into
gluons as visible in Table II and Fig. 3 and was only added
for consistency to achieve an infrared finite result.
Through comparison of the different color contributions

to the combined leading-order cross section depicted in
Fig. 3 with the partial wave expansion

σv ¼ s0 þ v2s1 þOðv4Þ ð17Þ

of a general velocity-weighted annihilation cross section
σv, it becomes apparent that the singlet and symmetric octet
contributions to the cross section with two external gluons
are dominated by the S-wave component s0, since they
remain almost constant in v, whereas the antisymmetric
octet part of the same process and the octet contribution to
the quark-antiquark process take an inferior role and are
suppressed at threshold corresponding to the S-wave and
P-wave component s1.

III. COMPUTATIONAL DETAILS OF THE
RADIATIVE CORRECTIONS

In this section, we discuss the technical details of our
SUSY-QCD corrections atOðαsÞ as well as the Sommerfeld
enhancement. The NLO cross section

FIG. 2. Contribution of relevant processes that can be corrected by DM@NLO to the effective annihilation cross section in theM1 −Mt̃R
plane around the chosen reference scenario which is highlighted with a red dot. The region where the neutralino is not the LSP is marked
in gray. The orange band indicates the parameter region that is consistent with the Planck measurement given in Eq. (1) at the 2σ
confidence level based on the tree-level cross sections provided by CalcHEP.

FIG. 3. Leading-order cross sections times velocity introduced
in Sec. II A as provided by DM@NLO as well the corresponding
results from CalcHEP indicated with the superscript MO. All
cross sections are displayed in dependence of the c.m. momentum
for the chosen reference scenario.
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ðσvÞNLO ¼ ðσvÞTree þ ΔðσvÞNLO ð18Þ

with the NLO correction

ΔσNLO ¼
Z
2

dσV þ
Z
3

dσR ð19Þ

consists of virtual dσV and real corrections dσR. The
integration domain of the integrals refers to the number
of final-state particles. Both contributions have been calcu-
lated and verified with the publicly available tools FeynArts 3

[51], FeynCalc 9 [52], TRACER [53], and FormCalc 9 [54].

A. Virtual corrections and renormalization

The virtual amplitudes consist of propagator (self-
energy), vertex, and box corrections. Naively, one might

assume that the box corrections for the process with two
final-state gluons are independent and UV finite on their
own. However, they turn out to be UV divergent and
fall under the renormalization of the four-squark-gluon
vertex. All corresponding Feynman diagrams are shown in
Figs. 4–12. We subtract the longitudinal gluon polariza-
tions again through ghosts; i.e., the interference of the tree-
level matrix element with the virtual amplitudes for the
process with two gluons in the final state summed over the
final-state polarizations can be written as

2Re
h
ðMTree�

gg ÞμνMNLO
gg;μν − STree�

1 SNLO
1 − STree�

2 SNLO
2

i
; ð20Þ

where some of the ghost corrections making up the ghost
amplitudes SNLO

i (i ¼ 1, 2) are shown in Figs. 9 and 10.

FIG. 4. One-loop contributions to the gluon self-energy.

FIG. 5. Contributions to the squark self-energy at one loop.

FIG. 6. One-loop contributions to the triple-gluon vertex.
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FIG. 7. One-loop contributions to the squark-gluon vertex.

(a)

(b)

(c)

FIG. 8. One-loop corrections to the four-gluon-squark vertex. (a) Bubble contributions, (b) triangle contributions, and (c) box
contributions.
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These diagrams are regulated dimensionally in D¼ 4− 2ε
dimensions within the supersymmetry-preserving four-
dimensional helicity scheme [55–57] so that UV and IR
divergences appear as poles of the form ε−1 and ε−2. The
standard Passarino-Veltman reduction [58,59] is used to
express the one-loop amplitudes in terms of the well-
known scalar integrals A0, B0, C0, and D0 [60–62]. The γ5
matrix which enters through the squark-quark-gluino
coupling is treated in the naive scheme; i.e., we assume
that γ5 still anticommutes with all γ matrices in D
dimensions. The Levi-Civita symbols that occur then
through traces of γ5 with four or more γ matrices during
the evaluation of diagrams with top quarks as virtual
particles are directly set to zero, since they vanish anyway
when being contracted with the external momenta. The
UV divergences that appear in the virtual corrections are
removed through the renormalization of fields, masses,
and the strong coupling. Within our calculation, a hybrid
on-shell/DR renormalization scheme is employed where

At, Ab, mt̃1 , mb̃1
, and mb̃2

along with the heavy quark
masses mt and mb are treated as independent input
parameters so that the mixing angles θt̃1 and θt̃2 and the
mass of the heavier stop mt̃2 depend on their definition.
The trilinear couplings of the third generation, the bottom
quark mass, and the strong coupling are renormalized in
the DR scheme, while the on-shell scheme has been
chosen for the top mass and the input squark masses.
This particular scheme resembles the RS2 scheme intro-
duced in Ref. [63] and was found to be robust over large
regions of the parameter space for (co)annihilations
involving stops in a series of previous analyses [19,20].
Since the renormalization of the gluon and the squark
sector as well as the treatment of the bottom mass and the
strong coupling have already been discussed in detail in
the context of other processes [17,19,20], we will cover
only aspects which are new to this calculation in the
following such as the renormalization of ghosts and
massless quarks.

FIG. 10. Triangle and box corrections to the ghost process SNLO
1 which do not have a tree-level analog. The diagrams for SNLO

2 can be
obtained by reversing the ghost flow.

FIG. 9. One-loop contributions to the ghost-gluon vertex.

FIG. 11. One-loop contributions to the quark-gluon vertex.

FIG. 12. Box and triangle diagrams associated with stop-antistop annihilation into light quarks.
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1. Ghost wave-function renormalization

As the ghost and antighost share the same self-energy,
they can be renormalized with the same wave function
renormalization constant Zc. The renormalized fields are
then defined as

c̄0a ¼
ffiffiffiffiffi
Zc

p
c̄Ra ; ð21Þ

c0a ¼
ffiffiffiffiffi
Zc

p
cRa ; ð22Þ

where we need δZc only up to OðαsÞ, which leads to the
expansion

Zc ¼ 1þ δZc: ð23Þ

Since the gluon is renormalized in the on-shell scheme, the
same scheme is chosen for the ghost. That is, the ghost
renormalization constant is obtained by requiring that the
ghost Green’s function has a unit residue even up to the
one-loop level:

δZc ¼ −ℜ _Πcðp2Þjp2¼0; ð24Þ

where

_Πcðp2Þ ¼ −
αsNc

8π
ðB0ðp2; 0; 0Þ − 1Þ ð25Þ

denotes the derivative of the ghost self-energy whose only
contribution is depicted in Fig. 13. The constant δZc
contains UV and IR divergent parts, which read explicitly

δZUV
c ¼ αsNc

8πεUV
; ð26Þ

δZIR
c ¼ −

αsNc

8πεIR
: ð27Þ

2. Renormalization of the massless quarks

For the renormalization of massless quarks, we introduce
the quark wave-function renormalization constants ZL=R

q

for each chirality state

qL=R ¼
ffiffiffiffiffiffiffiffiffiffi
ZL=R
q

q
qL=R ¼

�
1þ 1

2
δZL=R

q

�
qL=R: ð28Þ

The renormalization constants are determined in the
on-shell scheme which requires the renormalized quark

two-point Green’s function to have a unit residue. This
condition results in the expression

δZL=R
q ¼ −ReΠL=R

q ð0Þ; ð29Þ

where the function ΠL=R
q ðq2Þ appears in the decomposition

of the quark self-energy:

ΠqðpÞ ¼ =p½PLΠL
q ðp2Þ þ PRΠR

q ðp2Þ� þ ΠS;L
q ðp2ÞPL

þ ΠS;R
q ðp2ÞPR; ð30Þ

whose two contributing Feynman diagrams are shown in
Fig. 14. The resulting constants contain the UV and IR
divergent parts

δZUV
q ¼ −

αsCF

2πεUV
; ð31Þ

δZIR
q ¼ αsCF

4πεIR
; ð32Þ

respectively, where the superscripts indicating the left- and
right-handed chirality states are dropped here for simplicity.

B. Real corrections

The infrared divergences in the virtual corrections are
compensated by including the real emission processes

t̃1t̃�1 → gμaðk1Þ þ gνbðk2Þ þ gρcðk3Þ ð33Þ

and

t̃1t̃�1 → qrðk1Þ þ q̄uðk2Þ þ gμaðk3Þ ð34Þ

with q ∈ fu; d; c; sg being an effectively massless quark
and where the initial squarks carry the same labels as in
Fig. 1. The corresponding Feynman diagrams are shown in
Figs. 15(a) and 15(b), where the momenta of the gluons
in the first process have to be read from top to bottom
starting with k1. As in the tree-level calculation, we use
−gμν for the gluon polarization sum and subtract the
longitudinal polarizations with ghosts as asymptotic states.
In order to arrive at the corresponding expression, we
proceed as sketched in Sec. II A by deriving the following
two sets of Ward identities from BRS invariance:

k1;μM
μνρ
3 ¼ −kν2S

ρ
1 − kρ3S

ν
3; ð35aÞFIG. 13. One-loop contribution to the ghost self-energy.

FIG. 14. One-loop contributions to the quark self-energy.
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k2;νM
μνρ
3 ¼ −kμ1S

ρ
2 − kρ3S

μ
6; ð35bÞ

k3;ρM
μνρ
3 ¼ −kμ1Sν

4 − kν2S
μ
5 ð35cÞ

and

k2;νSν
4 ¼ k3;ρS

ρ
2; ð36aÞ

(a)

(b)

(c)

(d)

(e)

FIG. 15. Real emission diagrams for stop annihilation into gluons and light quarks. (a) Graphs with three gluons in the final state that
are associated with the amplitude M3, (b) graphs with light quarks in the final state, (c) Graphs with ghosts associated with the
amplitude S1. The amplitude S2 is obtained by reversing the ghost flow, (d) graphs with ghosts associated with the amplitude S3. The
amplitude S4 is obtained by reversing the ghost flow, and (e) graphs with ghosts associated with the amplitude S5. The amplitude S6 is
obtained by reversing the ghost flow.
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k1;μS
μ
5 ¼ k3;ρS

ρ
1; ð36bÞ

k1;μS
μ
6 ¼ k2;νSν

3; ð36cÞ

where Mμνρ
3 corresponds to the amplitude associated with

the process in Eq. (33) where the polarization vectors of the
gluons have been amputated. The amputated ghost ampli-
tudes Sμ

i are defined through the Feynman diagrams in
Figs. 15(c)–15(e) with the same index and momentum
convention as in Eq. (33) if applicable. Replacing all terms
proportional to the momenta k1;…; k3 in the polarization
sum given in Eq. (12) through the identities from Eq. (35)
for each of the three gluons and exploiting additionally the
identities in Eq. (36) as well as

ðSi − Siþ1Þ� · ðSi − Siþ1Þ ¼ 0; i ¼ 1; 3; 5; ð37Þ

results in

−Mμνρ
3 M�

3;μνρ þ
X6
i¼1

Sμ
i S

�
i;μ ð38Þ

as an expression for the squared matrix element summed
over the physical final-state polarizations. Equation (37)
follows from an explicit calculation with the help of
Feynman rules. The final expression in Eq. (38) obeys
the same structure as the one from the 2 → 2 calculation.
The ghost processes are squared only with themselves and
then subtracted from the matrix element squared of the
actual process.
We now turn to the discussion of the treatment of

infrared divergences. To make the integration over the
three-particle phase space numerically accessible and to
combine the real and virtual corrections to get an infrared
safe cross section, we rely on the dipole subtraction method
of Catani and Seymour [64], which has recently been
extended to massive initial states in the context of dark
matter calculations [65]. This method is based on the
introduction of an auxiliary differential cross section dσA

which cancels the soft and collinear divergences of the
differential real emission cross section pointwise but can be
integrated analytically at the same time over the one-
particle phase space responsible for the soft or collinear
divergence. That is, the NLO correction takes the form

ΔσNLO ¼
Z
3

½dσRε¼0 − dσAε¼0� þ
Z
2

�
dσV þ

Z
1

dσA
�
ε¼0

:

ð39Þ

According to the dipole factorization formula, the auxiliary
squared matrix element related to dσA for the process with
three gluons in the final state consists of 27 dipoles:

jMA
t̃1 t̃�1→gggj2 ¼ D12;3 þD13;2 þD23;1 þDa1;b þDa2;b

þDa3;b þDb1;a þDb2;a þDb3;a þDa2
1

þDa3
1 þDa1

2 þDa3
2 þDa2

3 þDa1
3 þDb2

1

þDb3
1 þDb1

2 þDb3
2 þDb2

3 þDb1
3 þDa

12

þDa
23 þDa

13 þDb
12 þDb

13 þDb
23; ð40Þ

where the subscripts of the momenta in Eqs. (33) and (34)
are used to label the particles. For the precise definition of
the dipoles and the underlying splitting kernels, we refer to
Ref. [65]. For the process containing light quarks, we
obtain the 15 dipoles

jMA
t̃1 t̃�1→q̄qgj2 ¼ Da3;b þDb3;a þDa3

1 þDa3
2 þDb3

1

þDb3
2 þD12;3 þD13;2 þD23;1 þDa

12

þDb
12 þDa

31 þDa
32 þDb

31 þDb
32: ð41Þ

For the explicit construction of the insertion operator which
cancels the infrared divergences on the virtual side, we refer
again to Ref. [65] due to the large number of terms coming
from the nonfactorizable color and spin structures.

C. Sommerfeld enhancement

We have discussed the fixed-order NLO corrections in
the previous two subsections. However, for the nonrela-
tivistic regime, as it is typical during freeze-out, there are
also important contributions to the relic density from the
exchange of n potential gluons between the incoming stop
and antistop giving a correction factor proportional to
ðαs=vÞn. This is the well-known Sommerfeld enhancement
[66] of higher-order terms which can spoil the perturba-
tivity of the cross section when the relative velocity is of the
order of the strong coupling, and, therefore, these terms
need to be resummed to all orders in perturbation theory.
The fact that the tree-level cross section is dominated by
S-wave annihilation, as discussed in Sec. II B and visible in
Fig. 3, allows one to compute the Sommerfeld enhanced
cross section

ðσvÞSom ¼ S0;½8�ððσvÞTreegg;½8S� þ ðσvÞTreegg;½8A� þ NfðσvÞTreeqq̄;½8�Þ
þ S0;½1�ðσvÞTreegg;½1� ð42Þ

by multiplying the leading contribution with the
Sommerfeld factor

S0;½R� ¼
ImG½R�ðr⃗ ¼ 0;

ffiffiffi
s

p þ iΓt̃1Þ
ImG0ðr⃗ ¼ 0;

ffiffiffi
s

p þ iΓt̃1Þ
; ð43Þ

whose computation follows the standard framework of
nonrelativistic QCD (NRQCD) described in Refs. [67,68].
The Green’s function G½R�ðr⃗ ¼ 0;

ffiffiffi
s

p þ iΓt̃1Þ is defined as a
solution of the Schrödinger equation
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½H½R� − ð ffiffiffi
s

p þ iΓt̃1Þ�G½R�ðr⃗; ffiffiffi
s

p þ iΓt̃1Þ ¼ δð3Þðr⃗Þ

evaluated at the origin where

H½R� ¼ 2m2
t̃1
−

1

mt̃1

∇2 þ V ½R�ðr⃗Þ ð44Þ

is the Hamiltonian of the quasi-stoponium. The correspond-
ing Coulomb QCD potential receives important contribu-
tions from gluon and fermion loops and reads at NLO in
momentum space

Ṽ ½R�ðq⃗Þ ¼ −C½R� 4παsðμCÞ
q⃗2

×

�
1þ αsðμCÞ

4π

�
β0 ln

�
μ2C
q⃗2

�
þ a1

��
ð45Þ

with the color factors

C½1� ¼ CF; C½8� ¼ C½8S� ¼ C½8A� ¼ −
1

2Nc
ð46Þ

and the constants

a1 ¼
31

9
CA −

20

9
TFnf; ð47Þ

β0 ¼
11

3
CA −

4

3
Tfnf; ð48Þ

where we work with nf ¼ 5. The analytic solution for the
Green’s function at the origin at NLO accuracy is

G½R�ðr⃗ ¼ 0;
ffiffiffi
s

p þ iΓt̃1Þ ¼
C½R�αsðμCÞm2

t̃1

4π

×

�
gLO þ αsðμCÞ

4π
gNLO

�
; ð49Þ

where the LO and NLO contributions are

gLO ¼ −
1

2κ
þ L − ψ ð0Þ; ð50Þ

gNLO ¼ β0½L2− 2Lðψ ð0Þ− κψ ð1ÞÞþ κψ ð2Þ þ ðψ ð0ÞÞ2−3ψ ð1Þ

− 2κψ ð0Þψ ð1Þ þ 44F3ð1; 1; 1; 1; 2; 2; 1 − κ; 1Þ�
þ a1½L − ψ ð0Þ þ κψ ð1Þ�: ð51Þ

Here, the constants

κ ¼ iC½R�αsðμCÞ
2vs

; ð52Þ

L ¼ ln
iμC

2mt̃1vs
ð53Þ

are defined through the nonrelativistic velocity of the
incoming particles

vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

p þ iΓt̃1 − 2mt̃1

mt̃1

s
ð54Þ

and ψ ðnÞ ¼ ψ ðnÞð1 − κÞ is the nth derivative of ψðzÞ ¼
γE þ d=dz lnΓðzÞ with the argument (1 − κ). For the
computation of the Sommerfeld factor, we also need the
free Green’s function

G0ð0;
ffiffiffi
s

p þ iΓt̃1Þ ¼
im2

t̃1
vs

4π
: ð55Þ

We address now the choice for the Coulomb scale μC at
which the strong coupling in the QCD potential is evalu-
ated. Following Ref. [69], we set

μC ¼ max f2mt̃1vs; μBg; ð56Þ

where 2mt̃1vs is motivated by the typical momentum
transfer mediated by the potential gluons. The Bohr scale
μB corresponds to twice the inverse Bohr radius rB and is
obtained by iteratively solving the equation

μB ≡ 2=rB ¼ CFmt̃1αsðμBÞ: ð57Þ

For the scenario in Table I, the Bohr scale takes the value
μB ¼ 204 GeV, and the associated value for the strong
coupling in the MS scheme with six active quark flavors
is αsðμBÞ ¼ 0.1058.
As a single gluon exchange is already included in our

fixed-order NLO calculation (see Figs. 7 and 8), we have to
match it to the Sommerfeld enhanced cross section in order
to avoid double counting. This is achieved by taking only
the terms of Oðα2sÞ in Eq. (43) into account giving the full
cross section ðσvÞFull.
As described in Ref. [22], it is also possible to subtract

the velocity-enhanced part from the fixed-order calculation
in order to obtain the “pure” NLO cross section, which
gives

ðσvÞNLOv ¼ ðσvÞNLO þ αsðμRÞπ
vrel

×

�X
R

C½R�ðσvÞTreegg;½R� þ NfC½8�ðσvÞTreeqq̄

�
ð58Þ

with the relativistic relative velocity

vrel ¼
v

2 − ρ
: ð59Þ
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IV. NUMERICAL RESULTS

In this section, we discuss the impact of the corrections
on the stop-antistop annihilation cross section and the
corresponding impact on the theoretical uncertainty
deduced from scale variations. Then, we study the impact
of the full correction on the relic density for stop-antistop
annihilation alone as well in conjunction with the other two
important processes shown in Table II.

A. Annihilation cross section and its theoretical
uncertainty

In Fig. 16(a), we show the stop-antistop annihilation
cross section as a function of the c.m. momentum pcm for
the parameter point defined in Table I. More precisely, we
show the cross section at tree level as provided by DM@NLO

(black dashed line) and by MicrOMEGAs 2.4.1 (dotted orange
line), including the NLO corrections (green solid line) and
the full cross section with the Sommerfeld enhancement
effect (red solid line). In addition, we show the pure
Sommerfeld enhanced cross section (blue dashed line)

and the pure NLO cross section without the velocity-
enhanced part (purple solid line). For small relative
velocities, the Coulomb corrections from the exchange
of multiple gluons between the incoming particles domi-
nate the full corrected annihilation cross section. As
discussed in Sec. III C, the effect of the Coulomb correc-
tions depends on the quadratic Casimir of the representa-
tion under which the incoming particles transform. The
singlet feels an attractive force, whereas the squark and
antisquark transforming under an eight-dimensional repre-
sentation are repelled from each other. In this case, the
Coulomb corrections increase the annihilation probability
so that the full corrected cross section becomes larger than
100% of the tree-level cross section for c.m. momenta
below 88 GeV even though the LO cross section is
dominated by the symmetric octet contribution which is
due to the color suppression given by 1

2Nc
in the Sommerfeld

factor for the eight-dimensional representation. For vanish-
ing relative velocities, the enhanced cross section even
diverges and approaches the well-known Coulomb singu-
larity, which could be cured by taking the formation of

(a)

(b) (c)

FIG. 16. Annihilation cross section σv for stop-antistop annihilation into light quarks and gluons, stop annihilation into top quarks,
and neutralino-stop coannihilation into a top and a gluon. The lower parts of the plots show ratios of cross sections. (a) stop-antistop
annihilation, (b) stop pair annihilation, (c) neutralino-stop coannihilation.
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bound states into account properly. However, as the
Boltzmann distribution almost vanishes for momenta
around pcm ¼ 0, such effects are heavily suppressed. In
contrast, the pure NLO correction without any enhance-
ment corresponds to an improvement of less than �3% of
the LO cross section such that the full corrected cross
section is in very good approximation given by the pure
Sommerfeld enhancement, i.e., ðσvÞFull ≈ ðσvÞSom.
The other two processes which we include in our

analysis and are important in the region around the
reference scenario, namely, t̃1 t̃1 → tt and χ̃01t̃1 → tg, have
been investigated in the context of DM@NLO in
Refs. [20,22]. In contrast to the two original publications,
we do not use the phase-space slicing method for the real
corrections in this paper but the dipole subtraction method.
The implementation of the dipole approach for the two
processes and the comparison between both methods were
the subjects of Ref. [65]. The corresponding tree-level
cross sections obtained with MicrOMEGAs 2.4.1 (orange
dotted line) and with DM@NLO (black dashed line) includ-
ing the NLO corrections (blue solid line) are shown for
both channels in Figs. 16(b) and 16(c), respectively. Even
though MicrOMEGAs uses an effective top quark mass which
evaluates at the scale μMO to meff

t ¼ 146.2 GeV instead of
the corresponding on-shell valuemt ¼ 173.2 GeVwhich is
used by DM@NLO, the difference between the two tree-level
cross sections in Fig. 16(c) is due to the differences in the
strong coupling as discussed in the context of the LO cross
section of t̃1 t̃�1 → gg. In the case of stop pair annihilation,
the NLO corrections cause a positive shift of about 10% for
large pcm around 600 GeV compared to the tree-level cross
section, whereas the correction becomes large and negative
for c.m. momenta less than 287 GeV. For c.m. momenta
below 50 GeV the total cross section becomes negative,
which is unphysical, but we make in the following the
assumption that this momentum region is irrelevant for the
computation of the relic density due to an almost vanishing
Boltzmann distribution for such low velocities. Furthermore,
this unphysical behavior has already been extensively

discussed in Ref. [22]. In the case of neutralino-stop
coannihilation, the correction is stable around 19% for all
relevant c.m. momenta.
We continue with the analysis of the theoretical uncer-

tainties of the stop-antistop annihilation cross section
from variations of the Coulomb and renormalization scale
where we identify the central scales with the ones used in
the previous discussion, i.e., μcentralR ¼ QSUSY and μcentralC ¼
max f2mt̃1vs; μBg. In Fig. 17, we vary μR and μC by factors
of 2 and show the associated values of the annihilation
cross section at tree level (blue) and at NLO (green)
including the Coulomb corrections (red) as well as the
pure Sommerfeld enhanced cross section (purple) normal-
ized to the corresponding cross section obtained at the
central scale(s). In conjunction, the LO and NLO cross
sections as functions of the renormalization scale for three
different c.m. momenta are shown in Fig. 18. Within the
chosen renormalization scheme, the scale dependence
enters the tree-level cross section only through the strong
coupling, and we estimate the theoretical uncertainty to
about �5.5%. For large c.m. momenta (pcm ≈ 900 GeV),

FIG. 17. Cross section of the stop-antistop annihilation process for different values of the renormalization scale (and Coulomb scale)
in dependence of the c.m. momentum and normalized to the cross section obtained at the central scale(s).

FIG. 18. Renormalization scale dependence of the LO and
NLO cross section corresponding to stop-antistop annihilation
into gluons and light quarks for three different c.m. momenta.
The colored bands indicate the scale variation in Fig. 17.
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the NLO correction lies within the LO uncertainty, and
the theoretical uncertainty is reduced to below 1%. For
intermediate energies (pcm ≈ 300 GeV), the NLO correc-
tion is no longer contained in the LO uncertainty, but the
uncertainty is still reduced to about�1.5% by including the
higher-order corrections. For very small relative velocities
(pcm ≈ 10 GeV), the cross section becomes nonperturba-
tive, and the NLO uncertainty is larger than the LO one.
However, by including the Coulomb corrections, the upper
uncertainty bound for small energies is halved, whereas
the lower uncertainty bound increases and we have only a
reduction for v → 0. As the full corrected cross section
is in very good approximation given by the Sommerfeld
enhancement only, we expect the same for the associated
uncertainty, which turns out to be the case. We note at this
point that the kink in the uncertainty band of ðσvÞFull and
ðσvÞSom comes from the transition from the Bohr scale to
the scale of the typical momentum exchange 2mt̃1vs.

B. Impact on the relic density

At last, we investigate the impact of our radiative correc-
tions on the neutralino relic density Ωχ̃0

1
h2 by including all

three processes from Table II which are important in a region
around the chosen reference scenario and are available in
DM@NLO as well as for the process which is the subject of this
paper only. This means that the integration of the Boltzmann
equation in Eq. (2) is still performed by MicrOMEGAs 2.4.1, but
the cross sections are replaced by the ones implemented in
DM@NLO for the specified cases and still obtained from
CalcHEP for the remaining ones. Similar to Sec. II, we study
the impact on the relic density in the plane spanned by M1

and Mt̃R which is shown for both cases in Fig. 19.

As before, the region which is compatible up to two sigma
with the Planck limit is shown in orange for the values
obtained with MicrOMEGAs 2.4.1, in blue for the tree-level
values from DM@NLO, and in gray for the radiative correc-
tions. In addition, the same results are presented in Fig. 20
projected into the plane of the physical neutralino and stop
mass where one should highlight that this variation comes
only from the scan over the parametersM1 andMt̃R whereas
all other parameters in Table I remain fixed. The small
difference between the tree-level results is again mainly due
to the differences in the strong coupling.
In both cases, the favored parameter region consistent

with the Planck limit is shifted toward larger stop masses
for a fixed neutralino mass to compensate the increased
effective annihilation cross section where this shift exceeds
the experimental uncertainty. However, if we include only
the radiative corrections for stop-antistop annihilation, the
cosmologically favored stop mass is increased by about
6.1 GeV compared to the MicrOMEGAs result, whereas the
additional inclusion of the higher-order corrections to the
processes χ̃01t̃1 → tg and t̃1 t̃1 → tt reduces this shift to about
4.3 GeV. This is due to the large negative NLO corrections
for small pcm that occur for stop pair annihilation.

V. CONCLUSION

The annihilation of colored particles which are close in
mass to the dark matter candidate is an important mecha-
nism to allow for higher dark matter masses while still
being able to explain the measured relic density. In the
MSSM, a theoretically well-motivated candidate for such
annihilation processes is the lightest stop. Based on
previous analyses which show that the inclusion of

(a) (b)

FIG. 19. Parameter region in the M1 −Mt̃R plane that is consistent with the Planck limit in Eq. (1) at the 2σ confidence level. The
orange band corresponds to the MicrOMEGAs 2.4.1 calculation, the blue one to the DM@NLO tree-level cross section, and the gray band to
the full corrected cross section. In the right panel, all three important processes are included, whereas only the stop-antistop annihilation
cross section is replaced by DM@NLO in the left panel. The shades of green indicate the total contribution of corrected (co)annihilation
processes to the relic density and the black solid lines the relative change in the relic density compared to our tree-level result. (a) Only
t̃1 t̃�1 → gg; qq̄ and (b) DM@NLO total.
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higher-order corrections to the relic density exceeds the
experimental uncertainty of the dark matter content in the
Universe, we have presented in this paper NLO SUSY-
QCD corrections to stop-antistop annihilation into gluons
and light quarks including QCD Coulomb corrections of
Oðα2sÞ. The two processes t̃1 t̃�1 → gg and t̃1 t̃�1 → qq̄ with q
being an effectively massless quark are combined in our
analysis, since we found within our calculation that these
two processes cannot be treated separately at NLO accu-
racy in order to guarantee a well-defined and infrared safe
cross section. In order to study the impact of such
corrections on the annihilation cross section itself and
the relic density, we have performed a random scan in the
phenomenological MSSM with 19 free parameters to select
a reference scenario that is consistent with the current most
import experimental constraints and contains a stop with
almost the same mass as the neutralino. The numerical
analysis showed that the resummed cross section matched
to the fixed-order NLO calculation is in very good
approximation given by the Sommerfeld enhanced cross
section only, which can, in turn, be used to significantly
speed up relic density scans while capturing the majority of
the NLO corrections. We are confident that this result
extends to simplified dark matter models containing a
colored scalar similar to the MSSM as those proposed for
LHC searches in Ref. [70]. In addition, we observed that
the inclusion of the NLO corrections reduces the depend-
ence of the cross section on the renormalization scale in the

perturbative regime from �5.5% to below �2%. Finally,
we found with respect to the impact on the relic density that
the corrections to stop-antistop annihilation only can shift
the cosmologically favored parameter region by a few GeV,
and they are, therefore, larger than the current experimental
uncertainty. However, through the additional inclusion
of the NLO SUSY-QCD corrections to χ̃01t̃1 → tg and
t̃1 t̃1 → tt, this shift is reduced by about 30% due to a
large negative correction for the stop pair annihilation. As
in our previous studies, we conclude that the identification
of parameter regions consistent with the measured relic
density at the current level of precision requires the
inclusion of NLO and Coulomb corrections including
those covered in this work.

ACKNOWLEDGMENTS

M. K. thanks the School of Physics at the University of
New South Wales in Sydney, Australia for its hospitality
and financial support through the Gordon Godfrey visitors
program. The work of M. K. was also funded by the
Deutsche Forschungsgemeinschaft (DFG) through Grant
No. KL 1266/10-1 and the work by M. K., K. K., and
L. P. W. through the DFG Research Training Group 2149
“Strong and Weak Interactions—from Hadrons to Dark
Matter.” The figures and Feynman diagrams presented in
this paper have been generated using MatPlotLib [71] and
TikZ-Feynman [72].

[1] K. Freese, Status of dark matter in the universe, Int. J. Mod.
Phys. 26, 1730012 (2017).

[2] N. Aghanim et al. (Planck Collaboration), Planck 2018
results. VI. Cosmological parameters, Astron. Astrophys.
641, A6 (2020); 652, C4(E) (2021).

[3] H. P. Nilles, Supersymmetry, supergravity and particle
physics, Phys. Rep. 110, 1 (1984).

[4] P. Gondolo and G. Gelmini, Cosmic abundances of
stable particles: Improved analysis, Nucl. Phys. B360,
145 (1991).

FIG. 20. The same as Fig. 19, but projected into the plane of the physical neutralino and stop masses and enlarged.

RADIATIVE CORRECTIONS TO STOP-ANTISTOP … PHYS. REV. D 106, 115032 (2022)

115032-17

https://doi.org/10.1142/S0218271817300129
https://doi.org/10.1142/S0218271817300129
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1016/0370-1573(84)90008-5
https://doi.org/10.1016/0550-3213(91)90438-4
https://doi.org/10.1016/0550-3213(91)90438-4


[5] J. Edsj and P. Gondolo, Neutralino relic density including
coannihilations, Phys. Rev. D 56, 1879 (1997).

[6] M. Beneke, F. Dighera, and A. Hryczuk, Relic density
computations at NLO: Infrared finiteness and thermal correc-
tion, J. High Energy Phys. 10 (2014) 045; 07 (2016) 106(E).

[7] G. Aad et al. (ATLAS Collaboration), Observation of a new
particle in the search for the Standard Model Higgs boson
with the ATLAS detector at the LHC, Phys. Lett. B 716, 1
(2012).

[8] S. Chatrchyan et al. (CMS Collaboration), Observation of a
new boson at a mass of 125 GeV with the CMS experiment
at the LHC, Phys. Lett. B 716, 30 (2012).

[9] A. Arbey, M. Battaglia, A. Djouadi, and F. Mahmoudi, An
update on the constraints on the phenomenological MSSM
from the new LHC Higgs results, Phys. Lett. B 720, 153
(2013).

[10] P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke,
and E. A. Baltz, DarkSUSY: Computing supersymmetric
dark matter properties numerically, J. Cosmol. Astropart.
Phys. 07 (2004) 008.

[11] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov,
MicrOMEGAs: A program for calculating the relic density
in the MSSM, Comput. Phys. Commun. 149, 103 (2002).

[12] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov,
MicrOMEGAs 2.0: A program to calculate the relic density
of dark matter in a generic model, Comput. Phys. Commun.
176, 367 (2007).

[13] D. Barducci, G. Belanger, J. Bernon, F. Boudjema, J. Da
Silva, S. Kraml, U. Laa, and A. Pukhov, Collider limits on
new physics within micrOMEGAs_4.3, Comput. Phys.
Commun. 222, 327 (2018).

[14] B. Herrmann and M. Klasen, SUSY-QCD corrections to
dark matter annihilation in the Higgs funnel, Phys. Rev. D
76, 117704 (2007).

[15] B. Herrmann, M. Klasen, and K. Kovařík, Neutralino
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