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By adopting a methodology proposed by R. J. Adler et al., we study the interesting analogy between the
fermion-gravity and the fermion-electromagnetic interactions in the presence of the minimal Lorentz-
violating (LV) fermion coefficients. The single-fermion matrix elements of gravitational interaction
(SMEGI) are obtained with a prescribed Lense-Thirring (LT) metric assuming test particle assumption.
Quite distinct from the extensively studied linear gravitational potential, the LT metric is essentially curved
and thus reveals the anomalous LV matter-gravity couplings as a manifestation of the so-called gravito-
magnetic effects, which go beyond the conventional equivalence principle predictions. By collecting all the
spin-dependent operators from the SMEGI with some reasonable assumptions, we get a LV nonrelativistic
Hamiltonian, from which we derive the anomalous spin precession and gravitational acceleration due to LV.
By combining these results with certain spin gravity experiments, we get some rough bounds on several LV
coefficients, such as j3 ⃗H̃ − 2b⃗j ≤ 1.46 × 10−5 GeV, with some ad hoc assumptions.
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I. INTRODUCTION

Classical electrodynamics and its quantum version, QED,
are ideal paradigms for modern physics. As a quantum
theory of matter-electromagnetic coupling, QED has
reached an unprecedented precision for the match between
theory and observations [1]. In fact, the success of QED
nourishes many branches of physics, such as the Yang-Mills
theory. Exactly paralleling the historical precedent of QED,
we expect to gain some insight by studying matter-gravity
couplings in the semiclassical regime in weak gravity, given
that gravity still resists successful quantization after decades
of endeavor. As a supporting fact, the Einstein field equation
and the geodesic equation resemble the Maxwell equation
and the Lorentz force law [2] for a slowly moving particle in
the weak field limit, though this analogy breaks down when
gravity is sufficiently strong. The conceptual reasons are
rooted in the peculiar differences between gravity and
electromagnetism: 1. Gravity is extremely weak and uni-
versal. 2. Gravity is highly nonlinear.
Another motivation for the study lies in the fact that

Lorentz violation (LV) may be a testable signal of some
unified theory at Planck scale [3]. Many different scenarios
leading to LV have been proposed, such as noncommutative

field theory [4], loop gravity [5], very special relativity [6],
etc. To systematically study the possible LV effects, an
effective field theory framework incorporating all standard
model fields and tiny tensorial coefficients controlling LV
has been developed, the Standard-Model Extension, or
briefly SME [7,8]. This framework facilitates the test of
the common foundation of the strong nuclear force, electro-
weak theory, and gravity, namely the Lorentz symmetry.
Only in the presence of gravity, the Lorentz symmetry is a
local symmetry instead of a global one. In the SME, the
close resemblance between gravity and electromagnetics
has been utilized to map a solution of the Maxwell equation
with a restricted class of the ðkFÞκλμν term to the solution of
the Einstein equation with the s̄μν term [9], though the
nonlinear acceleration a⃗NL spoils the exact formal analogy
of weak gravity to electrodynamics even restricted to terms
with linear velocity and in the stationary limit. Combined
with the precision measurements of Gravity Probe B
[10,11], new bounds on s̄μν have been extracted from the
anomalous spin precession caused by the LV gravito-
electromagnetic (GEM) fields [12]. With the observation
of the structural similarity for the couplings between the
gravito-magnetic field and the LV b̃-type coefficient to
intrinsic spin [13], the bounds on s̄0k − α

m ðāSeffÞk have been
obtained from various comagnetometer experiments
[14,15], by reinterpreting b̃ as the gravito-magnetic field
caused by the off-diagonal metric perturbation due to LV.
In comparison, in this paper, we try to explore the

resemblance of the LV fermion-gravity couplings with
the Lense-Thirring metric to the LV fermion-photon
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couplings with Lorentz invariant (LI) electromagnetic field
in the framework of SME. In other words, we focus on the
quantum matter effects induced by LV in this analogy. For
simplicity, we consider only the fermion LV coefficients in
the minimal SME and keep the gravity sector intact.
Partially because we are more interested in the LV fermion
sector and partially because the LV coefficient s̄μν in
minimal gravity sector can be switched into c̄μν by a proper
field redefinition [16], we do not consider the LV fermion-
gravity couplings arising from pure gravity. No doubt the
backreaction of LV matter fields on spacetime geometry
necessarily generates a LV metric perturbation, and this fact
has already been thoroughly explored for the ðāeffÞμ; c̄μν
coefficients in [13,16]. However, by adopting the test
particle assumption and ignoring the backreaction in our
simple setting, there is no need to worry about the extra
modes from diffeomorphism breaking unless the pure
gravity sector were also affected by LV. As for the extra
modes due to spontaneous local Lorentz symmetry break-
ing, which may play the role of photon or graviton, such as
in the bumblebee or cardinal models ([8,17–19]), or mediate
new forces [20], they suffer severe experimental constraints
[21] and lie outside of the scope of our present discussion,
we disregard them for simplicity.
It is interesting to note that a systematic and thorough

treatment of all possible LV matter-gravity couplings, both
in formalism and in conceptual issues, have been developed
recently [22], where no room is left for spontaneous local
LV with diffeomorphism invariance. However, this super-
ficial conflict is because we omit the backreaction of the
LV matter field to spacetime geometry in the test particle
assumption. Since spontaneous symmetry breaking is
assumed, the no-go constraints [8] can also be avoided.
In comparison, the signals beyond-Riemann geometry have
been explored with an effective field theory incorporating
all linear fermion-gravity operators up to dimension 5 [23],
based on the assumption of local LI but explicit diffeo-
morphism breaking. In contrast to Ref. [23], where the
typical gravitational acceleration is uniform as the explo-
ration mainly focuses on laboratory experiments on the
Earth, our study assumes the Lense-Thirring metric [24],
which is essentially curved and has nonzero source angular
momentum. This setting is particularly suitable for a
tentative study of LV gravitomagnetic effects.
As the fermion in the analogy is nonrelativistic (NR) for

practical purposes, it seems necessary to perform the Foldy-
Wouthuysen (FW) transformation ([13,25,26]) first; how-
ever, a different method first proposed in Ref. [27] is
adopted, where the one-fermion matrix elements for a
NR fermion scattering off external fields are studied. The
NR feature relies on the assumption that the field quantum
carries negligible energy and fermion quantization is
truncated on positive energy states only. The rest of the
paper is arranged as follows. In Sec. II, we briefly review the
basic background of gravito-electromagnetism, an analogy

of weak gravity in general relativity (GR) to electromag-
netism. In Sec. III, we derive the energy-momentum tensor
(EMT) for a LV fermion in flat spacetime as a warm-up
exercise for the discussion of LV matter-gravity couplings,
since gravity couples exactly to the EMT of matter fields,
just as photon couples to the electromagnetic current. In
Sec. IV, we briefly review the formalism describing a LV
fermion coupled with gravity in the weak field approxima-
tion. In Sec. V, we outline the main methodology for
obtaining the one-fermion matrix elements of a LV fermion
coupled with external fields. To make transparent the
analogy, we demonstrate the fermion-photon couplings
together with the fermion-gravity couplings in the static
limit. Possible experimental constraints on LV spin-gravity
couplings are discussed in Sec. VI, and we summarize our
main results in Sec. VII.

II. THE GRAVITO-ELECTROMAGNETISM

The electromagnetic (EM) analogy for weak gravity can
be found in many textbooks on GR [28] or review papers
[2]. The inhomogeneous Maxwell equations and Lorentz
force law for a charged particle moving in the EM fields are

∇ · E⃗ ¼ ρe
ϵ0

; ∇ × B⃗ −
1

c2
∂E⃗
∂t

¼ μ0j⃗e ð1Þ

dðγv⃗Þ
dt

¼ e
m

�
E⃗þ v⃗

c
× B⃗

�
: ð2Þ

For sufficiently weak gravity and slow-moving source, we
can expand the metric around Minkowski background

gμν ¼ ημν þ hμν: ð3Þ

When the source is stationary _Tμν ¼ 0, and in the harmonic
gauge Γρ ≡ Γρ

μνgμν ¼ 0, the Einstein field equation Gμν ¼
κTμν (κ ≡ 8πG

c4 ) can be cast into the form similar to (1),

∇ · E⃗g¼−
κc4

2
ρm; ∇× B⃗g−

1

c
∂tE⃗g ¼−2κc3j⃗m; ð4Þ

where E⃗g ≡ −∇ϕg − 1
c ∂tA⃗g is the so-called gravito-electric

field, or just the local gravitational acceleration when
_A⃗g ¼ 0, Bi

g ≡ c2ϵijk∂jh0k is the gravito-magnetic field,

and ρm; j⃗m ¼ ρmv⃗ are the matter mass density and mass
current, respectively. It is easy to check that the homo-
geneous equations similar to ∂μF̃μν ¼ 0 (F̃μν ≡ 1

2
ϵρσμνFρσ)

in electrodynamics are also satisfied; see Appendix A. In
fact, up to the first Post-Newtonian order, PNO(1) [e.g.,
Oðc−2Þ for hij], these GEM equations can be further
generalized to the case when matter source does have time
dependence, as long as the gravitating system is moving
slowly; see [2,29,30]. In that case, one can even derive a
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formal equation ½∇2 − 4
c2 ∂

2
t �B⃗g ¼ 0 for the fields outside

the source current, which may indicate that gravitational
waves propagate with the same speed as light in vacuo.
The extra numerical factor 22, which can also be seen in
2κc3

κc4=2 ¼ 4
c in parallel to the ratio of μ0ϵ0 in Eq. (1), is because

gravity is a spin-2 instead of a spin-1 field. The minus sign
− κc4

2
ρm in Eq. (4) compared with ρe

ϵ0
in Eq. (1), the Gauss

law, reflects the fact that the “charges” of the same sign
in gravity attract rather than repel each other. The geodesic
equation duμ

dτ þ Γμ
ρσuρuσ ¼ 0 can also be put into the

form [2]

dv⃗
dt

¼ m
m

�
E⃗g

�
1þ v⃗2

c2

�
þ v⃗

c
× B⃗g

�
; ð5Þ

analogous to the Lorentz force law, Eq. (2). In this analogy,
gravitational mass can be regarded as the charge responsible
for gravito-electromagnetic (GEM) field, and the weak
equivalence principle (WEP) ensures that the “charge-
to-mass” ratio is unity. Substituting h0j ¼ ϵijkxjωk=c for
an observer stuck to a rotating noninertial frame in
Minkowski spacetime into (5), the corresponding force
2mω⃗ × v⃗ is exactly the Coriolis force, confirming that
the noninertial force and gravity may have a common
origin, which is partially encoded in the Mach principle.
However, we have to keep caution that the formal analogy
cannot be extended too far, though it proves quite fruitful,
such as the prediction of gravito-magnetic precession of a
spinning gyroscope in analogy with the magnetic dipole
precession in magnetic fields, confirmed in Gravity Probe B
project [10,11], and also in deriving solutions of the LV-
modified Einstein equation from the known ones in LV
electrodynamics [9]. The reason is that gravity is quite
different from the EM field: 1. The Maxwell equation is
linear and the EM field is abelian, while the Einstein
equation is notoriously difficult to solve for its nonlinearity.
2. The EM acceleration can be quite different for different
particles with different charge-to-mass ratios, while gravity
is universal for all kinds of matter (attractive except for the
cosmological constant [31]) due to the equivalence princi-
ple. This distinguishes gravity from all the other three forces
in nature, i.e., gravity can be geometrized and pointlike
particles propagate freely along geodesics of curved space-
time. It is not a force at all in GR. Technically, 1. Maxwell
equation and Lorentz force law are gauge invariant, and
thus, we can choose any gauge we like. This is not true in
the case of gravito-electromagnetism, where only a
restricted class of gauge transformations hμν → h0μν ¼
hμν þ 2∂ðμξνÞ with ∂2ξν ¼ 0 (satisfying the harmonic gauge)
are allowed, otherwise the Maxwell-like equations (4)
cannot hold. 2. The Eqs. (4) and (5) are essentially not
gauge invariant due to the two-layer structure of gravity:
The metric gμν can be viewed as the potential of the

connection Γα
βγ , just as the definitions of E⃗g; B⃗g express

(in this sense, Eqs. (4), (5) are gauge invariant); while the
connection Γα

βγ is again the potential of the Riemann tensor

Rλ
ρμν, and the latter is the intrinsically “gauge invariant”

field strength. In other words, by working in the observer’s
local inertial frame or the Riemann normal coordinates, we
can always gauge away the force mdv⃗

dt (derived from mduμ
dτ ).

In this respect, a set of essentially gauge invariant Maxwell-
like equations must be based on equations with covariant
tensor forms, such as the Einstein equation and the geodesic
deviation equation [32]. The bonus of this choice is that we
can go beyond linear approximations, and the correspond-
ing equations are more robust for further applications.
A detailed discussion of the essentially gauge invariant
gravitational analogy of Maxwell electrodynamics in the
context of LV will be very interesting; however, this is
beyond the scope of our present investigation.

III. THE FERMION ENERGY-MOMENTUM
TENSOR IN FLAT SPACETIME

The EM analogy in weak gravity is very useful because
electrodynamics is easier and more intuitive to deal with,
and we are more familiar with it, so we expect the similarity
also arises between fermion-gravity (FG) and fermion-
electromagnetic (FE) couplings. The usual minimal FE
coupling is in the form of Aμjeμ, where jeμ ¼ −eψ̄γμψ is
the conserved current. The conservation is ensured by the
gauge invariance of the FE coupling under gauge trans-
formation Aμ → Aμ þ ∂μΛ. Similarly, in the weak field
limit, we expect the minimal FG coupling takes a similar
form − 1

2
hμνΘμν, where Θμν is the symmetric energy-

momentum tensor (EMT). In fact, from the gravitational
definition of EMT [33],

ΘμνðxÞ≡ 2δIMffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp

δgμνðxÞ
; ð6Þ

for a gauge transformation δgμνðxÞ ¼ 2∇ðμξνÞ, the matter
action IM in (6) transforms as

δIM ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
δgμνΘμν

¼ −
Z

d4xξν
ffiffiffiffiffiffi
−g

p �
∂μ½ ffiffiffiffiffiffi−gp Θμν�ffiffiffiffiffiffi−gp þ Γν

μρΘμρ

�

þ
Z

d4x∂μ½
ffiffiffiffiffiffi
−g

p
ξνΘμν�; ð7Þ

where the terms in the large brace above are exactly ∇μΘμν.
Ignoring the surface term

ffiffiffiffiffiffi−gp
ξνΘμν, gauge invariance

again ensures the covariant conservation of EMT,
∇μΘμν ¼ 0. Unlike the case of EM matter couplings, there
is no simple conservation law of EMT ∂μΘμν ¼ 0 for the
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case of gravity, though the linear gauge transformation
δhμν ¼ 2∂ðμξνÞ may lead to the ordinary current conserva-
tion for the coupling − 1

2
hμνΘμν. This is quite similar to the

non-Abelian Yang-Mills theory, where no simple conser-
vation law exists for a current constructed purely from
matter field, Jaν ¼ −i ∂LM

∂Dνψ
taψ [34]. Jaν is only covariantly

conserved, DνJaν ¼ 0. To construct an ordinary conserved
EMT ∂μτ

μν ¼ 0, just like the ordinary conserved current
J μ

a ≡ Jμa − Cc
abF

μν
c Ab

ν (∂μJ
μ
a ¼ 0) contains contribution

from non-Abelian gauge field itself, the ordinary conserved
EMT τμν must also contain a contribution from the
gravitational field itself, i.e., terms proportional to the
summation of powers of metric tensors and their deriva-
tives, such as the Landau-Lifschitz pseudotensor tμνLL; then
τμν ¼ ð−gÞ½Tμν þ tμνLL� [35]. In other words, the gravita-
tional field itself carries energy and momentum and thus
contributes to the source of gravity. This has already been
dramatically verified by the direct observation of gravita-
tional waves [36]. In fact, the stress-energy tensor for the
GEM field in the stationary case can be shown to be exactly
proportional to the pseudotensor tμνLL [2].
In flat spacetime, the canonical formalism gives another

way to obtain EMT as the zero-gravity limit of the matter
“source current” for gravity, provided the Belinfante-
Rosenfeld symmetrization procedure (BR-procedure) is
performed. However, in the presence of LV, the usual
Belinfante-Rosenfeld symmetrization may not be attain-
able [8]. As an example, consider the following SME
Lagrangian [8],

L ¼ L0 þ δLLV;

L0 ¼
i
2
ψ̄γμD

↔

μψ −mψ ψ̄ψ −
1

2
Tr½FμνFμν�;

δLLV ¼ i
2
ψ̄δΓμD

↔

μψ − ψ̄δMψ ;

χ̄ΓμD
↔

μψ ≡ χ̄ΓμDμψ − χ̄D̄μΓμψ ; ð8Þ

where χ̄D̄μΓμψ ≡ ½ð∂μ − ieAμÞχ̄�Γμψ , δΓμ ≡ Γμ − γμ ≡
−½cνμγν þ dνμγ5γν� and δM≡ aμγμ þ bμγ5γμ þ 1

2
Hμνσμν.

Note for simplicity, the eμ; fμ; gλμν coefficients are dropped.
Except the cνμ and aμ, all the other LV coefficients are
responsible for the LV spin interactions [37]. We include aμ

term, as in the presence of gravity, the aμ coefficient cannot
be totally removed by field redefinition even for fermions
with a single flavor, unlike in the case of flat spacetime
[38]. Also note there is a sign difference for the c, d
coefficients in Γμ, as the signature for Minkowski metric
is ημν ¼ diagð−1;þ1;þ1;þ1Þ, the one conventionally
adopted in the gravity community, rather than the one in
QFT [7]. Only in this section, we use Greek indices to
denote variables in Minkowski spacetime, while in the
following sections, we use Latin indices a; b; c… from the
beginning for tangent space variables and the Latin indices

i; j; k;… in the middle for purely spatial indices, while the
Greek indices μ; ν; ρ;… are for manifold variables.
Similarly, the convention for the totally antisymmetric
tensor is fixed by ϵ0123 ¼ 1.
From the Lagrangian (8), we get the canonical momenta

from the definition Πl ≡ ∂L=∂ _Ψl,

Πμ
ψ ≡ i

2
ψ̄ ½γμ þ δΓμ�; Πμ

ψ̄ ≡ −
i
2
½γμ þ δΓμ�ψ ;

−Πμ
Aa

ρ
≡ Faμρ ¼ ∂

μAaρ − ∂
ρAaμ þ fabcAbμAaρ: ð9Þ

The canonical EMT denoted as Tμν is obtained below:

Tμν ≡ Πμ
ψ∂

νψ þ ∂
νψ̄Πμ

ψ̄ þ Πμ
Aa

ρ
∂
νAa

ρ − ημνL

¼ T0
μν þ δTμν;

T0
μν ≡ i

2
½ψ̄γμ∂νψ − ð∂νψ̄Þγμψ � − Faμρ

∂
νAa

ρ − ημνL0;

δTμν ≡ i
2
½ψ̄δΓμ

∂
νψ − ð∂νψ̄ÞδΓμψ � − ημνδLLV: ð10Þ

In the absence of gravity, the violation of Lorentz invariance
does not conflict with the spacetime translation invariance,
which is assumed to hold since we do not want to lose the
energy-momentum conservation, ∂μTμν ¼ 0, provided the
fields and their derivatives vanish sufficiently quickly at
spatial infinity. However, the BR procedure does not work,
as it crucially relies on the fact that the total angular
momentum tensor density is conserved, ∂μJ μ

αβ ¼ 0, where

J μ
αβ ≡ ∂L

∂½∂μΨðxÞ�
½Sαβ�ΨðxÞ þ xαTμ

β − xβTμ
α

includes the intrinsic spin contribution Sμ
αβ ≡ ∂L

∂½∂μΨðxÞ� ½Sαβ�
ΨðxÞ due to the nontrivial field representation of the
Poincaré group. Since Lorentz invariance is broken, the
total angular momentum needs not to be conserved,
∂μJ μ

αβ ≠ 0. To see why LV blocks the construction of a
symmetric EMT, first, we note that the antisymmetric part of
the canonical EMT is

T ½αβ� ≡ 1

2
ðTαβ − TβαÞ ¼ 1

2
∂μ½J μαβ − Sμαβ�; ð11Þ

where we have used ∂αTαβ ¼ 0. Now suppose one adds Tαβ

with a total derivative ∂ρAραβ, provided that Aραβ vanishes
sufficiently quickly at spatial infinity. Then the improved
EMT is

Θαβ ¼ Tαβ þ ∂ρAραβ

¼ TðαβÞ þ ∂ρ

�
1

2
½J ραβ − Sραβ� þAραβ

�
; ð12Þ
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where the unaltered conservations law requires Aραβ ¼
−Aαρβ. Still adopting the Belinfante-Rosenfeld formalism
[39,40] and letting

Aραβ ≡ 1

2
½Sραβ − Sαρβ − Sβρα�;

we can confirm that Aραβ ¼ −Aαρβ from its definition. The
BR procedure indeed guarantees the current conservation
∂αΘαβ ¼ 0, only in general Θαβ ≠ Θβα due to the presence
of Lorentz violation; i.e., ∂ρJ ραβ ≠ 0. This feature of EMT
has been clarified with an explicit example in [7] and has
been discussed in depth including gravity in the Rieman-
Cartan geometry [8].
As Lorentz violation forbids a conserved angular

momentum current, we do not expect a natural symmetric
EMT. Moreover, the BR procedure cannot even necessarily
give rise to a gauge invariant EMT. This has been observed
in the LV modified electromagnetism with the kAF term [7]
already. As another example, we show after the BR
procedure, the EMT with only the c coefficient is

Θμν ≡ Θμν
ψ þ Θμν

A

¼ i
4
ψ̄ ½ðγνDμ

↔ þ γμDν
↔ Þ�ψ − FμρFν

ρ − ημνL0

þ i
4
ψ ½cρνðγρDμ

↔
− γμDρ

↔ Þ − cρμðγρDν
↔ þ γνDρ

↔ Þ

þðγμcνρ − γνcμρÞDρ
↔ �ψ þ eψ ½ðcρμAν þ cρνAμÞγρ

−ðγνcρμ þ γμcρνÞAρ�ψ − ημνδLLV; ð13Þ

where we have ignored the second order LV corrections.
Clearly, the terms proportional to c coefficients block the
symmetrization, Θ½μν� ≠ 0, and the terms in the third square
bracket even block the gauge invariance. Without LV, the
terms in the second line are manifestly symmetric and
gauge invariant and coincide with the gauge invariant EMT,
Eqs. (4)–(5) for quark and gluon in [41], up to a sign
difference. Interestingly, the BR procedure does give a
gauge invariant EMT for pure LV gauge field with
Lagrangian

LA ¼ −
1

4
½FaμνFa

μν þ ðkFÞμνρσFa
μνFa

ρσ�; ð14Þ

where Fa
μν ≡ ∂μAa

ν − ∂νAa
μ þ fabcA

b
μAc

ν is the field
strength for the gauge field Aa. The BR procedure
improved EMT is

Θμν
A ¼ −Faμ

κFaνκ − ðkFÞμκαβFa
αβFaνκ − ημνLA; ð15Þ

which is apparently gauge invariant, but still not symmetric.
In view of these examples, we see that to have a gauge

invariant improvement of the canonical EMT, seems other
improvement procedures rather than the BR procedure
are required; the latter is not even attainable. Not only
because symmetrization is blocked by the presence of LV,
which is equivalent to the presence of background tensor
fields causing the asymmetry, but also because symmetri-
zation is only indicated by the metric framework of
gravitational theory. For a generic gravitational theory
allowing other degrees of freedom (d.o.f.), such as torsion
or nonmetricity [8,42], the generalized Einstein equation
does not require a symmetric EMT as the source of gravity,
though an effective symmetric EMT is always attainable if
we separate the Einstein tensor into the Riemannian part
and incorporate the non-Riemannian part into the effective
EMT [42]. However, the cost is that it plagues a proper
interpretation of the gravitation and matter d.o.f. We will
postpone a further investigation of LV EMT in the future
and turn to the discussion of FG couplings in the next
section.

IV. PRELIMINARY FOR FERMION-GRAVITY
INTERACTIONS

To consider the fermion-gravity couplings, the flat space
LV fermion Lagrangian (8) has to be replaced by the curved
space version [8,16]

Lψ ¼ e

�
i
2
eμaψ̄Γa∇↔μψ − ψ̄Mψ

�
; ð16Þ

ψ̄Γa∇↔μψ≡ψ̄Γa

�
D⃗μþ

i
4
ωμ

bcσbc

�
ψ−ψ̄ ½D⃖μ−

i
4
ωμ

bcσbc�Γaψ ;

Γa≡γa− ½cρνγbþdρνγ5γb�eνaeρb; ð17Þ

M≡mþ aμeμaγa þ bμeμaγ5γa þ
1

2
Hμνeμaeνbσab: ð18Þ

Note we use D⃗μψ ¼ ð∂μ þ igAμÞψ to represent pure gauge

coupling and ∇⃗μψ ¼ ½D⃗μ þ i
4
ωμ

bcσbc�ψ to represent the
covariant derivatives including both the minimal gauge
field (the gauge field means photon in this context)
coupling and the spin connection coupling. Also note that
we use g instead of e to represent gauge coupling to avoid
confusion with the determinant of vierbein, as it will be
easier to distinguish the determinant of metric from the
coupling constant g in this context. The gravity sector is
assumed to be intact to largely simplify the original
construction with torsion in Riemann-Carton spacetime
[8]. We mention that torsion and nonmetricity can also be
tightly constrained in the context of SME [43–45], though
they draw great attention to the gravity community even in
the LI context [42,46,47]. Considering the weak gravity
limit up to the lowest order of metric perturbation
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hμν ¼ gμν − ημν, the vierbein and spin connection can thus
be written as

eμa ≃ δμ
a þ 1

2
hμa þ χμ

a; eμa ¼ δμa −
1

2
hμa þ χμa;

ωμ
ab ¼ 1

2
½eνað∂μeνb − ∂νeμbÞ − eμc∂αeβceαaeβb� − ða ↔ bÞ

≃
1

2
ðhμ;ab − hμ;baÞ þ χab;μ þ χμ;

ab − χμ;
ba: ð19Þ

The χab ¼ −χba contains the 6 local Lorentz degrees of
freedom in the vierbein and can be totally removed by
fermion field redefinition ψðxÞ → exp½− i

4
χabðxÞσab�ψðxÞ

[16,18]. This redefinition may still leave imprints on the
fluctuations of LV coefficients [16]; however, due to
stringent experimental constraints [21] and our sole interest
in the effects caused by the vacuum expectation values
(VEVs) of the LV coefficients, we can safely ignore χ in the
following. For example,

eμaΓa ¼ γμ −
1

2
hμaγa −

�
cbμ − cbνhμν −

1

2
cρμhρb

�
γb

−
�
dbμ − dbνhμν −

1

2
dρμhρb

�
γ5γ

b: ð20Þ

Note that different from the notation in [16], we use mixed
Latin and Greek indices to keep track of their origin, though
all the indices can be put into the Greek ones since we take
hμν as the metric deviation from the vacuum Minkowski
background. In other words, in the following discussions of
linearized weak gravity, there is no need to distinguish
Latin and Greek indices, as all the upper and lower indices,
whether Latin or Greek, are raised or lowered by the
corresponding Minkowski metric. As the LV coefficients
are linear on the level of Lagrangian, we can treat them one
by one. First, note we can separate the Lagrangian (16) into
LI and LV parts, Lψ ¼ ð1þ 1

2
hÞ½LLI þ LLV�, where the

determinant of the vierbein e ¼ ffiffiffiffiffiffi−gp ¼ 1þ 1
2
h. The LI

Lagrangian can be written as

LLI ¼
i
2
eμaψ̄γa∇

↔

μψ − ψ̄mψ

≃
i
2
ψ̄

�
γaD

↔

a −
1

2
hμaγaD

↔

μ

�
ψ − ψ̄mψ ; ð21Þ

where the “≃” means preserving only terms up to linear
order of hμν, and we have utilized the identity
hab;cfγa; σbcg ¼ 0. The LV counterpart is

LLV ¼ i
2
eμaψ̄δΓa∇↔μψ − ψ̄δMψ

≃
i
2
ψ̄

�
δΓa∘

�
δμa −

1

2
hμa

�
D
↔

μ þ δΓa
hD
↔

a

�
ψ

− ψ̄ðδM∘ þ δMhÞψ þ 1

4
ϵbcmnham;nψ̄

× ½cbaγ5γc þ dbaγc�ψ ; ð22Þ

where, for simplicity, we have defined

δΓa
h≡1

2
½hνaðcbνþdbνγ5Þþhρbðcρaþdρaγ5Þ�γb;

δΓa∘ ≡−½cbaγbþdbaγ5γb�;

δMh≡−
1

2
hμa

�
ðaμþbμγ5Þγaþ

1

2
Hμbσ

ab

�
−
1

4
hνbHaνσ

ab;

δM∘ ≡
�
aaγaþbaγ5γaþ

1

2
Habσ

ab

�
:

To the linear order of metric perturbation, the Euler-
Lagrangian equation to LLI þ LLV is

�
i

�
ðΓa∘ þ δΓa

hÞD⃗a −
hμa
2

Γa∘D⃗μ

�
− ðM∘ þ δMhÞ

�
ψ

þ i
2

�
∂aδΓa

h−
1

2
∂ahacΓc∘ −

i
2
ϵbcde hab;cðcdaγ5 þ ddaÞγe

�
ψ

¼ 0; ð23Þ

where Γa∘ ¼ γa þ δΓa∘ and M∘ ¼ mþ δM∘. Note we
haven’t considered the so-called geometric term

Lgeo ¼ ðe − 1ÞLψ ≃
h
2
Lflat; ð24Þ

where Lflat ≡ i
2
ψ̄Γa∘D

↔

aψ − ψ̄M∘ψ , since the geometric
term comes from the artifact of linearization, which
amounts to nothing but multiplying Eq. (23) with a
rescaling factor e ¼ 1þ h

2
. If pick up back these terms,

the equation is exactly the one obtained from the lineari-
zation of the full Dirac equation with respect to the
Lagrangian (16).
In comparison with the EM coupling −jμAμ, we can also

collect all the terms proportional to hμν in the Lagrangian,
which is

LhI ¼ −
1

2
hμa

�
i
2
ψ̄Γa∘D

↔

μψ − ψ̄ ½ðaμ þ bμγ5Þγa þHμbσ
ab�ψ

�

þ i
4
ψ̄ ½hνaðcbν þ dbνγ5Þ þ hρbðcρa þ dρaγ5Þ�γbD

↔

aψ

þ 1

4
ϵmnb

cham;nψ̄ ½cbaγ5 þ dba�γcψ þ h
2
Lflat

_¼−
1

2
hμνTμν; ð25Þ

where all the Greek and Lain indices are raised or lowered
by the corresponding Minkowski metric and thus lose the
distinctive features they have before the linearization. Also
note “ _¼”means equal up to a total derivative since we have
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dropped a total derivative term proportional to ϵμbcd, and
the energy-momentum tensor Tμν is given explicitly,

Tμν ¼ i
2
ψ̄Γν∘Dμ

↔
ψ − ψ ½ðaμ þ bμγ5Þγν þHμ

bσ
νb�ψ

−
i
2
ψ̄ ½ðcbμ þ dbμγ5ÞγbDν

↔ þ ðcμb þ dμbγ5ÞγνDb
↔

�ψ
− ημνLflat þ iϵμbcd∂d½ψðcbνγ5 þ dbνÞγcψ �: ð26Þ

Aside from the last term coming from spin connection, the
EMT obtained in this way is gauge invariant and sym-
metric, as the apparently asymmetric part T ½μν� does not
contribute due to the coupling with hμν ¼ hνμ. The LV
coefficients in the above are just VEVs and thus are
assumed to be spacetime independent at least in the
post-Newtonian approximation of the SME [18,48].
Now the form LhI _¼ − 1

2
hμνTμν is similar to the EM

coupling −Aμjμ and can be regarded as a linear approxi-
mation of δI ¼ 1

2

ffiffiffiffiffiffi−gp
δgμνTμν up to the determinant

ffiffiffiffiffiffi−gp
.

It is interesting to note that the geometric contribution in
(24) cannot be ignored as stated in [27]; otherwise, the
resultant EMT will differ by a term proportional to ημν

compared to the EMT obtained with the canonical formal-
ism. However, this term doesn’t contribute if the matter
fields are on the mass shell since we only consider metric
couplings up to linear order.
As mentioned already, we can study the NR fermion-

gravity interaction from the well-known FW transformation
method [25,49,50], which requires a relativistic Hamiltonian
with conventional time evolution as the starting point. As
our main concern, the other way is to calculate the inter-
action energy between a pair of one-fermion states,R
d3x⃗hp0;βj−Lintjp;αi ¼ 1

2

R
d3x⃗hμνhp0;βjTμνjp;αi, where

hp0; βjTμνjp; αi is the gravitational form factor extensively
studied in hadron spin structures [51]. However, even for the
latter approach, to find out the proper eigenspinors for proper
Fourier expansion of ψðxÞ, we still face the same necessity of
field redefinition. In fact, even for a covariant Dirac equation
without unconventional time derivatives impeding the proper
identification of the time evolution operator [16], field
redefinition is still an essential step to get a hermitian
Hamiltonian [50] and has been well developed in the context
of SME [7,16,37] to study perturbative LVeffects, such as the
effects due to LV fermion-gravity couplings. We will discuss
the field redefinition later.

V. NONRELATIVISTIC FERMION-GRAVITY
COUPLING AND THE ANALOGY

The method to get NR interaction energies is adopted
from Ref. [27], where the basic idea is from the lessons we
learn in QED. In QED, the electrostatic force is mediated by
the photon exchange between two charged particles, and the
full relativistic interaction is described by the vector-current
interaction −jμAμ with jμ ¼ ψ̄Γμψ , where Γμ ¼ γμ in LI

QED. Likewise, the gravitational interaction is mediated by
the graviton exchange between two energy carriers (without
NR approximation, massless particles such as photons are
also allowed), and the full relativistic interaction is
described by the tensor-current interaction − 1

2
hμνTμν,

where Tμν is given by Eq. (6) in general, and only the
symmetrized part of Tμν essentially contributes. For the
Lagrangian (16), Tμν is explicitly given by (26) in the linear
approximation. Following the same logic, we try to get the
leading order NR one-fermion interaction matrix elements
from the fully relativistic interaction Lagrangian (25).
In standard QFT, the spinor ψ can be expanded as

ψðxÞ ¼
X
σ¼1;2

Z
dk̃½b̂σðk⃗Þuσðk⃗Þeik·x þ d̂†σðk⃗Þvσðk⃗Þe−ik·x�;

ð27Þ

where dk̃≡ d3k
ð2πÞ3

m
k0, k · x≡ k⃗ · x⃗ − k0x0, and uσ, vσ are the

eigenspinors describing electron and positron, respectively.
In the LI situation, the explicit forms of uσ , vσ can be found
in any textbooks of QFT, say [52,53]. However, in the
presence of generic LV couplings, the physical free-particle
states cannot be directly described by ψ due to unconven-
tional time evolution imposed by the LV derivative cou-
plings, such as the c, d terms [54]. To eliminate the extra
time derivatives, we have to invoke the spinor redefinition
ψ ¼ Ûχ to cast the kinematic term into the conventional

structure 1
2
iχ̄γ0 ∂

↔

0χ, which leads to a Hermitian Hamiltonian
with the usual scalar product hΨjΦi≡ R

d3xΨ†ðxÞΦðxÞ in
flat space [16]; otherwise, we have to redefine the scalar
product via the prescription adopted in Ref. [55].
For the flat space Lagrangian (8), Û ¼ ðγ0Γ0∘Þ−1

2 is a
nonsingular spacetime-independent matrix [54,56]. For a
generic fermion Lagrangian, the redefinition matrix is
given by Eq. (30) in Ref. [16] up to the leading order of
perturbation parameters of hμν and LV coefficients. Thus, in
general, Û can be quite complicated and spacetime depen-
dent. The explicit form of Û corresponding to Lagrangian
(16) is given in Appendix C, and can be shown to satisfy
Û†γ0Γ0Û ¼ Î [57]. As what we concerned about is LhI in
Eq. (25), it suffices to use the flat-space redefinition matrix
Û0 ≡ 1þ 1

2
ðdb0γ5 − cb0Þγ0γb for a linear approximation.

Detailed calculations lead to additional h couplings from
the flat-space Lagrangian Lflat, as the spinor redefinition
matrix Û ¼ 1þ δÛ0 þ δÛh; however, these terms do not
contribute to hp0; βj R d3xLflatjp; αi, provided the external
fermions are on mass shell.
For nonderivative LV couplings such as a, b, H

coefficients, the LI eigenspinor may serve as a first-order
approximation in Eq. (27), while for the c, d coefficients
with extra time derivatives, the quantization expansion in
terms of b̂σ; d̂σ has to be done with a redefined spinor χ
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directly. Of course, the eigenspinor can always be written as
Sα ¼ Sα0 þ Sα1 (Sα refers to uα or vα), where Sα0; Sα1
denote the LI and LV contributions, respectively. For the
one-fermion matrix elements hp0; βjÔjp; αi at leading order
approximation, the key ingredient in the Fourier expansion
can be written as

S̄βÔSα¼ S̄β0ðÔ0þÔ1ÞSα0þðS̄β1Ô0Sα0þ S̄β0Ô0Sα1Þ; ð28Þ

where S̄α ≡ Sα†γ0 is the Dirac adjoint of the eigenspinor Sα,
Ô denotes any operator we are interested in, such as eA⃗ · Γ⃗,
and Ô0; Ô1 denote the LI and LV separations of Ô. Since in
the NR limit, the contribution from the spinor vσðk⃗Þ with
negative energy can be totally ignored, and the scattered
fermion is assumed to be always on the mass shell, Eq. (27)
becomes (for c, d coefficients, ψ has to be replaced by
χ ¼ Û−1ψ)

ψðxÞ ¼
Z

dk̃
X
σ¼1;2

b̂σðk⃗Þuσðk⃗Þeik·x; ð29Þ

where k0 ¼ k0½k⃗; m; X� is the LV modified dispersion
relation, and X represents a set of generic LV coefficients
with indices suppressed. The LI eigenspinor is

uσ0ðk⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þm
2m

r �
ξσ

U0ðkÞξσ
�
≃NR
� ξσ

σ⃗·k⃗
2m ξ

σ

�
; ð30Þ

where U0ðkÞ≡ σ⃗·k⃗
ω0þm and ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

p
. For calcula-

tional simplicity, we simply ignore theOð k⃗2m2Þ corrections of
the normalization factor

ffiffiffiffiffiffiffiffiffi
ω0þm
2m

q
and set it equal to 1 in the

last step. This can largely simplify our calculations but may

induceOð1Þ numerical differences for those terms ofOðp⃗2

m2Þ
in comparison with the corresponding terms in [27]. For a,
b type coefficients, the eigenspinor can be directly found in
the appendix in [7]. For completeness, we collect them
together with the eigenspinors for c, d, H coefficients in
Appendix D. The key idea is that since LV is supposed to be
tiny by observational constraints [21], we only need to keep
linear order LV corrections and hence, can treat various LV
coefficients one by one as if the other LV coefficients are
absent. Thus, in calculating LV contributions of FG or FE
interaction energies from matrix elements, we can classify
them into three categories:

(i) Explicit LV vertices, such as OLV ¼ hba
2
ψ̄

½ðab þ bbγ5Þγa þHb
cσ

ac�ψ , where Eq. (27) with
LI eigenspinors is sufficient;

(ii) Eigenspinor induced LV to the superficially LI

vertices, such as OLI ¼ ihba
4
ψ̄γaDb

↔

ψ , where ψ and

ψ receive LV corrections and thus induce LV
corrections to interaction energy. In this case, the
eigenspinor correction appears through the LV
corrected matrix connecting the upper and lower
two bispinors ξα and UXðkÞξα, i.e., U0ðkÞ → UXðkÞ,
where X again represents certain LV coefficient with
Lorentz indices suppressed;

(iii) LV correction to dispersion relations, which in the
NR limit, may also induce LV corrections; for
example, 1

Eðp;XÞþm ≃ 1
2m ½1 − X

4m�, where X represents

some indices suppressed LV coefficient with dimen-
sion 1 and Eðp;XÞ ¼ ½p⃗2 þm2 þ Xm�12.

Equipping with these tools and following the spirit of [27],
we calculate the interaction energy

Êint ¼ −
Z

d3x⃗Lint

in the following subsections. As an objective in analogy, we
calculate the fermion-photon interaction first with the
interaction Lagrangian

Lint ¼ LAI ¼ −gψ̄ΓaAaψ

¼ −gAa½ψ̄γaψ − ψ̄ðcbaγb þ dbaγ5γbÞψ �; ð31Þ

while for fermion-gravity interaction, Lint is replaced by
LhI in Eq. (25).

A. Nonrelativistic fermion-photon interaction

The interaction energy between two one-electron states
jp0; βi and jp; αi is

EAI ≡ ELI
AI þ ELV

AI

¼ ghp0; βj
Z

d3x⃗½ψ̄ Γ⃗ψ · A⃗ − ψ̄Γ0ψA0�jp; αi

¼ g
X
s1;s2

Z
d3x⃗

Z
d3k1
ð2πÞ3

d3k2
ð2πÞ3 h0jbβðp

0Þb†s1ðk1Þ

× ½ūs1ðk1ÞΓ · Aus2ðk2Þ�bs2ðk2Þb†αðpÞj0i

¼ g
Z

d3x⃗e−iq⃗·x⃗½u†βðp0Þγ0Γ · AuαðpÞ�; ð32Þ

where q≡ p0 − p and Γ · A≡ Γ⃗ · A⃗ðxÞ − Γ0A0ðxÞ, and we
have used fbαðpÞ; b†σðkÞg ¼ ð2πÞ3δασδ3ðp⃗ − k⃗Þ. Note we
assume that the field redefinition has already been done
implicitly, so for the c, d coefficients, γ0Γ · A has to be
replaced by ðΓÛÞ†γ0 · AÛ. In the following, we will
always deal with a, b, H terms first and treat c, d terms
later, and we omit the subscript “0” for denoting LI spinor
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uσ0 unless necessary. The LI part of the interaction
energy is

ELI
AI ¼ g

Z
d3x⃗e−iq⃗·x⃗ðūβðp0Þ½A⃗ðxÞ · γ⃗ − A0ðxÞγ0�uαðpÞÞ

¼ g
Z

d3x⃗e−iq⃗·x⃗ξ†β

��⃗
l · A⃗þ iq⃗ × A⃗ · σ⃗

Eþm

�

− A0

�
1þ p0! · p⃗þ iq⃗ × p⃗ · σ⃗

ðEþmÞ2
��

ξαðpÞ

¼ g
Z

d3x⃗e−iq⃗·x⃗ξ†β

��
A⃗ · p⃗
m

− A0

�
1þ p⃗2

4m2

��

þ σ⃗ · B⃗
2m

þ ðE⃗ × p⃗Þ · σ⃗
4m2

�
ξα; ð33Þ

which is exactly the same as the Eqs. (7.7) and (7.9) in [27]
if the signature difference is concerned. Note we have
defined l≡ p0 þ p and assumed the fermion is always on
the mass shell such that the energy transfer is zero, q0 ¼ 0
(elastic scattering), just as in [27]. However, in the presence
of a generic LV coefficient X, the dispersion relation is
modified. Thus, p00 ¼ p0 does not imply q⃗ · ð2p⃗þ q⃗Þ ¼ 0,
but rather

q⃗ · p⃗
4m2

≃ −
q⃗2

8m2
þ δωp0 − δωp

4m
; ð34Þ

where δωp ¼ δωðp;m;XÞ≡ p0ðp;m;XÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

p
,

and we divided q⃗ · p⃗ by 4m2 to fit the factor appearing
in the third line of (33). The extra term in (34) means that
there is an extra LV contribution due to the modified
dispersion relation, even in the calculation of the super-
ficially LI ELI

AI. To facilitate the analogy, we also assume
that the four-potential of the photon field is static, _Aμ ¼ 0.
For simplicity, we choose the Coulomb gauge ∇ · A⃗ ¼ 0,
which is equivalent to the Lorenz gauge in static limit. The
absence of q⃗ · A⃗ is simply due to this gauge choice. The
third term in (33) is exactly the standard Dirac’s prediction,

the magnetic moment interaction σ⃗·B⃗
2m, and the last term

ðE⃗ × p⃗Þ · σ⃗ contributes to the fine-structure corrections of
the hydrogen atom. Apart from the spin-orbit (SO) cou-
pling, there are the Darwin term (though it vanishes in the
static limit) and the relativistic corrections of the kinematics
that also contribute. The first term gA⃗ · p⃗=m is simply the

cross term in the gauge invariant kinetic energy ðp⃗þgA⃗Þ2
2m in

the Coulomb gauge, and −gA0 is the static Coulomb energy

with the correction factor 1þ p⃗2

4m2 for a charged particle in
its comoving frame. The vanishing of q⃗2A0 term is because
this term is proportional to ∇2A0ðx⃗Þ ¼ −ρeδðx⃗ − x⃗sÞ by
Coulomb’s law, where x⃗s denotes the position of source
particle for the external EM field, and the fermion is

assumed to be far away from the source particle. Note that
we have made a replacement−iq⃗A0 → E⃗ and q⃗ × A⃗ → B⃗ in
the fourth and fifth lines of Eq. (33) and dropped out total
derivative terms from partial integration.
For LV eigenspinor contribution to EM interaction

energy, we give an explicit formula for a generic LV
coefficient X,

EX−spinor
AI ¼ g

Z
d3x⃗e−iq⃗·x⃗ξ†βð½σ⃗ · A⃗δUXðpÞ þ δU†

Xðp0Þσ⃗ · A⃗�

− A0½U†
0ðp0ÞδUXðpÞ þ δU†

Xðp0ÞU0ðpÞ�ÞξαðpÞ;
ð35Þ

where U0ðpÞ≡ σ⃗·p⃗
ω0þm and UX are the LI and LV matrices

connecting the upper and lower bispinors. For example, for
a given Dirac spinor uðpÞ ¼ ðξðpÞ; ηðpÞÞT, η ¼ UXξ and
δUXðpÞ≡UXðpÞ −U0ðpÞ. For details, see Appendix D.
First, we can calculate the contribution of a, b, H

coefficients to the fermion-photon interaction separately.
As they do not superficially alter the conserved currents,
there is no modification of the fermion-photon vertex due to
these coefficients. In other words, for a, b,H, it is sufficient
to take into account eigenspinor contributions EX−spinor

AI and
corrections due to modified dispersion relations. For the a
coefficient, its effects can be simply shown by replacing
p⃗ → p⃗þ a⃗ in (33) and omitting a⃗2 terms, which are of
higher order. This manifestly shows that for EM interac-
tion, a term only shifts the four-momentum and causes no
observable physical effects and thus can be removed by
proper field redefinitions [7,16]. However, it does have
effects on gravitational interaction [16] and will be explic-
itly shown in the next subsection.
The LV correction for the b coefficient is

Eb
AI ¼ g

Z
d3x⃗e−iq⃗·x⃗ξ†β

�
iðq⃗ × A⃗Þ · b⃗ − b0A0 ⃗l · σ⃗=2

2m2

þ b0σ⃗ · A⃗
m

þ A⃗ · ð⃗l b⃗−b⃗ ⃗lÞ · σ⃗
2m2

�
ξα

¼ g
Z

d3x⃗e−iq⃗·x⃗ξ†β

�
b0σ⃗ · A⃗

m
þ B⃗ · b⃗ − b0A0p⃗ · σ⃗

2m2

þ 2A⃗ · ½ðb⃗ × p⃗Þ × σ⃗� þ iσ⃗ · ∇⃗ðb⃗ · A⃗Þ
2m2

�
ξα: ð36Þ

Note that − b0A0q⃗·σ⃗
4m2 in (36) is canceled by the correction due

to LV dispersion relation; see Eq. (34). Interestingly, the
B⃗ · b⃗=2m2 term seems to indicate that the b⃗ vector behaves

like a “cosmic magnetic dipole moment” δμ⃗ ¼ − gb⃗
2m2 in

comparison to the conventional magnetic dipole moment
(MDM) μ⃗ ¼ − gσ⃗

2m. Contrary to the dynamical μ⃗, which can
be manipulated by spin polarization, δμ⃗ is supposed to be a
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constant background, whose projection on a specific direc-
tion, say B⃗, varies due to the relative motion of the charged
particle with respect to the cosmic background, and may
cause a sidereal variation in terrestrial experiments. A
similar Ω⃗ · b⃗ coupling also arises when a LV fermion is
coupled to the gravitational field due to a large rotating
mass. For a fermion coupled with some kind of cosmic
anisotropic vector [58], or the axial vector part of a torsion
tensor by the identification ϵμαβγ

8
Tαβγ → bμeff [16], we may

expect similar forms of interactions. In fact, the nonminimal
1
2
bijkF Fjkψγ5γiψ term [59] may also produce a term looking

like bFσ⃗ · B⃗with similar structure if bijkF ¼ bFϵijk, and thus,
the terms within quite different scenarios may be con-
strained by similar phenomenological observations, such as
the comagnetometer experiments [14,15].
The LV correction for the H coefficient is

EH
AI ¼ g

Z
d3x⃗e−iq⃗·x⃗ξ†β

�
A⃗ × H⃗ · σ⃗

m
−
ðσ⃗ · A⃗Þð⃗l · ⃗H̃Þ

2m2

þ iA0q⃗ · H⃗
4m2

−
A0 ⃗l × H⃗ · σ⃗

4m2

�
ξα

¼ g
Z

d3x⃗e−iq⃗·x⃗ξ†β

�
A⃗ × H⃗ · σ⃗

m
−
ðσ⃗ · A⃗Þðp⃗þ q⃗=2Þ · ⃗H̃

m2

−
E⃗ · H⃗
4m2

−
A0ðp⃗þ q⃗Þ × H⃗ · σ⃗

2m2

�
ξα; ð37Þ

where we have decomposed Hμν into an “electric” part

H⃗i ≡H0i and a “magnetic” part ⃗H̃
i ≡ 1

2
ϵijkHjk. This

decomposition is meaningful, as seen from various cou-
plings such as −E⃗ · H⃗=4m2. Just like the “cosmic MDM”

induced by the b⃗ vector, −E⃗ · H⃗=4m2 behaves like a

“cosmic electric dipole moment” gH⃗
4m2 for a charged fermion.

Also just like −b0A0σ⃗ · p⃗=2m2 in (36) coupling spin σ⃗=2
with momentum p⃗ and hence, behaving as a spin-orbit-like
(SOL) operator (here, we adopt the literal instead of the
conventional meaning of the nomenclature; i.e., a “spin-
orbit” like operator simply means an operator coupling spin
and momentum), A0H⃗ × p⃗ · σ⃗=2m2 ¼ −A0σ⃗ × p⃗ · H⃗=2m2

can also be viewed as a tiny LV SOL correction to the LI

SO coupling term, g ðE⃗×p⃗Þ·σ⃗
4m2 . However, the external E⃗ in the

LI operator is controllable, while the “cosmic” H⃗ term is
not, though it may receive a sidereal variation for any
terrestrial experiment. Moreover, it depends on the local

electric potential, which is like the term ϕg
p⃗×H⃗·σ⃗

m in (51).
These distinctive features mean the LV SOL couplings can
be testable and distinguished from any LI background in
the ultrahigh precision fine structure observations.
For the c, d coefficients, as they not only lead to

eigenspinor corrections, but also bring corrections to
conserved current, and hence, impose the need of spinor
redefinition to cure the otherwise non-Hermitian
Hamiltonian if the spinor ψ is improperly used, we treat
them separately.
After redefinition, the fermion-photon interaction is

gAaψ̄ ½δba − cba − dbaγ5�γbψ ¼ gχ†½ðα⃗ · A⃗ − A0Þ
þAjðd̃ijγ5αi þ 2dð0jÞγ5Þ − Ajðc̃ijαi þ 2cð0jÞÞ�χ; ð38Þ

where we defined cð0jÞ ≡ 1
2
ðc0j þ cj0Þ, dð0jÞ ≡ 1

2
ðd0jþ

dj0Þ, c̃ij ≡ c00δij þ cij, d̃ij ≡ d00δij þ dij, and again we
keep terms only up to the linear order of LV coefficients. The
LV c, d corrections to the conserved current are the terms in
the second line in (38), where the terms in the first line in the
large bracket correspond to LI current. It is interesting to
note that the consistency of the field redefinition for c, d
terms lies in the fact that there is no LV A0 coupling operator
in the second line in (38), as the goal of the field redefinition
is just to remove the unconventional kinematic couplings
caused by the c, d terms, and the A0 coupling will in no
doubt be removed due to the minimal coupling schemes.
Inserting the quantization expansion of χ in terms of
annihilation and creation operators as Eq. (27), we get

Ec1
AI ¼ −g

Z
d3x⃗e−iq⃗·x⃗u†βðp0Þ½αic̃ijAj þ 2cð0jÞAj�uαðpÞ

¼ −g
Z

d3x⃗e−iq⃗·x⃗ξ†β

�
2c⃗ · A⃗

�
1þ p0! · p⃗þ iq⃗× p⃗ · σ⃗

4m2

�

þ c00
2m

½l⃗ · A⃗þ B⃗ · σ⃗� þ cijAj

2m
ðli þ iϵkilqkσlÞ

�
ξα; ð39Þ

Ed1
AI ¼ g

Z
d3x⃗e−iq⃗·x⃗u†βðp0Þfd̃ijΣiAj þ 2d⃗ · A⃗γ5guαðpÞ

¼ g
Z

d3x⃗e−iq⃗·x⃗ξ†β

�
d⃗ · A⃗

σ⃗ · ⃗l
m

þ d̃ijAj ·

�
σi þ ð2pi þ qiÞσ⃗ · p⃗þ piσ⃗ · q⃗ − p0! · p⃗σi þ iðp⃗ × q⃗Þi

4m2

��
ξα; ð40Þ
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where we defined c⃗j ≡ cð0jÞ and d⃗j ≡ dð0jÞ for notational
simplicity. Note both in (39) and (40), uσðkÞ ¼ uσ0ðk⃗Þ in
(30), as we only need to keep terms of the linear order of LV
coefficients. By the comparison of (39) with (33), we see
c00 acts like a scale factor to the corresponding LI terms

such as σ⃗·B⃗
m , p⃗·A⃗m , while cij plays the role of a shear factor, and

c⃗i ¼ cð0iÞ mixes the coupling of A⃗ into those originally
coupled with A0 if LV were absent. In short, cμν acts like a
perturbation of metric tensor: It not only scales isotropi-
cally but also shears slightly the original LI EM
interactions, as if the original terms being viewed in
slightly sheared coordinates. However, we should avoid
confusion with the so-called “coordinate transformations,”
which have no physical effects [7]. In comparison, the
c-coefficient induced effects are in principle testable, such
as constraints of the sidereal variation by measuring the
transition frequency in atomic clocks [60]. For d coef-
ficient, due to the γ5 factor, it mediates the SOL couplings

with the EM field, except the d̃ijAjσi and id̃ijAjðp⃗×q⃗Þi
4m2 terms.

For example, the d̃ijAjpiσ⃗·p⃗
2m2 term looks much like an

anomalous magnetic moment (AMM) coupling term
μ0ðB⃗·p⃗Þðσ⃗·p⃗Þ

2m2 [61], which comes from the FW transformation

of the Pauli term − μ0
2
ψσμνFμνψ , and μ0 is the AMM

coupling constant put by hand.
Next, we consider the LV eigenspinor corrections to the

superficially LI term, the term in the first line in the large
square bracket in (38). The eigenspinor for c, d coefficients
in the quantization of χ has to be obtained from the free LV
modified Dirac equation,

i_χ ¼ −i½ðδij − c̃ij þ d̃ijγ5Þαi − 2ðcð0jÞ − dð0jÞγ5Þ�∇jχ

þm½γ0ð1 − c00Þ − dj0γ5γj�χ: ð41Þ

Assuming the eigenspinor takes the form χ ¼ eip·xðξηÞ,
where η ¼ UXξ, we obtain the UX with X ¼ c, d; see
(D4), (D5) in the Appendix D.
We still treat c, d terms separately in the spirit of keeping

only the linear order of LV coefficients. For the c
coefficient, the LVeigenspinor contrition to EM interaction
can be obtained by substituting δUcðkÞ≡UcðkÞ −U0ðkÞ
in (35),

Ec2
AI¼ g

Z
d3x⃗e−iq⃗·x⃗ξ†β

��
A0

�
−
cð0jÞqj

2m
þcijpipj

2m2

�

−cij
pjAi

m

�
þ
�
A0

2icijq½jpk�ϵiklσl−cijqiqj

4m2

−cij
qjAiþ iϵiklqjAkσl

2m

��
ξαðpÞ: ð42Þ

Again, we have added the correction A0ðδω0
p − δωpÞ=4m

into (42) by substituting (D14); see Eq. (34). The total LV
FE interaction energy due to c coefficient is Ec1

AI þ Ec2
AI.

For the d coefficients, the LV eigenspinor correction is

Ed2
AI ¼ g

Z
d3x⃗e−iq⃗·x⃗ξ†β

0
B@A0

�dj0�qðipjÞ þ qjqi

2

�
þ d0jqiqj

4m2

þ d̃ijqj

4m
−
d0jpipj

2m2

�
σi −

iϵjkldjiAlð2qðkpiÞ þ qkqiÞ
2m2

þ dji
2A½jσk�½pkpi þ qðkpiÞ þ qkqi=2�

m2

þ d0j
ljσ⃗ · A⃗
2m

1
CAξαðpÞ: ð43Þ

Unlike (39) and (40), Ec2
AI and E

d2
AI do contain contributions

from the LV interaction with scalar potential A0. These
terms would be absent if corrections from LV eigenspinors
were not taken into account; see the second lines in (38).
The total LV fermion-photon interaction energy due to the
d coefficient is Ed1

AI þ Ed2
AI. We separately write them out to

make the nature of where they originate (from LV corrected
current or LV eigenspinor) more clear. Also note, Eq. (43)

contains similar SOL terms, such as dij
ðAiσ⃗−σiA⃗Þ·p⃗pj

m2 , as the

SO coupling term iA0cijq½jpk�ϵiklσl

2m2 in (42), only now the role of

scalar potential A0 being replaced by vector potential A⃗.

The iA0cijq½jpk�ϵiklσl

2m2 term is called SO coupling as it is

equivalent to cij
Ejðσ⃗×p⃗Þi−pjðσ⃗×E⃗Þi

4m2 after the integration by
part and the identification Ei ¼ −∂iA0 for a static EM field,
and as usual, the total derivatives have been ignored. The
reason for the structure differences can date back to the
additional γ5 factor in LV kinematic d term compared with

the corresponding c term in L ⊃ i
2
ψ̄δΓμ

∂

↔

μψ .
At last, we stress that all the above FE couplings can

be expressed in terms of gauge invariant E⃗, B⃗ fields by
the already mentioned replacement −iq⃗A0 → E⃗ and
q⃗ × A⃗ → B⃗. The reasons we favor the gauge four-potential
Aμ instead of the gauge invariant field strength are the
following: 1. Aμ directly comes from the current inter-
action −jμAμ, and using Aμ makes the calculation more
convenient. 2. Expressing all the interaction terms in terms
of Aμ and Aμ

g facilitates the comparison of the FE and the
FG interactions. Moreover, since the FG couplings do not
come from a strict Uð1Þ gauge interaction as the FE
couplings, there is no gravitational analogy of the Uð1Þ
gauge invariance to guarantee that all the FG couplings can
be expressed purely in terms of the E⃗g; B⃗g fields. Though
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the two forces do bare some similarities as mentioned in
Sec. II, the GEM is allowed only for a restricted class of
gauge transformation hμν ↦ h0μν ¼ hμν þ 2∂ðμξνÞ, which
only reduces to an approximateUð1Þ gauge transformation
under some special assumptions, such as ξ⃗ ∼Oðc−4Þ; ξ0 ∼
Oðc−3Þ and ∂0ξ ¼ 0.

B. Nonrelativistic fermion-gravity interaction

Now we calculate the fermion-gravity interaction. Since
we assume the scattered fermions are on the mass shell,
which means the equation of motion is satisfied, the term
proportional to h does not contribute. The interaction
energy − 1

2

R
d3xhμνTμν in (25) is proportional to

1

2
hba

�
i
2
ψ̄ΓaD

↔

bψ − ψ̄ ½ðab þ bbγ5Þγa þHbcσ
ac�ψ

�

−
i
4
ψ̄ ½hνaðcbν þ dbνγ5Þ þ hρbðcρa þ dρaγ5Þ�γbD

↔

aψ

−
1

4
ϵbcmnham;nψ̄ ½cbaγ5 þ dba�γcψ : ð44Þ

Note we ignore all photon couplings by replacingDμ → ∂μ,
not only for calculational simplicity, but also to facilitate
the discussions of the test of equivalence principle (EP),
where photon interaction not only complicates but may
even spoil the precision test of WEP [62]. For comparison
convenience, we adopt the conventional definition of the
GEM potentials,

h00 ¼ −2ϕg; hij ¼ −δij2ϕg; h0j ¼ hj0 ¼ Aj
g;

g⃗≡∇ϕg; Ω⃗≡∇ × A⃗g; ð45Þ

where A⃗g differs slightly from the definition of Aj
g in the

Appendix A. Note that the metric gμν ¼ ημν þ hμν with

A⃗g ¼ 2GNr⃗×J⃗
r2 is exactly the Lense-Thirring metric [24], and

J⃗ is the total angular momentum of the spinning body. We
will call an operator gravito-electric coupling if it couples
with gravito-electric fields ϕg or g⃗ or call it gravito-
magnetic coupling if it couples with gravito-magnetic
fields A⃗g or Ω⃗.
The LI fermion-gravity interaction is

ELI
GI ¼ 0hp0; βj

Z
d3x

�
i
4
hbaψ̄γa ∂

↔

bψ

�
jp; αi0

¼
Z

d3xe−iq⃗·x⃗ξ†β

�
p0

�
ϕg

�
1þ p⃗2 þ q⃗ · p⃗þ iq⃗ × p⃗ · σ⃗

4m2

�
−
A⃗g · ⃗lþ iq⃗ × A⃗g · σ⃗

4m

�
þ
�
p⃗þ q⃗

2

�
·

�
ϕg

2m
ð⃗l − iq⃗ × σ⃗Þ

−
A⃗g

2

�
1þ p⃗2 þ q⃗ · p⃗þ iq⃗ × p⃗ · σ⃗

4m2

���
ξα

¼
Z

d3xe−iq⃗·x⃗ξ†β

�
mϕg

�
1þ 7p⃗2

4m2

�
þ 3g⃗ × p⃗ · σ⃗

4m
− Ag
	!

· p⃗ −
Ω⃗ · σ⃗
4

�
ξα; ð46Þ

where jp; αi0 denotes the pure LI eigen-vector, and we
preserve only terms up to PNO(1). Specific in detail,
we keep

h00 ∼Oðv4Þ; h0i ∼Oðv3Þ; hij ∼Oðv2Þ; ð47Þ

where v is the velocity of the fermion. Though the metric
component h00 ¼ −2ϕg only contains theOðv2Þ term ϕg, it
is further suppressed by keeping the NR factors, such as

ϕg
p⃗2

m2 ∼Oðv4Þ. Also note only a quarter of the spin-orbit

FG interaction 3g⃗×p⃗·σ⃗
4m comes from the pure temporal metric

h00 contribution, and the other half comes from the spatial
metric hij contribution. In comparison with the Eq. (20) in
[63], the spin-orbit operator from h00 exactly coincides
with the corresponding term due to a NR fermion coupled

with the noninertial force, thus confirming the WEP [63],
since the only nonzero metric perturbation for a linear
acceleration is h00 ¼ a⃗ · r⃗.
It will be interesting to compare the result (46) with those

obtained by the FW transformation, such as Eq. (2.44) in
[64] for static spherically symmetric metric. For this
purpose, we also keep

∂ih00





pi

m





 ∼mλc
r

Oðv3Þ; h0ipk ∼mOðv4Þ;

∂jh0i ∼
mλc
r̄

Oðv3Þ; ð48Þ

where λc ¼ ℏ
mc is the Compton wavelength of the fermion

we are concerned with, say, a neutron, and r̄ is the
characteristic length scale of the gravitational source, such
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as the Earth’s radius. In general, λc=r̄ ≪ v
c (we temporarily

restore c for clearness), for example, on the Earth, λc=r̄ ∼
10−22 and v=c ∼ 10−6 for thermal neutron (v ∼ 103 m=s);
thus, on numerical grounds, we can totally ignore terms
involving ∂jh0i and ∂ih00j p⃗m j. However, not only for
parallel comparison but also in preparation for exotic
situations such as neutron stars, where both h00 ∼ 0.1,
jΩ⃗j ∼ 10−23 GeV are much larger than the corresponding
values on Earth, we keep these terms in the following. In
deriving Eq. (46), we also assume Ω⃗ is constant such that
A⃗g ¼ 1

2
Ω⃗ × r⃗ and utilize the equations ∇2ϕg ¼ 4πGNρm

and ∇2A⃗g ¼ 16πGNj⃗m to eliminate the p⃗ · q⃗ϕg and p⃗ · q⃗A⃗g

terms, since the neutral fermion is assumed to be outside
the matter source of gravity, where ρm and j⃗m vanish. This
also explains why there is no ig⃗ · p⃗ term compared with the
NR Hamiltonian obtained by the FW approach.
Now we also consider the a, b, H terms first as these

terms do not involve derivative couplings. However, unlike
the EM current ψ̄Γaψ , the a, b,H terms do contribute to the
LV energy-momentum tensor Tμν, which receives any kind
of contribution from matter source. For simplicity, we
discuss the LVeigenspinor corrections first. As in Eq. (35),

we write down a general formula for the LV eigenspinor
correction,

EX−spinor
GI ¼ 1

4

Z
d3xe−iq⃗·x⃗ξ†βf½2l0ϕg− l⃗ · A⃗g� · ½δU†

Xðp⃗0ÞU0ðp⃗Þ

þU†
0ðp⃗0ÞδUXðp⃗Þ�

þ ½2ϕgl⃗− A⃗gl0� · ½δU†
Xðp⃗0Þσ⃗þ σ⃗δUXðp⃗Þ�gξα;

ð49Þ

where the 2 × 2 matrices U0 and δUX are defined under
Eq. (35). Note the structure similarity between (35) and

(49), where ϕg and Ag replace the role of ϕ and A⃗,

respectively, while the remaining terms, A⃗g · ⃗l and ϕg
⃗l,

reflect the tensor nature of gravitational coupling. Both the
similarity and differences between FG and FE couplings
may stem from this peculiar structure.
Substituting δUXðp⃗Þ with X ¼ a, b, H, c, d separately

into (49) with δUX given in Appendix D, the LV eigens-
pinor corrections to FG interaction due to a, b, H
coefficients are

Eab−1
GI ¼ 1

4

Z
d3xe−iq⃗·x⃗ξ†β

�
½2l0ϕg − l⃗ · A⃗g�

�ða⃗þ b0σ⃗Þ · l⃗
4m2

þ iq⃗× a⃗ · σ⃗
4m2

�
þ ½2ϕgl⃗− A⃗gl0� ·

�
a⃗þ b0σ⃗

m
−
iq⃗× b⃗
2m2

−
ðl⃗× b⃗Þ× σ⃗

2m2

��
ξα

≃
Z

d3xe−iq⃗·x⃗ξ†β

�
g⃗× a⃗ · σ⃗
4m

þϕg

�
3a⃗ · ðp⃗þ q⃗=2Þ

2m
þ 3b0 l⃗ · σ⃗

4m
þ ðb⃗ · l⃗Þðσ⃗ · l⃗Þ

4m2
−
ðp⃗2 þ p⃗× q⃗þ q⃗2=4Þ

m2
ðb⃗ · σ⃗Þ

�

−
�
A⃗g ·

�
a⃗þ b0σ⃗

2

�
þ Ω⃗ · b⃗

4m
þ A⃗g · ðl⃗ b⃗−b⃗ l⃗Þ · σ⃗

4m

��
ξα; ð50Þ

EH−1
GI ¼ 1

4

Z
d3xe−iq⃗·x⃗ξ†β

�
½2l0ϕg − ⃗l · A⃗g�

�⃗
l × H⃗ · σ⃗
4m2

−
iq⃗ · H⃗
4m2

�
þ ½2ϕg

⃗l − A⃗gl0� ·
�ðH⃗ × σ⃗Þ

m
−
⃗l · ⃗H̃
2m2

σ⃗

��
ξα

≃
Z

d3xe−iq⃗·x⃗ξ†β

�
ϕg

�
3⃗l × H⃗ · σ⃗

4m
− ⃗l · σ⃗

⃗l · ⃗H̃
4m2

�
−
g⃗ · H⃗
4m

− A⃗g ·
ðH⃗ × σ⃗Þ

2
þ A⃗g · σ⃗

⃗l · ⃗H̃
4m

�
ξα; ð51Þ

where we have ignored terms of order g⃗
m2 and

A⃗g

m2 in the last two approximations. Note Ω⃗·b⃗
4m appears in (50) just as gB⃗·b⃗

2m2

appears in (36). The lesser suppression by the inverse power of m is because in the gravitational case, m plays the
role of coupling constant g. As mentioned before, the corresponding terms can be found from (36) and (37) by replacing
ϕ; A⃗ with ϕg; A⃗g, though the associated numerical factors are different. Due to the tensor nature of gravity, there are

additional terms such as −ϕg
ð⃗l·σ⃗Þð⃗l· ⃗H̃Þ

4m2 , ϕg
ðb⃗·⃗lÞðσ⃗ ·⃗lÞ

4m2 and −p⃗2ϕgb⃗·σ⃗
4m2 in comparison with the FE couplings for the corresponding LV

coefficients.
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For the apparent LV interaction vertices due to a, b, H, their contribution to the interaction energy is

Eab−2
GI ¼ −

1

2
hp0; βj

Z
d3xfhbaψ ½ðab þ bbγ5Þγa�ψgjp;αi

¼
Z

d3xe−iq⃗·x⃗ξ†β

��
ϕga0 −

a⃗ · A⃗g

2

��
1þ p⃗0 · p⃗þ iq⃗× p⃗ · σ⃗

4m2

�
þ
�
ϕga⃗

2m
−
A⃗ga0

4m

�
· ½⃗l− iq⃗× σ⃗� þ

�
A⃗g · b⃗

2
− ϕgb0

�
σ⃗ · ⃗l
2m

þ
�
b0A⃗g

2
− ϕgb⃗

�
·

��
1−

p⃗ · p⃗0

4m2

�
σ⃗ þ ip⃗× q⃗þ ðp⃗ p⃗0 þp⃗0 p⃗Þ · σ⃗

4m2

��
ξα

≃
Z

d3xe−iq⃗·x⃗ξ†β

�
ϕg

�
a0
�
1þ p⃗0 · p⃗

4m2

�
þ ða⃗− b0σ⃗Þ · ⃗l

2m

�
−
a⃗ · A⃗g

2
þ g⃗× a⃗ · σ⃗

2m
− a0

�
A⃗g · ⃗lþ Ω⃗ · σ⃗

4m

�
þ A⃗g

2
·

�
b0σ⃗ þ b⃗ σ⃗ ·⃗l

2m

�

−ϕgb⃗ ·

��
1−

p⃗ · p⃗0

4m2

�
σ⃗ þ ðp⃗ p⃗0 þp⃗0 p⃗Þ · σ⃗

4m2

��
ξα: ð52Þ

EH−2
GI ¼ −

1

2
hp0; βj

Z
d3xfhbaψHbcσacψgjp;αi

¼
Z

d3xe−iq⃗·x⃗ξ†β

��
A⃗g × H⃗

2
þ 2ϕg

⃗H̃
�
·
��

1þ p⃗ · p⃗0

4m2

�
σ⃗ −

ip⃗× q⃗þ ðp⃗ p⃗0 þp⃗0 p⃗Þ · σ⃗
4m2

�

þ
⃗H̃
4m

· ð⃗l σ⃗−σ⃗ ⃗lÞ · A⃗g −
iq⃗× A⃗g ·

⃗H̃

4m

�
ξα

≃
Z

d3xe−iq⃗·x⃗ξ†β

�
A⃗g × H⃗

2
· σ⃗ þ

⃗H̃
4m

· ½ð⃗l σ⃗−σ⃗ ⃗lÞ · A⃗g� þ 2ϕg
⃗H̃ ·

��
1þ p⃗ · p⃗0

4m2

�
σ⃗ þ ðp⃗ p⃗0 þp⃗0 p⃗Þ · σ⃗

4m2

�
−
Ω⃗ · ⃗H̃
4m

�
ξα: ð53Þ

By comparison with Eq. (37), there should not have
any scalar potential coupling to the “magnetic” part of
the H coefficient; however, due to the tensor nature, the
nonzero spatial metric hij induces gravito-electric cou-

plings to ⃗H̃, such as the terms proportional to ϕg
⃗H̃ · σ⃗ and

ðϕg
⃗H̃ · ⃗lÞð⃗l · σ⃗Þ.

A striking difference from the fermion-photon interac-
tion is the presence of a-coupling terms in (50) and (52).
Comparing (52) with (46), we see the aμ coefficient couples
to ϕg and A⃗g in exactly the same way as the four-
momentum pμ. This is not surprising as in the momentum
space,

−
1

2
hbaψabγaψ þ i

4
hbaψ̄γa ∂

↔

bψ

⇒ −
1

2
hbaūβðp0Þ

�
ab þ p0b þ pb

2

�
γauαðpÞ;

and is also the same reason that aμ can be shifted away by a
phase redefinition of the fermion field; thus, it does not
have any observable consequence for a single fermion
coupled with a photon field in flat space. However, the

above reasoning does not apply to a fermion coupled with
gravity [38]. This can be verified by inspecting Eq. (46),
where the simple replacement pμ → ðpþ aÞμ cannot lead
to the a-coupling terms in (50).
Note that we also need to consider the implicit correction

to the fermion-gravity interaction energy induced by LV
dispersion relation p0 ¼ ω0ðp⃗; mÞ þ δωðp⃗; m; XÞ. This
correction comes from the substitution of p⃗ · q⃗ in the

superficially LI term i
4

R
d3xhbaψ̄γa ∂

↔

bψ , just as what we
did with Eq. (34). However, in the gravitational case, an
additional contribution comes from p0 term in (46) and thus
is proportional to δωp. Inspection of δωp − δωp0 for various
LV coefficients in the Appendix D, we see these terms are

at least of OðvÞ, so in making a substitution of q⃗ · p⃗ ¼
− q⃗2

2
þm½δωp − δωp0 � and p0 ¼ ω0 þ δωp, the following

correction

ϕg

��
1þ p⃗2 þ iq⃗ × p⃗ · σ⃗

4m2

�
δωp þ

5

4
ðδωp − δωp0 Þ

�

−
�
A⃗g · ⃗lþ iq⃗ × A⃗g · σ⃗

4m

�
δωp ð54Þ
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has to be added for each type of LV coefficient. For completeness, the dispersion relation for a coefficient is

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⃗þ a⃗Þ2 þm2

q
− a0 for a positive energy fermion, and hence, δωp ≃ k⃗ · a⃗=ω0 − a0. For a, b, H coefficients,

the corrections due to LV dispersion relations are listed below:

Eab−3
GI ¼

Z
d3xe−iq⃗·x⃗ξ†β

�
ϕg

�ð4p⃗ − 5q⃗Þ · ða⃗þ b0σ⃗Þ
4m

�
þ ða0 þ b⃗ · σ⃗Þ

�
A⃗g · ⃗lþ Ω⃗ · σ⃗

4m
−
�
ϕg þ

g⃗ × p⃗ · σ⃗
4m2

��

þ ϕg

�
p⃗2

4m2
· ðb⃗ · σ⃗ − a0Þ þ 5ðp⃗0 · b⃗Þðp⃗0 · σ⃗Þ − 9ðp⃗ · b⃗Þðp⃗ · σ⃗Þ

8m2

��
ξα; ð55Þ

EH−3
GI ¼

Z
d3xe−iq⃗·x⃗ξ†β

�
ϕg

�
H⃗ × ð4p⃗ − 5q⃗Þ · σ⃗

4m
þ
�
1þ p⃗2

4m2

�
⃗H̃ · σ⃗ þ 5 ⃗H̃ · p⃗0 σ⃗ ·p⃗0 − 9 ⃗H̃ · p⃗ σ⃗ ·p⃗

8m2

�
−
�
A⃗g · ⃗lþ Ω⃗ · σ⃗

4m

−
g⃗ × p⃗ · σ⃗
4m2

�
⃗H̃ · σ⃗

�
ξα: ð56Þ

The total NR fermion-gravity interaction energy from a, b,
H contributions is the summation of Eqs. (50)–(53) and
(55) and (56). Though it is easy to see that several terms in
the above equations can be combined or even canceled,

such as the terms proportional to ϕgb⃗ · σ⃗ and a0 A⃗g ·⃗lþΩ⃗·σ⃗
4m in

(52) and (55), or the terms proportional to g⃗ × a⃗ · σ⃗ in (50)
and (52), we keep them separately for the clarity of their
origin.
Inspecting Eqs. (50)–(53) and (55) and (56) reveals that

there are abundant interaction structures for the LV spin-
gravity coupling, especially for the b, H coefficients. For

example, the − ð ⃗H̃þb⃗Þ·Ω⃗
4m term is in analogy with the LV

magnetic field coupling term gb⃗·B⃗
2m2 in (36), only with gravito-

magnetic field Ω⃗ replacing the magnetic field B⃗. Similarly,

the ðb⃗− ⃗H̃Þ·σ⃗ðΩ⃗·σ⃗Þ
4m and the spin-orbit coupling terms such as

those proportional to g⃗×p⃗·σ⃗
4m2 alter the geodetic and frame-

dragging precession frequencies of microscopic particles.
Since there is no reason for the LV coefficients to
be universal for particles with different flavors, the
WEP must be violated due to the nonuniversal LV
gravitational couplings. These effects are in principle
testable, such as in the high precision Gravity Probe B-like
experiment [10,11].
Aside from the B-type LV couplings, the E-type LV

couplings also show some similarity between the fermion-

photon and fermion-gravity couplings, such as − E⃗·H⃗
4m2 and

− g⃗·H⃗
4m , or

igE⃗×H⃗
2m2 · σ⃗ and −2ig⃗×H⃗

m · σ⃗. The similarities for the LV
couplings between the b, H coefficients can be traced back
to the operator level by the identity ψγ5γ⃗ψ ¼ −ψ̄γ0Σ⃗ψ
(where Σi ¼ iϵijk

4
½γj; γk�), while γ0 is effectively equal to 1̂

for positive energy particles. For example, this fact can be
validated by the similar form of couplings between b⃗ · σ⃗

and ⃗H̃ · σ⃗ with ½Ω⃗ − g⃗ × p⃗=m� · σ⃗ in (55) and (56).

Next, we discuss the fermion-gravity interaction energies
due to the c, d coefficients. The contributions due to
eigenspinor corrections for c, d coefficients are

Ec−1
GI ¼1

4

Z
d3xe−iq⃗·x⃗ξ†β

�
½Ak

gl0−2ϕglk�
�
cij

δikljþ iϵiklqjσl

2m

�

þ½l⃗ · A⃗g−2l0ϕg�
�
cðijÞp0ipjþ icijq½jpk�ϵiklσl

2m2

��
ξα;

ð57Þ

Ed−1
GI ¼ 1

4

Z
d3xe−iq⃗·x⃗ξ†β

�
½2l0ϕg− l⃗ · A⃗g�

d0jp0ðipjÞσi

2m2

þ½2ϕglm−Am
g l0�

�
d0jlj

2m
σmþ idjiϵjkmðpkpi−p0kp0iÞ

2m2

þdmiσ
kðpkpiþp0kp0iÞ−djiσjðpmpiþp0mp0iÞ

2m2

��
ξα:

ð58Þ

Comparing the terms in (57) and (58) taking the form of
ðAk

gXk − 2ϕgYÞl0, where Xk; Y are LV operators such as
d0jlj

2m σk;− cijg½jpk�ϵiklσl

2m , with the terms in (42) and (43), we see
they also look quite similar, as mentioned in the general
discussion of Eq. (49).
The apparently LV vertex contributions due to c, d

coefficients are

Ecd−V
GI ¼ −

i
4
hp0; βj

Z
d3xfhba½ψ̄ðcea þ deaγ5Þγe ∂

↔

bψ �

þ hνa½ψ̄ðcbν þ dbνγ5Þγb ∂
↔

aψ �
þ hρb½ψ̄ðcρa þ dρaγ5Þγb ∂

↔

aψ �gjp; αi: ð59Þ
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Note the terms in the first line are in fact equal to the terms in the second line of (59). The terms in the third line of Eq. (44),
− 1

4
ϵbcmnhp0; βj R d3xham;nψ̄ ½cbaγ5 þ dba�γcψ jp; αi come from the spin-connection interaction and thus only containGEM

field strength ∂ρhμν and are naively expected to bemuch smaller than the terms coupled directlywith themetric perturbationhμν.
The contributions due to LV dispersion relation corrections for the c, d coefficients are

Ec−2
GI ¼

Z
d3xe−iq⃗·x⃗ξ†β

�
c00

�
A⃗g · ⃗lþ Ω⃗ · σ⃗

4
−
g⃗ × p⃗ · σ⃗

4m

�

þ ϕg ·
�
cð0jÞ

5qj − 4pj

2
þ cðijÞ

5p0ip0j − 9pipj

4m
− c00

�
mþ 3p⃗2

4m

���
ξα; ð60Þ

Ed−2
GI ¼

Z
d3xe−iq⃗·x⃗ξ†β

�
ϕg

�
9ðp⃗ · d⃗Þðp⃗ · σ⃗Þ − 5ðp⃗0 · d⃗Þðp⃗0 · σ⃗Þ

2m
þ d̃jið4pi − 5qiÞσj

4

þ 5dj0p0jσ⃗ · p⃗0 − 9dj0pjσ⃗ · p⃗

8m
þ dj0σj

�
mþ p⃗2

4m

��
þ g⃗ × p⃗ · σ⃗

4m
dj0σj −

A⃗g · ⃗lþ Ω⃗ · σ⃗

4
dj0σj

�
ξα: ð61Þ

In comparison with Eq. (39), there is also a corresponding term c00ðA⃗g · ⃗lþ Ω⃗ · σ⃗Þ=4, which rescales the gravito-magnetic
moment just as the corresponding term rescales the magnetic moment. This and the other similar LV corrections spoil the
theorem of zero anomalous gravito-magnetic moment due to the EP [65], which is not unexpected in the presence of LV.
For compactness, we combine these c, d couplings together and disregard the quadratic terms of qi, as qiqjh0ν ∼ ∂i∂jh0ν

and j∂i∂jh0νj ≪ jpi
∂jh0νj in general. We also keep only terms up to Oðm−1Þ, and the results are

Ec
GI ¼

Z
d3xe−iq⃗·x⃗ξ†β

��
c00

�
g⃗ × p⃗ · σ⃗

2m
þ 2mϕg

�
þ cð0iÞϕg

7qi

2
− liϕgc0i þ

1

2
ϵijkc0igkσj − cijϵikl

�
3gðjpkÞ

2
þ pjgk

2

�
σl

m

− cðijÞϕg
2piqj

m
− ϵijkcijgk

σ⃗ · p⃗
4m

�
þ
�
mAi

g

�
c0i
2

þ cð0iÞ

�
− c00

�
A⃗g · p⃗þ Ω⃗ · σ⃗

4

�
þ cij

Ai
glj þ iϵiklqjAk

gσ
l

4

þ licij
4

Aj
g þ ½li − ϵiklσl∂k�Aj

g
cij
2
− ϵijk

cil
4
∂kAl

gσ
j

��
ξα; ð62Þ

Ed
GI ¼

Z
d3xe−iq⃗·x⃗ξ†β

�
ϕg

�
dij

�
4pj þ qj

4

�
σi − d00

σ⃗ · ð8p⃗þ 11q⃗Þ
4

−
7dj0qðipjÞσi

4m

�
þ 1

2
ϵijkdijgk þ ðdi0 þ 2dð0iÞÞ

ðg⃗ × p⃗Þi
2m

þ idj0
4m

½σ⃗ × ðg⃗ × p⃗Þ�j þmd00
A⃗g · σ⃗

2
þ di0

4
ðσiA⃗g − Ai

gσ⃗Þ · ⃗l − d0iAi
g
σ⃗ · ⃗l
2

−
idj0
4

ðΩ⃗ × σ⃗Þj −mAj
gdijσi

�
ξα: ð63Þ

Inspection of (60)–(63) shows that several LV spin-orbit
coupling terms, such as dj0σjg⃗ × p⃗ · σ⃗=4m, c00g⃗×
p⃗ · σ⃗=2m and cijðg⃗ × σ⃗Þipj=2m, are of the similar kind
of structure as we found in FE interactions, like

cij
ðE⃗×σ⃗Þipj−ðp⃗×σ⃗ÞiEj

4m2 . Other more complicated structures of

spin-orbit couplings, such as c0i
2
ðg⃗ × σ⃗Þi, − idj0

4
ðΩ⃗ × σ⃗Þj,

dð0iÞAi
gσ⃗ · ⃗l=2; idj0

4m ½σ⃗ × ðg⃗ × p⃗Þ�j, etc. can also be found in
Eqs. (62) and (63). Also we notice that there are only two
spin-independent fermion-gravity couplings for the d

coefficient, ðdi0 þ 2dð0iÞÞ ðg⃗×p⃗Þ
i

2m and 1
2
ϵijkdijgk. This is not

surprising as in the Lagrangian level, d term is of the γ5γa

structure and is an essentially spin-dependent term from
the relativistic point of view.
In summary, due to similar Dirac structures in Lorentz

violating fermion-gravity (FG) and fermion-electromagnetic

(FE) couplings, there are analog operators for the LV
fermion coupled with these two external fields. At a simple
glance, we collect several sample operators of FG and FE

interactions in Table I. Operators such as a0 A⃗g ·⃗lþΩ⃗·σ⃗
4m , ðA⃗g×H⃗Þ·σ⃗

2

exactly cancel and thus in fact do not appear. The mismatch
between FG and FE interactions may partly be due to the

TABLE I. Examples of the analogous operators between the LV
fermion-gravity and fermion-photon couplings.

FG − ð ⃗H̃þb⃗Þ·Ω⃗
4m

ðA⃗g ·⃗lÞðb⃗·σ⃗Þ
2m

ϕg
p⃗×H⃗·σ⃗
2m

ðA⃗g·σ⃗Þðp⃗· ⃗H̃Þ
m

FE gb⃗·B⃗
2m2

gðA⃗·⃗lÞðb⃗·σ⃗Þ
2m2 − gA0p⃗×H⃗·σ⃗

2m2 − gðA⃗·σ⃗Þðp⃗· ⃗H̃Þ
m2

FG − c00ð2A⃗g ·⃗lþΩ⃗·σ⃗Þ
4

3cijg½jpk�ϵiklσl

2m − g⃗·H⃗
4m − ðd⃗·A⃗gÞðσ⃗ ·⃗lÞ

2

FE gc00ðA⃗·⃗lþB⃗·σ⃗Þ
2m

gcijE½jpk�ϵiklσl

2m2 − gE⃗·H⃗
4m2

gðd⃗·A⃗Þðσ⃗ ·⃗lÞ
m

CHENG YE and ZHI XIAO PHYS. REV. D 106, 115030 (2022)

115030-16



tensor structure of gravity and partly due to the fact that the
LV corrections from fermion dispersion relations p0 ¼
ω0 þ δωp can contribute directly in the case of gravity, in
contrast to the case of photon coupling, where only δωp −
δωp0 enters in the q · p substitution. Anyway, we think even
the sample operators in Table I can convince the readers
that the LV spin coupling structures are very abundant,
which means that the gravitational phenomenologies aris-
ing from the LV spin-gravity couplings [23] waiting for us
to explore are very rich.

VI. PHENOMENOLOGY IN TEST OF EP

The LV spin-gravity couplings have already been thor-
oughly explored in the uniform limit ϕg ¼ g⃗ · z⃗ [23], which
is a very good approximation for most experiments on the
Earth. However, the linear potential is essentially flat and is
incapable of capturing the curvature effects of space, as
only g00 matters in this case. In comparison, the Lense-
Thirring metric is an intrinsically curved one and may be
able to test LV spin-gravity couplings where the other
metric components take effect, such as the frame-dragging
(FD) effect of a single fermion due to the rotation of a
massive object like a neutron star. For the pure gravity
sector, we also note that the spin precession effects in the
post-Newtonian approximation up to Oð3Þ have already
been systematically studied [48], and the anomalous
precession rates due to LV have also been utilized to
constrain the sμν coefficients [12]. However, these are for
macroscopic spinning gyroscopes, not for the intrinsic spin
of microscopic fermions.
The Lorentz invariant NR fermion-gravity Hamiltonian

has been fully studied in the literature [50,63,64], and it is
interesting to note that the LI operators in ELI

GI, Eq. (46),
coincide with those in the NR fermion Hamiltonian
obtained in [64] except the higher order term
ϕgp⃗2=2m, which differs by an Oð1Þ numerical factor.
This can be attributed to the two following differences
between our calculations and those in [64]: 1. The

simplification of the normalization factor
ffiffiffiffiffiffiffiffiffi
ω0þm
2m

q
¼ 1

in front of the spinor uσ and its conjugate u†σ , see

Eq. (30), and this can induce a p⃗2

4m2 difference. 2. The

operators we studied are sandwiched by the bispinors ξ†β
and ξα, while for comparison, the NR Hamiltonian in [64]
needs to be sandwiched by u†β and uα, which will induce

another p⃗2

4m2 difference. Taken together, they give the

correct 3p⃗2

2m2 factor in front of mϕg. The vanishing of terms

∇2ϕg;
ig⃗·p⃗
m is due to our on-shell and source free assump-

tions. This is not surprising, as the LI terms in the one-
fermion matrix element − 1

2
hp0; βj R d3xhμνTμνjp; αi under

the assumption of zero energy transfer, q0 ¼ 0, are just
the potential energy at tree-level approximation. For the

corresponding LV terms, we may also expect them to be
the corresponding LV operators in the NR Hamiltonian
obtained by FW transformation [13,25,26], except that
each pair of operators obtained from different approaches
may differ by an Oð1Þ numerical factor. As most LV
coefficients in the minimal SME have been tightly con-
strained to be vanishingly small [21], what we really
cared about is essentially the order of magnitude; the
Oð1Þ numerical factors may be irrelevant for practical
purposes. Thus, we can collect all spin-dependent oper-
ators up to Oðm−1Þ [except the a0 term being of Oðm−2Þ]

δĤgσ ¼
�
3g⃗ × a⃗
4m

−
a0g⃗ × p⃗
4m2

�
· σ⃗ þ ϕg

�
3b0p⃗
2m

− 2b⃗

�
· σ⃗

þ σ⃗ · p⃗
m

A⃗g · b⃗þ ϕg

�
p⃗ × H⃗
2m

þ 3 ⃗H̃
�

· σ⃗ þ A⃗g · ðσ⃗ p⃗−p⃗ σ⃗Þ · ⃗H̃
m

þ c00

�
g⃗ × p⃗
2m

−
Ω⃗
4

�

· σ⃗ þ d00

�
mA⃗g

2
− 2ϕgp⃗

�
· σ⃗ ð64Þ

together, and for simplicity, we also ignore the terms
coupled with cμν; dμν coefficients, except the c00 and d00.
Note that the meaning of “spin dependence” here should
not be confused with the spin dependence attached to the
LV coefficients in free fermion theory, where a, c are spin
independent. We boldly assume that the NR Hamiltonian is

ĤNR ¼ p⃗2

2m
þmϕg þ

3

2m

�
ϕgp⃗2 − ig⃗ · p⃗þ g⃗ × p⃗ ·

σ

2

�

−
Ω⃗ · σ⃗
4

þ δĤgσ; ð65Þ

where the first line involves LI contributions. Note we have
ignored all the spin-independent LV operators, as they do
not directly affect spin dynamics. The spin time evolution
is governed by the Heisenberg equation

dS⃗
dt

¼ 1

iℏ
½S⃗; ĤNR� ¼ ðω⃗LI þ δω⃗LVÞ × S⃗; ð66Þ

where ω⃗LI ≡ ω⃗geo þ ω⃗FD, and ω⃗geo ¼ 3
2m g⃗ × p⃗, ω⃗FD ¼ − Ω⃗

2

describe the geodetic precession and FD precession,
respectively. Interestingly, we obtain ω⃗LI from the
Heisenberg equation with the semiclassical fermion-
gravity couplings, which only relies on the minimal
fermion-gravity assumption within the tetrad formalism.
Since the geodetic and FD precession angular vectors,

ω⃗geo ¼ 3
2m g⃗ × p⃗ and ω⃗FD ¼ − Ω⃗

2
, exactly coincide with

those predicted in GR [33] for a probe gyroscope carrying
macroscopic angular momentum in the weak gravitational
field of a massive rotating object, while the spin geodetic
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and FD precession frequencies for a quantum object, such
as a fermion carrying spin-1

2
, are not necessarily the same

as the corresponding macroscopic terms in a general
gravitational theory other than GR, this coincidence can
be viewed as a piece of evidence that the WEP is valid even
in the quantum regime [49,50,66], though this evidence is
far from a conclusive one. Given that WEP has been tested
to high precision [66–68], we may reasonably believe that
the GR predicted spin precession of microscopic particles
can also be tested to the same precision in the future as
that of the macroscopic gyroscope in the famous Gravity
Probe B (GPB) project [10], in addition to technical
difficulties caused by the extremely weak fermion-gravity
couplings. The GPB gives a geodetic drift rate of RNS;o ¼
6601.8� 18.3 mas=yr and a frame-dragging drift rate of
RWE;o ¼ 37.2� 7.2 mas=yr, while the corresponding drift
rates predicted by GR are of Rgeo ¼ 6606.1 mas=yr and
RFD ¼ 39.2 mas=yr, respectively, so the measured drift
rate deviations are jΔRNSj < 22.6 mas=yr and jΔRWEj <
9.2 mas=yr [12]. The LV-induced anomalous precession is

δω⃗LV ¼ g⃗
2m

×

�
3a⃗ −

a0p⃗
m

�
þ ϕg

�
3b0p⃗
m

þ ð6 ⃗H̃ − 4b⃗Þ
�

þ 2A⃗g · b⃗

m
p⃗þ ϕg

p⃗ × H⃗
m

þ 2

m
½ð ⃗H̃ · p⃗ÞA⃗g

− ðA⃗g · p⃗Þ ⃗H̃�c00
�
g⃗ × p⃗
m

−
Ω⃗
2

�
þ d00½mA⃗g − 4ϕgp⃗�:

ð67Þ

If we attribute all the drift rate deviations to the LV-induced
anomalous precession and assume that the same precision
can be achieved for fermion spin precession measure-
ments, we may obtain some very rough bounds on

j3 ⃗H̃ − 2b⃗j ≤ 3ΔRNS

4Rgeo

v
r
≃ 5.432 × 10−22 GeV; ð68Þ

ja0j ≤ 3m
ΔRNS

Rgeo
≃ 9.65 × 10−3 GeV; ð69Þ

jc00j≤Min

�
3

2

ΔRNS

Rgeo
;
ΔRWE

RFD

�
¼5.14×10−3; ð70Þ

where we set r ¼ 7018.0 km as the GPB polar orbit
parameter (orbit altitude 642 km) and assume each type
of LV coefficient as the only nonzero one in our estima-
tions. The bounds are weak as they are obtained from the
deviation of the essentially weak GR effects. Also note we
intentionally choose the above LV coefficients in our naive
estimates, because the other LV operators such as g⃗ × a⃗;
b0p⃗; p⃗ × H⃗ may be even weaker as they may average out
in a cycle, not to mention that the data acquisition period is
almost 1 year, from August 2004 to August 2005. In other

words, if we had transformed to the Sun-centered frame,
our estimates could be even weaker. The LAGEOS,
LAGEOS 2, and LARES laser-ranged satellites can test
the LT nodal shift to the accuracy 0.2% [69], and this in
principle may put at least 2 orders of magnitude tighter
bounds to the LV coefficients, though it is more unlikely as
the test is not even for a gyroscope in an orbit. Another
point is that our estimates are based on the assumption that
fermion precession can be tested to the same accuracy as
for the macroscopic gyroscope. This means our bounds
above are best to be viewed as expectations.
If we consider the acceleration

a⃗≡ dp⃗
mdt

¼ 1

im
½p⃗; ĤNR� ≃ −∇ϕg

�
1þ 3p⃗2

2m2

�

−∇ϕg

�ð3 ⃗H̃ − 2b⃗Þ
m

−
2d00
m

p⃗

�
· σ⃗; ð71Þ

where we have ignored all the LV corrections with higher
order than m−1 and the LV corrections coupled with
gravito-magnetic vector potential A⃗g or derivatives of g⃗,
since we expect these terms to be much tinier compared
with the remaining ones, and we note that the anomalous
acceleration is purely due to the LV spin-gravity couplings,
we can then get bounds

j3 ⃗H̃ − 2b⃗j ≤ 1.8 × 10−7m87 ≃ 1.46 × 10−5 GeV; ð72Þ

jd00j ≤ 9 × 10−8
ffiffiffiffiffiffiffiffiffiffiffi
m87

3kBT

r
≃ 4.51 × 10−6; ð73Þ

from the test of WEP with neutral atoms with the precision
of η ¼ ð0.2� 1.6Þ × 10−7 [68,70]. We choose the temper-
ature as T ¼ 1.4 μK [68], mass m87 as the 87 atomic mass
unit, as the particle involved are 87Sr, 88Sr, and 87Rb,
roughly of the same mass range, and jηj ≃ 1.8 × 10−7, the
most conservative one. Since the time scales for two
experiments are much smaller than a day, there is no need
to take into account of the sidereal variations for a rough
estimate, and these weak bounds are more reliable.

VII. SUMMARY

In this paper, we calculate the one-fermion matrix
elements of fermion-electromagnetic (FE) and fermion-
gravity (FG) interactions for on-shell fermions. Due to
the partial structure similarities between FE and FG inter-
actions, many LV fermion-gravity operators bear resem-
blance to LV fermion-photon operators. We have shown the
resemblance with several sampling operators in Table I. This
resemblance can be viewed as a natural manifestation of
the well-known gravito-electromagnetism generalized to the
LV fermion couplings.
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By collecting the spin-dependent LV operators in the
matrix elements as leading order LV perturbations and
combined with the nonrelativistic LI gravitational inter-
action in the Lense-Thirring (LT) metric, we obtain a hybrid
Hamiltonian, from which we obtain a spin precession
equation (66) and a linear acceleration equation (71). By
identifying the anomalous spin precession rate as the
correction to the geodetic precession and LT frame-
dragging precession predicted in GR, we can get some
weak bounds on gravitationally coupled LV fermion
coefficients, Eqs. (68)–(70). Though these constraints rely
on an unrealistic assumption of the measurement capability,
which says the fermion-gravity coupling can be measured
to the same precision as in the Gravity Probe B project,
these bounds are interacting since they reveal another
aspect of the WEP test [49,50], namely, the spin precession
of a microscopic fermion may be different from that of a
macroscopic gyroscope if the LV spin-gravity couplings are
allowed. From the WEP test with atoms of nonzero spin,
we can also get some relatively stronger and more reliable
bounds (72) and (73) on the LV fermion-gravity couplings.
These bounds do not require one to take account the
sidereal effect induced by the motion of the Earth, as the
relevant time scale is much shorter than a sidereal day;
however, the analysis of sidereal effects may necessarily
render the bound more stringent. Moreover, future high-
accuracy experiments with polarized neutral atoms may
be able to give tighter bounds on these LV spin-gravity
couplings [71,72].
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APPENDIX A: THE GRAVITO-
ELECTROMAGNETIC EQUATIONS

The gravito-electromagnetism can be viewed as an
analogy to electrodynamics when gravity is sufficiently
weak for slowly moving gravitational sources. For weak
gravity, we can linearize the Einstein equation Gμν ¼ κTμν

by regarding the metric as a small deviation from
Minkowski background

gμν ¼ ημν þ hμν; jhμνj ≪ 1: ðA1Þ

The field equation can be further simplified in the harmonic
gauge ∂μh̄μν ¼ 0 with trace reversed rank-2 tensor h̄μν ¼
hμν −

ημν
2
h (where h ¼ ημνhμν),

∂α∂
αh̄μν ¼ −2κTμν; κ ≡ 8πG

c4
: ðA2Þ

Then a class of retarded solutions can be found as (A2) is
simply a wave equation. For T00 ∼ ρmc2, T0i ∼ ρmcui,
Tij ∼ ρmuiuj, where ui is the spatial component of the

four-velocity, we get up to Oðc−4Þ, h̄00 ≡ − 4ϕg

c2 , h̄0i ¼
4Ai

g

sc3−n

and h̄ij ∼Oðc−4Þ, where

ϕgðxÞ ¼ −G
Z

d3y
ρm

�
t − jx⃗−y⃗j

c ; y⃗

�
jx⃗ − y⃗j ; ðA3Þ

Ai
gðxÞ ¼ −

sG
cn

Z
d3y

ρm

�
t − jx⃗−y⃗j

c ; y⃗

�
ui

jx⃗ − y⃗j : ðA4Þ

Then, we define E⃗g ≡ −∇ϕg − r
c ∂tA⃗g and B⃗g ≡∇ × A⃗g.

The n, s, r are a set of constants to be determined. It is easy
to verify that the homogeneous equations

∇ · B⃗g ¼ 0; ∇ × E⃗g ¼ −
r
c
∂tB⃗g ðA5Þ

are satisfied automatically. Since the harmonic gauge
∂μh̄μν ¼ 0 reads

0 ¼ ∂jh̄j0 − ∂0h̄00 ¼
4

c2

�
∂jA

j
g

sc1−n
þ 1

c
∂tϕg

�

0 ¼ ∂0h̄0i þ ∂jh̄ji ¼ −∂0h̄0i ¼ −
4∂tAi

g

sc4−n
; ðA6Þ

the vector potential must be time independent, _Ai
g ¼ 0, and

substituting ∇ · A⃗g ¼ − s
cn ∂tϕg into the inhomogeneous

equations gives

∇ · E⃗g ¼ −∇2ϕg −
r
c
∂tð∇ · A⃗gÞ ¼ −

�
∇2 −

rs
cnþ1

∂
2
t

�
ϕg

¼rs¼1

n¼1
−□ϕg ¼ −4πGρm; ðA7Þ

∇ × B⃗g ¼ ∇ð∇ · A⃗gÞ −∇2A⃗g ¼ −
s
cn

∂tð∇ϕgÞ −∇2A⃗g

¼rs¼1

n¼1

s∂tE⃗g

c
−□A⃗g ¼ s

�
∂tE⃗g

c
−
4πG
c

ρmu⃗

�
; ðA8Þ

where □≡ ½∇2 − 1
c2 ∂

2
t � is the flat space d’ Alembert

operator, and in order to make use of

□x

R
d3y fðt−jx⃗−y⃗j

c ;y⃗Þ
jx⃗−y⃗j ¼ −4πfðt; x⃗Þ, we have to set rs ¼

n ¼ 1.
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The geodesic equation duα
dτ þ Γα

βγuβuγ ¼ 0 can be written as

duα
dt ¼ −Γα

βγ
dxβ
dt

dxγ
dt

dt
dτ

duα
dt ¼ d

dt

�
dxα
dt

dt
dτ

�
¼ d2xα

dt2
dt
dτ þ dxα

dt
d2t
dτ2

dτ
dt

�
⇒

d2xα

dt2
¼

�
1

c
dxα

dt
Γ0

βγ − Γα
βγ

�
dxβ

dt
dxγ

dt
: ðA9Þ

Note in the weak gravitational field limit,

Γ0
00 ≃ −

1

2
h00;0 ¼

∂tϕg

c3
; Γ0

0j ≃ −
1

2
h00;j ¼

∂jϕg

c2
;

Γ0
jk ≃

1

2
ðhjk;0 − h0j;k − h0k;jÞ ¼ −δjk

∂tϕg

c3
−

2

sc2
ðAg

j;k þ Ag
k;jÞ;

Γi
00 ≃

�
hi0;0 −

1

2
h00;i

�
¼ 4

sc3
∂tAg

i þ ∂iϕg

c2
;

Γi
0j ≃

1

2
½hi0;j þ hij;0 − h0j;i� ¼

2

sc2
½Ag

i;j − Ag
j;i� − δij

∂tϕg

c3
;

Γi
jk ≃

1

2
ðhij;k þ hik;j − hjk;iÞ ¼

1

c2
½δjk∂i − δik∂j − δij∂k�ϕg; ðA10Þ

where hij ¼ − 2ϕg

c2 δij, h0j ¼
4Aj

g

sc2 , h00 ¼ − 2ϕg

c2 . Substituting
the above equations into the geodesic equation (A9), we get

ai ≡ d2xi

dt2
¼

�
vi

c
Γ0

00 − Γi
00

�
c2 þ 2

�
vi

c
Γ0

0j − Γi
0j

�
cvj

þ
�
vi

c
Γ0

jk − Γi
jk

�
vjvk ¼

�
3vi

c2
∂t þ

4vi

c2
ðv⃗ · ∇Þ

�
ϕg

−
��

4

sc
∂tAg

i þ ∂iϕg

�
þ 4

sc
vjðAg

i;j − Ag
j;iÞ

�

−
v⃗2

c2
∂iϕg þOðc−3Þ: ðA11Þ

In comparison, if we want to have an analogy to the Lorentz
force law, we have to set 4

s ¼ r, which is in contradiction
with the condition rs ¼ 1 in the Eq. (A7). To compromise,
we have to resort to stationary assumption, where ϕg; A⃗g are
time independent, and then □ → ∇2. A convention is
r ¼ 1, s ¼ 4, and then the

ai ≡
�
1þ v⃗2

c2

�
Ei
g þ ðv⃗ × B⃗gÞi: ðA12Þ

APPENDIX B: THE LINEAR
LV LAGRANGIAN DENSITY

The original Dirac equation obtained from (16) is�
ieμa

�
Γa∇⃗μ þ

i
8
ωbc
μ ½σbc;Γa�

�
−M

�
ψ

þ i
2
eμaf∂μΓa þ ωμ

a
cΓ

cgψ ¼ 0: ðB1Þ

Now consider the linearized LV fermion-gravity
Lagrangian in metric perturbation hμν. The LV fermion-
gravity Lagrangian is

LLV ¼ i
2
eμaψ̄δΓa∇↔μψ − ψ̄δMψ ¼ Lc;d þ La;b;H; ðB2Þ

where δΓa ≡ Γa − γa and δM ≡M −m. For the c, d
coefficients, the corresponding Lagrangian is

Lc;d ¼ −
i
2
eμaψ̄ðcρν þ dρνγ5Þγbeνaeρb∇

↔

μψ

¼ −
i
2
eμaψ̄ðcρν þ dρνγ5ÞγbeνaeρbD

↔

μψ þ 1

8
eμaωμ

cd

· ψ̄fðcρν þ dρνγ5Þγb;σcdgeνaeρbψ

≃−
i
2
ψ̄ ½cba þ dbaγ5�γb

�
D
↔

a −
1

2
hμaD

↔

μ

�
ψ

þ i
4
ψ̄ ½hνaðcbν þ dbνγ5Þγb þ hρbðcρa þ dρaγ5Þγb�D

↔

aψ

þ 1

4
ϵbcmnham;nψ̄ ½cbaγ5 þ dba�γcψ ; ðB3Þ

while for the a, b, H coefficients, the contributions to the
Lagrangian are

La;b;H ¼−ψ̄δMψ ≃−ψ̄
�
ðaaþbaγ5Þγaþ

1

2
Hbcσ

bc

�
ψ

þhμa
2

ψ̄

�
ðaμþbμγ5Þγaþ

1

2
ðHμbσ

abþHbμσ
baÞ

�
ψ :

ðB4Þ
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APPENDIX C: FIELD REDEFINITION
PROCEDURE

The field redefinition matrix for the linearized
Lagrangian Lψ ¼ ð1þ 1

2
hÞ½LLI þ LLV� is Û≡1− 1

2
γ0C0≡

1þδÛ0þδÛh, where δÛ0 ≡ 1
2
ðdb0γ5 − cb0Þγ0γb is the

redefinition matrix in flat space and δÛh ¼ δÛh
I þ δÛh

V
is the additional contribution due to gravity. The LI and
LV pieces of δÛh are

δÛh
I ¼ −

1

4
ðhþ h0μγ0γμÞ; ðC1Þ

δÛh
V ¼ −

1

4
½hν0ðcbν − dbνγ5Þ þ hρbðdρ0γ5 − cρ0Þ�γ0γb

−
1

4
ðhγ0δΓ0∘ − h0μγ0δΓ

μ∘Þ; ðC2Þ

respectively. The spinor redefinition is ψ ¼ Ûχ, and the
associated fermion bilinear ψ̄ Ôψ after spinor redefinition
is χ̄γ0Û†γ0Ô Û χ. However, up to linear order approxima-
tion in hμν, there is an effective distinction between:

(i) Any operator constructed from the Lagrangian Lψ

linear in hμν. There is no need to take into account
δÛh, as otherwise, the resultant operator is of order
Oðh2Þ. In other words, we only need to take Û0 ≡
1þ δÛ0 as the redefinition matrix.

(ii) Any “flat space” operator such as i
2
ψ̄Γa∘D

↔

aψ or
ψ̄M∘ψ . The redefinition matrix can be taken either
as 1þ δÛh

I or 1þ δÛh
I þ δÛh

V, depending on
whether the original operator contains LV coeffi-
cients or not.

The good news is that we can prove that up to linear order
of hμν and LV coefficients, there is no need to consider
the redefinition induced “h interaction” arising from the

operator Lflat ¼ i
2
ψ̄Γa∘D

↔

aψ − ψ̄M∘ψ between a pair of
one-fermion states hp0; βj R d3xLflatjp; αi, once the
Dirac equation is utilized; i.e., the external fermions are
on mass shell.

APPENDIX D: VARIOUS EIGENSPINORS

The eigenspinor in the presence of LV coefficients will
be given separately by assuming only one-type LV coef-
ficient is nonzero. For a more general treatment including
nonminimal LV coefficients, the interested reader can resort
to Ref. [37,73].
Firstly, the eigenspinor for a and b coefficients can be

found in [7], and for completeness, we compile it here. As a
term acts like a shift in four-momentum, we will state the
corresponding eigenspinor here together with the b term:

uαðkÞ ¼
�

ξα

UabðkÞξα
�
; ðD1Þ

where UabðkÞ≡ ½ðk0þa0Þþm−b⃗·σ⃗�½ðk⃗þa⃗Þ·σ⃗þb0�
½ðk0þa0Þþm�2−b⃗2 , and the two-

component spinors ξα satisfy the eigenvalue equation given
by (A4)–(A5) in [7]. It is clear from the above consideration
that aμ serves as a pure shift in four-momentum and thus is
usually ignored due to field redefinition. However, we keep
a term here as we see gravity concerns the a term. For
calculational convenience, we also note

UbðkÞ ¼ ðk0 þmþ b⃗ · σ⃗Þ−1ðk⃗ · σ⃗ þ b0Þ

≃
b0 þ k⃗ · σ⃗
ω0 þm

−
ib⃗ × k⃗ · σ⃗ þ b⃗ · k⃗þ δωk⃗ · σ⃗

ðω0 þmÞ2 ; ðD2Þ

where ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

p
and δω≡ k0 − ω0. As for b, d, g,

H type LV coefficients, the fourfold degeneracy between all
four eigenspinors is completely broken and the explicit
form of k0 (and hence, δω) is very complicated even at
linear order of LV coefficients. Depending on the nature of
LV coefficients, a simple form of δω may be obtained. For
example, if b2 > 0, in an observer frame where b0 ¼ 0,
δω ¼ ð−1Þα½m2b⃗2 þ ðb⃗ · k⃗Þ2�12=ω0, where α ¼ 1, 2 denotes
the two spin d.o.f. of ξα.
Then we turn to H coefficients. The corresponding

operator in the Lagrangian is − 1
2
Habσ

ab, which implies
that Hab ¼ −Hba. The antisymmetric property indicates
that we can define two vectors, H⃗i ≡H0i and
⃗H̃
i ≡ 1

2
ϵijkHjk. Then the eigenspinor uαðkÞ can still be

written in the form of (D1), only by replacing UabðkÞ with

UHðkÞ ¼
ðk0 þm− σ⃗ · ⃗̃HÞσ⃗ · ðk⃗− iH⃗Þ

ðk0 þmÞ2 − ⃗̃H
2

≃
σ⃗ · ðk⃗− iH⃗Þ
ω0 þm

−
k⃗ · ⃗̃Hþ i ⃗̃H × k⃗ · σ⃗þ δωσ⃗ · k⃗

ðω0 þmÞ2 ; ðD3Þ

where we also keep only linear order corrections due to
the LV H coefficients. Note ω0 and δω are defined as
above, but now δω only receives LV corrections from H
coefficient.
Naively, we can also obtain

UdðkÞ ¼ ½k0 þm − ⃗ḑ · σ⃗�−1½ḑ0 þ k⃗ · σ⃗�;

where we defined ḑμ ≡ dμνkν for simplicity. However, as
mentioned in the main text that a proper treatment of c, d
terms involves field redefinition, which gives the correct
UcðkÞ; UdðkÞ by the procedure in getting UbðkÞ.
The UcðkÞ; UdðkÞ up to linear order of c, d coefficients
are shown below,
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UdðkÞ ¼ ½k0 þmð1þ dj0σjÞ − d̃ijσipj�−1ðσ⃗ þ 2d⃗Þ · p⃗

≃
k⃗ · ðσ⃗ þ 2d⃗Þ
ω0 þm

−
ðmdj0 − d̃jikiÞkj

ðω0 þmÞ2

−
iϵjklðmdj0 − d̃jikiÞkkσl þ δωσ⃗ · k⃗

ðω0 þmÞ2 ; ðD4Þ

UcðkÞ ¼
σ⃗ · p⃗ − c̃ijσipj

k0 þmð1 − c00Þ þ 2c⃗ · p⃗

≃
k⃗ · σ⃗ − c̃ijσikj

ω0 þm
þmc00 − 2c⃗ · k⃗ − δω

ðω0 þmÞ2 k⃗ · σ⃗; ðD5Þ

where it is easy to separate the formally LV contributions

from the LI one, k⃗·σ⃗
ω0þm. To obtain the correction δω for b,H,

c, d coefficients, we’d better find out their explicit
dispersion relations, which can be found in [56,74].
They all share the similar form

½ðk0Þ2 − ω2
0 þ Y2�2 ¼ 4Z2; ðD6Þ

where

Y2 ¼

8><
>:

b2

ð ⃗H̃2
− H⃗2Þ

dabkbdackc
; ðD7Þ

Z2 ¼

8>>><
>>>:

ðk · bÞ2 − k2b2

H�μνkμH�
ζνkζ −

�
1
4
H�μνHμν

�
2

ðkadabkbÞ2 − k2dabkbdackc

; ðD8Þ

where H�μν ≡ 1
2
ϵμναβHαβ, and the three rows of Y2 and Z2

correspond to b, H, d terms, respectively, while for c term,
the dispersion relation is simply ðcμν þ ημνÞkνðcμρ þ ημρÞ
kρ þm2 ¼ 0, which is spin independent and thus leads to
much greater calculational simplicity for δω. From the exact
dispersion relation (D6), we can readily obtain

δω ¼ ω0

2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2Z
ω2
0

−
Y2

2ω2
0

s
− 1

3
5 ≃� Z

ω0

≃� Z
m
; ðD9Þ

where we have ignored Y2, as Y2; Z2 ∼OðX2Þ are at least of
second order in a generic LV coefficient X. The double signs
associated to δω for b, d,H coefficients reflects the fact that
the corresponding terms are spin dependent; i.e., these LV
coefficients break the spin degeneracy. Thus, the degeneracy
for dispersion relations between relevant eigenspinors is
completely removed. However, since in calculating matrix
elements, δω in effect acts on the two-component spinor ξα,
see Eqs. (D1)–(D3), the sign choice ambiguity can be

removed by some kinds of “eigenequations”. These “eigen-
equations” can be obtained by taking the “square root” of
the exact quartic dispersion relation det ½Γ · kþM� ¼ 0.
Take the b term as an example. Left multiplying the k-

space positive Dirac equation ðγ · kþmþ b · γ5γÞuðkÞ ¼
0 by ðm − γ · k − b · γ5γÞ, we get

− ðγ · k −mþ b · γ5γÞðγ · k −mþ b · γ5γÞuðkÞ
¼ ðk2 þm2 − b2 þ 2ibμkνγ5σμνÞuðkÞ

¼
�
K2 þ 2kbσ 2ib⃗ × k⃗ · σ⃗

2ib⃗ × k⃗ · σ⃗ K2 þ 2kbσ

��
ξα

UdðkÞξα
�

¼ 0; ðD10Þ

where K2 ≡ k2 þm2 − b2 and kbσ ≡ ðb0k⃗ − k0b⃗Þ · σ⃗.
Keeping only b terms to linear order, the upper equation
½k2 þm2 þ 2ðb0k⃗ − k0b⃗Þ · σ⃗ þ 2ib⃗ × k⃗ · σ⃗U0ðkÞ�ξα ¼ 0
for bispinor ξα can be rearranged as

ðk0 þω0Þδωξα ¼ ½4b½0kj�σj þ 2ib⃗× k⃗ · σ⃗U0ðkÞ�ξα; ðD11Þ

which leads to the eigenequation for LV correction δω

δωξα¼
�
−b⃗ · σ⃗þb0k⃗ · σ⃗

ω0

þ k⃗2b⃗ · σ⃗−ðk⃗ · b⃗Þðk⃗ · σ⃗Þ
ω0ðω0þmÞ

�
ξα: ðD12Þ

Similarly for H, d, c terms, we have

δωξα ¼
�
⃗H̃ · σ⃗ þ H⃗ × k⃗ · σ⃗

ω0

−
⃗H̃ · k⃗ σ⃗ ·k⃗

ω0ðω0 þmÞ
�
ξα; ðD13Þ

δωξα ¼
�
ðmdj0 þ d̃jikiÞσj þ 2

d⃗ · k⃗ σ⃗ ·k⃗
ω0

−
ðmdj0 þ iϵikldijkkσlÞkjσ⃗ · k⃗

ω0ðω0 þmÞ
�
ξα; ðD14Þ

δω ¼ −2cð0jÞkj − cðijÞ
kikj

ω0

− c00ω0; ðD15Þ

where due to the spin independence, there is no need to act
on bispinors for the c coefficient, compared with other LV
coefficients, and we choose the positive sign corresponding
to the electron’s dispersion relation instead of the posi-
tron’s. Substituting these δω back into (D2), (D3), (D4),
(D5), we can get

UbðkÞ ¼
k⃗ · σ⃗ þ b0

ω0 þm
−
2ib⃗ × k⃗ · σ⃗
ðω0 þmÞ2 þOðω−3

0 Þ

≃NR
k⃗ · σ⃗ þ b0

2m
þ ik⃗ × b⃗ · σ⃗

2m2
; ðD16Þ
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UHðkÞ ¼
σ⃗ · ðk⃗ − iH⃗Þ
ω0 þm

−
2k⃗ · ⃗H̃

ðω0 þmÞ2 þOðω−3
0 Þ

≃NR
σ⃗ · ðk⃗ − iH⃗Þ

2m
−
k⃗ · ⃗H̃
2m2

; ðD17Þ

UdðkÞ ¼
k⃗ · ðσ⃗þ 2d⃗Þ
ω0 þm

− 2
ðmdj0 − iϵikld̃ijkkσlÞkj

ðω0 þmÞ2 þOðm−3Þ

≃NR
k⃗ · σ⃗þ d0jkj

2m
þ iϵjkldjikkkiσl

2m2
; ðD18Þ

UcðkÞ ¼
σ⃗ · k⃗− cijσikj

ω0 þm
þOðω−3

0 Þ≃NR σ⃗ · k⃗− cijσikj

2m
; ðD19Þ

where we have ignored the terms suppressed by orders
higher than ω2

0 (or m
−2). The “NR” at the last steps means

we adopt the nonrelativistic approximation. Substituting
these UðkÞ in (D16)–(D19) into

uαðkÞX ¼
�
ξα

ηα

�
X

¼
�

ξα

UXðkÞξα
�
; ðD20Þ

where X in the subscript refers to b, H, d, c, we obtain the
LV corrected positive frequency eigenspinors up to linear
order of LV coefficients.
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