PHYSICAL REVIEW D 106, 115030 (2022)

Analogy of the Lorentz-violating fermion-gravity and fermion photon couplings
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By adopting a methodology proposed by R. J. Adler et al., we study the interesting analogy between the
fermion-gravity and the fermion-electromagnetic interactions in the presence of the minimal Lorentz-
violating (LV) fermion coefficients. The single-fermion matrix elements of gravitational interaction
(SMEGI) are obtained with a prescribed Lense-Thirring (LT) metric assuming test particle assumption.
Quite distinct from the extensively studied linear gravitational potential, the LT metric is essentially curved
and thus reveals the anomalous LV matter-gravity couplings as a manifestation of the so-called gravito-
magnetic effects, which go beyond the conventional equivalence principle predictions. By collecting all the
spin-dependent operators from the SMEGI with some reasonable assumptions, we get a LV nonrelativistic
Hamiltonian, from which we derive the anomalous spin precession and gravitational acceleration due to LV.
By combining these results with certain spin gravity experiments, we get some rough bounds on several LV
coefficients, such as |3]:1 - 2[;| < 1.46 x 107> GeV, with some ad hoc assumptions.
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I. INTRODUCTION

Classical electrodynamics and its quantum version, QED,
are ideal paradigms for modern physics. As a quantum
theory of matter-electromagnetic coupling, QED has
reached an unprecedented precision for the match between
theory and observations [1]. In fact, the success of QED
nourishes many branches of physics, such as the Yang-Mills
theory. Exactly paralleling the historical precedent of QED,
we expect to gain some insight by studying matter-gravity
couplings in the semiclassical regime in weak gravity, given
that gravity still resists successful quantization after decades
of endeavor. As a supporting fact, the Finstein field equation
and the geodesic equation resemble the Maxwell equation
and the Lorentz force law [2] for a slowly moving particle in
the weak field limit, though this analogy breaks down when
gravity is sufficiently strong. The conceptual reasons are
rooted in the peculiar differences between gravity and
electromagnetism: 1. Gravity is extremely weak and uni-
versal. 2. Gravity is highly nonlinear.

Another motivation for the study lies in the fact that
Lorentz violation (LV) may be a testable signal of some
unified theory at Planck scale [3]. Many different scenarios
leading to LV have been proposed, such as noncommutative
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field theory [4], loop gravity [5], very special relativity [6],
etc. To systematically study the possible LV effects, an
effective field theory framework incorporating all standard
model fields and tiny tensorial coefficients controlling LV
has been developed, the Standard-Model Extension, or
briefly SME [7,8]. This framework facilitates the test of
the common foundation of the strong nuclear force, electro-
weak theory, and gravity, namely the Lorentz symmetry.
Only in the presence of gravity, the Lorentz symmetry is a
local symmetry instead of a global one. In the SME, the
close resemblance between gravity and electromagnetics
has been utilized to map a solution of the Maxwell equation
with a restricted class of the (kz)*** term to the solution of
the Einstein equation with the 5,, term [9], though the
nonlinear acceleration dy;. spoils the exact formal analogy
of weak gravity to electrodynamics even restricted to terms
with linear velocity and in the stationary limit. Combined
with the precision measurements of Gravity Probe B
[10,11], new bounds on 5,, have been extracted from the
anomalous spin precession caused by the LV gravito-
electromagnetic (GEM) fields [12]. With the observation
of the structural similarity for the couplings between the

gravito-magnetic field and the LV b-type coefficient to
intrinsic spin [13], the bounds on 5% — £ (a5,)* have been
obtained from various comagnetometer experiments
[14,15], by reinterpreting b as the gravito-magnetic field
caused by the off-diagonal metric perturbation due to LV.

In comparison, in this paper, we try to explore the
resemblance of the LV fermion-gravity couplings with
the Lense-Thirring metric to the LV fermion-photon
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couplings with Lorentz invariant (LI) electromagnetic field
in the framework of SME. In other words, we focus on the
quantum matter effects induced by LV in this analogy. For
simplicity, we consider only the fermion LV coefficients in
the minimal SME and keep the gravity sector intact.
Partially because we are more interested in the LV fermion
sector and partially because the LV coefficient 5,, in
minimal gravity sector can be switched into ¢, by a proper
field redefinition [16], we do not consider the LV fermion-
gravity couplings arising from pure gravity. No doubt the
backreaction of LV matter fields on spacetime geometry
necessarily generates a LV metric perturbation, and this fact
has already been thoroughly explored for the (@cfr), €y
coefficients in [13,16]. However, by adopting the test
particle assumption and ignoring the backreaction in our
simple setting, there is no need to worry about the extra
modes from diffeomorphism breaking unless the pure
gravity sector were also affected by LV. As for the extra
modes due to spontaneous local Lorentz symmetry break-
ing, which may play the role of photon or graviton, such as
in the bumblebee or cardinal models ([8,17—19]), or mediate
new forces [20], they suffer severe experimental constraints
[21] and lie outside of the scope of our present discussion,
we disregard them for simplicity.

It is interesting to note that a systematic and thorough
treatment of all possible LV matter-gravity couplings, both
in formalism and in conceptual issues, have been developed
recently [22], where no room is left for spontaneous local
LV with diffeomorphism invariance. However, this super-
ficial conflict is because we omit the backreaction of the
LV matter field to spacetime geometry in the test particle
assumption. Since spontaneous symmetry breaking is
assumed, the no-go constraints [8] can also be avoided.
In comparison, the signals beyond-Riemann geometry have
been explored with an effective field theory incorporating
all linear fermion-gravity operators up to dimension 5 [23],
based on the assumption of local LI but explicit diffeo-
morphism breaking. In contrast to Ref. [23], where the
typical gravitational acceleration is uniform as the explo-
ration mainly focuses on laboratory experiments on the
Earth, our study assumes the Lense-Thirring metric [24],
which is essentially curved and has nonzero source angular
momentum. This setting is particularly suitable for a
tentative study of LV gravitomagnetic effects.

As the fermion in the analogy is nonrelativistic (NR) for
practical purposes, it seems necessary to perform the Foldy-
Wouthuysen (FW) transformation ([13,25,26]) first; how-
ever, a different method first proposed in Ref. [27] is
adopted, where the one-fermion matrix elements for a
NR fermion scattering off external fields are studied. The
NR feature relies on the assumption that the field quantum
carries negligible energy and fermion quantization is
truncated on positive energy states only. The rest of the
paper is arranged as follows. In Sec. II, we briefly review the
basic background of gravito-electromagnetism, an analogy

of weak gravity in general relativity (GR) to electromag-
netism. In Sec. III, we derive the energy-momentum tensor
(EMT) for a LV fermion in flat spacetime as a warm-up
exercise for the discussion of LV matter-gravity couplings,
since gravity couples exactly to the EMT of matter fields,
just as photon couples to the electromagnetic current. In
Sec. 1V, we briefly review the formalism describing a LV
fermion coupled with gravity in the weak field approxima-
tion. In Sec. V, we outline the main methodology for
obtaining the one-fermion matrix elements of a LV fermion
coupled with external fields. To make transparent the
analogy, we demonstrate the fermion-photon couplings
together with the fermion-gravity couplings in the static
limit. Possible experimental constraints on LV spin-gravity
couplings are discussed in Sec. VI, and we summarize our
main results in Sec. VIL

II. THE GRAVITO-ELECTROMAGNETISM

The electromagnetic (EM) analogy for weak gravity can
be found in many textbooks on GR [28] or review papers
[2]. The inhomogeneous Maxwell equations and Lorentz
force law for a charged particle moving in the EM fields are

1 oF
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For sufficiently weak gravity and slow-moving source, we
can expand the metric around Minkowski background

9w = Nuw + h/w' (3)
When the source is stationary T,w = 0, and in the harmonic

gauge I” =T, ¢ = 0, the Einstein field equation G,, =

kT, (k= Sf—f) can be cast into the form similar to (1),

4

- Kc S R -
V‘Eg:_Tpmv VXBg—Zd,Eg:—ZKc3]m, (4)
where E s =—Vo,— %dtﬁg is the so-called gravito-electric

field, or just the local gravitational acceleration when
A'gzo, Bgzczeijkajh()k is the gravito-magnetic field,
and pm,fm = p,,U are the matter mass density and mass
current, respectively. It is easy to check that the homo-
geneous equations similar to 6,;”‘” =0 (F» = %ep"””F o)
in electrodynamics are also satisfied; see Appendix A. In
fact, up to the first Post-Newtonian order, PNO(1) [e.g.,
O(c™?) for h;j], these GEM equations can be further
generalized to the case when matter source does have time
dependence, as long as the gravitating system is moving
slowly; see [2,29,30]. In that case, one can even derive a
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formal equation [V? — Lid,z]gq =0 for the fields outside
the source current, which may indicate that gravitational
waves propagate with the same speed as light in vacuo.
The extra numerical factor 22, which can also be seen in
ch’jc/gz = %in parallel to the ratio of uye, in Eq. (1), is because
gravity is a spin-2 instead of a spin-1 field. The minus sign

—% pm in Eq. (4) compared with ‘e’—; in Eq. (1), the Gauss
law, reflects the fact that the “charges” of the same sign
in gravity attract rather than repel each other. The geodesic
equation ‘% + 1% ,,u’u® =0 can also be put into the
form [2]

dv m [~ 72 7 =
Y (P NS A R
analogous to the Lorentz force law, Eq. (2). In this analogy,
gravitational mass can be regarded as the charge responsible
for gravito-electromagnetic (GEM) field, and the weak
equivalence principle (WEP) ensures that the “charge-
to-mass” ratio is unity. Substituting hy; = eijkxja)k /c for
an observer stuck to a rotating noninertial frame in
Minkowski spacetime into (5), the corresponding force
2ma x v is exactly the Coriolis force, confirming that
the noninertial force and gravity may have a common
origin, which is partially encoded in the Mach principle.
However, we have to keep caution that the formal analogy
cannot be extended too far, though it proves quite fruitful,
such as the prediction of gravito-magnetic precession of a
spinning gyroscope in analogy with the magnetic dipole
precession in magnetic fields, confirmed in Gravity Probe B
project [10,11], and also in deriving solutions of the LV-
modified Einstein equation from the known ones in LV
electrodynamics [9]. The reason is that gravity is quite
different from the EM field: 1. The Maxwell equation is
linear and the EM field is abelian, while the Einstein
equation is notoriously difficult to solve for its nonlinearity.
2. The EM acceleration can be quite different for different
particles with different charge-to-mass ratios, while gravity
is universal for all kinds of matter (attractive except for the
cosmological constant [31]) due to the equivalence princi-
ple. This distinguishes gravity from all the other three forces
in nature, i.e., gravity can be geometrized and pointlike
particles propagate freely along geodesics of curved space-
time. It is not a force at all in GR. Technically, 1. Maxwell
equation and Lorentz force law are gauge invariant, and
thus, we can choose any gauge we like. This is not true in
the case of gravito-electromagnetism, where only a
restricted class of gauge transformations h,, — h;, =
hy, + 20,8, with 0*& = 0 (satisfying the harmonic gauge)
are allowed, otherwise the Maxwell-like equations (4)
cannot hold. 2. The Eqgs. (4) and (5) are essentially not
gauge invariant due to the two-layer structure of gravity:
The metric g,, can be viewed as the potential of the

connection ng, just as the definitions of Eg,éq express
(in this sense, Egs. (4), (5) are gauge invariant); while the
connection I'; is again the potential of the Riemann tensor
R’IWU, and the latter is the intrinsically “gauge invariant”
field strength. In other words, by working in the observer’s
local inertial frame or the Riemann normal coordinates, we
can always gauge away the force m ‘2—? (derived from m % .
In this respect, a set of essentially gauge invariant Maxwell-
like equations must be based on equations with covariant
tensor forms, such as the Einstein equation and the geodesic
deviation equation [32]. The bonus of this choice is that we
can go beyond linear approximations, and the correspond-
ing equations are more robust for further applications.
A detailed discussion of the essentially gauge invariant
gravitational analogy of Maxwell electrodynamics in the
context of LV will be very interesting; however, this is
beyond the scope of our present investigation.

III. THE FERMION ENERGY-MOMENTUM
TENSOR IN FLAT SPACETIME

The EM analogy in weak gravity is very useful because
electrodynamics is easier and more intuitive to deal with,
and we are more familiar with it, so we expect the similarity
also arises between fermion-gravity (FG) and fermion-
electromagnetic (FE) couplings. The usual minimal FE
coupling is in the form of A,j.*, where j / = —epy!y is
the conserved current. The conservation is ensured by the
gauge invariance of the FE coupling under gauge trans-
formation Aﬂ - A# —l—dﬂA. Similarly, in the weak field
limit, we expect the minimal FG coupling takes a similar
form —%hﬂ,,@"”, where ®" is the symmetric energy-
momentum tensor (EMT). In fact, from the gravitational
definition of EMT [33],

0 (x) = — a2 (6)

T /= 9()89,,(x)

for a gauge transformation dg,,(x) = 2V,¢&,), the matter
action [y in (6) transforms as

ol = ;/ d4x\/—_gég”,,®””
duly/=90"]
ol )
4 / d'x0,[\/=g&,0"]. (7)

where the terms in the large brace above are exactly V,0/.
Ignoring the surface term ,/—g&, @, gauge invariance
again ensures the covariant conservation of EMT,
V,0" = 0. Unlike the case of EM matter couplings, there
is no simple conservation law of EMT 9,0" = 0 for the
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case of gravity, though the linear gauge transformation
oh,, = 20.,¢&,) may lead to the ordinary current conserva-

tion for the coupling — 3 h,,,©*. This is quite similar to the
non-Abelian Yang-Mills theory, where no simple conser-
vation law exists for a current constructed purely from

v __ _ 3 JL
matter field, J,* = —i GD?;/

conserved, D, J,” = 0. To construct an ordinary conserved
EMT 0,7 = 0, just like the ordinary conserved current
Ja=Jy—C,FAb (0,J% =0) contains contribution
from non-Abelian gauge field itself, the ordinary conserved
EMT ¢* must also contain a contribution from the
gravitational field itself, i.e., terms proportional to the
summation of powers of metric tensors and their deriva-
tives, such as the Landau-Lifschitz pseudotensor #] ; then
™ = (—g)[T*" + ] [35]. In other words, the gravita-
tional field itself carries energy and momentum and thus
contributes to the source of gravity. This has already been
dramatically verified by the direct observation of gravita-
tional waves [36]. In fact, the stress-energy tensor for the
GEM field in the stationary case can be shown to be exactly
proportional to the pseudotensor 7] [2].

In flat spacetime, the canonical formalism gives another
way to obtain EMT as the zero-gravity limit of the matter
“source current” for gravity, provided the Belinfante-
Rosenfeld symmetrization procedure (BR-procedure) is
performed. However, in the presence of LV, the usual
Belinfante-Rosenfeld symmetrization may not be attain-
able [8]. As an example, consider the following SME
Lagrangian [8],

ty [34]. J,7 is only covariantly

£ == [:() + 5£LV’

Lo = ~grD PELE W
0= SP7' Dy = mypy =5 t[F*F,).

i e _
OLry = Swol" Dy —yéMy,
JU'Dyy = 71Dy — yD, Ty, (8)

where 7D, "y = [(0, — ieA, )"y, oT* =TV -yt =
—[c"y, + d™*ysy,] and 6M = a'y, + bFysy, + %H"”aﬂy.
Note for simplicity, the e*, f*, g** coefficients are dropped.
Except the ¢*# and a*, all the other LV coefficients are
responsible for the LV spin interactions [37]. We include a*
term, as in the presence of gravity, the a* coefficient cannot
be totally removed by field redefinition even for fermions
with a single flavor, unlike in the case of flat spacetime
[38]. Also note there is a sign difference for the ¢, d
coefficients in I'*#, as the signature for Minkowski metric
is 7, = diag(=1,+1,+1,+1), the one conventionally
adopted in the gravity community, rather than the one in
QFT [7]. Only in this section, we use Greek indices to
denote variables in Minkowski spacetime, while in the
following sections, we use Latin indices a, b, c... from the
beginning for tangent space variables and the Latin indices

i, J,k, ... in the middle for purely spatial indices, while the
Greek indices u,v,p,... are for manifold variables.
Similarly, the convention for the totally antisymmetric
tensor is fixed by €p103 = 1.

From the Lagrangian (8), we get the canonical momenta
from the definition I1; = dL/0¥',

i i
My =zwl"+or], I =—S["+ "y,

2
—Hﬁap = F#P = gAY — PAYW + £, AbHAP, 9)
The canonical EMT denoted as 7#¥ is obtained below:

T = My dy + I, + 11, A, — "L
= Ty + 6T,
Ty = % ooy — (p)r*y] — oA, = Lo,
i

ST = 2 oV oty — (¢9)oTy] — " 6L0y. (10)

In the absence of gravity, the violation of Lorentz invariance
does not conflict with the spacetime translation invariance,
which is assumed to hold since we do not want to lose the
energy-momentum conservation, d,7*" = 0, provided the
fields and their derivatives vanish sufficiently quickly at
spatial infinity. However, the BR procedure does not work,
as it crucially relies on the fact that the total angular
momentum tensor density is conserved, d,J* 5 = 0, where

oL
jﬂaﬁ = a[ [Sa/i]‘{’(x) + xaTﬂﬁ - xﬁTﬂa

9, ¥ (x)]

includes the intrinsic spin contribution S* 5 = W‘Iﬁ’(m [Sqp)

¥(x) due to the nontrivial field representation of the
Poincaré group. Since Lorentz invariance is broken, the
total angular momentum needs not to be conserved,
0,J" 4 # 0. To see why LV blocks the construction of a
symmetric EMT, first, we note that the antisymmetric part of
the canonical EMT is

1 1
TEl =5 (T0 = T0%) = 59,[7* = 8], (11)

where we have used 0,7% = 0. Now suppose one adds 7%
with a total derivative 5[,,4/’”/’ , provided that 4** vanishes
sufficiently quickly at spatial infinity. Then the improved

EMT is
O = T 1 0,, Aprap

1
— Tlap) + a”{i [j/)(zﬁ _ S/)aﬁ] + A/Ja/}}, (12)
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where the unaltered conservations law requires A*% =
—A%P_ Still adopting the Belinfante-Rosenfeld formalism
[39,40] and letting

Arop = % [Sﬂaﬁ —Swb _ S/fﬂa]’

we can confirm that A4*% = — A%” from its definition. The
BR procedure indeed guarantees the current conservation
3,0% = 0, only in general ®% # ®* due to the presence
of Lorentz violation; i.e., a,,j pef = (). This feature of EMT
has been clarified with an explicit example in [7] and has
been discussed in depth including gravity in the Rieman-
Cartan geometry [8].

As Lorentz violation forbids a conserved angular
momentum current, we do not expect a natural symmetric
EMT. Moreover, the BR procedure cannot even necessarily
give rise to a gauge invariant EMT. This has been observed
in the LV modified electromagnetism with the k,r term [7]
already. As another example, we show after the BR
procedure, the EMT with only the ¢ coefficient is

O = G{:/D + ®ZD
| < <~
= LD + DY)y — PR, — Ly

i
4

(11t = 1t ) DV + €pl(c AV + ¢, ANy
—(r e, +rie, APy — oLy, (13)

+ A

Ve, (Y D" = y"D’) — ¢} (y"D¥ + " D")

+

where we have ignored the second order LV corrections.
Clearly, the terms proportional to ¢ coefficients block the
symmetrization, ®) 0, and the terms in the third square
bracket even block the gauge invariance. Without LV, the
terms in the second line are manifestly symmetric and
gauge invariant and coincide with the gauge invariant EMT,
Egs. (4)—(5) for quark and gluon in [41], up to a sign
difference. Interestingly, the BR procedure does give a
gauge invariant EMT for pure LV gauge field with
Lagrangian

1
Lo ==y [FUF + (k)P F F o), (14)

where F¢,, =0d,A%, —09,A%, + f4.A? A, is the field
strength for the gauge field A“. The BR procedure
improved EMT is

O = —F4 F — (kp ) PFgF =Ly, (15)

which is apparently gauge invariant, but still not symmetric.
In view of these examples, we see that to have a gauge

invariant improvement of the canonical EMT, seems other
improvement procedures rather than the BR procedure
are required; the latter is not even attainable. Not only
because symmetrization is blocked by the presence of LV,
which is equivalent to the presence of background tensor
fields causing the asymmetry, but also because symmetri-
zation is only indicated by the metric framework of
gravitational theory. For a generic gravitational theory
allowing other degrees of freedom (d.o.f.), such as torsion
or nonmetricity [8,42], the generalized Einstein equation
does not require a symmetric EMT as the source of gravity,
though an effective symmetric EMT is always attainable if
we separate the Einstein tensor into the Riemannian part
and incorporate the non-Riemannian part into the effective
EMT [42]. However, the cost is that it plagues a proper
interpretation of the gravitation and matter d.o.f. We will
postpone a further investigation of LV EMT in the future
and turn to the discussion of FG couplings in the next
section.

IV. PRELIMINARY FOR FERMION-GRAVITY
INTERACTIONS

To consider the fermion-gravity couplings, the flat space
LV fermion Lagrangian (8) has to be replaced by the curved
space version [8,16]

i e _
L,=e {5 et yT*V y — I/IMI//:| , (16)

4 H
= ya - [pr]/b + dpuySyb]eDue/}bf (17)

o uS _ - e .
v =yl [D,ﬂr—w ”Cabc} w—l//[D,,—Zwﬂ”‘abc]F"w,

1
M=m+a,et,y* + b,et ysy’ + EHWe”ae”bo“b. (18)

Note we use ﬁﬂq/ = (9, +igA, )y to represent pure gauge
coupling and 6”1// = [13” +ﬁ'a)ﬂ"“abc]y/ to represent the
covariant derivatives including both the minimal gauge
field (the gauge field means photon in this context)
coupling and the spin connection coupling. Also note that
we use g instead of e to represent gauge coupling to avoid
confusion with the determinant of vierbein, as it will be
easier to distinguish the determinant of metric from the
coupling constant g in this context. The gravity sector is
assumed to be intact to largely simplify the original
construction with torsion in Riemann-Carton spacetime
[8]. We mention that torsion and nonmetricity can also be
tightly constrained in the context of SME [43-45], though
they draw great attention to the gravity community even in
the LI context [42,46,47]. Considering the weak gravity
limit up to the lowest order of metric perturbation
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hu, = g, — M- the vierbein and spin connection can thus
be written as

1
e/,{a ~ 5”11 _|_ _h/,{a _i_/,(”a’

1
roo= &l — — bt "o
2 etl 2 a+)(a

1

w, "’ = 3 [e*(0,e,” —0,e,”) — e, 0,ep.¢7 €] — (a <> D)
1
5 (h”’“b _ hﬂ’ba) _|_Zab.” +){”7ab _)(H’ba‘

~ (19)
The y., = —yp. contains the 6 local Lorentz degrees of
freedom in the vierbein and can be totally removed by
fermion field redefinition y(x) — exp[— £y, (x)o“?ly(x)
[16,18]. This redefinition may still leave imprints on the
fluctuations of LV coefficients [16]; however, due to
stringent experimental constraints [21] and our sole interest
in the effects caused by the vacuum expectation values
(VEVs) of the LV coefficients, we can safely ignore y in the
following. For example,

1 1
et =yt —Ehyaya - |:Cb” = cp " _Ecp”h'pb] r’

[ i = Ly (20)
Note that different from the notation in [16], we use mixed
Latin and Greek indices to keep track of their origin, though
all the indices can be put into the Greek ones since we take
h,, as the metric deviation from the vacuum Minkowski
background. In other words, in the following discussions of
linearized weak gravity, there is no need to distinguish
Latin and Greek indices, as all the upper and lower indices,
whether Latin or Greek, are raised or lowered by the
corresponding Minkowski metric. As the LV coefficients
are linear on the level of Lagrangian, we can treat them one
by one. First, note we can separate the Lagrangian (16) into
LI and LV parts, £, = (1 +%h)[Ly;+ Lry], where the
determinant of the vierbein e = /=g =1 —I—%h. The LI
Lagrangian can be written as

1 _ _
Lu =5y *V,p —ymy

| © i
=Sy {y”Da - Eh”uy“Dﬂ} w—ymy,  (21)

where the “~” means preserving only terms up to linear
order of h,, and we have utilized the identity
hap.o{r®, 6"} = 0. The LV counterpart is

e _

Liy = 5"l V,y — oMy
I - a 1 H A ae
=Sy ore| &, _Eha D, + 604D, |y
1
- I/_/(61‘40 + 5Mh)l// + Zehcmnham,nl/_/
X [epysye + dy 'y, (22)

where, for simplicity, we have defined

1
ol = ) (1 (Cpy, + dpyrs) + B2 (c,* +d, ys)]r”
T = —[c, " +dyysy”),

1 1 1
oM, = _Ehﬂa [(au +b,ys)r +§Huh6ab] _ZhDhHﬂwaah’

oM,

1
(aaya + ba757a +5Habaab) .

To the linear order of metric perturbation, the Euler-
Lagrangian equation to L;; + Ly is

Wy .=
D) FoDﬂ:| _(Mo+5Mh)}l//

{i [(Fg +6T9)D, —

i 1 i
+ 3 [Gaéri—iaah“cfﬁ - §€£thab,c(cda1’5 + dd“)l’e] 74

=0, (23)

where 'Y =y*+ 6% and M, = m+ 6M,. Note we
haven’t considered the so-called geometric term

h
‘cgeo = (e - 1)‘61// 2Eﬁﬂatv (24)

where L, E%WFZBaw—y'/Moy/, since the geometric
term comes from the artifact of linearization, which
amounts to nothing but multiplying Eq. (23) with a
rescaling factor e =1 +%. If pick up back these terms,
the equation is exactly the one obtained from the lineari-
zation of the full Dirac equation with respect to the
Lagrangian (16).

In comparison with the EM coupling —j#A,,, we can also
collect all the terms proportional to 4, in the Lagrangian,
which is

i___ < _
Ly =— h”a{illfrgDﬂl// —yl(a, +buys)r* + Hybgab]l//}

<>

+ l/_/[hya(chv + dbny) + hpb (c/)a + d/)a}/S)]beuW

_ h
+ €mnbcham,nl//[cba}/5 + dba]ycl// + E'Cﬂat

N = N = ]~

= —h, T,

v

(25)

where all the Greek and Lain indices are raised or lowered
by the corresponding Minkowski metric and thus lose the
distinctive features they have before the linearization. Also
note “=""means equal up to a total derivative since we have
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dropped a total derivative term proportional to e#?<?

the energy-momentum tensor 7+ is given explicitly,

, and

THY — iz/'/l“’;D/‘y/ — [ (a*

5 + b'ys)y” + H* 6Py

i - ©
- EW[(Cb" + dptys)y"D¥ + (¢*), + d*yys5)y* Dy
— " Loy + €90, [y (¢} ys + dp )y ow).- (26)

Aside from the last term coming from spin connection, the
EMT obtained in this way is gauge invariant and sym-
metric, as the apparently asymmetric part 7/ does not
contribute due to the coupling with 4,, = h,,. The LV
coefficients in the above are just VEVs and thus are
assumed to be spacetime independent at least in the
post-Newtonian approximation of the SME [18,48].

Now the form Ly= —1h, T is similar to the EM

2w
coupling —A,j* and can be regarded as a linear approxi-

mation of 6] = %\/—_gégWT”” up to the determinant ,/=g.
It is interesting to note that the geometric contribution in
(24) cannot be ignored as stated in [27]; otherwise, the
resultant EMT will differ by a term proportional to #**
compared to the EMT obtained with the canonical formal-
ism. However, this term doesn’t contribute if the matter
fields are on the mass shell since we only consider metric
couplings up to linear order.

As mentioned already, we can study the NR fermion-
gravity interaction from the well-known FW transformation
method [25,49,50], which requires a relativistic Hamiltonian
with conventional time evolution as the starting point. As
our main concern, the other way is to calculate the inter-
action energy between a pair of one -fermion  states,
[ &x(p' =3 [d*%h,,( ,a), where
(p', p|T"|p, a) is the grav1tat10nal form factor extenswely
studied in hadron spin structures [51]. However, even for the
latter approach, to find out the proper eigenspinors for proper
Fourier expansion of y(x), we still face the same necessity of
field redefinition. In fact, even for a covariant Dirac equation
without unconventional time derivatives impeding the proper
identification of the time evolution operator [16], field
redefinition is still an essential step to get a hermitian
Hamiltonian [50] and has been well developed in the context
of SME [7,16,37] to study perturbative LV effects, such as the
effects due to LV fermion-gravity couplings. We will discuss
the field redefinition later.

V. NONRELATIVISTIC FERMION-GRAVITY
COUPLING AND THE ANALOGY

The method to get NR interaction energies is adopted
from Ref. [27], where the basic idea is from the lessons we
learn in QED. In QED, the electrostatic force is mediated by
the photon exchange between two charged particles, and the
full relativistic interaction is described by the vector-current
interaction —j*A, with j* = yI*y, where I'* = y# in LI

QED. Likewise, the gravitational interaction is mediated by
the graviton exchange between two energy carriers (without
NR approximation, massless particles such as photons are
also allowed), and the full relativistic interaction is
described by the tensor-current interaction — % h,, T,
where T is given by Eq. (6) in general, and only the
symmetrized part of 7+ essentially contributes. For the
Lagrangian (16), T** is explicitly given by (26) in the linear
approximation. Following the same logic, we try to get the
leading order NR one-fermion interaction matrix elements
from the fully relativistic interaction Lagrangian (25).

In standard QFT, the spinor y can be expanded as

w(x) = /dk
c=12

where dk = (‘”)“ o kex = k-X%—kx°, and u,, v, are the

eigenspinors describing electron and positron, respectively.
In the LI situation, the explicit forms of u,, v, can be found
in any textbooks of QFT, say [52,53]. However, in the
presence of generic LV couplings, the physical free-particle
states cannot be directly described by y due to unconven-
tional time evolution imposed by the LV derivative cou-
plings, such as the ¢, d terms [54]. To eliminate the extra
time derivatives, we have to invoke the spinor redefinition
w = Uy to cast the kinematic term into the conventional

(k lkx_|_dT< ) o‘(k) —lkx]

(27)

structure % iyy? 30 > which leads to a Hermitian Hamiltonian
with the usual scalar product (¥|®) = [ @x¥'(x)®(x) in
flat space [16]; otherwise, we have to redefine the scalar
product via the prescription adopted in Ref. [55].

For the flat space Lagrangian (8), U = (°T?%)™2 is a
nonsingular spacetime-independent matrix [54,56]. For a
generic fermion Lagrangian, the redefinition matrix is
given by Eq. (30) in Ref. [16] up to the leading order of
perturbation parameters of 4, and LV coefficients. Thus, in
general, U can be quite complicated and spacetime depen-
dent. The explicit form of U corresponding to Lagrangian
(16) is given in Appendix C, and can be shown to satisfy
U0 = 1 [57]. As what we concerned about is £y in
Eq. (25), it suffices to use the flat-space redefinition matrix
Uo=1+1(dyors — cpo)yy” for a linear approximation.
Detailed calculations lead to additional /4 couplings from
the flat-space Lagrangian Ly, as the spinor redefinition
matrix U = 1+ 5[70 + 8U"; however, these terms do not
), provided the external

fermions are on mass shell.

For nonderivative LV couplings such as a, b, H
coefficients, the LI eigenspinor may serve as a first-order
approximation in Eq. (27), while for the ¢, d coefficients
with extra time derivatives, the quantization expansion in

terms of 13(,, 21(, has to be done with a redefined spinor y
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directly. Of course, the eigenspinor can always be written as
Sy = S0+ Sq (S, refers to u, or v,), where S,o, S,
denote the LI and LV contributions, respectively. For the
one-fermion matrix elements (p’, #|O|p, @) at leading order
approximation, the key ingredient in the Fourier expansion
can be written as

SﬂOSa = SﬁO(OO +01)S0+ (Sﬁl 0S40 +S/}000Sal ), (28)

where S, = S,"y? is the Dirac adjoint of the eigenspinor S,
O denotes any operator we are interested in, such as eA - T,
and Oy, O, denote the LI and LV separations of O. Since in

-

the NR limit, the contribution from the spinor v, (k) with
negative energy can be totally ignored, and the scattered
fermion is assumed to be always on the mass shell, Eq. (27)
becomes (for ¢, d coefficients, y has to be replaced by

x=U"w)
vl = [ a6 Y bo@uBe (29)
o=1.2

where k¥ = k0 [l_é m,X] is the LV modified dispersion
relation, and X represents a set of generic LV coefficients
with indices suppressed. The LI eigenspinor is

P () +m f” I\,LR 56
)=\ o (Uo(k)é”> B (2—,§5> 0

where Ujy(k) = Gk

 wy+m

and wy = VK> + m2. For calcula-

tional simplicity, we simply ignore the (9(%) corrections of

wo+m
2m

the normalization factor and set it equal to 1 in the

last step. This can largely simplify our calculations but may
induce O(1) numerical differences for those terms of 0(2—22)
in comparison with the corresponding terms in [27]. For a,
b type coefficients, the eigenspinor can be directly found in
the appendix in [7]. For completeness, we collect them
together with the eigenspinors for ¢, d, H coefficients in
Appendix D. The key idea is that since LV is supposed to be
tiny by observational constraints [21], we only need to keep
linear order LV corrections and hence, can treat various LV
coefficients one by one as if the other LV coefficients are
absent. Thus, in calculating LV contributions of FG or FE
interaction energies from matrix elements, we can classify
them into three categories:
(1) Explicit LV vertices, such as Oy = %zp
[(a® + bPys)y® + H' 6%y, where Eq. (27) with
LI eigenspinors is sufficient;
(ii) Eigenspinor induced LV to the superficially LI

<>
vertices, such as O;; = ’}Z’“ wy*DPy, where w and

¥ receive LV corrections and thus induce LV
corrections to interaction energy. In this case, the
eigenspinor correction appears through the LV
corrected matrix connecting the upper and lower
two bispinors £&* and Uy (k)& i.e., Uy(k) — Ux(k),
where X again represents certain LV coefficient with
Lorentz indices suppressed;
(iii) LV correction to dispersion relations, which in the
NR limit, may also induce LV corrections; for
example, W ~ ﬁ [1 — X, where X represents
some indices suppressed LV coefficient with dimen-
sion 1 and E(p,X) = [p* + m? + Xm]:.
Equipping with these tools and following the spirit of [27],
we calculate the interaction energy

Eint = _/d3-¥£im

in the following subsections. As an objective in analogy, we
calculate the fermion-photon interaction first with the
interaction Lagrangian

Lin = La1 = —gwIAw
= —gA[pr*w — w(cyy” + dyysy' )yl (31)

while for fermion-gravity interaction, L, is replaced by
ﬁhl in Eq (25)

A. Nonrelativistic fermion-photon interaction

The interaction energy between two one-electron states
|p'.p) and |p.a) is

En = Eg + ERY

= g(p'.p| / d%?[y'/fq, A— T O A°]

[ &Pk Pk ,
=33 [ % [ oy O 4

51,8,

x [itg, (k)T - Auy, (k2)]by, (k2) bl(p)|0)

— g / e Tl ()T - Aug(p)], (32)

p.a)

where g=p' — pandTT-A=T-A(x) — T°A%(x), and we
have used {b,(p).bi(k)} = (27)35,,8°(p — k). Note we
assume that the field redefinition has already been done
implicitly, so for the c, d coefficients, y°I" - A has to be
replaced by (I'0)7y°-AU. In the following, we will
always deal with a, b, H terms first and treat ¢, d terms
later, and we omit the subscript “0” for denoting LI spinor
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uyz unless necessary. The LI part of the interaction
energy is

B =g / e (i, (p) () - 7 = A Jutal )

e

o - l-A+i§xX-3
_ 32 —igE gt
— [ e ([FAT AT

p-ptigxp-c
- P Yo
> 52
— 32 —igX gt 'p_ 0 p_
/d xXe %[(—m A (1—!—4 2))
G-B (Exp)-&
B T }f: (33)

which is exactly the same as the Eqs. (7.7) and (7.9) in [27]
if the signature difference is concerned. Note we have
defined I = p’ + p and assumed the fermion is always on
the mass shell such that the energy transfer is zero, ¢° = 0
(elastic scattering), just as in [27]. However, in the presence
of a generic LV coefficient X, the dispersion relation is
modified. Thus, p"® = p° does notimply g - (2p + g) = 0,
but rather

[ -2
q-p q ow, — éw,
T8 T dm (34

sw, = dw(p.m,X) = p°(p,m.X) — \/p* + m?,
and we divided g - p by 4m? to fit the factor appearing
in the third line of (33). The extra term in (34) means that
there is an extra LV contribution due to the modified
dispersion relation, even in the calculation of the super-
ficially LI EXL. To facilitate the analogy, we also assume
that the four-potential of the photon field is static, A* = 0.
For simplicity, we choose the Coulomb gauge V A= 0,
which is equivalent to the Lorenz gauge in static limit. The

where

absence of g - A is simply due to this gauge choice. The
third term in (33) is exactly the standard Dirac’s prediction,
B

the magnetic moment interaction .7, and the last term

(E x p) - & contributes to the fine-structure corrections of
the hydrogen atom. Apart from the spin-orbit (SO) cou-
pling, there are the Darwin term (though it vanishes in the

static limit) and the relativistic corrections of the kinematics
that also contribute. The first term gA - p/m is simply the
(P+gA)?

cross term in the gauge invariant kinetic energy -~ =~ in

the Coulomb gauge, and —gA" is the static Coulomb energy
with the correction factor 1 + 45—; for a charged particle in
its comoving frame. The vanishing of §*>A° term is because
this term is proportional to V2A%(X) = —p,8(X¥ — X,) by
Coulomb’s law, where X, denotes the position of source
particle for the external EM field, and the fermion is

assumed to be far away from the source particle. Note that

we have made a replacement —igA® — E and § x A — Bin
the fourth and fifth lines of Eq. (33) and dropped out total
derivative terms from partial integration.

For LV eigenspinor contribution to EM interaction
energy, we give an explicit formula for a generic LV
coefficient X,

EXoinor _ o / e TEY (5 - AUy (p) + 8UY(p')7 - A)

— AY[U(p")8Ux(p) + 8U% (P ) Uo(p)])éa(p).
(35)

where Uy(p) = w‘:fm and Uy are the LI and LV matrices

connecting the upper and lower bispinors. For example, for
a given Dirac spinor u(p) = (&(p),n(p))', n = Uxé and
SUx(p) = Ux(p) — Uy(p). For details, see Appendix D.

First, we can calculate the contribution of a, b, H
coefficients to the fermion-photon interaction separately.
As they do not superficially alter the conserved currents,
there is no modification of the fermion-photon vertex due to
these coefficients. In other words, for a, b, H, it is sufficient
to take into account eigenspinor contributions Ey; *"" and
corrections due to modified dispersion relations. For the a
coefficient, its effects can be simply shown by replacing
p— p+ad in (33) and omitting > terms, which are of
higher order. This manifestly shows that for EM interac-
tion, a term only shifts the four-momentum and causes no
observable physical effects and thus can be removed by
proper field redefinitions [7,16]. However, it does have
effects on gravitational interaction [16] and will be explic-
itly shown in the next subsection.

The LV correction for the b coefficient is

L oo i@ x A) - b= bOAYT - 5/2

SH
[=}

Ql

N

B-b-b'A'% G
+ 2
2m

N = L bo 'K
:g/d?axe—zqvxé:/u}[ o

+2A.[<Bx,3)x5]+i3.6(5-2)]§w

2m? (36)

04072 . . .
Note that —2 fm‘f in (36) is canceled by the correction due

to LV dispersion relation; see Eq. (34). Interestingly, the

B-b /2m? term seems to indicate that the b vector behaves

like a “cosmic magnetic dipole moment” i = —2“’—}’2 in
nm

comparison to the conventional magnetic dipole moment
(MDM) ji = —47. Contrary to the dynamical /i, which can
be manipulated by spin polarization, &4 is supposed to be a
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constant background, whose projection on a specific direc-
tion, say B, varies due to the relative motion of the charged
particle with respect to the cosmic background, and may
cause a sidereal variation in terrestrial experiments. A
similar Q - b coupling also arises when a LV fermion is
coupled to the gravitational field due to a large rotating
mass. For a fermion coupled with some kind of cosmic
anisotropic vector [58], or the axial vector part of a torsion
tensor by the identification £ Ty, — bl [16], we may
expect similar forms of i 1nteract10ns In fact, the nonminimal
%b%kF kWysyiy term [59] may also produce a term looking
like b7G - B with similar structure if bgk = bpe'/*, and thus,
the terms within quite different scenarios may be con-
strained by similar phenomenological observations, such as
the comagnetometer experiments [14,15].
The LV correction for the H coefficient is

N

e xH-5 (5-A)1-
Eglzg/d3xew§;[ - _ ! 22&

1

Tu
N—

o~

+

iA%G-H ATxH-G
4m> 4m? Sa

s en[AxH-G G-A)F+§2)-H
_g/d3xe—tq‘x§;|: 6_( )(p'zQ/ )
m m
E-H Ao(ﬁ+§)xﬁ-3§
4m? 2m? “

Q

(37)

where we have decomposed H,, into an “electric” part
H' =Hy and a “magnetic’ part [:Ilz%e,-ijjk. This
decomposition is meaningful, as seen from various cou-
plings such as -E-H /4m?. Just like the “cosmic MDM”
induced by the b vector, —E - 1§r/4m2 behaves like a

“cosmic electric dipole moment” } g > for a charged fermion.
Also just like —b°A% - p/2m? in (36) coupling spin /2
with momentum p and hence, behaving as a spin-orbit-like
(SOL) operator (here, we adopt the literal instead of the
conventional meaning of the nomenclature; i.e., a “spin-
orbit” like operator simply means an operator coupling spin
and momentum), A°H x p - 5/2m* = =A% x p - H/2m>
can also be viewed as a tiny LV SOL correction to the LI

I G A
—g/d3xe_"f’x.§/§{d-A6 +djAl - o' +

(Ex )
4m

LI operator is controllable, while the “cosmic’ " H term is
not, though it may receive a sidereal variation for any
terrestrial experiment. Moreover, it depends on the local

. However, the external E in the

SO coupling term, g

electric potential, which is like the term ¢, b Xn[;]"; in (51).
These distinctive features mean the LV SOL couplings can
be testable and distinguished from any LI background in
the ultrahigh precision fine structure observations.

For the ¢, d coefficients, as they not only lead to
eigenspinor corrections, but also bring corrections to
conserved current, and hence, impose the need of spinor
redefinition to cure the otherwise non-Hermitian
Hamiltonian if the spinor y is improperly used, we treat
them separately.

After redefinition, the fermion-photon interaction is

GAP8," = ¢ = dy ysly"w = gr'[(@- A = A°)
+AI(dyjysal + 2dgjys) — A (@00 + 2¢0p)lx. (38)

where we defined c(;) =3 (co; + cjo), dioj =5 (doj+
djy), Cij = coobij + ¢ij» di; = doob;j + dy;, and again we
keep terms only up to the linear order of LV coefficients. The
LV ¢, d corrections to the conserved current are the terms in
the second line in (38), where the terms in the first line in the
large bracket correspond to LI current. It is interesting to
note that the consistency of the field redefinition for ¢, d
terms lies in the fact that there is no LV A° coupling operator
in the second line in (38), as the goal of the field redefinition
is just to remove the unconventional kinematic couplings
caused by the ¢, d terms, and the A coupling will in no
doubt be removed due to the minimal coupling schemes.
Inserting the quantization expansion of y in terms of
annihilation and creation operators as Eq. (27), we get

Eyq= —9/dee_iﬁ'f“}}(P/)[aifijAj +2C(0j)Aj]“a(P)

N
o . L iEw .
—g/d3xe_’q'xf; |:2C-A|:1_|_p pPtigxp 5]

4m?

> - - Cl"Aj
0T A4 B g+

om (ll + iekilqkdl):| 5(17 (39)

i L NE LB g A Bl (B % )i
2p'+4q')6-p+po-qg—p - po +i(pxq)

o [ o)
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where we defined ¢/ = C(0j) and d = d(oj) for notational
simplicity. Note both in (39) and (40), u,(k) = uﬁo(lz) in
(30), as we only need to keep terms of the linear order of LV
coefficients. By the comparison of (39) with (33), we see
coo acts like a scale factor to the corresponding LI terms
&B pA

¢l = ¢(oiy mixes the coupling of A into those originally

such as while ¢;; plays the role of a shear factor, and

coupled with A? if LV were absent. In short, cyy acts like a
perturbation of metric tensor: It not only scales isotropi-
cally but also shears slightly the original LI EM
interactions, as if the original terms being viewed in
slightly sheared coordinates. However, we should avoid
confusion with the so-called “coordinate transformations,”
which have no physical effects [7]. In comparison, the
c-coefficient induced effects are in principle testable, such
as constraints of the sidereal variation by measuring the
transition frequency in atomic clocks [60]. For d coef-
ficient, due to the y5 factor, it mediates the SOL couplings

with the EM field, except the d;;A’c" and 42 (xq)

L7 terms.

For example, the (1,214;2&17 term looks much like an
anomalous magnetic moment (AMM) coupling term
’%)2(8"?) [61], which comes from the FW transformation
of the Pauli term —%Wo-””F wW, and y' is the AMM
coupling constant put by hand.

Next, we consider the LV eigenspinor corrections to the
superficially LI term, the term in the first line in the large
square bracket in (38). The eigenspinor for ¢, d coefficients
in the quantization of y has to be obtained from the free LV

modified Dirac equation,

iy = —i[(6;; — C;j + Eiiﬂ’s)ai —2(c(ojy — d0jy7s)IVix
+m[y°(1 = coo) — djorsy’lx. (41)

Assuming the eigenspinor takes the form y = e"”')‘(f;),
where n = Uy&, we obtain the Uy with X = ¢, d; see
(D4), (D5) in the Appendix D.

We still treat ¢, d terms separately in the spirit of keeping
only the linear order of LV coefficients. For the ¢
coefficient, the LV eigenspinor contrition to EM interaction
can be obtained by substituting 6U.(k) = U.(k) — Uy(k)
in (35),

I cong’  cip'p!
ES — e igxgt ) | A0 — (0 J
Ar—9 / e 5/3 2m * 2m?
A ; j ok I i
_C__P]A + Aozlcijq[jp ]eiklo' —¢iiq'q’
Y 4m?

JA! + i€ q Akl
q ki :| }éll(p)

~Cij 2m

Again, we have added the correction A°(Sw/, — dw,,)/4m

into (42) by substituting (D14); see Eq. (34). The total LV

FE interaction energy due to ¢ coefficient is EY; + E3.
For the d coefficients, the LV eigenspinor correction is

djo <q"'pf) + ‘%‘1) +dojq'q’

4m?

EdA2I = g/d3fc'e_i§‘f§; AO{

dijq’ B dO/Pipj] ol — iejud;iA'(24%pY + g*4")

4m 2m? 2m?
24U6M[pkp’ + g% p) + ¢*q' /2]
dji P
UG- A
dy— 2 . 43
+ 0j 'm ga(p) ( )

Unlike (39) and (40), E% and E?f[ do contain contributions
from the LV interaction with scalar potential A°. These
terms would be absent if corrections from LV eigenspinors
were not taken into account; see the second lines in (38).
The total LV fermion-photon interaction energy due to the

d coefficient is EdA‘I + E%. We separately write them out to

make the nature of where they originate (from LV corrected

current or LV eigenspinor) more clear. Also note, Eq. (43)

(A'G=0'A)pp’
m2

contains similar SOL terms, such as d;; , as the

iA%c;;qV prleyot
B P E—

SO coupling term in (42), only now the role of

scalar potential A? being replaced by vector potential A.

iA%¢;.qV pHeyo!
’I“he qu [: ikl

I term is called SO coupling as it is

equivalent to c; J'W after the integration by
part and the identification E/ = —d;A° for a static EM field,
and as usual, the total derivatives have been ignored. The
reason for the structure differences can date back to the

additional y5 factor in LV kinematic d term compared with

. <~
the corresponding ¢ term in £ D 5yol* d .

At last, we stress that all the above FE couplings can
be expressed in terms of gauge invariant E, B fields by

the already mentioned replacement —igA° — E and

g % A — B. The reasons we favor the gauge four-potential
A* instead of the gauge invariant field strength are the
following: 1. A* directly comes from the current inter-
action —j#A,, and using A* makes the calculation more
convenient. 2. Expressing all the interaction terms in terms
of A# and A} facilitates the comparison of the FE and the
FG interactions. Moreover, since the FG couplings do not
come from a strict U(1) gauge interaction as the FE
couplings, there is no gravitational analogy of the U(1)
gauge invariance to guarantee that all the FG couplings can

be expressed purely in terms of the Eg, Eg fields. Though
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the two forces do bare some similarities as mentioned in
Sec. 1I, the GEM is allowed only for a restricted class of
gauge transformation h,, — h,, = h,, +29,5,), which
only reduces to an approximate U(1) gauge transformation
under some special assumptions, such as E ~ O(c‘4), &0~
O(c™3) and 9y¢ = 0.

B. Nonrelativistic fermion-gravity interaction

Now we calculate the fermion-gravity interaction. Since
we assume the scattered fermions are on the mass shell,
which means the equation of motion is satisfied, the term
proportional to & does not contribute. The interaction
energy —3 [ d®xh,, T* in (25) is proportional to

1 i Y7, A Y7y a ac
Ehha (5 pT*Dyy —wr[(ap + bpys)y® + Hpeo ]ll/>
i ¥y va a a =
=Wl (ep + diys) + Wy (c," + dyys)ly" Daw
1, _
- Zehcmnham,nl//[chHYS + dha]}'cl//- (44)

~.

,@)o

Eg = 0<P/,ﬂ|/d3x{zhball77”0bl//}

Note we ignore all photon couplings by replacing D, — 9,,,
not only for calculational simplicity, but also to facilitate
the discussions of the test of equivalence principle (EP),
where photon interaction not only complicates but may
even spoil the precision test of WEP [62]. For comparison
convenience, we adopt the conventional definition of the
GEM potentials,

hoo = _2¢g’ hij = _5ij2¢gv h
=V, Q=VxA

0j = hjo = Al
(45)

g7
where Zq differs slightly from the definition of Aé in the
Appendix A. Note that the metric g,, = n,, + h,, with

Xg = 2G’V'Xj is exactly the Lense-Thirring metric [24], and

J is the total angular momentum of the spinning body. We
will call an operator gravito-electric coupling if it couples
with gravito-electric fields ¢, or g or call it gravito-
magnetic coupling if it couples with gravito-magnetic
fields A or Q.

The LI fermion-gravity interaction is

=2 - - .o - - e
Y P p°+q-ptigxp-o\ A
S

A’ —>2+—>'->+l.—>x—>'(-’>
Yy 1+p q-p 261 p éa
2 4m

TR\ 3Gxp-5 —
_ 3. ,—ig-X g7
—/qu%{W&HﬂW>“ﬁﬁ__%'

where )o denotes the pure LI eigen-vector, and we
preserve only terms up to PNO(1). Specific in detail,
we keep

00 ~ O(v*), ho; ~ O(v?), hi; ~O(v?), (47)

where v is the velocity of the fermion. Though the metric
component gy = —2¢b, only contains the O(v?) term ¢, it
is further suppressed by keeping the NR factors, such as

¢g7’—2 ~O(v 4) Also note only a quarter of the spin-orbit

FG interaction 3‘]4 % comes from the pure temporal metric

hoo contribution, and the other half comes from the spatial
metric h;; contribution. In comparison with the Eq. (20) in
[63], the spin-orbit operator from A, exactly coincides
with the corresponding term due to a NR fermion coupled

515}@, (46)

with the noninertial force, thus confirming the WEP [63],
since the only nonzero metnc perturbation for a linear
acceleration is hyy = a -

It will be interesting to compare the result (46) with those
obtained by the FW transformation, such as Eq. (2.44) in
[64] for static spherically symmetric metric. For this
purpose, we also keep

A
oihun| 2|~ 0(%). hogp = mO(a),
7
ma,
djho; ~ = o), (48)
where 1, = % is the Compton wavelength of the fermion

we are concerned with, say, a neutron, and 7 is the
characteristic length scale of the gravitational source, such
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as the Earth’s radius. In general, 4. /7 < £ (we temporarily
restore ¢ for clearness), for example, on the Earth, 4./7 ~
10722 and v/c ~ 107 for thermal neutron (v ~ 10> m/s);
thus, on numerical grounds, we can totally ignore terms
involving 0;hy; and 0;hy| % |. However, not only for
parallel comparison but also in preparation for exotic
situations such as neutron stars, where both /gy~ 0.1,
IQ| ~ 10723 GeV are much larger than the corresponding
values on Earth, we keep these terms in the following. In
deriving Eq. (46), we also assume Q) is constant such that
Z{g = %ﬁ x 7 and utilize the equations Vzd)g =4zGyp,,
and va’g = 162Gy, to eliminate the j - Gy and p - ?jﬁg
terms, since the neutral fermion is assumed to be outside
the matter source of gravity, where p,, and fm vanish. This
also explains why there is no ig - p term compared with the
NR Hamiltonian obtained by the FW approach.

Now we also consider the a, b, H terms first as these
terms do not involve derivative couplings. However, unlike
the EM current wI %y, the a, b, H terms do contribute to the
LV energy-momentum tensor 7/, which receives any kind
of contribution from matter source. For simplicity, we
discuss the LV eigenspinor corrections first. As in Eq. (35),
|

we write down a general formula for the LV eigenspinor
correction,

B = [ dxe T 2009, =11, 0UL () U (7)
U0

+ 2,1 L) [SUY(P))G + 55U (H)] Y
(49)

where the 2 x 2 matrices U, and 6Uy are defined under
Eq. (35). Note the structure similarity between (35) and

(49), where ¢, and A, replace the role of ¢ and A,

respectively, while the remaining terms, Zq .7 and ¢_,j,
reflect the tensor nature of gravitational coupling. Both the
similarity and differences between FG and FE couplings
may stem from this peculiar structure.

Substituting $Ux (p) with X = a, b, H, ¢, d separately
into (49) with Uy given in Appendix D, the LV eigens-
pinor corrections to FG interaction due to a, b, H
coefficients are

ab-1_ 1 —ig R gt - = [(@+0°%)-1 igxa-c - - a+b% igxb (Ixb)xéd
E& 1:1 / dPxe47E, [2l°¢y—l-Ag][ T + 20,1 — A, 1] - e B &
Lgzg [I%@G 3 (F+d/2) 315 (b-DED_(PHExi+d/4) ;-
~ d3 iq-x gt 9 _ b-
/ xeey { 4m i 2m 4m 4m? m? (b-2)
- W&\ G-b A,-(Ib-bl)-
i (z+2° g 50
[S'(“Jr2>+4mJr 4m }5“’ (50)
.. [ixH-G iG-H (Hx3) I[-H.
—ig-X £l
Eg11—4/d3xe q gﬁ{[ 10¢!,—1.Ag]{ ye— 4m2] + 29,0 - A, [ e a] }5(,
SixH-6 - I H §-H - (Hxd) - _I-H
~ =1 -xT - . - .
_/d3xe q fﬁ{(j)g[ y- l-o mz} . Ay > +A,-0 - &g (51)

where we have ignored terms of order 5 e . and 24 e

in the last two approximations. Note 2 4m appears in (50) just as

ng

appears in (36). The lesser suppression by the inverse power of m is because in the gravitational case, m plays the
role of coupling constant g. As mentioned before, the corresponding terms can be found from (36) and (37) by replacing

¢, A with ¢, A,,

nd P¢g

additional terms such as —¢, (t3) ‘;m ¢q (b:1) lniff )

coefficients.

though the associated numerical factors are different. Due to the tensor nature of gravity, there are

45— in comparison with the FE couplings for the corresponding LV
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For the apparent LV interaction vertices due to a, b, H, their contribution to the interaction energy is

1 _
B8 = =5 08l [ dxlnagl(@ + Prsr i)

—/d3xe '“5 {<¢ga —Zi;g> (H—p p—&—quﬁ 4 + ('ij i } f—tha}+<¥—¢gb°>5—mi
+(b°§g_¢g;)[<l_a 2y T 1
(BB R
B =~ &y FHY 0} | p. a)
_ / Fre-iive] {(292 +2¢g§) . Kl +Izm1;’) L _iPxd+ <fnz;' +7'P) -a}
+%-(75—3*).29—’§X4i;"ﬁ}5(,
g/d3xe-W§§{Z"’;ﬁ-a+%.[(73—3*) A, +20,H KHZIS)‘”@RI&I;)? o I}}g (53)

By comparison with Eq. (37), there should not have
any scalar potential coupling to the “magnetic” part of
the H coefficient; however, due to the tensor nature, the
nonzero spatial metric /;; induces gravito-electric cou-

plings to H, such as the terms proportional to ¢g1:1 -0 and

(pH - 1)(1-05).

A striking difference from the fermion-photon interac-
tion is the presence of a-coupling terms in (50) and (52).
Comparing (52) with (46), we see the a* coefficient couples

to ¢, and A, in exactly the same way as the four-
momentum p*. This is not surprising as in the momentum
space,

| Ly 22
-3 hyawaly“y + 1 h gy 0 pyr
1 ~ p/b + pb

= _Ehbauﬁ(pl) |:ab + T ]/abta(p),

and is also the same reason that a* can be shifted away by a
phase redefinition of the fermion field; thus, it does not
have any observable consequence for a single fermion
coupled with a photon field in flat space. However, the

above reasoning does not apply to a fermion coupled with
gravity [38]. This can be verified by inspecting Eq. (46),
where the simple replacement p# — (p + a)* cannot lead
to the a-coupling terms in (50).

Note that we also need to consider the implicit correction
to the fermion-gravity interaction energy induced by LV
dispersion relation p° = wy(p, m) + dw(p, m, X). This
correction comes from the substitution of p-¢g in the

superficially LI term £ [ d%h”ﬂ?y“gbw, just as what we
did with Eq. (34). However, in the gravitational case, an
additional contribution comes from p term in (46) and thus
is proportional to éw,,. Inspection of 6w, — éw,, for various
LV coefficients in the Appendix D, we see these terms are

at least of O(v), so in making a substitution of G- p =
—%2 + m[dw, — dw,] and p° = wy + dw,,
correction

¢g[(1ﬁ+
_ [Ay

the following

P+idx PG

5
g )5a)p+1(5a)p —bw,)

-Z—Q—iﬁxzyﬁ
4m o

(54)
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has to be added for each type of LV coefficient. For completeness, the dispersion relation for a coefficient is

kO = \/(k +@)> + m*> — a° for a positive energy fermion, and hence, Sw, ~ k-d/wy—a®. For a, b, H coefficients,
the corrections due to LV dispersion relations are listed below:

(49 - 54) - (@ + b°G) L (A T+Q Gxp-a
ES3 / dPxe 4% {qag( (@ +b-5) o b, e

32 . 5(p-b)(p -3) =95 -b)(p-5

+¢g[p BG-a® + (p'-b)(p g ! (p-b)(p )]}éa, (55)
m
. H x (4p — 54) »\z - SH-p'&-p —9H pao-p A, 1+Q-5

EH-3 3. —igi £l 1 " \H- — |4
= /dxe ":{‘/’-"[ 4m U )t et 8m? 4m

Gxp5z
- Aa o,

The total NR fermion-gravity interaction energy from a, b,
H contributions is the summation of Egs. (50)-(53) and
(55) and (56). Though it is easy to see that several terms in
the above equations can be combined or even canceled,
such as the terms proportional to q’;gl; - and aow in
(52) and (55), or the terms proportional to § X d - & in (50)
and (52), we keep them separately for the clarity of their
origin.

Inspecting Eqgs. (50)—(53) and (55) and (56) reveals that
there are abundant interaction structures for the LV spin-
gravity coupling, especially for the b, H coefficients. For

_ (H+b)

example, the term is in analogy with the LV

magnetic field couphng term gb 5,7 In (36), only with gravito-

magnetic field Q replacing the magnetic field B. Similarly,
the (b—H)3(83)
4m

those proportional to gx” 7 alter the geodetic and frame-
dragging precession frequenmes of microscopic particles.
Since there is no reason for the LV coefficients to
be universal for particles with different flavors, the
WEP must be violated due to the nonuniversal LV
gravitational couplings. These effects are in principle
testable, such as in the high precision Gravity Probe B-like
experiment [10,11].

Aside from the B-type LV couplings, the E-type LV
couplings also show some similarity between the fermion—

and the spin-orbit coupling terms such as

photon and fermion-gravity couplings, such as —4— and
- %—Z, ingnsz -6 and 2’ng1XH 6. The similarities for the LV

couplings between the b, H coefficients can be traced back

or

to the operator level by the identity wysyy = —y‘/yoiz//
(where X/ = “2% [/, y¥]), while y° is effectively equal to 1
for positive energy particles. For example, this fact can be
Vahdated by the similar form of couplings between b-G

and H o with [Q gx p/m] - in (55) and (56).

(56)

Next, we discuss the fermion-gravity interaction energies
due to the ¢, d coefficients. The contributions due to
eigenspinor corrections for ¢, d coefficients are

1 o U J
EG' =y / d3xe—’q-xg'{[Ak1° 2¢gzk]{ Ol ieyg’o "}

2m
Pl +ic;qU pYeyo!
R ‘.
(57)
a1 _ L[ s gie s 77 do;p"'p)o’
EGI :Z dxe Zjﬁ [21 ¢g—l'Ag]T
o omor[doill L idjie e (pFpT = p*p')
+ 29,1 —Aglo}[zljna S
dpic" (p*p'+ p"*p") = d;io! (p" p' + p"" p")
+ ) Sar
(58)

Comparing the terms in (57) and (58) taking the form of
(AEX; —2¢,Y)I°, where X,,Y are LV operators such as

% k — W, with the terms in (42) and (43), we see
they also look quite similar, as mentioned in the general
discussion of Eq. (49).

The apparently LV vertex contributions due to ¢, d

coefficients are

i B PEN
B ==y (081 [ (it + d.vs)y O

+ w/(cbu + dbuyﬁ)yh aal//]

+ 1l (c,” + d,ys)y” 0wl p. a). (59)
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Note the terms in the first line are in fact equal to the terms in the second line of (59). The terms in the third line of Eq. (44),

— 1€t (p', B| [ d*)xhyWlc,ys + dylyw|p. a) come from the spin-connection interaction and thus only contain GEM

field strength 0,1, and are naively expected to be much smaller than the terms coupled directly with the metric perturbation /,,,
The contributions due to LV dispersion relation corrections for the ¢, d coefficients are

) o (A, 149G Gxp-5
ES? —/d3xe ’qx.fﬁ{coo{ g 1 ~am }

5q/ —4p’ 5p"p" = 9p'p’ 3p°
+¢)g‘ {C(Oj)f‘i‘C(,’j)T—Coo +4— §a, (60)
ciot | [9-d)(B-8)=5(p -d)(p/-3)  du(4p' - 5¢')0’
-2 _ —ig-X £1
5d;op'iz - p' —9d,ypic - p , 72 Gxp-6. . A I+Q-5
+ / Sm —l—dj()GJ m+@ +de00]— g 4 djOGJ ga (61)

In comparison with Eq. (39), there is also a corresponding term c (Zg T+Q- 6)/4, which rescales the gravito-magnetic
moment just as the corresponding term rescales the magnetic moment. This and the other similar LV corrections spoil the
theorem of zero anomalous gravito-magnetic moment due to the EP [65], which is not unexpected in the presence of LV.
For compactness, we combine these ¢, d couplings together and disregard the quadratic terms of ¢', as g'q’hg, ~ 0;0hq,
and 0;0;h,| < |p'd;hy,| in general. We also keep only terms up to O(m™"), and the results are
2 2 2 Jm

[P gxp-o
ES. — e ig-X g7
Gl / xe fﬂ{ [Coo< m
Q- 3) AU + ey q/ Aol
Cij

2p'q’ (G- D i ( Coi =
_C(ij)¢57_€ijkcijg am + |mAj 74'0(01') —Coo| Ay P+ 1 1

19" . 1 . 3gUp plg\ o
+ 2mq§g> + c<0i)¢57 = l'pycoi + —GijkCOigkO'J - Cij€ik1< + —

llcl C" C; .
+ 4]A] + [l ,klalﬁk] Zj €ijkzlakA§;61:| }éa, (62)
. AN G-(8p+113) 7Tdpqp)el 1 gxp)
E = /d3xe 1 52{% [dij (419] +Z>6 — doo ( 1 )14 i §€ijkdij9k + (dio + 2d0;) ( o )
idj) A, G Ldi ; Gl idg oo
+ 4—j [6 X (g X p)]J =+ mdoo ) 40 ( A A ) l dOlA 2 — Tj (Q X G)] - mAédUG }ga. (63)

Inspection of (60)—(63) shows that several LV spin-orbit
coupling terms, such as dj06/gx p-6/4m, cogx
p-6/2m and c¢;;(gx G)'p//2m, are of the similar kind

of structure as we found in FE interactions, like
¢;; X P=(PX@'E Oher more complicated structures of

ij 4m?
spin-orbit couplings such as % (§x5)", — ’” (Q X G)/,
d(onAys - l/2 L5 x (g x p)}, etc. can also be found in
Egs. (62) and (63) Also we notice that there are only two
spin-independent fermion- gravity couplings for the d

coefficient, (d;y + 2d o)) 52> gXp and J¢;;xd,;g°. This is not
surprising as in the Lagrangran level, d term is of the ysy*
structure and is an essentially spin-dependent term from
the relativistic point of view.

In summary, due to similar Dirac structures in Lorentz
violating fermion-gravity (FG) and fermion-electromagnetic

I
(FE) couplings, there are analog operators for the LV
fermion coupled with these two external fields. At a simple
glance, we collect several sample operators of FG and FE
interactions in Table I. Operators such as a° %, (A-qXZH)'G
exactly cancel and thus in fact do not appear. The mismatch
between FG and FE interactions may partly be due to the

TABLEI. Examples of the analogous operators between the LV
fermion-gravity and fermion-photon couplings.

T

FG _ (A+5)S (4,1)(53) (A,3)(p-H)
Im 2m 9 2m m
FE gb-B gA-D(b-5) gA BxH G 9(A-3)(p-H)
2m?* 2m? 2m? - m2
FG 600(22_,,-7+§-8) 3¢9V preyo! _gH (3.2”)(3.3
- 4 2m 4m - 2
FE gcoo(A-14-B-5) gei EV pHleyyo! _9EH g(d-A)(G1)
2m 2m? 4m? m

115030-16



ANALOGY OF THE LORENTZ-VIOLATING FERMION-GRAVITY ...

PHYS. REV. D 106, 115030 (2022)

tensor structure of gravity and partly due to the fact that the
LV corrections from fermion dispersion relations p® =
@’ + 8w, can contribute directly in the case of gravity, in
contrast to the case of photon coupling, where only éw,, —
ow,y enters in the g - p substitution. Anyway, we think even
the sample operators in Table I can convince the readers
that the LV spin coupling structures are very abundant,
which means that the gravitational phenomenologies aris-
ing from the LV spin-gravity couplings [23] waiting for us
to explore are very rich.

VI. PHENOMENOLOGY IN TEST OF EP

The LV spin-gravity couplings have already been thor-
oughly explored in the uniform limit ¢, = g - Z [23], which
is a very good approximation for most experiments on the
Earth. However, the linear potential is essentially flat and is
incapable of capturing the curvature effects of space, as
only gg matters in this case. In comparison, the Lense-
Thirring metric is an intrinsically curved one and may be
able to test LV spin-gravity couplings where the other
metric components take effect, such as the frame-dragging
(FD) effect of a single fermion due to the rotation of a
massive object like a neutron star. For the pure gravity
sector, we also note that the spin precession effects in the
post-Newtonian approximation up to O(3) have already
been systematically studied [48], and the anomalous
precession rates due to LV have also been utilized to
constrain the s,, coefficients [12]. However, these are for
macroscopic spinning gyroscopes, not for the intrinsic spin
of microscopic fermions.

The Lorentz invariant NR fermion-gravity Hamiltonian
has been fully studied in the literature [50,63,64], and it is
interesting to note that the LI operators in Ef], Eq. (46),
coincide with those in the NR fermion Hamiltonian
obtained in [64] except the higher order term
¢,p*/2m, which differs by an O(1) numerical factor.
This can be attributed to the two following differences
between our calculations and those in [64]: 1. The

simplification of the normalization factor ./ w%;m =

in front of the spinor u, and its conjugate u, see

Eq. (30), and this can induce a % difference. 2. The
operators we studied are sandwiched by the bispinors 5;,
and &,, while for comparison, the NR Hamiltonian in [64]

needs to be sandwiched by u; and u,, which will induce

another % difference. Taken together, they give the

22 . . .
correct ;—512 factor in front of m¢,. The vanishing of terms

V2¢g, % is due to our on-shell and source free assump-

tions. This is not surprising, as the LI terms in the one-
: : 1 3

fermion matrix element — 3 (p’, | [ d’xh,, T"|p, a) under

the assumption of zero energy transfer, ¢° = 0, are just

the potential energy at tree-level approximation. For the

corresponding LV terms, we may also expect them to be
the corresponding LV operators in the NR Hamiltonian
obtained by FW transformation [13,25,26], except that
each pair of operators obtained from different approaches
may differ by an O(1) numerical factor. As most LV
coefficients in the minimal SME have been tightly con-
strained to be vanishingly small [21], what we really
cared about is essentially the order of magnitude; the
O(1) numerical factors may be irrelevant for practical
purposes. Thus, we can collect all spin-dependent oper-
ators up to O(m~") [except the a’ term being of O(m~?)]

N 3gxa agxpl . 3% -1 L
6Hg6:[4m Tt 6+ ¢, —-2b| -0
6-p- - px H >
+ 2P b+¢q[p +3H]
m 1 2m
. A,-(Gp-pa)-H  [gxp ©
Gy (@P-p Lo |82 P 2
m 2m 4
. mA, ] .
6+d0() T—2¢qp e (64)

together, and for simplicity, we also ignore the terms
coupled with ¢,,, d,, coefficients, except the ¢y, and dy.
Note that the meaning of “spin dependence” here should
not be confused with the spin dependence attached to the
LV coefficients in free fermion theory, where a, c are spin

independent. We boldly assume that the NR Hamiltonian is

a ﬁz 3 ) - - . - O
Hyg =5+ mby+5 - \¢gp” —ig-p+gxp 5
Q-5 .
—= +oH,,. (65)

where the first line involves LI contributions. Note we have
ignored all the spin-independent LV operators, as they do
not directly affect spin dynamics. The spin time evolution
is governed by the Heisenberg equation

-

d 1 - . -

D = LB Ayl = (@ur+ 0y) x5, (66)
where @ = dgeo + Dpp, aNd Bgeo = 50-G X P, Bpp = — 5
describe the geodetic precession and FD precession,
respectively. Interestingly, we obtain @;; from the
Heisenberg equation with the semiclassical fermion-
gravity couplings, which only relies on the minimal
fermion-gravity assumption within the tetrad formalism.
Since the geodetic and FD precession angular vectors,
Bgeo =75 § X P and @pp = —%, exactly coincide with
those predicted in GR [33] for a probe gyroscope carrying
macroscopic angular momentum in the weak gravitational
field of a massive rotating object, while the spin geodetic
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and FD precession frequencies for a quantum object, such
as a fermion carrying spin-%, are not necessarily the same
as the corresponding macroscopic terms in a general
gravitational theory other than GR, this coincidence can
be viewed as a piece of evidence that the WEP is valid even
in the quantum regime [49,50,66], though this evidence is
far from a conclusive one. Given that WEP has been tested
to high precision [66—68], we may reasonably believe that
the GR predicted spin precession of microscopic particles
can also be tested to the same precision in the future as
that of the macroscopic gyroscope in the famous Gravity
Probe B (GPB) project [10], in addition to technical
difficulties caused by the extremely weak fermion-gravity
couplings. The GPB gives a geodetic drift rate of Ryg, =
6601.8 4 18.3 mas/yr and a frame-dragging drift rate of
Rwg,, = 37.2 £7.2 mas/yr, while the corresponding drift
rates predicted by GR are of R,., = 6606.1 mas/yr and
Rrp = 39.2 mas/yr, respectively, so the measured drift
rate deviations are |ARys| < 22.6 mas/yr and |[ARyg| <
9.2 mas/yr [12]. The LV-induced anomalous precession is

- 0= 3b0—> - R
56Uﬁ:£LX’?a—glq-¥@{ p+(m7—4m}
2m m m

24,-b PxH 2. = _ -

g - = H'—>A

t— =P+ é,— —+[(H P)A,
- .z gxp Q -
— (Ay - P)H]cgo i —|—d00[mA —4¢,p].
(67)

If we attribute all the drift rate deviations to the LV-induced
anomalous precession and assume that the same precision
can be achieved for fermion spin precession measure-
ments, we may obtain some very rough bounds on

3AR
38 —25) < 22NV L5430 % 1072 GeV, (68)
geo
AR
|a° <3m—"5~9.65x 1073 GeV, (69)
geo
3ARys AR
Ic(>o|<Mm{2RNS R“@}=544xm4, (70)
FD

where we set r =7018.0 km as the GPB polar orbit
parameter (orbit altitude 642 km) and assume each type
of LV coefficient as the only nonzero one in our estima-
tions. The bounds are weak as they are obtained from the
deviation of the essentially weak GR effects. Also note we
intentionally choose the above LV coefficients in our naive
estimates, because the other LV operators such as g X a,
bp, p x H may be even weaker as they may average out
in a cycle, not to mention that the data acquisition period is
almost 1 year, from August 2004 to August 2005. In other

words, if we had transformed to the Sun-centered frame,
our estimates could be even weaker. The LAGEOS,
LAGEOS 2, and LARES laser-ranged satellites can test
the LT nodal shift to the accuracy 0.2% [69], and this in
principle may put at least 2 orders of magnitude tighter
bounds to the LV coefficients, though it is more unlikely as
the test is not even for a gyroscope in an orbit. Another
point is that our estimates are based on the assumption that
fermion precession can be tested to the same accuracy as
for the macroscopic gyroscope. This means our bounds
above are best to be viewed as expectations.
If we consider the acceleration

__dp 1 . 3p?
“E——._{P,HNR]ﬁ—Vd’g(l‘i‘W)

2d00
m

ﬁ} 3 (71)

where we have ignored all the LV corrections with higher
order than m~! and the LV corrections coupled with

gravito-magnetic vector potential 2(1 or derivatives of g,
since we expect these terms to be much tinier compared
with the remaining ones, and we note that the anomalous
acceleration is purely due to the LV spin-gravity couplings,
we can then get bounds

3H —2b| < 1.8 x 107 mg; ~ 1.46 x 1075 GeV, (72)

|dyo| <9 x 1078 T ~4.51 x107°, (73)

3kyT

from the test of WEP with neutral atoms with the precision
of 7= (0.2 +1.6) x 1077 [68,70]. We choose the temper-
ature as T = 1.4 pK [68], mass mgy as the 87 atomic mass
unit, as the particle involved are %'Sr, ®Sr, and ®Rb,
roughly of the same mass range, and |7| ~ 1.8 x 1077, the
most conservative one. Since the time scales for two
experiments are much smaller than a day, there is no need
to take into account of the sidereal variations for a rough
estimate, and these weak bounds are more reliable.

VII. SUMMARY

In this paper, we calculate the one-fermion matrix
elements of fermion-electromagnetic (FE) and fermion-
gravity (FG) interactions for on-shell fermions. Due to
the partial structure similarities between FE and FG inter-
actions, many LV fermion-gravity operators bear resem-
blance to LV fermion-photon operators. We have shown the
resemblance with several sampling operators in Table I. This
resemblance can be viewed as a natural manifestation of
the well-known gravito-electromagnetism generalized to the
LV fermion couplings.
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By collecting the spin-dependent LV operators in the
matrix elements as leading order LV perturbations and
combined with the nonrelativistic LI gravitational inter-
action in the Lense-Thirring (LT) metric, we obtain a hybrid
Hamiltonian, from which we obtain a spin precession
equation (66) and a linear acceleration equation (71). By
identifying the anomalous spin precession rate as the
correction to the geodetic precession and LT frame-
dragging precession predicted in GR, we can get some
weak bounds on gravitationally coupled LV fermion
coefficients, Egs. (68)—(70). Though these constraints rely
on an unrealistic assumption of the measurement capability,
which says the fermion-gravity coupling can be measured
to the same precision as in the Gravity Probe B project,
these bounds are interacting since they reveal another
aspect of the WEP test [49,50], namely, the spin precession
of a microscopic fermion may be different from that of a
macroscopic gyroscope if the LV spin-gravity couplings are
allowed. From the WEP test with atoms of nonzero spin,
we can also get some relatively stronger and more reliable
bounds (72) and (73) on the LV fermion-gravity couplings.
These bounds do not require one to take account the
sidereal effect induced by the motion of the Earth, as the
relevant time scale is much shorter than a sidereal day;
however, the analysis of sidereal effects may necessarily
render the bound more stringent. Moreover, future high-
accuracy experiments with polarized neutral atoms may
be able to give tighter bounds on these LV spin-gravity
couplings [71,72].
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APPENDIX A: THE GRAVITO-
ELECTROMAGNETIC EQUATIONS

The gravito-electromagnetism can be viewed as an
analogy to electrodynamics when gravity is sufficiently
weak for slowly moving gravitational sources. For weak
gravity, we can linearize the Einstein equation G, = T,
by regarding the metric as a small deviation from
Minkowski background

Guw = N + h;wv |hm/| < L. (Al)
The field equation can be further simplified in the harmonic
gauge 9, 1", = 0 with trace reversed rank-2 tensor h,, =

R, —"h (where h = n*h,,),

872G

K=—"7"

0,0%hy, -

= kT, (A2)

Then a class of retarded solutions can be found as (A2) is
simply a wave equation. For 7% ~p, c? T% ~p, cul,
T ~ p,u'u/, where u' is the spatial component of the

four-velocity, we get up to O(c™*), hoy = —% hy; = 4A_l,,
and h;; ~ O(c™*), where
Pm <t - ‘x;)‘ ’5;>
¢, (x) = —G/ d3y — , A3
9( ) |)C _ )’| ( )

=
|
[
Q
(5]
)
3
7N
~
|
En
ol
<1
<
~_
:N
>
=

Then, we define Eg =-V¢p, - gatﬁg and Eg =V x Kg.
The n, s, r are a set of constants to be determined. It is easy
to verify that the homogeneous equations

- > r_ -
VB,=0. VxE,=--05B,

(AS)

g

are satisfied automatically. Since the harmonic gauge
9,1, = 0 reads

_ 9,A, 1
0= ajhjo aoh()o - _2 SCl_n +Eat¢g
_ _ i} 40,A!
0 = ayh®; + 9;h/; = —0phg; = ———2, (A6)
SC

the vector potential must be time independent, A’g =0, and
substituting V - A =
equations gives

—20,¢, into the inhomogeneous

rs

- r -
V-E, = -V, =29,V A,) = - [vz o 02} b,

= 11 _D¢(/ = _4ﬂGpm’ (A7)
VxB,=V(V-A,) - V24, = - 0,V¢,) - V?A,
‘ \ -
o1 SOE - 0,E, 471G _
:1sfg_DAq:s[lg_”pmu], (A8)
n=1 C - C C
where O =[V?>—-1L07] is the flat space d’ Alembert

operator, and in order to make use of
O, [y 1A }”ﬂ;“) —4nf(t,X), we have to set rs=
n=1.
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The geodesic equation %= + T u’u? = 0 can be written as

F(l

dx’ dx? dt

Prdr dr dr

dx*dt| _ d*x*dt 4 dx* d*t de }
dt dt| — df? dr dt d7* dt

1 dx dx” dxv
== A9
[c dt ﬁy] dt dr (49)
Note in the weak gravitational field limit,
1 0,9 1 0:¢
0~ _ 9% 0 ~ %
Foo——§h00,0—7’ Fo;——ihoo,] 2
1 0,¢p
=5 (hjxo = hojx = hoj) = _5jk% 5 (A9 + A% ),
; 1 4 .0
FOO ~ |:hi0,0 - 2h00,i:| = Qa[A + CZg )
;o1 o
Iy = 3 [hioj + hijo = hoji] = 2 [A9; ;=A%) = 6y ?g
1 1
=5 (hiji + higj = ) = P [6;x0; — 6140} — 6;;0|db,, (A10)
|
where h.. — 2¢ 05 B , hgy = — 2. Substituting Now consider the linearized LV fermion-gravity
ij ij» 10j = > Moo = Lagrangian in metric perturbation /,,. The LV fermion-
the above equatlons into the geodesm equatlon (A9), we get . L i
gravity Lagrangian is
. d?

a' =

i o
= [
vl . 3! 49t
+ [?F =TI :|UJ1J = Lz t+7(v-V)}¢g
4 . 4 .
— [(—CG,Ag +al¢g> +;1)J(Agi,j —Agj.l'):|

_’2

20y + O(c™).

i
— Fi00:| Cz + 2 |:U—F00/ - Fioj:| CUj
C

(Al1)

In comparison, if we want to have an analogy to the Lorentz
force law, we have to set 4 = r, which is in contradiction
with the condition rs = 11 1n the Eq. (A7). To compromlse
we have to resort to stationary assumption, where ¢, A g are

time independent, and then [ — V2. A convention is
r=1, s =4, and then the

=2
a = <1 + ”—2> Ei + (3 x B,)". (Al12)
C

APPENDIX B: THE LINEAR
LV LAGRANGIAN DENSITY

The original Dirac equation obtained from (16) is
S
{ieﬂa (ravﬂ +g Wb (6. rﬂ}) - M] W

i .
+ 3 e {0, +w,* T}y = 0. (B1)

i e
Loy =5l N = oMy = Leg+ Lapn,  (B2)

where oI =1"—-y* and 6M =M —m. For the ¢, d
coefficients, the corresponding Lagrangian is

i
‘Cc,d = _Eeﬂal//(c/w +d ny)y eyaeﬂbv 4
i _ < 1
== E e”al//(cpu + dpL/yS)ybemepryw + g eﬂawyCd

: l/_/{(C + dpv75)yb’ ch}euaepbw

i < 1 <
EV/[Cba +dpysly” [Da - 2h”aD,,] 7
l <>
+ g0l (ep + dprs)y” + 13 (c," + d)ys)r"1Day
1 _
+Z€bcmnham,nl//[cba}/5 +dyew, (B3)

while for the a, b, H coefficients, the contributions to the
Lagrangian are

_ _ 1
‘Ca,b,H = _l//éMl// ==y |:(aa + ba75)7a +§Hbcabc:| 4

h, _ 1
50|00+ By 5 s+ Hiy) v

(B4)
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APPENDIX C: FIELD REDEFINITION
PROCEDURE

The field redefinition matrix for the linearized
Lagrangian £, = (1 4+ 4h)[Ly; + Lyy] is U=1 - =
1+6Uy+06U", where Uy =1(dyys — cpo)y’y" is the
redefinition matrix in flat space and 80" = U} + sU%
is the additional contribution due to gravity. The LI and
LV pieces of 60" are

. 1
s = -1 (h + hoy°r*). (C1)
R 1
sUYy = =5 [ (et = duys) + 1y (dpors = c,0)lr°r"
1
— 3 (3T = I, 6T, (€2)

respectively. The spinor redefinition is y = Uy, and the
associated fermion bilinear i Oy after spinor redefinition
is 77°0y°O U y. However, up to linear order approxima-
tion in h,,, there is an effective distinction between:

(i) Any operator constructed from the Lagrangian £,
linear in h,,. There is no need to take into account
50", as otherwise, the resultant operator is of order
O(h?). In other words, we only need to take U, =
1+ 60, as the redefinition matrix. ‘ -

(i) Any “flat space” operator such as syI¢D,y or
wM y. The redefinition matrix can be taken either
as 14+60% or 1480} +60%, depending on
whether the original operator contains LV coeffi-
cients or not.

The good news is that we can prove that up to linear order
of h,, and LV coefficients, there is no need to consider
the redefinition induced “h interaction” arising from the

operator L, = %I/_IFé‘Bal//—l[/Mol// between a pair of
one-fermion states (p’,f| [ d*xLqy|p.a), once the
Dirac equation is utilized; i.e., the external fermions are
on mass shell.

APPENDIX D: VARIOUS EIGENSPINORS

The eigenspinor in the presence of LV coefficients will
be given separately by assuming only one-type LV coef-
ficient is nonzero. For a more general treatment including
nonminimal LV coefficients, the interested reader can resort
to Ref. [37,73].

Firstly, the eigenspinor for a and b coefficients can be
found in [7], and for completeness, we compile it here. As a
term acts like a shift in four-momentum, we will state the
corresponding eigenspinor here together with the » term:

0= (gume) O

0, 0 Ball(hati) .m0
where U, (k) = L +a[(),;f;>l;ﬁ£(]]§tggg+b ]
component spinors £* satisfy the eigenvalue equation given
by (A4)—(A5) in [7]. Itis clear from the above consideration
that a# serves as a pure shift in four-momentum and thus is
usually ignored due to field redefinition. However, we keep
a term here as we see gravity concerns the a term. For
calculational convenience, we also note

, and the two-

Up(k) = (K +m+b-5)' (k-5 + b°)
bo—l—/_c)-c?_tl;xl_c) G+b l_c)—;—éa)k 0', (D2)
wy + m (wg + m)

where wy = V k* + m? and sw = k° — wy. As for b, d, g,
H type LV coefficients, the fourfold degeneracy between all
four eigenspinors is completely broken and the explicit
form of k° (and hence, éw) is very complicated even at
linear order of LV coefficients. Depending on the nature of
LV coefficients, a simple form of w may be obtained. For
example, if 5> > 0, in an observer frame where b° = 0,
s = (=1)2[m2b* + (b - k)2]}/wy, where a = 1, 2 denotes
the two spin d.o.f. of £%.

Then we turn to H coefficients. The corresponding
operator in the Lagrangian is —3 H,;,0“’, which implies
that H,, = —H,,,. The antisymmetric property indicates
that we can define two vectors, H = Hy,, and
28 =le,4H . Then the eigenspinor u®(k) can still be
written in the form of (D1), only by replacing U ,;, (k) with

K+ m—6-H)6-(k—id
(i) = oG-t
(K +m)*>—H
G-(k—iH) Kk-H+ifl xk-G+ 605k 03)
- a)0+m (coo—l—m)2 ’

where we also keep only linear order corrections due to
the LV H coefficients. Note @, and dw are defined as
above, but now dw only receives LV corrections from H
coefficient.

Naively, we can also obtain

Ugk) = [k +m—q -3 [do + k-],

where we defined ¢, = d,, k” for simplicity. However, as
mentioned in the main text that a proper treatment of ¢, d
terms involves field redefinition, which gives the correct
U.(k),Uy4(k) by the procedure in getting U,(k).
The U, (k), Uy(k) up to linear order of ¢, d coefficients
are shown below,
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Uy(k) = [k + m(1 + djpo’) — dyjo' p/) ™ (5 + 2d) -
- (O +m (0)0 +m)2
B i€ (md;y — djik[)kkzdl +5w3~k’ (D4)
(wo + m)
50 —20..0inl
Uuk) = g P T
K+ m(1 —cqy) +2¢-p
NkE—E,]G’kJ chO—ZEk—éa)l-{»a (DS)

wy+ m (wy + m)?

where it is easy to separate the formally LV contributions

from the LI on
c, d coefﬁclents we’d better find out their exphclt
dispersion relations, which can be found in [56,74].
They all share the similar form

(k%) — wf + Y?)? = 422, (D6)
where
b2
Y2={ (H -8 . (D7)
d kP de k¢
(k- b)? - k*b?

2
72 = H"k,H* k" — <%H*””H}w> . (D8)

(k%d ,k")* — k*d k" d° k¢

where H** = 1 ¢#%PH 5, and the three rows of Y2 and Z?
correspond to b, H, d terms, respectively, while for ¢ term,
the dispersion relation is simply (c,, + #,,)k"(c"” + )
k, + m? = 0, which is spin independent and thus leads to
much greater calculational simplicity for 6. From the exact
dispersion relation (D6), we can readily obtain

22
ow = wy 1:|: —1

where we have ignored Y2, as Y2, Z% ~ O(X?) are at least of
second order in a generic LV coefficient X. The double signs
associated to dw for b, d, H coefficients reflects the fact that
the corresponding terms are spin dependent; i.e., these LV
coefficients break the spin degeneracy. Thus, the degeneracy
for dispersion relations between relevant eigenspinors is
completely removed. However, since in calculating matrix
elements, dw in effect acts on the two-component spinor &7,
see Egs. (D1)-(D3), the sign choice ambiguity can be

removed by some kinds of “eigenequations”. These “eigen-
equations” can be obtained by taking the “square root” of
the exact quartic dispersion relation det[I" - k + M] = 0.

Take the b term as an example. Left multiplying the -
space positive Dirac equation (y -k +m + b - ysy)u(k) =
Oby (m—y-k—>b-ysy), we get

—(r-k=m+b-ysy)(y-k—=m+b-ysy)u(k)
= (k* +m? — b* 4 2ib,k,ys0" )u(k)
K? + 2k, 2ibxk “
:< "+ 2k, 2 a)( 3 a>:o’ (D10)
2ibx k-G K242k, /) \Ua(k)é
where K2=k>+m?>—b> and ky, = (b°% — k°D) - &
Keeping only b terms to linear order, the upper equatlon
(K% + m? + 2(b°k — K°b) - G + 2ib x k - 3Uo(k)]E% = 0
for bispinor &, can be rearranged as
(K° + () deé* =

[4b0k] 67 + 2ib x k - GU(K)]E®,  (D11)

which leads to the eigenequation for LV correction dw

7 k-6 k*b-6—(k-b)(k-G)
owE* = o+ a D12
= [ on) wo(wy+m) }5 (D12)
Similarly for H, d, c terms, we have
= Hxk- & IEI k& -k
Swé* = |H -6+ — « (D13
o= | Pt | D
- d-kék
60)§a = |:(de0 + djikl)ﬁj +2
(2]
dy + iejyd; ke ) kG - k
_(m ]O+l€zk1 ij G) 9 :| a (D14)
wy(wy + m)
) kik/
ow = —2C(0j)kj — C(ij) P — CooWo, (DIS)

where due to the spin independence, there is no need to act
on bispinors for the ¢ coefficient, compared with other LV
coefficients, and we choose the positive sign corresponding
to the electron’s dispersion relation instead of the posi-
tron’s. Substituting these dw back into (D2), (D3), (D4),
(D5), we can get

k-64+b 2ibxk-&
U,(k) = + O
o(K) wy +m (a)0+m)2 (@ )
NRk-64+ B ikxb-o
~ , D16
2m 2m? ( )
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G-(k—ifd) 2k-H
m

Un(k) == = o s+ 0len)
’EE'(E;@)—E;, (D17)

ity =720 (e RO g,
ek Egmdofkj + ie"k’i’l; kzkkiGZ , (D18)

U.(k) ="Z‘+nfk Bk e p19)

where we have ignored the terms suppressed by orders
higher than @3 (or m~2). The “NR” at the last steps means
we adopt the nonrelativistic approximation. Substituting
these U(k) in (D16)—(D19) into

o) (o)

where X in the subscript refers to b, H, d, ¢, we obtain the
LV corrected positive frequency eigenspinors up to linear
order of LV coefficients.
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