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We put forward a method to tune the polarization state of decaying heavy particles (top quarks andW=Z
bosons) in a preexisting Monte Carlo sample. With this technique, dubbed as “custom angle replacement,”
the decay angular distributions are modified in such a way that the desired polarization state is reproduced,
while the production kinematics are unchanged. A nontrivial test of this approach is presented for the
top quark semileptonic decay t → Wb → lνb, with l ¼ e, μ, in which the decay distribution is four-
dimensional and involves three different Lorentz frames. The proposed method can be used to obtain event
samples with polarized heavy particles, as required by experimental measurements of polarization and spin
correlations.
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I. INTRODUCTION

Polarization measurements provide a quite useful han-
dle to obtain information about heavy particles and
investigate their properties, in the search for new physics
beyond the standard model (SM). The polarization of the
top quarks has been measured by the ATLAS and CMS
Collaborations in pair [1,2] and single production [3,4].
The polarization of W bosons produced in top decays has
also been measured [5–8], as well as the (joint) polari-
zation of the weak bosons in WZ production [9]. These
delicate measurements are possible owing to the large
statistics provided at the Large Hadron Collider (LHC).
Polarization measurements will continue to have a key
role in the investigation of particle properties at the LHC
run 3, as well as at the high-luminosity LHC upgrade.
However, despite the importance of these measurements,
general tools are not available that allow one to generate
Monte Carlo samples where the polarization of heavy
particles can be chosen—instead, it is determined by
angular momentum conservation and the dynamics of
the process under consideration.
Polarization measurements are quite demanding. The

polarization of short-lived particles such as the top quark
and theW and Z bosons can be extracted from the angular
distributions of their decay products. The parton-level
distributions, which carry the imprint of the polarization of
the parent particle, are modified by the detector acceptance

and resolution, as well as by kinematical cuts that have to
be imposed in order to reduce backgrounds. Therefore, the
parton-level distributions are not directly accessible. One
technique often used to recover them is an unfolding:
to reverse the detector effects to obtain the original parton-
level quantities, which are subsequently analyzed to
determine the polarization observables. Another possibil-
ity is to use templates: Samples with definite polarizations
(the so-called templates) are simulated, and the measured
data are fit with a combination of templates, thus obtaining
the polarization observables. Monte Carlo samples with
definite polarizations are very useful in either case. In
the former, they can be used to test the robustness of the
unfolding. In the latter, they constitute the essential
ingredient to build the templates. In this regard, we point
out that template methods have been used by the ATLAS
and CMS Collaborations to measure the polarization of W
bosons [5–7] and top quarks [4]. In addition, a template
method has recently been proposed for the measurement
of tt̄ spin correlations in Ref. [10].
On the other hand, some interesting processes do not

allow for polarization measurements, because the full
kinematical reconstruction of the momenta of decaying
particles is not possible. In these cases, it is still possible
to obtain some information about spin by comparing
the SM with alternative hypotheses. One such example
is the Higgs boson decay H → WW → lþνl−ν. Polarized
H → WW samples may be used to obtain information
about spin in this process, using laboratory (lab) frame
observables [11]. Furthermore, polarized samples may
be useful to train polarization-agnostic multivariate dis-
criminants, e.g., neural networks, to reduce a possible
bias in polarization measurements caused by the multi-
variate tools.
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To the best of our knowledge, two techniques have been
used in the literature to build (pseudo)polarized event
samples.1

(i) An event reweighting based on the polar angle
cos θ� charged lepton distribution (see the next
section for details) has been used forW polarization
measurements in top quark decays [5–7]. In general,
a reweighting is unsound, because the correlation
between the distribution considered and other var-
iables, namely, the azimuthal angle ϕ�, may induce
a bias in the measurement.2

(ii) Spin projectors for top quarks have been imple-
mented at the matrix-element level in Ref. [10].
This procedure is fully consistent with the defini-
tion of polarization for an unstable intermediate
resonance [13].

As the statistical precision of the measurement increases at
the LHC run 3 and beyond, it is compulsory to improve
the modeling of polarized samples as far as possible. The
technique put forward in this paper, dubbed as “custom
angle replacement” (CAR), is based on modifying the
decay angular distributions of a preexisting sample
according to the desired polarization state, while keeping
the production kinematics identical. Interestingly, it may
be used in samples generated beyond the leading order
(LO), as long as the decay of the heavy particles (top, W,
and Z) is considered at the LO, which is often a good
approximation. We note that the production × decay
factorization breaks down if higher-order nonfactorizable
corrections are important, especially with respect to the
experimental uncertainties. (In such a case, the very
definition of “polarization” of a heavy particle may
become ambiguous, for example, if these corrections
involve diagrams where this heavy particle is absent.)
Therefore, the applicability of the CAR method depends
on the level of theoretical precision required to match the
experimental uncertainties.
The CAR method is outlined in Sec. II, providing the

analytic expressions necessary for its implementation with
LO decays of the top quark andW=Z bosons. A test for the
top quark decay demonstrating the robustness of the
approach is presented in Sec. III. By design, the CAR
method keeps the production kinematics of the preexisting
sample. However, as we have mentioned, top quark
polarization measurements using a template method [10]

require that the polarized samples are generated with spin
projectors at the matrix-element level—so that the top
production kinematics corresponds to that of polarized top
quarks. In such a case, the CAR method still proves to be
useful, because it can be used to augment the size of a small
polarized dataset to obtain a much larger sample, with
events that can be regarded as statistically independent. By
doing so, the CAR method provides a computational
advantage, for example, for event generation beyond the
LO or in processes with multiple top quarks. We will show
how the samples augmented with the CAR method are well
suited for template measurements in Sec. IV, specifically
considering the measurement of the combined polarization
of tt̄ pairs produced at the LHC. We discuss our results and
possible extensions in Sec. V.

II. THE CAR METHOD

Let us consider a decaying particle t, W, or Z. Its spin
state, which is given by an appropriate density operator,
fully determines the multidimensional angular distribution
of its decay products. Therefore, if we are able to modify
this angular distribution in a Monte Carlo event sample, we
can craft a new sample mimicking the desired polarization
of the decaying particle. This is the basic idea that underlies
the CAR method.
Using the Jacob-Wick helicity formalism [14], it can be

shown on general grounds that, for weak boson decays
W → lν, Z → lþl−, the decay distribution involves the
two angles ðθ�;ϕ�Þ that describe the orientation of the
leptons in the rest frame of V ¼ W, Z. For top quarks
t → Wb → lνb, two angles ðθ;ϕÞ determine the orienta-
tion of the W boson and b quark in the top rest frame, and
two additional angles ðθ�;ϕ�Þ describe the orientation of
the leptons in the W rest frame. Then, the procedure to
obtain a sample with a definite polarization state consists
in replacing event by event these angles by new ones,
randomly generated according to a probability density
function (PDF) appropriate to the spin configuration
desired, and recomputing the four-momenta from these
new angles. Obviously, angular momentum is preserved
by construction, because the PDFs themselves are
obtained using angular momentum conservation.
In the remainder of this section, we discuss, in turn, the

case of weak bosons and the top quark. We first set up the
notation and collect the decay angular distributions from
Refs. [15–17], that are used as PDFs. Then, we explicitly
describe the procedure followed to replace the angles,
which has many subtleties arising from the use of different
Lorentz frames at the same time.

A. W and Z bosons

We follow Refs. [15,16] to describe the angular distri-
bution for the decay of a weak boson V ¼ W, Z in an

1Recently, we learned that the ATLAS Collaboration used in
Ref. [4] a method PolManip [12] similar to ours, in order to
modify the top decays in SM samples. As shown in Sec. IV and
Ref. [13], polarized samples used as templates must include
polarization effects also in the production, if any, and the specific
method used in Ref. [4] deserves further scrutiny.

2For example, there is a strong correlation between these two
variables for W bosons resulting from the decay of polarized top
quarks.
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arbitrary spin state. By fixing a reference system ðx; y; zÞ in
the V rest frame, the density operator describing the spin
state can be parametrized in terms of irreducible tensor
operators of ranks 1 and 2. Let us define, as usual, the spin
operators in the spherical basis

S�1 ¼∓ 1ffiffiffi
2

p ðS1 � iS2Þ; S0 ¼ S3; ð1Þ

and five rank 2 irreducible tensors TM, built from SM as

T�2 ¼ S2�1; T�1 ¼
1ffiffiffi
2

p ½S�1S0 þ S0S�1�;

T0 ¼
1ffiffiffi
6

p ½Sþ1S−1 þ S−1Sþ1 þ 2S20�: ð2Þ

Then, the spin density operator can be written as3

ρ ¼ 1

3
1þ 1

2

X1
M¼−1

hSMi�SM þ
X2
M¼−2

hTMi�TM: ð3Þ

For the purpose here, it is convenient to use Hermitian
operators for the parametrization, by defining

A1 ¼
1

2
ðT1 − T−1Þ; A2 ¼

1

2i
ðT1 þ T−1Þ;

B1 ¼
1

2
ðT2 þ T−2Þ; B2 ¼

1

2i
ðT2 − T−2Þ: ð4Þ

In terms of these, the matrix elements of ρ in the basis of S3
eigenstates jþi, j0i, and j−i are given by

ρ�1�1 ¼
1

3
� 1

2
hS3i þ

1ffiffiffi
6

p hT0i;

ρ�10 ¼
1

2
ffiffiffi
2

p ½hS1i ∓ ihS2i� ∓ 1ffiffiffi
2

p ½hA1i ∓ ihA2i�;

ρ00 ¼
1

3
−

2ffiffiffi
6

p hT0i;

ρ1−1 ¼ hB1i − ihB2i; ð5Þ

with ρm0m ¼ ρ�mm0 . The eigenvalues of Ai and Bi are −1=2,
0, and 1=2; therefore, their expected values range between
−1=2 and 1=2. The eigenvalues of T0 are −

ffiffiffiffiffiffiffiffi
2=3

p
and

1=6; therefore, its expected value is in the interval
½− ffiffiffiffiffiffiffiffi

2=3
p

; 1=6�. The semipositivity of ρ implies that its
eigenvalues are non-negative, but the resulting conditions
are quite cumbersome to write analytically. On the other
hand, the condition Trρ2 ≤ 1 implies

1

2
½hS1i2 þ hS2i2 þ hS3i2� þ hT0i2

þ 2½hA1i2 þ hA2i2 þ hB1i2 þ hB2i2� ≤
2

3
: ð6Þ

For W bosons, there is only one decay amplitude once
we take the leptons massless because of the left-handed
chirality of the W coupling. For Z bosons, there are two
amplitudes related by the ratio of the left- and right-handed
couplings glR∶ glL. Consequently, the decay angular distri-
bution has a slightly different form for Wþ, W−, and Z
bosons. For the former, we define ðθ�;ϕ�Þ as the polar and
azimuthal angles of the charged lepton three-momentum
(lþ for Wþ and l− for W−). For Z bosons, we use the
negative lepton. (In all cases, the momenta are taken in the
V rest frame.) Then, the differential distribution reads

1

Γ
dΓ

d cos θ�dϕ� ¼
3

8π

�
1

2
ð1þ cos2θ�Þ − ηlhS3i cos θ� þ

�
1

6
−

1ffiffiffi
6

p hT0i
�
ð1 − 3cos2θ�Þ

− ηlhS1i cosϕ� sin θ� − ηlhS2i sinϕ� sin θ� − hA1i cosϕ� sin 2θ� − hA2i sinϕ� sin 2θ�

þ hB1i cos 2ϕ�sin2θ� þ hB2i sin 2ϕ�sin2θ�
�
; ð7Þ

where ηl ¼ −1 for Wþ, ηl ¼ þ1 for W−, and

ηl ¼ ðglLÞ2 − ðglRÞ2
ðglLÞ2 þ ðglRÞ2

¼ 1 − 4s2W
1 − 4s2W þ 8s4W

≃ 0.13 ð8Þ

for Z bosons, with sW the sine of the weak mixing angle.
Using Eq. (7) as a PDF, one can craft a sample of V bosons in an arbitrary spin state, given by a physical density operator

ρ. The procedure to be followed, event by event, is as follows.

3This expansion follows from the fact that SM and TM are linearly independent and traceless. The coefficients can be determined by
computing the expected value of spin operators for an arbitrary linear combination of SM and TM.
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(1) We take the four-momenta of the decay products
(leptons) in the lab frame, which we label as pL1

and
pL2

. In the case ofW decays L1 is the charged lepton
and L2 the neutrino, while for Z decays L1 is the
negative lepton.

(2) The energy and modulus of the three-momentum of
both leptons are computed in the V rest frame. We
label these quantities as EL1

, jp⃗L1
j, EL2

, and jp⃗L2
j.

Because these are rotationally invariant quantities,
the precise way in which the boosts are performed is
unimportant.

(3) We generate cos θ�, ϕ� according to the PDF in
Eq. (7), for the values of hSii, hAii, hBii, and hT0i
that correspond to the specific density operator ρ
under consideration. To this end, one can use, for
example, the acceptance-rejection method.

(4) We define the new L1 four-momentum in the V rest
frame p0R

L1
, with energy EL1

and three-momentum in
the ðθ�;ϕ�Þ direction and modulus jp⃗L1

j. For the L2

momentum p0R
L2
, we do similarly but in the opposite

spatial direction.
(5) The new momenta p0

L1
and p0

L2
in the lab frame are

obtained by a two-step boost: first a pure boost of
p0R
L1

and p0R
L2

from the V rest frame to the center-of-
mass (c.m.) frame, followed by a pure boost from the
c.m. frame to the lab frame.

The four-momenta of V, as well as of any other particles,
are not changed; therefore, the kinematics of the production
is maintained.

B. Top quarks

We follow Ref. [17] to parametrize the fully differential
distribution for the cascade decay t → Wb → lνb. Let us
fix a reference system ðx; y; zÞ in the rest frame of the top
quark. (We later point out the differences for antiquarks.) It
is customary to parametrize the density operator as

ρ ¼ 1

2
ð1þ P⃗ · σ⃗Þ; ð9Þ

with σ the Pauli matrices and P⃗ the so-called polarization
vector, with components Pi ≡ 2hSii. In contrast with the
case of massive spin-1 bosons, the density operator is

parametrized with only three quantities, related to the
expected values of the spin operators. In the basis of S3
eigenstates jþi, j−i, the matrix elements are

ρ�1
2
�1

2
¼ 1

2
ð1� P3Þ;

ρ�1
2
∓1

2
¼ 1

2
ðP1 ∓ iP2Þ: ð10Þ

The density operator ρ defined by the above parametriza-
tion is physical as long as jP⃗j ≤ 1.
There are only four decay amplitudes for t → Wb,

because the total angular momentum in the W flight
direction in the top rest frame has to be �1=2. Labeling
them as aλ1λ2 , with λ1 and λ2 the helicities of the W boson
and b quark, respectively, the nonzero amplitudes are a11

2
,

a0−1
2
, a01

2
, and a−1−1

2
.

The fully differential top decay distribution can be
parametrized with four angles: ðθ;ϕÞ are the polar coor-
dinates of the W boson three-momentum in the top rest
frame, and ðθ�;ϕ�Þ are the polar coordinates of the charged
lepton three-momentum in the W rest frame. The reference
system for ðθ;ϕÞ is the same one ðx; y; zÞ used to express
the density operator ρ. The orientation of the reference
system ðx0; y0; z0Þ for the W rest frame results from the
definition of helicity states (see, for example, Ref. [18]):

(i) The ẑ0 axis is in the direction of the W boson three-
momentum in the top rest frame: ẑ0 ¼ sin θ cosϕx̂þ
sin θ sinϕŷþ cos θẑ.

(ii) The ŷ0 axis is in the xy plane, making an angle ϕ
with the ŷ axis: ŷ0 ¼ − sinϕx̂þ cosϕŷ.

(iii) The x̂0 axis is orthogonal to both: x̂0 ¼ ŷ0× ẑ0 ¼
cosθcosϕx̂þcosθsinϕŷ−sinθẑ.

For convenience in the notation, we define the sum of
squared amplitudes

N ¼ ja11
2
j2 þ ja01

2
j2 þ ja0−1

2
j2 þ ja−1−1

2
j2: ð11Þ

With these conventions, and assuming that the amplitudes
do not have a relative complex phase (as happens in the
SM), the differential distribution reads

1

Γ
dΓ

dΩdΩ� ¼
3

64π2
1

N
f½ja11

2
j2ð1þ λ cos θ�Þ2 þ 2ja0−1

2
j2sin2θ��ð1þ P⃗ · ẑ0Þ þ ½2ja01

2
j2sin2θ�

þ ja−1−1
2
j2ð1 − λ cos θ�Þ2�ð1 − P⃗ · ẑ0Þ þ λ2

ffiffiffi
2

p
½a01

2
a�
11
2

ð1þ λ cos θ�Þ þ a−1−1
2
a�
0−1

2

ð1 − λ cos θ�Þ�
× cosϕ� sin θ�P⃗ · x̂0 þ λ2

ffiffiffi
2

p
½a01

2
a�
11
2

ð1þ λ cos θ�Þ þ a−1−1
2
a�
0−1

2

ð1 − λ cos θ�Þ� sinϕ� sin θ�P⃗ · ŷ0g; ð12Þ
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with λ ¼ 1 for top quarks and λ ¼ −1 for antiquarks.
At LO, the amplitude products entering the differential
distribution are

ja11
2
j2 ¼

�
1 −

M2
W

m2
t

�
− 2

jp⃗W j
mt

;

ja−1−1
2
j2 ¼

�
1 −

M2
W

m2
t

�
þ 2

jp⃗W j
mt

;

ja01
2
j2 ¼ 1

2

�
m2

t

M2
W
− 1

�
−
jp⃗W jmt

M2
W

;

ja0−1
2
j2 ¼ 1

2

�
m2

t

M2
W
− 1

�
þ jp⃗W jmt

M2
W

;

a01
2
a�
11
2

¼ mtffiffiffi
2

p
MW

�
1 −

M2
W

m2
t

�
−

ffiffiffi
2

p jp⃗W j
MW

;

a0−1
2
a�−1−1

2

¼ mtffiffiffi
2

p
MW

�
1 −

M2
W

m2
t

�
þ

ffiffiffi
2

p jp⃗W j
MW

ð13Þ

for top quarks, withmt andMW the top quark andW boson
masses, respectively, and jp⃗W j the modulus of theW boson
three-momentum in the top rest frame. For antiquarks, the
decay amplitudes (denoted below by a bar) are related to
the top quark ones by

jā11
2
j2 ¼ ja−1−1

2
j2; jā−1−1

2
j2 ¼ ja11

2
j2;

jā01
2
j2 ¼ ja0−1

2
j2; jā0−1

2
j2 ¼ ja01

2
j2;

ā01
2
ā�
11
2

¼
	
a0−1

2
a�−1−1

2


�
;

ā0−1
2
ā�−1−1

2

¼
	
a01

2
a�
11
2


�
: ð14Þ

Using Eq. (12) as a PDF, one can apply the CAR method to
craft polarized top samples. The procedure is more in-
volved than for weak bosons because of the intermediate
decay, but we detail it below for reference and reproduc-
ibility. Event by event, the flow is as follows.
(1) We take the four-momenta of the W boson pW , b

quark pb, and leptons pl and pν in the lab frame.
(2) The energy and the modulus of the three-momentum

of W and b are computed in the top rest frame, and
likewise the energy and modulus of the three-
momentum of the leptons in the W rest frame.
We label these quantities as EW , jp⃗W j, Eb, jp⃗bj,
El, jp⃗lj, Eν, and jp⃗νj in obvious notation. Because
these are rotationally invariant quantities, the precise
way in which the boosts are performed is unim-
portant.

(3) We generate cos θ, ϕ, cos θ�, and ϕ� according to the
PDF in Eq. (12), for the values of Pi that correspond
to the specific density operator ρ under consideration.

(4) The new W boson four-momentum in the top rest
frame p0R

W is defined with energy EW and three-
momentum in the ðθ;ϕÞ direction, with modulus

jp⃗W j. For the b quark momentum p0R
b , we do likewise

but in the opposite spatial direction.
(5) The coordinate system in theW rest frame is built as

mentioned above, with the ẑ0 axis in the direction of
p0R
W and the ŷ0 axis in the xy plane making an angle ϕ

with the ŷ axis.
(6) The new l four-momentum in the W rest frame p0R

l
is defined with energy El and three-momentum in
the ðθ�;ϕ�Þ direction of the above-defined coordi-
nate system and modulus jp⃗lj. For the neutrino
momentum p0R

ν , the same is done using Eν, jp⃗νj, and
the opposite spatial direction.

(7) The new momenta p0
W and p0

b in the lab frame are
obtained by a two-step boost: first a pure boost of
p0R
W and p0R

b from the top rest frame to the c.m. frame,
followed by a pure boost from the c.m. frame to the
lab frame.

(8) The new momenta p0
l and p0

ν in the lab frame are
obtained by a three-step boost: first a pure boost of
p0R
l and p0R

ν from the W rest frame to the top rest
frame, followed by a pure boost from the top rest
frame to the c.m. frame, and finally a pure boost
from the c.m. frame to the lab frame.

Note that the top quark momentum is unchanged, as well as
the momenta of any other particles. Therefore, the pro-
duction kinematics is maintained.

III. TEST: TOP QUARK DECAYS

The soundness of the CARmethod to fully reproduce the
decay distributions is tested in top quark decays, by
comparing the angular distributions obtained in this manner
with those obtained using spin projectors at the matrix-
element level. We consider top pair production and use the
helicity basis [19] with three orthogonal vectors ðr̂; n̂; k̂Þ
defined as follows.

(i) K axis (helicity).—k̂ is a normalized vector in the
direction of the top quark three-momentum in the tt̄
rest frame.

(ii) R axis.—r̂ is in the production plane, defined by
r̂ ¼ sgnðcos θÞðp̂p − cos θk̂Þ= sin θ, with p̂p ¼
ð0; 0; 1Þ the direction of one proton in the lab frame,
and cos θ ¼ k̂ · p̂p. Because of the sgnðcos θÞ factor,
the definition for r̂ is the same if we use the direction
of the other proton −p̂p.

(iii) N axis.—n̂ ¼ k̂ × r̂ is orthogonal to the produc-
tion plane.

For the top antiquark, we keep the same set of axes;
therefore, the K axis is the opposite to the helicity axis for
the antiquark.
Polarized samples are generated with Protos [20] imple-

menting the spin projectors at the matrix-element level
[10]. Three fully polarized samples are used, corresponding
to tLt̄R using as quantization axes for both quarks the K, R,
and N directions above defined. A SM sample is also
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generated and processed with the CAR method to obtain
tLt̄R samples for the same three quantization axes K, R, and
N. In the computation of the amplitude products in Eq. (13),
we use as mt and MW the invariant masses computed from
the four-momenta, event by event.
The cos θ, ϕ, cos θ�, and ϕ� one-dimensional distribu-

tions are identical (up to statistical fluctuations) for the

samples generated with spin projectors or with the CAR
method. This is expected, because these are precisely the
variables used to parametrize the angular dependence of the
differential cross section in Eq. (12). But a much more
stringent test is provided by the charged lepton distribution
in the top rest frame. As is well known, the angle θl
between the charged lepton l ¼ e, μ in the top rest frame
and the top spin direction follows the distribution [21]

1

σ

dσ
d cos θl

¼ 1

2
ð1þ αl cos θlÞ; ð15Þ

with αlþ ¼ −αl− ¼ 1 in the SM at the LO. This value
results from the interference among amplitudes with differ-
ent W helicities and then constitutes a crucial nontrivial test
of the whole framework. The distribution for the positive
lepton, using the samples polarized in the K axis, is
presented in Fig. 1. There is perfect agreement between
the sample where the top quark is polarized with a spin
projector and the CAR method and also with the theoretical
expectation (15). The excellent agreement is extensive to the
two-dimensional ðcos θl;ϕlÞ distribution. We fix the coor-
dinate axes with ðx̂; ŷ; ẑÞ ¼ ðr̂; n̂; k̂Þ and plot in Fig. 2 the
ðcos θl;ϕlÞ distribution for the top quark samples polarized
in the negativeK, R, andN axes, using either a spin projector
or the CAR method. The excellent agreement between the
two methods shows the validity of the approach.

-1 -0.5 0 0.5 1
cos l

0

0.2

0.4

0.6

0.8

1

-1
 d

 / 
dc

os
l

Projector
CAR

FIG. 1. Normalized cos θl distributions for top quark samples
with P3 ¼ −1 along the K axis (coincident with the ẑ direction),
obtained with a spin projector and using the CAR method.

FIG. 2. Top: normalized ðcos θl;ϕlÞ distributions for top quark samples with P3 ¼ −1 along the K, R, and N axes, obtained with spin
projectors. Bottom: the same, using the CAR method.
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IV. APPLICATION: TOP PAIR PRODUCTION

In this section, we investigate the possibility to use the
CAR method to augment the size of already polarized data
samples. These preexisting polarized samples are merely
used to provide a parametrization of the production
kinematics. And, because the decay kinematics is com-
pletely replaced with the CAR method, the resulting
samples can be regarded as statistically independent and
their use does not introduce any bias, at will be shown here.
We demonstrate this point with a template fit performed

on Monte Carlo pseudodata, following the approach in
Ref. [10], which we briefly review here. We consider top
pair production at the LHC, in the dilepton decay mode
tt̄ → lþνbl−νb̄. Let us define the shorthand notation
zþ ≡ cos θlþ , z− ≡ cos θl− , where the angles θl have the
same definition as in the previous section, and

f̄ðzþ; z−Þ ¼
1

σ̄

dσ̄
dzþdz−

ð16Þ

the (pseudodata) normalized distribution that is fitted to
extract the tt̄ polarization coefficients. The bars indicate
that the cross sections (integrated and differential) are taken
after reconstruction and kinematical cuts. The normalized
template distributions for the different polarization combi-
nations tLt̄L, tLt̄R, tRt̄L, and tRt̄R are denoted as

f̄XX0 ðzþ; z−Þ ¼
1

σ̄XX0

dσ̄XX0

dzþdz−
ð17Þ

with X;X0 ¼ L, R. Efficiency factors ε ¼ σ̄=σ and εXX0 ¼
σ̄XX0=σXX0 take into account the overall effect of the
kinematical cuts in decreasing the parton-level cross
sections (without a bar). With this notation, the template
expansion reads

εf̄ðzþ;z−Þ¼
X
XX0

aXX0εXX0 f̄XX0 ðzþ;z−ÞþΔintðzþ;z−Þ; ð18Þ

including a (small) interference term Δint that cannot be
omitted in precision measurements. The polarization coef-
ficients aXX0 are precisely the quantities to be extracted
from the fit. The same procedure is repeated taking the ẑ
axis in the K, R, or N directions, in order to measure the
polarization coefficients and tt̄ spin correlation in these
three axes.
For each of the K, R, and N axes, we generate with Protos

two polarized tLt̄L and tLt̄R samples of 5 × 104 events. As
said, these small samples are meant to parametrize the
dependence of the production kinematics (top pT , etc.) on
the polarization. The tLt̄L samples are used to obtain large
tLt̄L and tRt̄R samples of 106 events with the CAR method.
Likewise, the tLt̄R samples are used to obtain large tLt̄R and
tRt̄L samples of 106 events. For each axis and polarization
combination, we generate two statistically independent

samples: One of them is used in the calculation of Δint
(see Ref. [10] for details), and the other one for the template
fit. Two additional SM samples with 106 events are also
generated: One is kept for the Δint calculation, while the
other one is used as pseudodata for the fit.
For simplicity, we do not perform any detector simu-

lation and work at the parton level but introduce kinemati-
cal cuts pT ≥ 30 GeV for final-state leptons and b quarks,
which are sufficient to strongly modify the SM and
template distributions f̄ðzþ; z−Þ and f̄XX0 ðzþ; z−Þ with
respect to the parton-level ones. The true top momenta
are used for the determination of the rest frames and lepton
angles. The impact of the kinematical cuts is illustrated by
the size of the efficiency factors, collected in Table I. The
size of each sample after the kinematical cuts is 106 × ε
events.
Table II collects the true value of the tt̄ polarization

coefficients for the SM sample and the values obtained
from the template fit using the samples with kinematical
cuts. The Monte Carlo statistical uncertainties expected for
samples with 2.9 × 105–106 events are of the order of 10−3,
as can also be verified by comparing coefficients that are
equal at the leading order, namely, aLL ¼ aRR, aLR ¼ aRL.
The difference between the true and fitted values for the
coefficients is also of the order of 10−3, showing that there
is no bias in the polarization templates obtained with the

TABLE II. True values (extracted from the Monte Carlo sample
without kinematical cuts) best-fit values for various polarization
coefficients for the SM sample. The uncertainties on the a
coefficients are of the order of 10−3 and on C coefficients of
the order of 10−2.

aLL aLR aRL aRR C

K axis
True 0.164 0.337 0.337 0.161 −0.349
Fit 0.168 0.333 0.335 0.165 −0.334

R axis
True 0.244 0.256 0.254 0.245 −0.021
Fit 0.243 0.259 0.257 0.242 −0.031

N axis
True 0.168 0.333 0.333 0.169 −0.331
Fit 0.165 0.333 0.335 0.166 −0.336

TABLE I. Efficiencies for the samples and templates consid-
ered in this work. The uncertainties are of the order of 10−3.

Sample ε

SM 0.362

Template

ε

K axis R axis N axis

LL 0.288 0.433 0.367
RR 0.347 0.349 0.364
LR 0.346 0.350 0.364
RL 0.508 0.329 0.368
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CAR method. The last column in Table II shows the spin-
correlation coefficients C ¼ aLL þ aRR − aLR − aRL. The
Monte Carlo statistical uncertainties on spin-correlation
coefficients are of the order of 10−2.
We finally test how important the polarization effects in

the tt̄ production kinematics are. We repeat the fit but this
time using as templates SM samples where only the top
(anti)quark decays are modified. The results for the polari-
zation coefficients are given in Table III. While for the N axis
there is no difference at this level, for the K and R axes there
are significant deviations from the correct values in Table II.
This example shows that, for this type of measurement,
polarized samples must include the effect of polarization in
both the production and the decay. This is understood,
because the pT of the top quark decay products depend on
the top quark kinematics (pT and rapidity) as well as on the
decay angular distributions. A pT cut modifies the templates
in a way that depends on the top kinematics itself, which, in
turn, depends on the polarization.

V. DISCUSSION

The method introduced here allows one to tune the
polarization of heavy particles in a preexisting Monte Carlo
event sample. This “portability” makes it very useful: An
event sample can be generated with any code and sub-
sequently processed with the CAR method to tune the
polarization of the desired particles. As mentioned, this can
be done even if the sample is generated beyond the LO in
production, though the method can be used only within the
production × decay approximation. The validity of the
approach is demonstrated in Sec. III with an example for
the top quark decay t → Wb → lνb. For longer cascade
decay chains, the procedure would be exactly as outlined
here but with more intermediate steps and additional
definitions for reference systems. Note also that a similar
goal might be achieved by reweighting the decay distri-
butions according to Eq. (7) or (12); however, replacing as
in the CAR method is computationally more efficient than
reweighting, since the former keeps all events with unit

weight and does not entail an effective loss of Monte Carlo
statistics.
By construction, the CAR method keeps the production

kinematics of the preexisting sample, modifying only the
decay of the t, W, or Z particles. In some cases, this may
constitute an advantage, e.g., to test the robustness of
unfolding methods on polarized samples keeping the SM
kinematics. But some applications require modified kin-
ematics as well. For example, for top polarization mea-
surements using a template method as in Ref. [10], the
templates must be generated using spin projectors at the
matrix-element level, so that the correct polarization
dependence—consistent with the definition of spin for
an intermediate resonance—is kept in both the top (anti)
quark production and the decay distributions [13]. The
CAR method can still be very useful in this case. Since the
phase space for the production has a lower dimensionality,
it is sufficient to generate a small polarized sample with the
appropriate production kinematics, using spin projectors.
This sample can be subsequently processed with the CAR
method to obtain quite large samples of events that are
(almost) statistically independent. This sample augmenta-
tion can bring a computational advantage for processes
with multiple top quarks and/or weak bosons, especially for
event generation beyond the LO.
Finally, let us comment that, in the analytical expressions

collected in this work (see Sec. II), the decay of the top
quark and W=Z bosons is implemented at the LO. This
does not seem to entail a serious limitation, as the
experimentally most interesting channels involve (semi)
leptonic decays where next-to-leading-order (NLO) cor-
rections are small. For example, NLO corrections to αl in
(15) are at the permille level [22]. In any case, calculations
beyond the LO, e.g., for the top quark decay [23], exist in
the literature and might eventually be implemented if the
experimental precision requires it.
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TABLE III. Value of the polarization coefficients obtained
using templates that keep the SM unpolarized production
kinematics. The uncertainties on the a coefficients are of the
order of 10−3 and on C coefficients of the order of 10−2.

aLL aLR aRL aRR C

K axis 0.176 0.322 0.323 0.179 −0.290
R axis 0.255 0.244 0.242 0.259 0.028
N axis 0.167 0.332 0.333 0.168 −0.330
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