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We present a version of the Type II seesaw mechanism for parametrically small Dirac neutrino masses.
Our model starts from an SUð2ÞL ⊗ SUð2Þ0 ⊗ Uð1ÞX gauge extension of the Standard Model involving a
sector of mirror fermions. A bidoublet scalar with a very small vacuum expectation value connects the SM
leptons with their mirror counterparts, and we can identify the mirror neutrino with the right-handed
neutrino. Similar to the conventional Type II seesaw, our particle spectrum features singly and doubly
charged scalars. The strong CP problem is solved by a discrete exchange symmetry between the two
sectors that forces the contributions of quarks and mirror quarks to the strong CP phase to cancel each
other. We discuss the low-energy phenomenology, comment on the cosmological implications of this
scenario, and indicate how to realize successful Dirac leptogenesis.
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I. INTRODUCTION

The Type II seesaw mechanism [1–5] offers an
approach to parametrically small neutrino masses that
is somewhat orthogonal to Type I seesaw schemes
involving fermionic messengers [6–10]. For Majorana
neutrino masses, one needs to incorporate a weak
isotriplet field with hypercharge −1. One finds that the
vacuum expectation value (VEV) vΔ of the super-heavy
scalar triplet Δ with mass μ2Δ is induced by the VEV v of
the Standard Model (SM)-like Higgs vΔ ≃ κv2=μ2Δ, where
κ is the dimensionful coupling for the term κHΔH. This
occurs because after H gets a VEV, the aforementioned
term biases the triplet potential in one direction such that
a nontrivial minimum can appear despite the fact that
μ2Δ > 0. Since such a triplet breaks the custodial sym-
metry of the SM scalar potential, its VEV is tightly
constrained to lie below the GeV scale [11] by the
observed ratio of the W� and Z boson masses encoded in
the ρ-parameter [12]. A typical feature of such scalar
extensions for either tree- or loop-level Majorana neutrino
masses [13–15] is the presence of double charged scalars
whose production at colliders provides a smoking gun
signature for these scenarios. As so far there is no
compelling experimental or theoretical indication to

consider only Majorana neutrinos, the field of Dirac
model building has received renewed attention in the past
years. It is possible to construct Dirac equivalents of all
conventional seesaw mechanisms [16,17]. The usual
approach for light Dirac neutrino masses is to start with
a symmetry forbidding the tree-level mass term from the
SM Higgs doublet. Small neutrino masses at tree level
can then be realized by inducing a small VEV for a new
Higgs doublet [18–21]. In gauge extensions of the SM,
such as the left-right symmetric model (LRSM)
SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L [22–26] or mirror-sector
constructions [27,28], the role of the doublet can be
played by a bidoublet field [29–31], whereas in
SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX models [32] Higgs triplets
of SUð3ÞL are needed [33,34]. In contrast to the
Majorana case with its doubly charged scalars, these
scenarios feature only singly charged ones, which are
quite generic from a beyond the Standard Model (BSM)
perspective. In this work we set out to close this gap by
constructing a Dirac neutrino mass model with the same
singly and doubly charged scalar spectrum as the original
Type II seesaw. The new scalar will also play an
important role for leptogenesis. Our starting point is
the original mirror fermion scenario of Ref. [35] that was
designed to solve the strong CP problem with the help of
a discrete exchange symmetry. In recent years it was
shown [36,37] that one does not need to copy the entire
SUð2Þ ⊗ Uð1Þ structure of the SM, but that the gauge
group of the form SUð2ÞL ⊗ SUð2Þ0 ⊗ Uð1ÞX similar to
the LRSM is already enough. While the proposal [36,37]
used additional singlet fermions to form a Type I seesaw,
our approach is to include the following bidoublet scalar:
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Φ ¼
�
φ0
1 φ−

2

φ−
1 φ−−

2

�
∼ ð1; 2; 2;−1Þ ð1Þ

that couples to the SM and mirror leptons that are
doublets under the two different SU(2) groups via the
interaction YνlΦ†l0. The scalar potential contains a tri-
linear term involving all Higgs multiplets κHΦ†H0 [see
(9) and (A3) for the potential] that induces a small VEV
far below the electroweak scale

vΦ ≃ −
κvv0ffiffiffi
2

p
μ2Φ

≪ v; ð2Þ

where μΦ ≫ v; v0 is the bare mass of Φ and vðv0Þ the
VEV of HðH0Þ. In this context we introduced the
dimensionful parameter κ < 0. The neutrino mass is
given by mν ¼ YνvΦ=

ffiffiffi
2

p
without the need for small

Yν and Fig. 1 depicts a diagrammatic representation of
this mechanism. After introducing the discrete symmetry
and the particle spectrum in Sec. II, we deal with the
vacuum structure and the bosonic masses in Secs. III and
IV. The strong CP problem is the focus of Sec. V, and
we demonstrate that loop corrections from the bidoublet
do not spoil the symmetry-based solution to this problem.
Following a brief discussion of low-energy constraints in
Sec. VI we consider the cosmological implications of our
setup, especially for Dirac leptogenesis in Sec. VII. The
entire scalar potential and its minimization can be found
in Appendices A 1–A 3 together with the sufficient
conditions for vacuum stability in Appendix A 4.
Appendix B gives some additional details about the
effective operator needed for Affleck-Dine leptogenesis.

II. THE MODEL

This solution to the strong CP problem hinges on a
discrete exchange symmetry called generalized parity [38]
or Higgs parity [36,37] that acts on the SM and mirror
sector (indicated by a prime) via

ψðt; x⃗Þ → iσ2ψ 0�ðt;−x⃗Þ; ð3Þ

where σ2 is the second Pauli matrix contracted with the
spinor index, which is absent for the bosonic fields. Note
that this symmetry is distinct from the typical exchange
symmetry between both sectors, as every SM matter field
is interchanged with the CP conjugate of the correspond-
ing mirror field [39]. The symmetry exchanges the SU(2)
gauge fields with each other. For the gluon and the X
boson the symmetry just acts on the spacetime arguments.
Φ gets mapped to its own CP conjugate. The transforma-
tion properties of all fields are summarized in Table I. Up
to the inclusion of the bidoublet this setup corresponds
to model C of [36]. We use the two-component spinor
formalism of [40].1 Uð1ÞX acts as a hypercharge on
all SUð2ÞL multiplets and SUð2ÞL ⊗ SUð2Þ0 singlets.
Compared to the usual LRSM the Abelian charges of
all mirror doublets have the opposite sign, which is why
we cannot identify Uð1ÞX with Uð1ÞB−L. It is worth
pointing out that an SUð2ÞL ⊗ SUð2Þ0 bidoublet has
exactly the same electric charge matrix as an SUð2ÞL
triplet, so by charging it under Uð1ÞX we obtain the
desired electrically doubly charged component. The
fermion sector (up to Hermitian conjugates) is given by

Lq ¼ YuqH†ūþ YdqHd̄þ Y 0
uq0H0†ū0 þ Y 0

dq
0H0d̄0; ð4Þ

Ll ¼ YllHēþ Y 0
ll
0H0ē0; ð5Þ

Lport ¼ YνlΦ†l0: ð6Þ

The SM (mirror) quarks and charged leptons obtain their
masses solely from the VEVof HðH0Þ. Nonobservation of
new colored fermion enforces a mirror scale of v0 ≳
108 GeV [38,41,42]. As a consequence of the Uð1ÞX
charge assignment there is no coupling between SM
and mirror quarks and no coupling of the bidoublet to
any kind of quarks. We do not add electrically neutral
singlet fermions. In the lepton sector there would in
principle exist three portal operators. The first one is
the aforementioned coupling to Φ displayed in (6) and the
other two λelHē0 and λ0el0H0ē would mix the electrically
charged SM and mirror leptons. In this study we want to
focus on the Type II Dirac seesaw portal from Φ, which is
why we assume a lepton-specific Z3 symmetry (see
Table I) under which l; e0 transform as ω2 and l0; ē as ω

with ω≡ e
2πi
3 that removes the terms ∝ λe; λ0e. We can

estimate the masses of the Dirac neutrinos from the
VEV (2) to be

mν

0.1 eV
≃ Yν

� jκj
1 GeV

��
v0

109 GeV

��
5 × 10 GeV

μΦ

�
2

: ð7Þ

FIG. 1. Diagrammatic representation of the Type II Dirac
seesaw mechanism. νðν0Þ is embedded in the doublet lðl0Þ.
The mirror neutrino ν0 plays the role of the right-chiral neutrino,
and the heavy scalar Φ is integrated out.

1Arrows on fermion lines denote the chirality structure and not
the flow of the fermion number. A bar is part of the particle label
and does not denote any kind of conjugation.
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To avoid large loop corrections to the bidoublet mass
we will take jκj ≪ μΦ. We choose a small value for jκj
following the cosmological requirement for baryogenesis
in Eq. (42) of Sec. VII. Setting κ → 0 enhances the
symmetry of the scalar potential [19,43], since without
the trilinear term in the potential (A3) we can rephase each
multiplet independently, which is why a small value for jκj
is technically natural [44]. Owing to the fact that v0 ≫ v,
for fixed μΦ we have to take a smaller jκj than for the
Majorana Type II seesaw in order to have a sufficiently
light vΦ. jκj could have a dynamical origin via the VEVof
an additional scalar [19,45], and a small VEV could come
from another iteration of the Type II seesaw [21,46–49].
Such a nested seesaw could arise schematically from a
quartic term ϕ1ϕ

3
2 for two additional SM gauge singlet

scalars ϕ1 and ϕ2, with ϕ1 being much heavier than the
VEV of ϕ2, resulting in its induced small VEV hϕ1i
playing the role of κ. If we assume that SM and mirror
fermions have the same global B-L charge spectrum, then
the mixed anomalies with the non-Abelian gauge groups
cancel separately for each sector. In this picture we see
that the combined appearance of the terms YνlΦ†l0 and
κHΦ†H0 violates B-L by two units (as in Type II seesaw
models), because H, H0 are uncharged. The gauge
symmetries and particle spectrum ensure that l, l0 do
not pick up any Majorana mass terms allowed by
ΔðB − LÞ ¼ 2, because they can only couple to each
other via Φ, but never to themselves in the absence of
scalar SUð2ÞL and SUð2Þ0 triplets.

III. VACUUM STRUCTURE

The VEV of the neutral component of H0 breaks
SUð2Þ0⊗Uð1ÞX→Uð1ÞY and the discrete symmetry (3),

followed by the usual electroweak symmetry breaking
induced by the VEV of H. Φ contributes as a small
perturbation to the spontaneous symmetry breaking
(SSB) of all aforementioned symmetries due to its tiny
VEV. We expand the multiplets into their components and
assign VEVs as

H →

� vffiffi
2

p

0

�
; H0 →

� v0ffiffi
2

p

0

�
; Φ →

� vΦffiffi
2

p 0

0 0

�
: ð8Þ

There are two ways to generate the phenomenologically
required hierarchy v0 ≫ v between the mirror and SM
Higgs VEVs: The first approach [50] is to include soft
breaking of the discrete exchange symmetry in the scalar
potential μ21jHj2 þ μ22jH0j2 with μ21 ≪ μ22. It was shown
recently [51] that this soft breaking leads to two-loop
contributions to the strong CP phase θ̄ (see Sec. V) in the
original universal seesaw model by [50] regenerating the θ̄
angle that was canceled at tree level. As of now there exists
no similar analysis on the impact of soft breaking for the
class of mirror sector models we are employing, so to be
conservative we do not use this scheme. A second mecha-
nism was presented by [36] that relies on tuning the quartic
couplings of the scalar potential in Appendix A 1, and the
details will be discussed in Appendix A 2: If the mixed
quartic coupling λ0 in the potential

V ⊃ λ0H†HH0†H0 þ κðHΦ†H0 þH0†ΦH†Þ ð9Þ

[see (A2) and (A3) for the full potential] is set to zero, the
scalar potential develops an unbroken custodial SU(4)
symmetry and one can view the lighter SM-like Higgs
as the Goldstone boson of this accidental symmetry. This
idea is similar to the situation in the twin-Higgsmodel [39],
where asymmetric vacua with v ≠ v0 also require explicit
breaking of an accidental custodial SU(4) [52]. However, in
those models the equivalent of the exchange symmetry (3)
is typically softly broken as well [52], whereas here the
breaking is only spontaneous. The field H0 has a mass
−μ2H < 0 and obtains the VEV v0 ≃ μH=

ffiffiffiffiffiffi
λH

p
. After inte-

grating out H0 one finds that the potential for H reads

λ0v02H†H þ λ0
�
1þ 2λ0

λH

�
ðH†HÞ2; ð10Þ

and for spontaneous symmetry breaking one requires
λ0 < 0. Further jλ0j ≪ 1 is needed for the phenomenologi-
cally required hierarchy v ≪ v0. The second term in the
above is the self-coupling of H modified by the finite
threshold correction from integrating out H0 [53]. In [36] a
real v needs a small λ0 < 0 at the high scale μ ¼ v0, which is
why in this construction, v0 is identified with the electro-
weak instability scale

v0 ≃ ð109 − 1012Þ GeV: ð11Þ

TABLE I. Charges and representations for the SM and mirror
sector fields as well as the bidoubletΦ. All spinors are left-chiral,
and we use the notation of [40]. We use ω≡ e

2πi
3 .

Field SUð3ÞC SUð2ÞL SUð2Þ0 Uð1ÞX Z3 Generations

l 1 2 1 −1=2 ω2 3
ē 1 1 1 1 ω 3

q 3 2 1 1=6 � � � 3
ū 3̄ 1 1 −2=3 � � � 3
d̄ 3̄ 1 1 1=3 � � � 3

H 1 2 1 −1=2 � � � 1

Φ 1 2 2 −1 � � � 1

l0 1 1 2 −1=2 ω 3
ē0 1 1 1 1 ω2 3

q0 3̄ 1 2 1=6 � � � 3

u0 3 1 1 −2=3 � � � 3

d0 3 1 1 1=3 � � � 3

H0 1 1 2 −1=2 � � � 1
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Renormalization Group equation (RGE) effects dominated
by the top quark Yukawa then drive the Higgs self-coupling
λh to its positiveOð0.1Þ value at low energies. Once we add
a bidoublet in (9) and integrate it out we find that

λ0eff ≡ λ0 −
κ2

μ2Φ
ð12Þ

plays the role of λ0. The smallness and sign of this mixed
quartic could be understood as the result of the threshold
correction [53] from Φ, but since we actually have
κ2=μ2Φ ≃mνκ=ðYνvv0Þ ≪ 1, the correction to λ0 is com-
pletely negligible. As it turns out, the tree-level potential
is not enough for the correct vacuum structure, and to
induce v ≠ 0 we actually need to include quantum correc-
tions [37,54,55] from the one-loop Coleman-Weinberg
potential [56]. This contribution, again dominated by the
top quark, generates quartic scalar terms with a coupling
c1 < 0 (see Sec. A 2 in Appendix A for details). This
results in a Higgs mass and self-coupling of [54]

mh ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
�
λ0eff −

c1
2

�s
v0; λhðμ ¼ v0Þ ¼ c1

16
≲ 0: ð13Þ

A shortcoming of this approach is that one needs the fine-
tuning λ0eff ≃ c1=2 of order Oðv2=v02Þ for the hierarchy
v0 ≫ v [36] (λ0eff < 0 for a real v). In Appendix A 3 a we
demonstrate that the vΦ in the Type II seesaw regime
does not spoil the desired vacuum structure. As far as
naturalness is concerned, the small VEV vΦ in (2) is
technically natural [44], and one may argue along the lines
of [36,39] that the hierarchy between v and v0 does not lead
to a separate hierarchy problem besides the usual one. Of
course, there will be loop corrections from the heavy Φ,
which could be cured by compositeness or supersymmetry
at the bidoublet mass scale μΦ > 1010 GeV. If we consider
the VEVs vi to have phases βi, then gauge transformations
with the transformation parameters ω;ω0;ωX shift the
phases to be2 [57]

β → β þ 1

2
ðω − ωXÞ; β0 → β0 þ 1

2
ðω0 − ωXÞ; ð14Þ

βΦ → βΦ þ 1

2
ðωþ ω0Þ − ωX: ð15Þ

If we set β; β0 locally to zero, this induces the shift
βΦ → βΦ − β − β0 for the phase of vΦ. The minimization
conditions of the scalar potential enforce that

0 ¼ ∂V
∂β

¼ ∂V
∂β0

¼ −
∂V
∂βΦ

¼ κvv0vΦffiffiffi
2

p sin ðβΦ − β − β0Þ; ð16Þ

which implies that the physical phase for the VEV vΦ is
zero. In other words, there is no spontaneous CP violation
[58] in this model. The exchange symmetry (3) only
enforces Yν ¼ Y†

ν, so the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) Dirac phase would come from this matrix
if the charged lepton Yukawa Yl were purely real.

IV. SCALAR AND GAUGE BOSONS

The scalar spectrum consists of three CP even neutral
scalars h; h0; hΦ ¼ ffiffiffi

2
p

Reðφ0
1Þ and one CP odd scalar

aΦ ¼ ffiffiffi
2

p
Imðφ0

1Þ with the masses

mh ≃
ffiffiffiffiffiffiffi
2λh

p
v; mh0 ≃

ffiffiffiffiffiffiffiffi
2λH

p
v0; ð17Þ

mhΦ ≃maΦ ≃ μΦ; ð18Þ

where we used the low-energy value λh ≃ 0.129 for the
self-coupling of the SM-like Higgs. h; h0 mix primarily with
each other via their quartic interaction, and the small mixing
angle is approximately 1=2ð1þ λ0eff=λHÞv=v0. The dominant
source of mixing between hðh0Þ and hΦ comes from the
trilinear term and is ≃ κv0ðvÞ=μ2Φ. The same expression
holds for the mixing between the “would-be-Nambu-
Goldstone-bosons” (NGB)of the ZðZ0Þ gauge bosons (see
the end of this section) with aΦ. Additionally there are two
singly -charged scalarsφ�

1 ;φ
�
2 and one doubly charged scalar

φ��
2 present. Their approximately degenerate masses read

mφ�
1
≃mφ�

2
≃mφ��

2
≃ μΦ: ð19Þ

There is also mixing between φ�
1 ðφ�

2 Þ and the “would-be-
NGB” of the charged gauge bosonsW�ðW0�Þ of the order of
≃ κv0ðvÞ=μ2Φ.When it comes to the charged gauge bosonswe
obtain

mW ¼ g
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ v2Φ

q
; mW0 ¼ g

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v02 þ v2Φ

q
: ð20Þ

There is nomassmixing between the charged gauge bosons at
tree level sinceΦ has only one VEV [59]. Mixing could arise
from loop diagrams involving the tree-level mixing between
the electrically charged SM and mirror leptons in (6), which
we have set to zero via another discrete symmetry. In the
neutral gauge boson sector we find in addition to themassless
photon that

mZ ≃
g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ v2Φ

p
2 cosðθWÞ

; mZ0 ≃
g
2

cosðθWÞ2
cosð2θWÞ

v0; ð21Þ

wherewe employed theweakmixing angle defined in (22). It
is evident that the bidoublet VEV contributes with the same

2Note the slight abuse of notation for the passive gauge
transformations.
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strength to mW and mZ, which means that the SM pre-
diction for the electroweak ρ-parameter [12,60] defined as
ρ≡m2

W=ðm2
Z cosðθWÞ2Þ is unchanged. To understand why,

note that after the SSB of SUð2Þ0 ⊗ Uð1ÞX down to Uð1ÞY,
the multiplet Φ decomposes into two SUð2ÞL doublets
Φ1 ≡ ðφ0

1;φ
−
1 Þt with Y ¼ −1=2 and Φ2 ≡ ðφ−

2 ;φ
−−
2 Þt with

Y ¼ −3=2. Since only the neutral component ofΦ1 develops
a VEV the contribution of Φ to the SM gauge boson masses
reduces to the one in a two-Higgs-doublet model. This is why
at tree level our model does notmodify the ρ-parameter and it
cannot help to address the tentative tension in theW� boson
mass reported by the CDF Collaboration [61]. Moreover,
unlike for the electroweak triplet needed for the conventional
Type II seesaw, here the ρ-parameter does not force the small
VEV to be below the GeV scale [11]. In principle, there
could also be one-loop gauge boson self-energy diagrams
with, e.g., hΦ and φ�

1 running in the loop [62]. The shift in
the relevant electroweak precision observables [63,64] will
roughly depend on their mass splitting via ðm2

hΦ
−m2

φ�
1

Þ=μ2Φ.
However, since we assume all mass splittings to be small
compared to the largest scale in the scalar potential μ2Φ and
since the contribution will essentially decouple for large
bidoublet masses, our model cannot help ameliorate the CDF
tension [61].When it comes to themixingbetween the neutral
gauge bosons, the situation simplifies in the limit vΦ → 0:
There are only two mixing angles required. The electroweak
mixing angle is defined via3 [50]

gX
g

¼ sinðθWÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð2θWÞ

p ð22Þ

and the angle between the physical Z, Z0 [50] reads

sinðγÞ ¼ sinðθWÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð2θWÞ

p
cosðθWÞ4

�
v
v0

�
2

: ð23Þ

TurningonvΦ only leads to subdominantmodifications of the
angle γ as long as vΦ ≪ v.

V. STRONG CP PROBLEM

The physical CP violating parameter θ̄ ¼ θQCD þ θchir is
conventionally split into the contribution of the QCD theta
term and the part θchir ¼ arg ðdet ðMuMdÞÞ arising from the
up-type and down-type quark mass matrices Mu, Md.
Following from the fact that the topological vacuum
selection parameter θQCD arises because of nonperturbative
QCD dynamics and due to its origin as the coefficient of a
nonvanishing surface term [65], one might argue that θQCD
is unlike all other dimensionless parameters of the SM such
as gauge or Yukawa couplings and more akin to a boundary

condition. In the SM, the electroweak part θchir only
receives finite loop corrections at three-loop order and
diverges at seven loops [66], which is fundamentally
different from, e.g., the hierarchy problem of the Higgs
mass. In recent years, a new perspective on the strong CP
problem has emerged [67,68] that relies on a careful
analysis of the boundary condition for the path integral
and the infinite spacetime volume limit, suggesting that
the strong CP violation disappears for the mathematically
correct order of limits. In the present work we take the
smallness of θ̄ at face value and follow the UV symmetry-
based BSM approach [35,50,69–72] to “explain” its tiny
value. For recent work that directly ties the smallness of θ̄
to a different Dirac neutrino mass generation mechanism
see [73].

A. Tree level

Owing to the fact that the discrete exchange symmetry
defined in (3) imposes θQCD ¼ 0 we only need to care
about the quark contribution. Following Ref. [36] there
could exist a dimension six operator allowed by the discrete
exchange symmetry in (3)

c6
Λ2
UV

ðH†H −H0†H0ÞGμνG̃
μν ð24Þ

that regenerates θQCD after theH0 obtains a VEV. This leads
to the requirement of v0 < 1013 GeV for a cutoff scale of
ΛUV ¼ MPl. and order one Wilson coefficient c6, to stay
within the observational bound of θ̄ < 10−10 [74–77]. For
the given particle content this operator is not realized at the
loop level. The mass matrix for either up-type or down-type
quarks in the basis ðq0; q̄Þ and ðq; q̄0Þt with q ¼ u, d, where
we have suppressed generation indices, reads

Mq ¼
 

0 Y 0
q

v0ffiffi
2

p

Yq
vffiffi
2

p 0

!
: ð25Þ

Because the exchange symmetry (3) sets Y 0
q ¼ Y�

q [36],

arg ðdetðMqÞÞ ¼ −
vv0

2
arg ðdetðYqÞ detðY 0

qÞÞ ð26Þ

vanishes, meaning that the SM and mirror sector phases
cancel each other out [35]. Since neither Yq nor Y 0

q are
required to be real, they source the Cabibbo-Kobayashi-
Maskawa (CKM) phase for the SM and mirror sector and
one does not need a separate sector to do so unlike in the
case for Nelson-Barr models [70,71]. The presence of the
bidoublet field does not change this picture as it does not
couple to quarks. Reference [78] demonstrated that inte-
grating out the heavy mirror quarks does not generate
phases for the SM quark Yukawas via RGE effects.

3The discrete exchange symmetry requires the SUð2Þ0 ⊗
SULð2Þ couplings g0; g to be equal at high scales, and we neglect
the differences in their RGE running here.
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B. Loop level

So far we have only worked at tree level. Radiative
corrections to the quark masses at one-loop level all turn
out to be real valued. Two-loop diagrams with two W�
running in the loops have the correct complex couplings
from the CKM matrix but the wrong chirality structure
[66]. That leaves us with two options: Either we replace one
of theW� with the charged scalar φ�

1 that couples to quarks
via its mixing with the “would-be-NGB” of the W�, and
add a mass insertion for the right-chirality structure (see the
left diagram in Fig. 2)

θð2Þ ≃
α

π

�
κv0

μ2Φ

�
2 m2

q

m2
W

m2
q

μ2Φ
; ð27Þ

or we add a third loop with a neutral boson [66] depicted on
the right in Fig. 2:

θð3Þ ≃
�
α

π

�
3
�
m2

q

m2
W

�
3

8>>>>><
>>>>>:

ðvv0Þ2
m2

q

m2

h0
ðh0Þ;

ðvv0Þ4
m2

q

m2
W

m2
q

m2

Z0
ðZ0Þ;�

κv0
μ2Φ

�
2 m2

q

μ2Φ
ðhΦÞ:

ð28Þ

In the above estimates we have dropped order one and
loop factors. m2

q must be a combination of two different
quark masses due to CKM unitarity and α denotes the fine-
structure constant. All of the above contributions are
negligibly small due to large BSM mediator masses and
small mixing angles. For instance, the factor κv0=μ2Φ ≃
mν=ðYνvÞ ≃ 10−12 for Yν ¼ Oð1Þ appearing for the
bidoublet scalars is already sufficient to suppress the loop
diagrams below the current experimental bounds of θ̄ <
10−10 [74–77], and the small ratio v=v0 achieves the same.
Leptonic loops involving the Yν coupling occur at even
higher orders and are even more negligible. Consequently,
we find that the leading contribution arises from purely SM
effects at three loops (two virtualW� and one virtual gluon)

and reads θ̄ ≃Oð10−16Þ [66], which corresponds to an
electric dipole moment of the neutron of about
Oð10−31Þ e cm [66]. Unfortunately, this is still out of reach
for current and future experiments that are expected to
probe dipole moments down to Oð10−27Þ e cm [79–81].

VI. LOW-ENERGY PHENOMENOLOGY

The tree-level exchange of φ−
2 leads to a BSM contri-

bution to muon decay of [82]

Γ
�
μ− →

X
i;j

e−ν0†i ν
0
j

�
≃

1

6144π3
m5

μ

μ4Φ

X
i;j

jðYνÞμiðYνÞ�ejj2;

ð29Þ

which modifies the Michel-parameters ðρ; δ; ξÞ [83,84]
encoding the angular and energy distribution of the decay
relative to the SM. Using the methods of [85] we find that
ρ ¼ ξδ ¼ 3=4δ ¼ 3=16jgSj2 when compared to the SM
where the number on the right-hand side is one. In this
context we have defined

gS ≡ v2

2μ2Φ

X
i;j

ðYνÞμiðYνÞ�μj; ð30Þ

which is currently constrained to be smaller than 0.55
[86,87] not imposing any stringent limits on our scenario
with super-heavy scalars. Note that the previous bound was
derived using left-chiral neutrinos scattering off charged
leptons [87–91], whereas our decay involves the ν0 of
opposite chirality, so we expect that the limit on gS in our
model would be even weaker due to additional neutrino
mass insertions.

A. Dipole moments and lepton flavor violation

Loops involving φ�
2 generate a correction to the mag-

netic dipole moment of the muon depicted in the left
diagram of Fig. 3 of

FIG. 2. Two- (left) and three-loop (right) Feynman diagrams leading to phases in the quark mass matrices contributing to θ̄ ¼ θchir in
this model. h0; Z0; hΦ, and φ�

1 couple only to the SM quarks via suppressed mixing. For the three-loop diagrams we did not indicate the
internal chirality structure and the labels of the internal quark fields, because for h; hΦ there is a mass insertion ∝ hHi after the first
vertex and in the Z0 case there is the same kind of insertion before the sixth vertex.
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Δaμ ≃
e

96π

�
mμ

μΦ

�
2 X
j¼e;μ;τ

ðYνÞμjðYνÞ�μj: ð31Þ

Here, there is no chiral enhancement inside the loop and the
correct chirality structure is obtained from a mass insertion
on the external legs (see Fig. 3), hence the dependence on
mμ. For masses of μΦ ≃ 1010 GeV [see (7)] the shift in the
magnetic moment is of Oð10−36Þ, which is far too small to
explain the deviation of Δaμ ¼ ð251� 59Þ × 10−11

observed by the BNL [92] and FNL [93] Collaborations.
We can reuse this result to estimate the full transition dipole
form factor and find the partial width [94]

BRðμ → eγÞ
8 × 10−8

≃ α

�
v
μΦ

�
4
����Xj¼e;μ;τ

ðYνÞμjðYνÞ�ej
����2: ð32Þ

Compared to the present experimental limit of BRðμ →
eγÞ < 4.2 × 10−13 [95] set by the MEG Collaboration and
the future projection of 6 × 10−14 from MEG II [96], our
scenario leads to branching ratios of Oð10−40Þ for the μΦ
in (7) and is therefore not excluded. Since the bidoublet
only connects leptons and mirror leptons, the process
μ− → e−eþe− occurs via a penguin diagram with the
same dipole form factor as before so we can estimate
BRðμ− → e−eþe−Þ ≃ 7 × 10−3BRðμ → eγÞ [97], which is
compatible with the current bound BRðμ− → e−eþe−Þ <
10−12 from [98] and the projected sensitivity ofOð10−15Þ of
the Mu3e experiment [99]. The analogous decays of τ
leptons are typically less constrained and also do not set
any significant bounds on our scenario. Similarly we can
estimate the neutrino magnetic moment, where there are
two diagrams involving the coupling of φ�

1 ðφ�
2 Þ to νðν0Þ

depicted on the right side of Fig. 3:

ðμνÞii ¼
μB
16π2

meðmνÞi
μ2Φ

X
j¼e;μ;τ

ðYνÞijðYνÞ�ij: ð33Þ

Both diagrams contribute with the same strength as φ�
1 and

φ�
2 are mass degenerate [see (19)]. Here the factor of me

does not arise from any chirality enhancement but rather

from the definition of the Bohr magneton μB ≡ e=ð2meÞ.
Again we observe mass insertions on the external legs (see
Fig. 3) for the right-chirality structure explaining the mν

dependence. The most stringent limit on neutrino magnetic
moments ofμν < 6.3× 10−12 μB comes from theXENONnT
experiment [100], and our estimate for the aforementioned
masses reads μν ≃Oð10−36Þ μB, far below the bound.

B. Collider bounds

The singly charged scalars φ�
1;2 have to be heavier than

Oð100 GeVÞ to escape direct production at colliders
[101–104]. If we were to turn on the couplings ∝ λe; λ0e
between the charged SM and mirror leptons, the φ��

2 could
produce same-sign dilepton signatures, similar to the canoni-
cal Type II seesaw. Current collider searches [105] place a
bound of mφ��

2
> 800 GeV and a future 100 TeV proton-

proton collider could probe masses up to 4.5 TeV [106]. In
this scenario, the exchange of the neutral hΦ can induce a
contact interactionbetween theSMleptons,which evades the
LEP bound [107] due to the large μΦ and potentially small
mixing between SM and mirror leptons. For the smallest
allowed v0 ≃ 109 GeV, we find that the mirror electron [see
the discussion above (34) in the next section] would have a
mass of ≃ 2 TeV, potentially accessible at colliders.

VII. COSMOLOGY

A. Reheating

In the early universe the discrete exchange symmetry
in (3) is spontaneously broken by the VEV of the
heavy doublet H0, leading to the presence of topological
defects, which can overclose the universe if they are stable
[108–110]. There exist basically two remedies for this
conundrum: One may either include small bias terms
[110,111] in the scalar potential, explicitly breaking the
discrete symmetry and thereby leading to domain wall
decay. The explicit breaking might then manifest [51] as a
contribution to θ̄ at low energies similar to the soft breaking
discussed in Sec. III. Alternatively [112], if the domain
walls are formed before or during the exponential expan-
sion phase of cosmic inflation, they will be diluted by the

FIG. 3. One-loop Feynman diagrams contributing to the magnetic moments of the muon (left) and neutrinos (right). The photon line in
the second diagram can be attached to the electrically charged mirror lepton inside the loop as well. For this diagram the mass insertion
can also appear on the incoming line, so that we get a second set of diagrams with l;φ∓

2 running in the loop.
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expansion of spacetime. The second scenario requires that
the symmetry is broken before or during inflation and does
not get restored afterwards, which can be satisfied for a
reheating temperature of TRH < v0 [113]. Since the discrete
exchange symmetry relates the SM and mirror Yukawas,
we expect a similar mass spectrum in the mirror sector up to
factors of v0=v of course. This means that, as long as we
turn off the lepton-mirror lepton mixing in (6) via the Z3

symmetry in Table I, the mirror electron e0 is the lightest
stable electrically charged particle of the mirror sector. To
avoid the stringent bounds [114–117] on the number
density of such charged thermal relics [118], we require
the reheating temperature to be

TRH < me0 ≃ 2 × 10−6 · v0; ð34Þ
corresponding to TRH < 2 × ð103–106Þ GeV for v0 ¼
ð109–1012Þ GeV. Of course, there are also mirror
quarks, with the lightest quark having a mass of mu0 ¼
muv0=v ≃ 2 × 10−5v0 at 1 order of magnitude above (34).
Reference [37] found that the mirror quark masses actually
run faster compared to the mirror leptons owing to their
color charge, leading to a situation where the lightest
mirror quarks u0; d0 are almost mass degenerate with e0

for v0 ≫ 1011 GeV. Consequently relic abundances of
colored mirror fermions are also avoided by the previously
determined reheating temperature. Reheating could either
occur from the dynamics of the oscillating inflaton con-
densate or from a second unrelated epoch of intermediate
matter domination [119]. Alternatively one might consider
asymmetric reheating scenarios [120,121], in which the SM
and mirror sectors are reheated to different temperatures.
This could happen if the particle responsible for reheating
decays preferentially to the SM instead of the mirror sector.
As a consequence of the large hierarchy between v and v0,
the mirror neutrinos never equilibrate with the SM plasma
via gauge or Yukawa interactions and are only produced via
freeze-in [122,123].

B. Dark radiation

Since the present setup only doubles the SU(2) gauge
group of the SM, without introducing a second U(1), there
is no dark photon. Thus the associated problem of large
amounts of dark radiation from mirror neutrinos and a dark
photon that typically plagues mirror sector models [120] is
absent. For 2 → 2 scattering producing ν0 from the SM, hΦ
exchange is completely negligible due to its large mass.
The Z exchange via Z − Z0 mixing [see (23)] leads to

ΔNeff

Oð10−14Þ ≃
�
109 GeV

v0

�
4

8>><
>>:
�

TRH
100 GeV

�
3 ðTRH ≲ vÞ;

0.1 ·
�
1 TeV
TRH

�
ðTRH ≫ vÞ;

ð35Þ

and we find that out-of-equilibrium Z decays to two ν0

would give ΔNeff ≃ 10−15ð109 GeV=v0Þ4. These yields are
at least 2 orders of magnitude smaller than the contribu-
tion ΔNeff ≃ 7.5 × 10−12 from out-of-equilibrium Higgs
decays [123], provided that TRH ≳mh, and Higgs mediated
scattering leads to ΔNeff < 10−10.

C. Leptogenesis from decays

Seesaw mechanisms are often invoked to realize baryo-
genesis via the leptogenesis mechanism [124]. For the
standard out-of-equilibrium decay scenario it has long
been known that scalar triplet leptogenesis [125] requires
at least two triplets or insertions of heavy neutrinos to
generate the required CP violation. Otherwise, there would
be no imaginary part in the interference term between the
tree-level decay and its one-loop self-energy and vertex
corrections. This conclusion also holds for Dirac seesaw
models [29,126], and we could consider the channel
Φ → ll0, which also requires Φ → HH0 for the asymmetry
generation via self-energy graphs [29,126] for at least two
different bidoublets. The tree-level decay widths of each
bidoublet read (with suppressed generation indices)

ΓðΦ → ll0Þ ¼ Y2
ν

8π
μΦ; ΓðΦ → HH0Þ ¼ κ2

32πμΦ
: ð36Þ

We emphasize that the low reheating temperature in (34) is
in tension with the high scale > Oð1010 GeVÞ bidoublet
mass, which is why nonthermal leptogenesis [127] would
be required. As an example we consider reheating via
perturbative decays of an inflaton with mass mI > 2μΦ,
decaying to both SM particles and bidoublets. The infla-
ton’s total decay width ΓI is related to the reheating
temperature via TRH ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
ΓIMPl

p
. One finds that the baryon

asymmetry normalized to entropy at the end of reheating
would be given by [128]

nB
s
≃ −

42

79
εBRI

TRH

mI
: ð37Þ

Here BRI < 1 denotes the branching ratio of inflaton decays
to bidoublets and ε is the previouslymentionedCP violating
decay parameter depending on the mass spectrum of the
different bidoublet generations [29]. As for all Dirac lepto-
genesis scenarios [129], equal and opposite asymmetries in l
and l0 are produced. If the SUð2Þ0 sphalerons are fast during
or after the asymmetry generation, then the asymmetry in l0
will be transferred into a mirror baryon asymmetry, which
will be equal andopposite to thebaryon asymmetryproduced
via SUð2ÞL sphalerons from the l asymmetry. Since there is
no direct interaction coupling baryons to mirror baryons, the
respective asymmetries will not equilibrate to zero and
remain separately conserved. For a hierarchical bidoublet
spectrum with the lightest mass μΦ one finds that the CP
violating decay parameter reads [29,125]
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ε <
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BRlBRH

p
8π

mνμΦ
vv0

; ð38Þ

where r≡ μΦ=μ
ð2Þ
Φ < 1 is the ratio of the lightest and next

heavier bidoublet masses, BRl;H are the branching ratios for
both decay modes in (36), and mν is the heaviest active
neutrino mass. A typical value for equal branching fractions
and μΦ ¼ 10v0 is ε ≃ 10−13, which is smaller than for the
Type II seesaw result [125] due to the additional v=v0
suppression. For a hierarchical bidoublet spectrum we find����nBs
����hier<10−23

�
BRI

1%

��
mν

0.1 eV

��
2μΦr
mI

��
TRH

10−6v0

�
ð39Þ

is far too small to explain the observed value of nB=s ≃ 8 ×
10−11 [130]. Therefore we have to invoke a resonant
enhancement of the self-energy diagrams [131–137] via

assuming that μΦ and the next heavier mass μð2ÞΦ are nearly

degenerate jμð2ÞΦ − μΦj ≪ μð2ÞΦ ≃ μΦðr ≃ 1Þ. This scenario
enhances the previous estimate for ε by a factor of [136,137]

ρ

ρ2 þ δ2
≫ 1; with ρ≡ 1 − r2; δ≡ Γtot:

μΦ
: ð40Þ

The above expression is regulated by the total decaywidth of
the bidoublet Γtot., which is the sum of the rates in (36). We
assume both bidoublets to have comparable decay rates.
A sizable enhancement requires ρ ∼ δ ≪ 1 and hence
Y2
ν þ κ2=ð4μ2ΦÞ ≪ 8π. The decay width to Higgses is auto-

matically small for κ ≪ μΦ, but we may have to make Yν

small by hand, which would require a larger vΦ for this
scenario to fit mν. Note that this small Γtot: ≪ μΦ does not
necessarily force ε to be small, as this parameter depends
only on the branching ratios BRlBRH ¼ ΓðΦ → ll0ÞΓðΦ →
HH0Þ=Γ2

tot ≤ 1=4 and not on the absolute widths. Of course,
we cannot make the decay width arbitrarily small, or else the
decay will take place after inflationary reheating during an
epoch where the bidoublets dominate the energy density of
the universe. In this regime Eq. (37) still holds with the
replacement TRH=mI → Tdec=μΦ [138], where Tdec is the
reheating temperature after the second matter dominated
epoch. The enhancement factor of ε is bounded from above
by the perturbativity requirement ε ≪ 1 assumed in the
derivation of the Boltzmann equations, where one linearizes
in the chemical potentials [130,139]. The precise value of ε
depends on the details of the active neutrino mass spectrum
such as almost degeneratemasses [140],which iswhyweuse
ε as a free parameter. Employing the kinematic condition
mI > 2μΦ and (34) to eliminate TRH=mI in (37) lets us
determine that there is indeed a parameter range reproducing
the observed baryon asymmetry���� nBs

����res: < 10−10
�

ε

0.05

��
BRI

5%

��
50

μΦ=v0

�
: ð41Þ

To obtain this result we had to set ε close to its perturbative
limit, which implies highly degenerate bidoublets with

jμð2ÞΦ − μΦj=μΦ ≃ 10−12. We further had to assume only a
small hierarchy between v0 and μΦ to accommodate the
inflaton decaying mostly to other SM particles implying
BRI ≪ 1.

D. Inflationary Affleck-Dine leptogenesis

Alternatively, the coherent rotation in field space of a
complex scalar field with lepton number during inflation
facilitates leptogenesis via the Affleck-Dine mechanism
[141]. In this picture, the Sakharov conditions [142] are
realized via the initial phase of the scalar field providing C
and CP violation and deviations from thermal equilibrium
appear in the form of a large field amplitude during cosmic
inflation. The last ingredient is baryon number violation
that arises from lepton number violation in the scalar
potential and gets transmitted to the SM leptons so that
afterwards it gets converted into the baryon number via the
Bþ L violating SUð2ÞL sphaleron vertex. The authors of
[143,144] put forth a very economical framework unifying
Higgs inflation [145] and the conventional Type II seesaw.
Motivated by [143,144], we will assume that the inflaton
is a linear combination of the neutral fields h, h0, and
hΦ þ iaΦ ≡ ρΦeiϕ after giving all scalar multiplets a non-
minimal coupling to gravity [146]. Note that identifying the
Affleck-Dine field with the inflaton is just a particularly
convenient example for generating the required large initial
field value and there exist other scenarios [147,148], where
the large field value is dynamically realized without this
identification. Following the discussion at the end of
Sec. II, we assign the B-L charge of two to Φ and treat
the κHΦ†H0 term as an explicit B-L breaking by two units.
Since the field value of the inflaton approaches the Planck
scale during inflation, the trilinear scalar term is subdomi-
nant compared to other Planck-scale suppressed effective
operators and will only matter when the field value has
decreased due to the cosmic expansion. Even worse, during
reheating, the trilinear coupling can lead to oscillations of
the scalar condensate instead of a rotation, manifesting as
an oscillation in the lepton asymmetry spoiling the mecha-
nism unless we set [143,144]

jκj < 10−18MPl ≃Oð10 GeVÞ: ð42Þ

This bound is far stronger than the most naive estimate for
jκj using the sub-eV-scale VEV vΦ in (2) and μΦ < MPl.
together with v0 in (11)

jκj < 10−6MPl

�
vΦ
mν

��
1012 GeV

v0

�
; ð43Þ

which is compatible with our previous assumption
jκj ≪ μΦ. Additionally, for the asymmetry generation, an
operator of dimension larger than four is needed so that the
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produced lepton number is conserved during reheating
[143,144]. Consequently, we consider the following dimen-
sion five operator:

λ5
MPl

ðHΦ†H0 �H0†ΦH†ÞðH†H �H0†H0Þ; ð44Þ

which conserves the discrete exchange symmetry if both
signs are the same. The origin of this operator will be
elucidated in Appendix B. If we have opposite signs in both
brackets, the operator violates the discrete exchange sym-
metry explicitly and we might be able to use it as a bias
term to remove the domain walls. In the following we
stick to the symmetry-conserving case and use plus signs
following [143,144] so that the dimension five term is
∝ cosðϕÞ. Up to mixing angles between the scalars during
inflation and order one factors the lepton asymmetry at the
end of inflation turns out to be [143,144]

nL end ≃ −2λ5ρ3end
sinðϕ0Þffiffiffiffiffi

3λ̃
p ; ð45Þ

where the factor of 2 takes theB-L charge ofΦ into account, λ̃
is the effective quartic self-coupling of the inflaton, ρend ≃
OðMPlÞ is the field value of the inflaton at the endof inflation,
and ϕ0 is the initial phase of ρΦeiϕ. Taking into account the
redshifting of the lepton asymmetry during reheating and the
sphaleron redistribution coefficient, one finds that the baryon

to photon ratio today can be explained for λ5 sinðϕ0Þ=
ffiffiffiffiffi
3λ̃

p
≃

Oð10−16Þ [143,144]. Evidently, small values of λ5 andϕ0 are
needed which also suppress isocurvature fluctuations
[143,144] and a small λ5 is necessary anyway to not spoil
inflation from the nonminimal coupling. We assume a
thermalized bidoublet after reheating. To efficiently transmit
the asymmetry from the bidoublet to the leptons we have to
require that the decay width ΓðΦ → ll0Þ is larger than the
decay width to scalars ΓðΦ → HH0Þ leading to

μΦ < 1021 GeVY2
ν

�
v0

109 GeV

��
0.1 eV
mν

�
: ð46Þ

Moreover, the interaction Φ ↔ HH0 should be out of
equilibrium, and we estimate that ΓðHH0 → ΦÞjT¼μΦ

≃
ΓðΦ → HH0ÞjT¼μΦ

is slower than the Hubble rate HðTÞ at
T ¼ μΦ as long as

vΦ < 10 MeV

�
v0

109 GeV

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 × 10 GeV

μΦ

s
: ð47Þ

Of course, we also need to ensure that the process ll0 ↔ HH0
via off-shell Φ does not thermalize, which sets a weaker
bound compared to (46)

μΦ < 1025 GeV

�
v0

109 GeV

�
2
�
0.1 eV
mν

�
2

: ð48Þ

Let us note that the cosmological history in [143,144] has an
inflationary reheating temperature ofOð1014 GeVÞ, which is
in conflict with the requirement (34) for the absence of
charged mirror leptons and quarks. That means we need
either an additional mechanism to suppress reheating
the mirror sector via asymmetric reheating [120,121] or
simply a different scenario, whereΦ is not the inflaton and its
large initial field value has a different origin during inflation
[147,148]. That way we can sequester the asymmetric
reheating from the Affleck-Dine dynamics. Before we close,
we would like to mention that there exists no obvious dark
matter candidate in this model: The neutral component ofΦ
can decay to neutrinos or gauge bosons and will in general
not be long-lived enough due to its large mass. The heavy
H0; Z0 are also not long-lived enough as they couple to all
fermions (via mixing). Stable mirror quarks could form
electrically neutral dark mesons after the QCD phase
transition [149]; however, here we assume that the mirror
sector is never populated to beginwith or heavily diluted [see
(34)]. Therefore dark matter has to come from a separate
dark sector.

VIII. CONCLUSION

Wehave presented a high scaleDirac neutrinomassmodel
in the Type II seesaw spirit, which has the same scalar
spectrumof neutral, singly, and doubly charged scalars as the
original Majorana Type II seesaw. This idea was imple-
mented by introducing a bidoublet scalar in a mirror sector
model with the gauge group SUð2ÞL ⊗ SUð2Þ0 ⊗ Uð1ÞX,
where we identify the mirror neutrinos as the Dirac partners
of the SM neutrinos. It was shown that the bidoublet is
compatible with the discrete symmetry-based solution to the
strong CP problem, which was the motivation behind the
mirror sector to begin with. The super-heavy bidoublet does
not lead to any observable signatures for collider or other
terrestrial experiments. However, it might have played a role
in the early universe as the source of the matter-antimatter
asymmetry via either the nonthermal decay scenario or
Affleck-Dine Dirac leptogenesis.
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APPENDIX A: SCALAR SECTOR

1. Scalar potential

The most general scalar potential satisfying the discrete
exchange symmetry of [36,37] defined in (3) reads
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VΦ ¼ μ2ΦTrðΦ†ΦÞ þ λΦTrðΦ†ΦÞ2; ðA1Þ

VH ¼ −μ2HðH†H þH0†H0Þ þ λHðH†H þH0†H0Þ2
þ λ0H†HH0†H0; ðA2Þ

VHΦ ¼ κðHΦ†H0 þH0†ΦH†Þ
þ λHΦðHΦ†ΦH† þH0†ΦΦ†H0Þ
þ αHΦðH†H þH0†H0ÞTrðΦ†ΦÞ: ðA3Þ

The scalar sector involving only H, H0 in (A2) has an
approximate, global SU(4) custodial symmetry so that we
can embed the doublets in its fundamental representation

H≡
�

H

H0

�
: ðA4Þ

Using this parametrization it is evident that the terms ∝ λ0; κ
in (A2) and (A3) explicitly violate the custodial SU(4)
symmetry. We take μ2Φ ≫ μ2H > 0. All couplings are real as
a consequence of the discrete exchange symmetry (3) and
because Φ has an Abelian charge under Uð1ÞX. If the
bidoublet was uncharged, the potential would depend on
both Φ and Φ̃≡ −σ2Φ�σ2 leading to explicit CP violation
via terms such as

αHΦ2ðH†HTrðΦ̃†ΦÞ þH0†H0TrðΦ̃Φ†ÞÞ þ H:c: ðA5Þ

with a complex coupling αHΦ2. For the charged bidoublet
case loop diagrams do not regenerate the explicit CP-
violating scalar couplings unlike the case of the minimal
LRSM [152].

2. Minimization of the scalar potential:
Original Higgs-parity model

Here we explore the minima of the scalar potential in the
electrically neutral directions. For the other directions see
the Sec. A 4. We begin our discussion of the minimization
of the scalar potential in (A1)–(A3) by introducing the
notation

vH ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ v02

p
; sinðϕÞ≡ v

vH
; cosðϕÞ≡ v0

vH
: ðA6Þ

The phenomenologically required vacuum structure is
v0 ≠ 0 ≫ v ≠ 0. This together with v ≠ v0 implies that
ϕ ∈ ð0; π

4
Þ. For the observed value of v ¼ 246 GeV and the

required v0 ≃ ð109–1012Þ GeV [see (11)] we have 0 < ϕ ≃
10−7 − 10−10 ≪ 1 and vH ≃ v0.
First we will summarize the results of [36,37] for the

scalar potential involving only H and H0, before discussing
the impact of the bidoublet. The vacuum potential reads

VH ¼ v2H
32

ð−16μ2H þ v2Hð8λH þ λ0ð1 − cosð4ϕÞÞÞÞ; ðA7Þ

and the minimization conditions are found to be

∂VH

∂vH
¼ vH

8
ð−8μ2H þ v2Hð8λH þ λ0ð1 − cosð4ϕÞÞÞÞ;

and
∂VH

∂ϕ
¼ v4H

8
λ0 sinð4ϕÞ: ðA8Þ

The second condition has the solutions ϕ ¼ ð0; π=2; π=4Þ
corresponding to ðv ¼ 0; v0 ¼ 0; v ¼ v0Þ, where in the
first (second) case we have v0 ≠ 0ðv ≠ 0Þ. This essentially
happens because the potential for ϕ has periodicity of π=2
and a reflection symmetry [54] owing to the Higgs-parity
defined in (3). While the custodial-symmetry-breaking and
Higg-parity conserving interaction λ0H†HH0†H0 allows us
to find an asymmetric vacuum with v ¼ 0 and v0 ≠ 0, it
does not suffice in order to also break the electroweak
gauge symmetry. To realize v ≠ 0 we need a separate
source of custodial symmetry violation that slightly tilts the
potential even further. Yukawa and gauge interactions
break the custodial symmetry explicitly, and these effects
are communicated to the scalar potential via quantum
corrections encoded in the one-loop Coleman-Weinberg
potential [56]

V1 ¼ c1

�
ðH†HÞ2 log

�jHj
μ

�
þ ðH0†H0Þ2 log

�jH0j
μ

��
;

c1 ≡ −
3

8π2
Y4
t þ

3

128π2
ðg2 þ g02Þ2 þ 3

64π
g4: ðA9Þ

The negative contribution from the top quark Yukawa is the
dominant one, which is why c1 < 0. If we plug in the values
of the Yukawa and gauge couplings around the weak scale
as an estimate, we find jc1j < 10−2. In terms of the
parametrization (A6) this potential reads for a renormali-
zation scale of μ ¼ vH [54]

V1 ¼ c1v4HðcosðϕÞ4 log ðcosðϕÞÞ þ sinðϕÞ4 log ðsinðϕÞÞÞ
ðA10Þ

¼ c1v4H
4

�
25− 24 logð2Þ

96
cosð4ϕÞ− 1

240
cosð8ϕÞ

−
1

2240
cosð12φÞ− 1

10080
cosð16φÞþOðcosð20ϕÞÞ

�
:

ðA11Þ

Following [54] we only include the terms up to 8ϕ as we
find the rest to be negligible due to numerically small
coefficients. A partial cancellation between the cosð4ϕÞ
terms in (A7) and (A11) will allow us to find a viable
solution 0 < ϕ ≪ π

4
. This is also why we only display
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the leading order coefficients of a Fourier expansion in
cosðn4ϕÞ with n ∈ N. The new minimization conditions
are found to be

∂V
∂vH

¼ 1

480
ð60vHð−8μ2H þ v2Hð8λH þ λ0ÞÞ

− v3Hð5 cosð4ϕÞð12λ0 þ c1ð24 logð2Þ − 25ÞÞ
− 2c1 cosð8ϕÞÞÞ; ðA12Þ

∂V
∂ϕ

¼ v4H
480

ð60λ0 þ 8c1 cosð4ϕÞ

þ 5c1ð24 logð2Þ − 25ÞÞ sinð4ϕÞ: ðA13Þ

When solving for ϕ one has two solutions: Either
sinð4ϕÞ ¼ 0, which implies the solutions ϕ ¼ ð0; π=2;
π=4Þ for the unwanted set of either partially unbroken or
symmetric vacua. Otherwise, the second factor in (A13) has
to be zero itself for a solution with nonzero ϕ ≪ 1. We can
solve this equation to find the required λ0 for a minimum
that can accommodate the input parameter ϕ,

λ0 ¼ c1
60

ð125 − 60 logð4Þ − 8 cosð4ϕÞÞ ≃
ϕ≪1

0.56 c1; ðA14Þ

and substitute this into the first minimization condition to
obtain

vH ¼ μHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λH þ c1

16
ð645
10

− 4 logð2Þ − 4
15
cosð4ϕÞ þ 1

15
cosð8ϕÞÞ

q

≃
ϕ≪1 4

ffiffiffiffiffi
10

p
μHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

160λH þ c1ð41 − 40 logð2ÞÞp ≃
jc1j≪1 μHffiffiffiffiffiffi

λH
p : ðA15Þ

The Higgs mass and self-coupling at the scale μ ¼ vH are
found to be [54]

m2
h ≃ −

�
λ0 −

c1
2

�
v2H; and λhðμ ¼ vHÞ ¼

c1
16

≲ 0:

ðA16Þ

The lightness ofmh with respect to the high scale vH ≃ v0 is
related to the tuning λ0 ≃ c1=2≲ 0 [37] in (A14), which
manifests the previously mentioned partial cancellation. If
λ0=c1 stays between 0.5 and 0.81, the unwanted values with
ϕ ¼ ð0; π=4Þ are actually maxima of the scalar potential, as
can be seen from its second derivative [54]. The sign of ϕ is
in general undefined and the solution to (A13) reads

ϕ ¼ � 1

4
arccos

�
5

8

�
25 − 24 logð2Þ − 12

λ0

c1

��
; ðA17Þ

which is a consequence of the reflection symmetry of
the potential. Since a physically sound VEV must satisfy
v > 0, we have to impose ϕ > 0. We illustrate the

previously discussed partial cancellation between the
tree-level potential VH and the Coleman-Weinberg terms
V1 on the left side of Fig. 4. One can see that there are two
symmetric nonzero minima with jϕj < π=4. On the right
side of Fig. 4 we plotted the potential for different choices
of λ0=c1, and one can clearly observe that the nonzero
values of jϕj < π=4 require λ0=c1 ≳ 1=2. For the plots we
used unrealistic parameters for the sake of being able to see
the minima of ϕ between 0 and �π=4. Realistic parameters
would lead to minima at jϕj ≃ 10−7–10−10.

3. Minimization of the scalar potential:
Inclusion of the bidoublet

Next we introduce the couplings to the bidoublet

VΦ ¼ v2Φ
2

�
μ2Φ þ λΦ

2
v2Φ

�
;

VHΦ ¼ vΦv2H

�
vΦ
4
ðαHΦ þ λHΦÞ þ

κ

2
ffiffiffi
2

p sinð2ϕÞ
�
; ðA18Þ

where we see that only the trilinear term ∝ κ depends on ϕ
and thus violates the custodial symmetry. Furthermore,
since this term is ∝ sinð2ϕÞ the scalar potential for ϕ no
longer has the periodicity π=2. The modified minimization
conditions read

∂V
∂vH

¼ 1

480
ð60vHð−8μ2H þ v2Hð8λH þ λ0ÞÞ

− v3Hð5 cosð4ϕÞð12λ0 þ c1ð24 logð2Þ − 25ÞÞ
− 2c1 cosð8ϕÞÞÞ þ

vΦvH
2

ðvΦðαHΦ þ λHΦÞ
þ

ffiffiffi
2

p
κ sinð2ϕÞÞ; ðA19Þ

∂V
∂vΦ

¼ vΦðμ2Φ þ λΦv2Φ þ ðαHΦ þ λHΦÞv2HÞ þ
v2H
2
ffiffiffi
2

p κ sinð2ϕÞ;

ðA20Þ

∂V
∂ϕ

¼ v4H
480

�
60λ0 þ 8c1 cosð4ϕÞ þ 5c1ð24 logð2Þ − 25Þ

þ 120
ffiffiffi
2

p vΦκ
v2H

1

sinð2ϕÞ
�
sinð4ϕÞ: ðA21Þ

The required λ0 for values of ϕ ≠ ð0; π=2; π=4Þ that
minimize the potential in the ϕ-direction is found to be

λ0 ¼ c1
60

ð125 − 60 logð4Þ − 8 cosð4ϕÞÞ

− 2
ffiffiffi
2

p vΦκ
v2H

1

sinð2ϕÞ ≃
ϕ≪1

0.56 c1 −
ffiffiffi
2

p

ϕ

vΦκ
v2H

: ðA22Þ

Note that the trilinear term vΦκv2H sinð2ϕÞ in (A18) breaks
the reflection symmetry and biases the vacuum in the
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direction ϕ > 0ðϕ < 0Þ for κ < 0ðκ > 0Þ (analogous to
the sign of vΦ for a Type II seesaw). However, in practice
this contribution is suppressed as vΦκ=v2H compared to
VH þ V1, so that we would need to take large (and
phenomenologically excluded) values of κ to select a sign
for ϕ. This was illustrated on the right side of Fig. 4 and one

sees the deeper minimum ϕ > 0 for the unrealistically large
κ ¼ −6 × 15 GeV ≠ 0 in red. The next paragraphs explain
why we cannot make jκj arbitrarily large and phenomeno-
logically we need a small value of jκj < 10 GeV [see (42)
in the main text] anyway. We find that vH is determined
to be

vH ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30μ2H − 15vΦðvΦðαHΦ þ λHΦÞ þ

ffiffiffi
2

p
κ sinð2ϕÞÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
60ð8λH þ λ0Þ − 2c1 cosð8ϕÞ − 5 cosð4ϕÞð12λ0 þ c1ð24 logð2Þ − 25ÞÞp : ðA23Þ

If the first term 30μ2H dominates over the contribution
∝ v2Φ; vΦκ, the previously determined minimum in (A15) is
still valid. Once the contribution ∝ v2Φ; vΦκ takes over, a
deeper minimum starts to appear and the VEV vH is
actually induced by vΦ (instead of the other way around
for a Type II seesaw). To study the implications of vΦ on
ϕ; vH requires finding which value of vΦ solves (A20). If
we were to switch off all bidoublet couplings to the other
scalars and set μ2Φ < 0, we expect vΦ ¼ jμΦj=

ffiffiffiffiffi
λΦ

p
as usual.

Generally speaking this relation will be modified by the
VEVs of the other Higgses as well, because the trilinear
coupling κ and the full solution to (A20) can only be found
numerically. In the following we either fix vΦ via the Type
II seesaw scheme used in the main text or use it as a free
parameter in order to find the conditions for unwanted
symmetric or deeper minima.

a. Induced bidoublet VEV á la Type II seesaw

Here we take the VEV vΦ to be induced by vH.
This means, we assume μ2Φ > 0 and furthermore, that

μ2Φ ≫ λΦv2Φ þ ðαHΦ þ λHΦÞv2H, so that (A20) is approxi-
mately solved by

vΦ ≃ −
κv2H

2
ffiffiffi
2

p
μ2Φ

sinð2ϕÞ ¼ −
κvv0ffiffiffi
2

p
μ2Φ

: ðA24Þ

In the limit jκj ≪ vH ≪ μΦ this VEV will essentially be the
smallest scale in the potential. The value of λ0 required for a
given ϕ in (A22) then reads

λ0eff: ≡ λ0 −
κ2

μ2Φ

¼ c1
60

ð125− 60 logð4Þ− 8 cosð4ϕÞÞ ≃
ϕ≪1

0.56 c1: ðA25Þ

We see that integrating out the super-heavy bidoublet just
shifts the coupling λ0 via a threshold correction, as was
mentioned above of (12) in the main text. Since we expect
jκj ≪ μΦ by many orders of magnitude [see (7) and the
discussion below], it is safe to take λ0eff ≃ λ0 and the

FIG. 4. Plot of the contributions to the scalar potential without a bidoublet (left) and with a bidoublet (right). For the sake of visibility
and illustration we chose vH ¼ 1010 GeV, vΦ ¼ 1 GeV, c1 ¼ −10−2, and κ ¼ −6 × 1015 GeV, which do not correspond to
phenomenologically viable parameters. On the left-hand side we fixed λ0=c1 ¼ 0.66 and we varied this combination of parameters
on the right-hand side. Note that we scaled the vertical axis differently in both plots. Realistic parameters would lead to minima at
jϕj ≃ 10−7 − 10−10 and in practice the phenomenologically required small value of jκj, e.g., jκj < 10 GeV from (42) in the main text,
only has a negligible impact on the value of ϕ.
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previously determined minimum for ϕ in (A14) is still
valid. To avoid deeper minima than vH in (A15) we have to
require that the numerator in (A23) satisfies

2μ2H ≫ vΦðvΦðαHΦ þ λHΦÞ þ
ffiffiffi
2

p
κ sinð2ϕÞÞ

≃
κ2v2H
2μ2Φ

sinð2ϕÞ2; ðA26Þ

where we used μ2Φ ≫ ðαHΦ þ λHΦÞv2H in the last step.
Expanding for small ϕ and setting vH ≃ μH=

ffiffiffiffiffiffi
λH

p
turns

this into

λH ≫ ϕ2
κ2

μ2Φ
: ðA27Þ

Since we assume λH ¼ Oð1Þ and again stress that ϕ; jκj=
μΦ ≪ 1, we do not need to worry about deeper minima for
vH with the superlight vΦ we consider in (A24).

b. General bidoublet VEV

As discussed earlier, it is in general not possible to obtain
a full analytic expression for vΦ. This is why we take it as a
free parameter and in the following make no assumption
about its relative size compared to vH; μΦ, and κ. Inspecting
(A22) reveals that the 1= sinð2ϕÞ factor can become large
for the required small ϕ ≪ 1; if it is not canceled by
vΦκ=v2H, it might happen that this term becomes larger than
the perturbative limit for λ0 of 4π. We therefore require that

����0.56c1 −
ffiffiffi
2

p

ϕ

vΦκ
v2H

���� < 4π; ðA28Þ

where the absolute value takes into account the in general
undetermined sign of κ and the fact that c1 < 0. Assuming
the bidoublet contribution is larger than the Coleman-
Weinberg piece ∝ c1, one finds that this condition implies

vΦjκj < 2
ffiffiffi
2

p
πvv0: ðA29Þ

In other words, if we make vΦjκj larger than the input
parameters vv0, then the corrections from the bidoublet
VEV will spoil the partial cancellation between the λ0 and
the Coleman-Weinberg terms ∝ c1 responsible for the
correct asymmetric vacuum v ≠ 0 ≪ v0. The sinð2ϕÞ term
coming from the coupling to the bidoublet in (A18) is
responsible for this effect, since the aforementioned partial
cancellation involves the cosð4ϕÞ terms. This is in agree-
ment with the findings of the authors of [36], who arrived at
the conclusion that the VEV of an additional bidoublet
cannot contribute significantly to electroweak symmetry
breaking. Consequently, we are forced to have a small
vΦjκj. Avoiding a deeper minimum from (A23) than the vH
in (A15) requires

μ2H ≫
1ffiffiffi
2

p vΦκ sinð2ϕÞ; ðA30Þ

where we assumed that αHΦ þ λHΦ is negligible so that we
can focus on κ. This bound can be reexpressed as

vΦjκj ≪
λHffiffiffi
2

p v03

v
: ðA31Þ

We find that this constraint is weaker than (A29) for
v ≪ v0, meaning that taking vΦjκj to be large will first
destroy the misalignment of vacua (leading to v ¼ v0 or
v ¼ 0) before it leads to deeper minima in v0. The small-
ness of the induced vΦ in the Type II seesaw of (A24)
automatically avoids these problems in the limit jκj ≪ μΦ.

4. Sufficient conditions for vacuum stability

For vacuum stability at large field values only the quartic
terms are important. Following Ref. [153] we define

r2 ≡H†H þH0†H0 þ TrðΦ†ΦÞ;
r2 cosðγÞ≡H†H þH0†H0; r2 sinðγÞ≡ TrðΦ†ΦÞ;

ðA32Þ

x≡ H†HH0†H0

ðH†H þH0†H0Þ2 ; y≡ HΦ†ΦH† þH0ΦΦ†H0

ðH†H þH0†H0ÞTrðΦ†ΦÞ :

ðA33Þ

One can show that

0 ≤ x ≤
1

2
; 0 ≤ y ≤ 1: ðA34Þ

Using this parametrization we employ the copositivity
criteria of [154] to find

λΦ > 0; λH þ xλ0 > 0;

αHΦ þ yλHΦ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΦðλH þ xλ0Þ

p
> 0: ðA35Þ

Note that x, y may not be independent parameters [155];
however, we will ignore this complication for our first
estimate. This is the reason why we only find the sufficient
but not the necessary criteria for vacuum stability. A more
refined analysis along the lines of [155–157] is required
to treat the general case. Our preliminary investigation
did not find deeper electric charge-breaking minima com-
pared to the charge-conserving ones in (8), which can occur
for models with trilinear scalar couplings [158], and we do
not expect them due to the smallness of the trilinear
coupling κ [see the previous paragraph and the discussion
below (7)]. A full numerical analysis is beyond the scope of
this work.
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APPENDIX B: ORIGIN OF THE DIMENSION
FIVE OPERATOR FOR AFFLECK-DINE

LEPTOGENESIS

The discrete exchange symmetry conserving effective
operator in (44) (same signs in each bracket) can be realized
by including a real singlet either even (σðt; x⃗Þ → σðt;−x⃗Þ)
or odd (σðt; x⃗Þ → −σðt;−x⃗Þ) under the symmetry (3). This
adds the following terms to the scalar potential:

Vσ ¼ μ2σσ
2 þ λ3σσ

3 þ λ4σσ
4; ðB1Þ

V int ¼ κσσðH†H �H0†H0Þ þ λσHΦH0σðHΦ†H0 �H0†ΦH†Þ
ðB2Þ

þλHσσ
2ðH†H þH0†H0Þ þ λΦσσ

2TrðΦ†ΦÞ; ðB3Þ

where the þð−Þ sign applies to the even (odd) case and
furthermore the term λ3σσ

3 is absent for odd σ. Note that all
of the above couplings are real. If we assume the σ mass is
the largest in the potential, we find after integrating it out
that the effective coupling in (44) is given by

λ5
MPl

≃
λσHΦH0κσ
jμσj2

: ðB4Þ

For this operator to be present during the inflationary stage,
where the inflaton can approach Planck scale field values,
we have to impose jμσj ≃OðMPlÞ. A VEV for σ is not
required to generate the right operator. For completeness let
us consider the implications of a VEV for the real σ:

(i) even case: Since the scalar σ is even, the discrete
exchange symmetry remains unbroken and vσ simply
shifts μ2Φ→μ2ΦþλΦσv2σ;−μ2H→−μ2HþκσvσþλHσv2σ,
aswell as κ → κ þ λσHΦH0vσ. Sinceweexpectvσ to be
very large, we require small couplings in order to not
shift the scales too much.

(ii) odd case: In this scenario σ is a pseudoscalar
that spontaneously breaks the discrete exchange

symmetry and leads to different mass terms −μ2H �
κσvσ for H, H0, effectively realizing the softly
broken parity scenario of [50] for v0 ≫ v mentioned
in Sec. III. On top of that when it comes to CP, the
minimum of the scalar potential will be different
from (16), and we find spontaneous CP violation
with an angle for vΦ of

βΦ − β − β0 ¼ arctan
�
λσHΦH0vσffiffiffi

2
p

κ

�
: ðB5Þ

This phase is negligible for the solution to the strong
CP problem in Sec. V, because the field Φ has no
direct couplings to quarks and leptonic insertions
occur only at very large and thus heavily suppressed
loop orders. In the symmetry-odd case there could
arise a dimension five operator similar to (24) [113],

cg5
ΛUV

σGμνG̃
μν; ðB6Þ

or a correction to the quark Yukawas in (4) of the
form [113]

cu5
ΛUV

iσðYuqH†ūþ Y 0
uq0H0†ū0Þ þ cd5

ΛUV
iσðYdqHd̄

þ Y 0
dq

0H0d̄0Þ þ H:c:; ðB7Þ

which for a Planck-scale cutoff ΛUV needs to satisfy
cg;u;d5 vσ < 109 GeV [113] to comply with the ex-
perimental bound of θ̄ < 10−10 [74–77].

The effective operator in (44) with different signs in each
bracket, violating the discrete exchange symmetry, could
arise from nonperturbative quantum gravitational effects,
which are expected [159–161] to explicitly break all global
symmetries that are not residual symmetries of gauge
symmetries.
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