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For the purpose of minimizing the number of sample model evaluations, we propose and study
algorithms that utilize (sequential) versions of likelihood-to-evidence ratio neural estimation. We apply our
algorithms to a supersymmetric interpretation of the anomalous muon magnetic dipole moment in the
context of a phenomenological minimal supersymmetric extension of the standard model, and recover
nontrivial models in an experimentally constrained theory space. Finally we summarize further potential
possible uses of these algorithms in future studies.
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I. INTRODUCTION

The pursuit of understanding beyond the Standard
Model (BSM) physics theories in the context of exper-
imental results is the cornerstone of much research in high
energy physics (HEP). However, despite the increasing
accuracy of weak-scale observables, it remains nontrivial to
perform the inverse calculation, i.e., to determine regions of
parameter space yielding the observables.
Mapping out regions of parameter space that produce

given observables is especially difficult for theories with
many free parameters—a famous example being the
minimal supersymmetric model (MSSM) (see, e.g., [1]
for a review) and downsized versions thereof, in parameter
space, such as the phenomenological MSSM (pMSSM)
[2,3]. The exploration of the parameter space of these
theories is typically carried out, in the HEP literature, by
defining a search space in the space of pMSSM parameters,
uniformly sampling it, and then rejecting all samples which
do not conform with theoretical or experimental constraints
(see, e.g., [4–6], albeit there is a very vast literature on the
topic). However, the number of required samples grows
exponentially with the dimension of the search space, so
these methods are extremely computationally intensive, if
not intractable, when calculations of the output predictions
for a given set of input parameters are slow.
There has been a recent upsurge of developments in the

broader scientific literature regarding the inverse problem

of restricting parameter spaces of a forward model purely
through sampling (i.e., calculating observables from model
parameters; see, e.g., [7–9] for a few recent examples). The
introduction of neural networks to simulation-based infer-
ence (SBI) frameworks, in particular, has lead to explosive
improvements in accuracy and precision and ablation
studies comparing them all [10–13].
In this work, we introduce the sequential neural ratio

estimation (SNRE) algorithm to the problem of sampling
from an experimentally constrained version of the pMSSM.
Although not explicitly stated, recent work [14] has used
methods from the simulation-based inference literature—
namely neural likelihood estimation. We show how that
method fits into the larger SBI framework and discuss an
alternative, though related, approach that uses likelihood-to
evidence ratio neural estimation. This fits in the context of
“likelihood-free” methods in which drawing samples from
a forward model is possible, but the likelihood is expensive
or intractable to evaluate. Additionally, we demonstrate
sequential versions of two algorithms that can significantly
reduce the number of model evaluations required.
Specifically, here we are interested in the following

example case study: we perform sampling of the pMSSM
parameter space, producing experimentally viable predic-
tions for (i) the relic density of dark matter (Ωχh2) in the
form of the lightest neutralino, which has mass Mχ , (ii) the
Higgs mass (mh), (iii) the anomalous magnetic moment of
the muon (aμ), and (iv) WIMP-nucleon cross sections (σSI).
We organize the manuscript as follows: Sec. II details the

general SBI framework and describes the SNRE algorithm
in particular; Sec. III details the search space of the pMSSM
to which we will be applying SNRE; in Sec. IV we
demonstrate the improved sampling efficiency of sequen-
tial algorithms; we show an application of SNRE to an
experimentally constrained pMSSM parameter space in
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Sec. V; and finally, in Sec. VI we summarize our findings
and further discuss potential future uses of SBI.

II. SIMULATION-BASED INFERENCE

This work aims to use the simulation-based inference
(SBI) framework to sample from a large-dimensional
parameter space while evaluating the model output as
few times as possible for computational efficiency. There
are essentially four overarching approaches to SBI: rejec-
tion sampling with approximate Bayesian computation
(ABC), posterior estimation (NPE), likelihood-to-evidence
ratio estimation (NRE), and likelihood estimation (NLE).
For a full review of simulation-based inference and other
methods therein, we refer the reader to Ref. [15].
We begin by stating Bayes’ rule:

PðθjXÞ ¼ PðXjθÞPðθÞ
PðXÞ ; ð1Þ

where PðXjθÞ is the likelihood of the data given the model
parameters, PðθÞ is the prior probability of the model
parameters, and PðXÞ is the evidence. In this work, θ refers
to supersymmetric parameters, and X refers to various
observables of our choosing, e.g., the Higgs mass, the DM
relic density, and the muon anomalous magnetic moment.
The NRE approach begins by approximating the like-

lihood-to-evidence ratio, rðX; θÞ ¼ PðXjθÞ
PðXÞ , and then using it

to sample from the posterior distribution of the model
parameters with Hamiltonian Monte Carlo (HMC). HMC
can be thought of as a Markov Chain Monte Carlo
(MCMC) [16,17] algorithm where a chain’s position and
momentum are sampled from a joint distribution and then
evolved according to Hamilton’s equations. HMC makes
use of derivatives to calculate its transitions, which makes it
not directly applicable using the micrOMEGAs [18] package,
but it can still be used on the neural network side. For a full
review of HMC, see [19].

A. Likelihood-to-evidence ratio estimation

Here, we will follow the approach of Ref. [12] to
approximate the likelihood-to-evidence ratio: Assume we
have two classes of simulations, Y0 and Y1, each of which
is composed of pairs of fX; θg. We define Y0 and Y1 such
that Y0 ¼ fX; θg ∼ PðXÞPðθÞ and Y1 ¼ fX; θg ∼ PðXjθÞ.
We use curly brackets to denote a set of values. The optimal
classifier (one which minimizes the binary cross-entropy
loss) between Y0 and Y1 is given by

d�ðX; θÞ ¼ PðXjθÞ
PðXjθÞ þ PðXÞPðθÞ ð2Þ

which can, in turn, be used to express the likelihood-to-
evidence ratio:

r�ðX; θÞ ¼ PðXjθÞ
PðXÞ ¼ PðX; θÞ

PðXÞPðθÞ ¼
d�ðX; θÞ

1 − d�ðX; θÞ ; ð3Þ

where we used the fact that the joint distribution
PðX; θÞ ¼ PðXjθÞPðθÞ. Thus, approximating r�ðX; θÞ is
equivalent to finding the optimal classifier d�ðX; θÞ, which
we can accomplish by training a classifier to distinguish
between Y0 and Y1. For the rest of this work, we shall
use rðX; θÞ to denote the approximate likelihood-to-
evidence ratio.
In practice, we produce samples of Y1 by first drawing θ

from the prior, PðθÞ, and then passing it through our
simulator (the micrOMEGA package) to generate X. We begin
sampling from Y0 in the same way: we draw θ from the
prior and plug it into our simulator to generate X. After this,
however, we resample θ0 ∼ PðθÞ and use the new value in
its place, i.e., ðX; θ0Þ ∼ Y1.
We will use a neural network to model rðX; θÞ, which

allows us to take advantage of the vast literature and
resources available for deep learning applications. We will
use an ensemble of multilayer perceptrons (MLPs).
Ensembling models and taking their average was shown
in [20] to produce more accurate, conservative posteriors
than would be obtained by simply training a single model.
Although not applicable for this work, it is worth

pointing out that the data can be of virtually any format.
For example, the authors of [12] have shown the ability of
this algorithm to ingest 128 × 128 pixel images of strongly
lensed galaxies and produce accurate posteriors of its
Einstein radius.

B. Sequential neural likelihood-to-evidence
ratio estimation

If the prior is not carefully crafted to be a good
approximation of the posterior to start with, we expect
many of the samples to produce observables far from the
experimental values of interest. These can be seen as
wasted evaluations of the model, the very thing we are
trying to limit. However, with a trained NRE, we have a
better approximation of the posterior available to us. We
therefore elect to iterate the training procedure outlined in
the previous section, but replace the sampling of θ from the
prior with a sampling from the intermediate posterior. The
full algorithm is outlined in Algorithm 1.
Empirically, numerical experiments show that sequential

versions of SBI tend to converge to the true posteriors with
fewer simulator evaluations than their nonsequential coun-
terparts [13]. Intuitively, this is because the approximate
posterior will be most accurate in the densest regions of the
parameter space as specified by the training data. However,
when we are sampling from the posterior, we are most
interested in its regions of highest probability. Therefore,
we can reduce the number of model evaluations required by
iteratively closing in on the true posterior. We demonstrate
this in Sec. IV where we run trials to determine how
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efficient (the fraction of viable simulations) naive, NRE,
and SNRE sampling, respectively, are. Our results are
summarized in Figs. 1 and 2.
Finally, it is important to note that either version of SBI is

not guaranteed to converge to the true posterior and can
often produce overconfident bounds on parameter space
with exceedingly high computational budgets required to
calibrate [20]. By using an ensemble of classifiers, which
we do for all of our applications, we partially alleviate this
problem.

III. PHENOMENOLOGICAL MINIMAL
SUPERSYMMETRIC MODEL

The fully general, unconstrained minimal supersymmet-
ric extension to the Standard Model (MSSM) contains 105
free parameters [21], principally connected with the soft
supersymmetry breaking pattern. By enforcing no flavor
changing neutral currents, no new sources of CP violation,
and first and second generation universality, these param-
eters are restricted to a 19-dimensional parameter space,

known as the “phenomenological” MSSM (pMSSM) [22].
Here, since we intend to illustrate the algorithms outlined
above as applied to the pMSSM in connection with
supersymmetric contributions to the anomalous magnetic
moment of the muon, we entertain the possibility that the
supersymmetric scalar particles associated with second
generation leptons, smuons, be lighter than, and not as
usually assumed degenerate with, their first generation
counterparts, selectrons. Therefore, we relax the universal-
ity assumption in the slepton sector of the pMSSM, which
adds two more parameters to the parameter space of
interest. To simplify, and since they are largely irrelevant
to quantities of interest, especially the muon anomalous
magnetic moment, we assume all squark masses to be
degenerate at a relatively large mass scale set to 4 TeV,
large enough so that they have negligible effects in our
calculations.
To utilize the SBI framework, one must have a forward

model of the likelihood, i.e., a function which takes in a set
of parameters, θ, and produces an observable,X, from some
underlying distribution. The underlying distribution need
not be known explicitly, for our goal is to learn it from the
samples. Additionally, we must provide a prior distribution
of the parameters. For our applications, we will use a
uniform prior for the parameters, with bounds chosen to be
consistent with the literature and listed in Table I.
In the following applications, we aim to produce

posterior distributions conditioned on a combination of
observables calculated by the micrOMEGAs package [18].
Although not arbitrarily accurate, micrOMEGAs produces a
deterministic output, so we assume Gaussian error bars
on these calculations. Thus, our likelihood is given by

FIG. 1. The fraction of points sampled from the posterior that
lie within the ranges specified in Eq. (8). The gray band indicates
the efficiency of sampling directly from the prior for comparison
with standard MCMC based approaches.

FIG. 2. The expected amount of time (minutes) needed to
obtain one sample in the ranges specified in Eq. (8).

Algorithm 1. Sequential Neural Likelihood-to-Evidence
Ratio Estimation (SNRE).

Let prðθjX0Þ be the posterior in round r.
Let pr¼0ðθjX0Þ ¼ PðθÞ.
while r < R do

set prior to prðθjX0Þ
while n ≤ N do

Sample θn ∼ prðθjX0Þ
Sample Xi ∼ PðXjθnÞ
Add fθn; Xng to D

end while
while d ≤ D do

Sample fθA; XAgd ∼D
Sample fθB; XBgd ∼D
Assign labels y ¼ 1 for fθA; XAgd and fθB; XBgd
Assign labels y ¼ 0 for fθB; XAgd and fθA; XBgd

end while
(re-)train rðX; θÞ to classify fθA; XAgD, fθB; XBgD,

fθB; XAgD, and fθA; XBgD by minimizing the binary
cross-entropy loss.

prðθjX0Þ ¼ rðX; θÞPðθÞ
end while
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N ðXðθÞ; σXÞ, where N is the normal distribution and
XðθÞ ¼ ðΩDMðθÞ; aμðθÞ; mhðθÞ; pXenon1TÞ is the vector of
calculated observables from micrOMEGAs. The variance of
the distribution is σ2X ¼ σ2exp þ σ2th with theoretical
Gaussian uncertainties are:

σX ¼ ðσΩ; σaSUSYμ
; σmh

; σpXenon1T
Þ

¼ ð0.01; 65 × 10−11; 1.0 GeV; 10−5Þ: ð4Þ

pMSSM parameters, θ are sampled from a uniform prior,
with bounds shown in Table I. When sampling from our
posterior, we set the observed values of X to their
experimental results [23–27]

X0 ¼ ðΩχh2; mh; aSUSYμ ; pXenon1TÞ
¼ ð0.12; 125 GeV; 251 × 10−11; 0.0455Þ: ð5Þ

Here we are assuming that the discrepancy between the SM
and experimentally observed anomalous magnetic moment
of the muon is solely due to supersymmetric contributions
aSUSYμ ¼ aexp :μ − aSMμ . As Xenon1T has not yet observed
WIMP dark matter, we set its p-value equal to CDFN ð2σÞ
and treat all p-values greater than this value identically via
the pre-processing described in Eqs. (A1)–(A4).

IV. BENEFITS FROM SEQUENTIAL TRAINING

A key question in algorithm optimization is to seek the
minimization of the time required to obtainN samples from
a distribution. Here, we can approximate the amount of
time spent computing, T, via

T ¼ Nsþ Rtþ ðR − 1Þvþ w; ð6Þ

where N is the total number of micrOMEGAs calculations
performed, s is the time per micrOMEGAs evaluation, R is the
number of sequential rounds of training, t is the time to
train the network in each sequential round, v is the amount
of time to sample from the intermediate posteriors during
SNRE training, and w is the amount of time to sample from
the final SNRE posterior. In this application, we limit R, t,
v, w, so that the majority of the time is spent evaluating
micrOMEGAs, i.e., T ≈ Ns. N is often chosen to be large
enough so that the number of samples surviving the
constraints is larger than some number, M. We can write

N ¼ M=εþD; ð7Þ

where ε is the efficiency of our micrOMEGAs samples, and D
is the number of samples used to train our models (for
traditional methods, D ¼ 0). If the efficiency is sufficiently
small, the number of required samples becomes prohibi-
tively large, which is the typical case when sampling θ from
the prior. The goal of SBI is to minimize N by maximizing
ε. We illustrate this effect by calculating the efficiency of
over a range of training sample sizes and SNRE training
rounds.

A. Setup

The benefits of the SBI framework become clear when
looking at the efficiency of sampling, i.e., the fraction of
samples that satisfy the given constraints of the problem. To
illustrate this, we perform the pMSSM posterior approxi-
mation exercise while enforcing observables to be within
3-sigma of their central values:

0.09 < Ωχh2 < 0.15

122 GeV < mh < 128 GeV

56 × 10−11 < aSUSYμ < 445 × 10−11

0.0455 < pXenon1T; ð8Þ

where aSUSYμ ¼ ðgSUSYμ − 2Þ=2 is the supersymmetric con-
tribution to the muon anomalous magnetic moment and
pXenon1T is the p-value of the model as determined by
Xenon1T.
We choose to run the SBI pipeline on three different

choices of R. Specifically we set R ¼ 1 for NRE, R ¼ 3 for
SNRE3, and R ¼ 5 for SNRE5.
We compare each choice of R with the “prior” baseline,

which calculates observables using samples from the prior,
and then subjects them to the same filtering as shown in
Eq. (8). We emphasize that samples from the prior do not
correspond to samples from the posterior, and we only use
the samples as a point of comparison.
We allot a budget of 150,000 micrOMEGAs calculations

and split them into training sets and inference sets. We use
the training sets to train the networks, and the inference sets
are the evaluations from which our final samples come.

TABLE I. Domains used for the pMSSM soft supersymmetry
breaking parameters. All parameters (aside from tan β) are in
units of GeV. We set all squark mass parameters to 4 TeV.

Parameter Domain Description

jμj [100, 4000] Higgs mixing parameter
jM1j [50, 1000] Bino mass parameter
jM2j [100, 4000] Wino mass parameter
M3 [400, 4000] Higgsino mass parameter
ML1

[100, 4000] Left-handed selectron mass
ML2

[100, 1000] Left-handed smuon mass
ML3

[100, 4000] Left-handed stau mass
Mr1 [100, 4000] Right-handed selectron mass
Mr2 [100, 1000] Right-handed smuon mass
Mr3 [100, 4000] Right-handed stau mass
MA [400, 4000] Pseudoscalar Higgs mass
tan β [1, 60] Ratio of Higgs VEVs vu=vd
jAtj [0, 4000] Trilinear Higgs-stop coupling
jAbj [0, 4000] Trilinear Higgs-sbottom coupling
jAτj [0, 4000] Trilinear Higgs-stau coupling
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Ideally, the training sets will be as small as possible to
maximize the number of posterior samples in our inference
set. However, increasing the size of the training set could
increase the efficiency of posterior samples, thus enabling
equal performance with the weaker algorithm producing a
larger inference set. For each method, we run a trial on a
training set of sizes 10,000, 31,000, and 100,000, with the
remaining calculations left for inference. For SNRER, we
distribute the calculations equally among the R rounds.

B. Results

The results demonstrate several notable features. First,
in Fig. 1 we observe the expected trend among the
sequential algorithms; as the number of points used to
train increases, the number of points sampled from the
approximate posteriors which lie within the ranges speci-
fied in Eq. (8) also increases. However, this is not true for
NRE, which performed worse for the medium-sized train-
ing set. The absence of this scaling for NRE is likely due to
overfitting, which we did not prevent by early stopping.
Finally, as the efficiency is highest for SNRE5, it is the
preferred model in the event that additional computational
resources become available after the training phase, e.g., in
future follow-up analyses.
We determine the average amount of time from start to

finish required to generate a valid sample from the final
posterior and display the results in Fig. 2. Although slower
overall, we determine that the efficiency of SNRER gives it
a factor of up to 3 times faster sampling than NRE, even
when the inference set is significantly smaller. Our results
suggest sequential algorithms are consistently the most
efficient when they useOð10%Þ of the allotted calculations
for training.

V. APPLICATION TO PMSSM

A. SBI setup

We now examine the posteriors and experimental
observables produced by an application to the pMSSM.
In this search, we are interested in finding the regions of
parameter space most likely to contain the correct relic
density, Higgs mass, provide a good fit to the observed
anomalous magnetic moment of the muon, and are not
excluded by Xenon1T.
Inspired by the results of Sec. IV, we run SNRE for a

total of 10 rounds, each with 20,000 new samples calcu-
lated with micrOMEGAs. Next, we assemble the likelihood-
to-evidence approximators with an ensemble of 5 binary
classifiers whose inputs are a concatenation of X and θ and
whose outputs are the logit of the classification probability.
Each network consists of three hidden layers, each con-
sisting of 256 units. Next, we train networks to minimize
the binary cross-entropy loss between samples from the
likelihood, pðXjθÞ, and the joint probability, pðXÞpðθÞ.

Finally, we average the ensemble outputs during inference
time to produce an approximate likelihood-to-evidence
ratio of a given sample. When we sample with HMC
during intermediate training steps, we use 20 chains with
2000 warmup steps and 32 chains with 2000 warmup steps
during the final inference time.

B. Results

In Fig. 3, we show samples from the approximate
posterior as one-dimensional histograms. The multi-modal
and irregularly shaped distribution of points demonstrates
the ability of flexible neural methods to hone in on these
regions. The results exhibit several features previously
found in the literature despite not being enforced a priori
in our search (outside of choosing bounds on the prior.)
Additionally, we plot two-dimensional histograms for a
subset of the dimensions in Figs. 4 and 5.
These results demonstrate, for example, the learned

dependence on the relative signs of μ and the gaugino
parameters. In addition, we find that most models have a
binolike LSP with light smuons whose masses are near the
LSP mass. Physically, these correspond to the bino coan-
nihilation with smuons driving thermal relic abundance.
One expects these results as binolike LSPs have smaller
WIMP-nucleon cross sections, and lighter sleptons con-
tribute more to aμ, while also suppressing the relic density.
We note the generally larger values of ML2

compared to
Mr2 . This trend is mostly due to the sneutrino requiring a
larger value ofML2

because its mass is typically lighter than
the left-handed smuon. The right-handed smuon mass, on
the other hand, is generally equal to Mr2 .
Of the 96,000 samples generated from the approximated

posterior, 179 survive the cuts laid out in Eq. (8), resulting
in an efficiency of 0.00186, similar to the results shown in
Fig. 1. The surviving points are shown on top of Xenon1T
and ATLAS [28,29] constraints in Figs. 6 and 7, respec-
tively. Interestingly, our results indicate that the experi-
ments are complementary: regions of low direct detection
constraining power exist in high ATLAS constraining
power regions, and vice versa. We expect future analyses
to probe the majority of the surviving parameter space.

VI. CONCLUSIONS

We introduced a simulation-based inference framework
capable of analyzing high-dimensional parameter spaces
and applied the framework to supersymmetric extensions to
the Standard Model. We showed how equivalent amounts
of computational time result in orders of magnitude more
pMSSM models of experimental interest than naive sam-
pling from the prior. Additionally, we demonstrated how
sequential sampling methods are even more efficient than
their nonsequential counterparts by performing a light scan
over hyperparameters.
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FIG. 3. Samples from the posterior which lie within the experimental constraints specified in Eq. (8) obtained by running SNRE with
hyperparameters listed in Table II are shown in salmon. We note the overdensity of small smuon masses which affect aμ and Ωχ by
coannhiliations. See Figs. 5 and 4 for corner plots with subsets of these parameters. Shown in blue are the filtered samples from the
posterior for the nonsequential NRE, again trained using the hyperparameters in Table II. We see the SNRE algorithm produces similar
coverage for most parameters while providing greater sampling efficiency.

FIG. 4. Corner plots of μ and gaugino mass parameters created
from the same samples as Fig. 3. Dotted lines correspond to
μ ¼ M1 and M2 − 2 ¼ M1, respectively. We see a strong bias
toward binolike and winolike LSPs. Direct detection constraints
force μ toward larger values of its range. Additionally, we see a
dependence on the relative signs of μ and M2.

FIG. 5. Corner plots of smuon and dark matter masses
calculated from the same samples as Fig. 3. Shaded regions
do not have a neutralino LSP which, although not explicitly
excluded, are not experimentally viable. We note the large
concentration of light right-handed smuons.
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Finally, we applied the framework to sample from
regions of the pMSSM parameter space yielding the
correct thermal dark matter relic density, Higgs mass,
and the muon’s anomalous magnetic moment, which
direct detection experiments have not yet excluded. We
found that the most likely regions of this space are
tantalizingly close to current ATLAS bounds and are
likely to be covered in future direct dark matter detection
experiments.
Future exercises similar to the present one could

make use of calibration methods presented in Ref. [30]
to avoid overly confident constraints on the approximated
posterior and therefore avoid excluding potentially viable
regions of parameter space. Additionally, one can consider
higher-dimensional observables. Rather than summaries
of observed weak-scale quantities, it is potentially of
interest to operate directly on the raw data obtained from
experiments.
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APPENDIX: TRAINING DETAILS

Prior to entering neural network, is data are preprocessed
to restrict the dynamic range of the inputs. For the relic

density, we enforce the value to be greater than 10−4,
convert to log-space and rescale:

Ωχh2 → 10 × log10 ðclipðΩχh2; 10−4;∞ÞÞ ðA1Þ

The Higgs mass is restricted to be larger than 118 GeVand
made Oð1Þ by subtracting off a value close to its known
mass 123.864 GeV and rescaling to be Oð1Þ

mh →
clipðmh; 118;∞Þ − 123.864

2.2839
. ðA2Þ

The SUSY contribution to the muon anomalous magnetic
moment is restricted to be within 10−11 and 10−8, converted
to log-space and made Oð1Þ

aSUSYμ → log10clipðaμ; 10−11; 10−8Þ þ 9.5. ðA3Þ

FIG. 6. Samples from the approximate posteriorwhich liewithin
the experimental constraints specified in Eq. (8). The color of each
point corresponds to the p-value from compressed spectra con-
straints reported by ATLAS. The background is shaded according
to a gaussian kernel density estimate in order to visualize the
concentration of points on these axes. We note the ability of
ATLAS to probe models which lie in the neutrino floor.

FIG. 7. Same as Fig. 6 but plotted on ATLAS constraints with
Xenon1T p-values, as calculated by micrOMEGAs. The mass
splitting is taken with respect to the lightest slepton mass, Ml.
Dotted lines correspond to �1σ constraints. We expect future
analyses to constrain much of the viable parameter space with
small mass splittings.

TABLE II. Hyperparameters common to all (S)NRE algorithms
tested in all applications.

Hyperparameter Value

Hidden layers 3
Hidden layer size 256
Ensemble size 5
Learning rate 3 × 10−4

Weight decay 0
Max gradient norm 10−3

Validation interval 50
Patience 200
Batch size 256
Training split 0.95
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Lastly, we restrict the p-value from Xenon1T to be positive
and less than 0.0455. We then rescale to be Oð1Þ:

pXenon1T → 10 × clipðpXenon1T; 0; 0.0455Þ. ðA4Þ

In the above, clipðx; xmin; xmaxÞ is given by:

clipðx; xmin; xmaxÞ ¼

8
><

>:

xmin if x < xmin

xmax if x > xmax

x otherwise

ðA5Þ

The hyperparameters used in the networks are listed in
Table II.

We used the SaxBI package [31] with JAX [32] and
Flax [33] backends to initialize and fit the models to
perform approximate Bayesian inference. We used the
optax-repository’s [34] implementation of the adaptive
moment estimation (Adam) algorithm [35] to optimize
our models. We used numpyro’s implementation of
Hamiltonian Monte Carlo (HMC) [36,37] to sample from
the posterior distribution of the model parameters. We run
our simulations using micrOMEGAs v5.2.13 [18] with
SOFTSUSY v.4.1.7 [38] backend. Our entire codebase is
open-source and can be found here [39]. All computations
were run on a machine with an AMD Ryzen 7 3700X
processor, 16 GB of RAM, and no GPU.
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