
Molecular Migdal effect

Carlos Blanco,1,2,* Ian Harris ,3,† Yonatan Kahn,3,4,‡ Benjamin Lillard ,3,4,§ and Jesús Pérez-Ríos 5,6,∥
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Nuclear scattering events with large momentum transfer in atomic, molecular, or solid-state systems may
result in electronic excitations. In the context of atomic scattering by dark matter (DM), this is known as the
Migdal effect, but the same effect has also been studied in molecules in the chemistry and neutron
scattering literature. Here we present two distinct Migdal-like effects from DM scattering in molecules,
which we collectively refer to as the molecular Migdal effect: a center-of-mass recoil, equivalent to the
standard Migdal treatment; and a nonadiabatic coupling resulting from corrections to the Born-
Oppenheimer approximation. The molecular bonds break spherical symmetry, leading to large daily
modulation in the Migdal rate from anisotropies in the matrix elements. Our treatment reduces to the
standard Migdal effect in atomic systems but does not rely on the impulse approximation or any
semiclassical treatments of nuclear motion and as such may be extended to models where DM scatters
through a long-range force. We demonstrate all of these features in a few simple toy models of diatomic
molecules, namely, Hþ

2 , N2, and CO, and find total molecular Migdal rates competitive with those in
semiconductors for the same target mass. We discuss how our results may be extended to more realistic
targets comprised of larger molecules which could be deployed at the kilogram scale.

DOI: 10.1103/PhysRevD.106.115015

I. INTRODUCTION

The Migdal effect, in which nuclear scattering leads to a
visible electron recoil, is a promising avenue to detect sub-
GeV dark matter (DM) scattering with nuclei. Such light
DM is kinematically mismatched with nuclei and thus leads
to very small elastic scattering energies, often below
detection thresholds. However, because electrons and
nuclei are coupled in all atomic, molecular, and solid-state
systems, perturbations to the nuclei can induce electronic
transitions. The probability of this transition is small, but

since electronic transition energies are at the eV scale which
is above the thresholds of existing detectors, even a small
rate is favorable compared to an unobservable elastic
scattering signal. The Migdal effect in atoms, in which
recoiling nuclei lead to atomic excitation or ionization, has
a long and interesting history, first proposed nearly a
century ago in the context of alpha and beta decay [1]
and subsequently rediscovered by the WIMP DM com-
munity [2]. Independently, the neutron scattering commu-
nity invoked nucleus-electron correlations similar to the
atomic Migdal effect to explain anomalous cross sections in
compounds containing hydrogen [3–5]. The Migdal effect
in the context of DM has been calculated for isolated atoms
[6,7] and semiconductors [8–11] (see also Refs. [12–18] for
additional theoretical investigations of the Migdal effect),
and there is an active program to try to measure the ionizing
Migdal effect experimentally using Standard Model probes
[19–21].
In this paper, we present for the first time two distinct

directional Migdal-like effects in excitation of molecules
that we call collectively the molecular Migdal effect. This
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can be seen as the low-energy complement of the ionizing
Migdal effect of core electron shells of atoms bound in
molecules (see e.g. Ref. [21]), which is isotropic and does
not depend significantly on the molecular nature of the
nuclear or electronic states.1 We focus specifically on
diatomic molecules, treating them as toy examples useful
for deriving analytic expressions for the matrix elements;
identify the origin of anisotropy and directionality for the
molecular Migdal effect; and determine parametric scalings
which can generalize to larger molecules. Due to the
anisotropy inherent in the molecular states, we predict
order-1 daily modulation of the Migdal signal for DM
masses of 10 MeV to 1 GeV. Our qualitative results should
generalize to well-oriented molecules with weak intermo-
lecular interactions, such as aromatic organic compounds
that can form molecular crystals and that already serve as
excellent anisotropic targets for DM-electron scattering
which could conceivably be deployed at the kilogram scale
[22,23]. Therefore, we will discuss the path to extending
our formalism to larger molecules and how we may use
existing molecular data to identify targets with large
molecular Migdal rates.
We base our treatment largely on a series of papers

formulating the cross section for molecular excitations
following neutron scattering [3–5,24,25]. We rederive
and adapt for sub-GeV DM scattering the following results:

(i) Migdal excitation has a component proportional to
an electronic dipole matrix element, hψfjr⃗jψ ii,
where jψ ii and jψfi are the initial and final
electronic states, respectively. In previous work in
the DM context, this was understood as arising from
a semiclassical approximation for the struck nucleus
for a contact interaction, but following Ref. [24],
here we show that it arises simply from the mismatch
between the c.m. of the nuclei and the c.m. of the
entire molecule including the electrons (see also
Refs. [26,27]). This component of the Migdal effect,
which we refer to as the center-of-mass recoil
(CMR), thus requires no minimum momentum
transfer in order to stay within the impulse approxi-
mation and holds equally well for scattering through
a long-range force.2

(ii) There is a second component of the Migdal ex-
citation probability, arising from corrections to the
Born-Oppenheimer (BO) approximation. Such an
effect does not exist for atoms, which have only a
single nucleus, but instead describes the behavior of
molecular systems where electronic and nuclear
motion may be parametrically separated because
of the small ratio me=M, where M is the nuclear

mass. The many-body ground state of the molecule
contains admixtures of excited electronic states with
coefficients of order me=M, referred to in the
literature as a nonadiabatic coupling (NAC), a
nomenclature we adopt. The NAC gives the ground
state a nonzero overlap with excited electronic
states, yielding a Migdal matrix element propor-
tional to hψfj∇ρψ ii where ∇ρ is the gradient with
respect to the nuclear separation ρ⃗.

We show that both CMR and NAC probabilities have
identical parametric scalings and compute the relevant
electronic matrix elements for some simple diatomic
molecules (Hþ

2 , N2, and CO, selected due to their computa-
tional feasibility) to show the interplay of these two effects.
Interestingly, the CMR and NAC Migdal effects have
orthogonal selection rules: the dipole matrix element
connects electronic states of opposite parity, while the
NAC matrix element connects states of like parity.3 This
allows for the two molecular Migdal components to be
distinguished experimentally since these transitions typi-
cally have well-separated energies.
In addition, we point out the following new result

concerning the directional dependence of the scattering.
Consider a situation where the internuclear axis is fixed
along a particular direction ρ̂0. This is perhaps unrealistic
for diatomic molecules but accurately describes a molecu-
lar crystal where molecules have a fixed orientation within
a unit cell. Defining an anisotropy parameter

η ¼ q̂ · ρ̂0; ð1Þ

where q⃗ is the momentum transfer of the interaction, there
are now two sources of anisotropy in the Migdal excitation
probability:

(i) Both CMR and NAC matrix elements inherit the
anisotropy of the electronic wave functions since the
dipole matrix element and the NAC gradient matrix
element both point along the direction of the
molecular axis ρ̂0. In both cases the Migdal prob-
ability carries a factor of η2.

(ii) Both CMR and NAC contain nuclear matrix ele-
ments schematically of the form hχfjeiq⃗·ρ⃗jχii where
jχii and jχfi are nuclear states. Squaring and
evaluating this matrix element yields additional
anisotropy of the form η2n exp ð− q2

2μω η
2Þ, where μ

is the reduced mass of the nuclei,ω is a characteristic
vibrational frequency, and n depends on the vibra-
tional final state with the largest overlap with the
initial state. The factor q2=ð2μωÞ in the exponential
can be order 1 for sub-GeV DM, and thus the

1We do not consider the excitation signal arising from a
primary ionization, though this would be an additional source of
signal events.

2Despite the nomenclature, the CMR effect exists even if the
c.m. is fixed and does not actually recoil.

3We will focus exclusively on molecular orbitals consisting of
valence electrons, but since molecular spectroscopic notation is
possibly unfamiliar to some physicists, the like-parity transitions
are analogous to 1s → 2s in atomic hydrogen, and those of
opposite parity are analogous to 1s → 2p.
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directionality of the scattering rate depends strongly
on the DM mass.

The anisotropy of the Migdal excitation probability leads to
the appealing possibility of directional detection, which (as
in the case of DM-electron scattering) does not depend on
observing the direction of any final states but rather yields a
sidereal daily modulation in the rate of e.g. photons emitted
from the deexcitation of the excited molecular state. While
diatomic molecules have already been proposed as possible
targets for DM-nuclear scattering [28,29], in a typical
experimental situation with gas detectors, the molecules
will be isotropically distributed. Thus, the directional
dependence we have identified will average out and
disappear. However, in molecular crystals with fixed
orientation, for example, organic scintillator crystals, the
large daily modulation should persist. As we will show, the
daily modulation from the molecular Migdal effect is not a
threshold effect, and it persists at the Oð1Þ level even for
DM masses well above the kinematic threshold for elec-
tronic excitation.
This paper is organized as follows. In Sec. II, we review

the nonadiabatic corrections to the BO approximation in
diatomic molecules, compute the electronic transition
probability following a nuclear scattering event to leading
order in me=M, and identify the CMR and NAC compo-
nents of the molecular Migdal effect. In Sec. III, we
compute the nuclear and electronic matrix elements for
our three diatomic toy examples and show the daily
modulation of the electronic excitation rate as a function
of the DM mass, demonstrating that the NAC contribution
typically dominates and gives competitive sensitivity to
semiconductor targets. In Sec. IV, we outline how our
results may be extended to larger molecules. We conclude
in Sec. V.

II. MOLECULAR MIGDAL EFFECT

A diatomic molecule has a many-body wave function
ΨðR⃗1; R⃗2; r⃗e;iÞ where R⃗1;2 are the nuclear positions, r⃗e;i are
the electron positions, and i runs over all of the electrons in
the molecule. In the BO approximation, the electrons are
treated as responding instantaneously to changes in the
nuclear positions, and the wave function factorizes into a
product of nuclear and electronic wave functions. This
factorization only holds in the strict limit me=Mi → 0,
though, where Mi are the nuclear masses. To see this, we
start from the Schrödinger equation for the molecule:

1

me

X
i

∇2
iΨþ

�∇2
R1

M1

þ∇2
R2

M2

�
Ψþ 2ðE − VÞΨ ¼ 0 ð2Þ

where E is the energy of the stateΨ, and V ¼ Vee þ VeN þ
VNN is the potential which contains electron-electron,
electron-nucleus, and nucleus-nucleus interactions, respec-
tively. The BO ansatz is

ΨðR⃗1; R⃗2; r⃗e;iÞ ≈ θðR⃗CMÞχðαÞðR⃗1; R⃗2Þψαðr⃗i; ραÞ: ð3Þ

Here, θ is the overall c.m. motion, χðαÞ depends only on the
nuclear positions, and ψα is an electronic wave function
which depends parametrically on the equilibrium separa-
tion between the two nuclei, ρα, and for which the
electronic coordinate r⃗i is taken with respect to the c.m.
of the molecule, r⃗i ¼ r⃗e;i − R⃗CM.
Neglecting the c.m. motion which always factors out, the

Schrödinger equation approximately separates as

1

me

X
i

∇2
iψα þ 2ðϵα − Vee − VeNÞψα ¼ 0; ð4Þ

�∇2
R1

M1

þ∇2
R2

M2

�
χðαÞ þ 2ðE − ϵα − VNNÞχðαÞ ¼ 0: ð5Þ

The first equation determines the electronic state ψα and its
energy eigenvalue ϵα for fixed nuclear positions, and the
second determines the nuclear state given ϵα as a function
of nuclear positions. Note that the equilibrium separation
ρα is determined by minimizing the effective potential
governed by ϵα and thus depends on the electronic state α,
as illustrated in Fig. 1. Likewise, vibrational excitations
above this equilibrium state depend on α, which we
emphasize with our notation χðαÞ.

FIG. 1. Cartoon illustrating the transition from the electronic
ground state (blue) to an excited electronic state (red). The energy
manifolds which govern the nuclear states are determined by the
electronic configuration and are modeled by a Morse potential as
a function of the internuclear separation ρ. Each electronic state is
split by vibrational substates which are approximately harmonic
near the potential minima.
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The terms neglected in the separation of the Schrödinger
equation are of the form 1

M1;2
χðαÞ∇2

1;2ψα and
2

M1;2
ð∇1;2ψαÞð∇1;2χ

ðαÞÞ. As anticipated, these vanish as

M1;2 → ∞, but treated as a perturbation to VeN in time-
independent perturbation theory, they will correct the
electronic wave functions, leading to the NAC Migdal
effect [24] as we describe further in Sec. II B below.
The relevant squared matrix element for a Migdal

transition to a particular electronic state ψα in a diatomic
molecule, through a momentum deposit q⃗ from the DM, is

PðαÞ ¼
X
0
jhΨ0

αja1eiq⃗·R⃗1 þ a2eiq⃗·R⃗2 jΨ0ij2 ð6Þ

where Ψ0 is the molecular ground state and the sum over
Ψ0

α contains all final nuclear states χðαÞ associated with ψα.
4

We have allowed for the possibility that DM may couple
differently to nuclei 1 and 2 by including arbitrary (real)
coefficients a1 and a2 (the analogues of different neutron
scattering lengths in the case of neutron-molecule scatter-
ing). For sub-GeV DM, the momentum transfer is always
smaller than the inverse nuclear radius, so the interaction is
always coherent over the nucleus and the nuclear form
factor is unity. A long-range DM interaction may be
accommodated by adding a factor of 1=q2 in the matrix
element, as well as screening effects by e.g. multiplying
a1;2 by atomic form factors.
Because we have in mind the application of the Migdal

effect to solid-state systems, in particular, scintillation
transitions in molecular crystals, we will narrow our focus
from the general expression (6) in two ways:
(1) We will only consider bound final states, both for the

electrons and the nuclei, as shown in Fig. 1. The total
Migdal rate, which includes both ionized electron
states and dissociated nuclear states, will necessarily
be larger, but the signals are expected to be exper-
imentally distinct. The signature of a single elec-
tronic excitation is a narrow spectral line. In contrast,
ionization of inner shell electrons leads to broad,
energetic spectra that must be distinguished from the
ionization accompanying the elastic nuclear re-
coil [21].

(2) We will neglect both c.m. motion of the molecule
and rotational excitations since these will be highly
suppressed in a crystal compared to vibrational
modes. In particular, we do not take the nuclear
ground state to be the isotropic rotational ground
state where the direction of the molecular axis is

undetermined, but rather we fix ρ̂0 ¼ ẑ, and likewise
for the excited nuclear states.5 In this setup, the
nuclear wave functions χðαÞn ðρÞ are then a function
only of the nuclear separation,

ρ ¼ jR⃗2 − R⃗1j; ð7Þ

and may be labeled by a single integer n character-
izing the vibrational level. Furthermore, all dot
products of the form q⃗ · ρ⃗ can then be written as
qρη, where η is the anisotropy parameter defined
in Eq. (1).

In what follows, we will compute Eq. (6) to leading order in
me=M1;2 and find schematically

PðαÞ ¼ PðαÞ
CMR þ PðαÞ

NAC ð8Þ

¼ PðαÞ
N × ðPðαÞ

e;CMR þ PðαÞ
e;NACÞ ð9Þ

∼Oð1Þ ×
�
me

M

�
2

ðqa0Þ2 ð10Þ

where a0 is the Bohr radius, M ¼ M1 þM2, and PðαÞ
N and

PðαÞ
e are squared nuclear and electronic matrix elements,

respectively. In particular, we will find that the nuclear
matrix elements for both CMR and NAC are order 1 for
states α with large nuclear wave-function overlaps with the
ground state, and that the CMR and NAC electronic matrix
elements have identical parametric scalings as shown
in Eq. (10).

A. CMR Migdal effect

In a diatomic molecule, the individual nuclear coordi-
nates R⃗1;2 are related to the c.m. and relative coordinates as
follows:

R⃗1 ¼ R⃗CM −
μ

M1

ρ⃗ −
me

M

X
i

r⃗i; ð11Þ

R⃗2 ¼ R⃗CM þ μ

M2

ρ⃗ −
me

M

X
i

r⃗i ð12Þ

where μ ¼ M1M2=M is the reduced nuclear mass and ρ⃗ ¼
R⃗2 − R⃗1 is the nuclear separation vector.
Note that because the c.m. of the molecule includes

contributions from the electronic coordinates, the nuclear
coordinates contain admixtures of the relative electron
coordinates with coefficients me=M. As a result, the
CMR contribution to PðαÞ is

4Strictly speaking, Eq. (6) should contain an energy-conserv-
ing delta function δðE0 − E0Þ inside the sum, but since the nuclear
energies are much smaller than the electronic energies ϵα, E0 ≈ ϵα
for all terms in the sum, and the delta function can be
approximately factored out. We will restore the delta function
in Sec. III below.

5Our isolation of vibrational nuclear states from the rotational
motion of the molecule may be seen as focusing on the normal
modes of the molecule, with diatomic molecules having only a
single normal mode but with polyatomic molecules hosting many
more.
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PðαÞ
CMR ¼ jhψαje−i

me
M q⃗·

P
i
r⃗i jψ0ij2 × PðαÞ

N;CMR ð13Þ

where PðαÞ
N;CMR is the squared nuclear matrix element

PðαÞ
N;CMR ¼

X
n

jhχðαÞn ja1e−i
μ
M1

qρη þ a2e
þi μ

M2
qρηjχ0ij2 ð14Þ

summed over vibrational states χðαÞn associated with the
electronic state α. In the particular case of a homonuclear
diatomic molecule, where a1 ¼ a2 ≡ a and μ=M1 ¼
μ=M2 ¼ 1=2, we have

PðαÞ
N;CMR → 4a2

X
n

jhχðαÞn j cosðqρη=2Þjχ0ij2 ðhomÞ: ð15Þ

In the electronic matrix element, the typical kinematics of
sub-GeV DM are such that ðme=MÞq ≪ a0, and thus the
exponential may be Taylor-expanded to yield an electronic
excitation probability

PðαÞ
e;CMR ¼

�
me

M

�
2

jq⃗ · hψαj
X

i
r⃗ijψ0ij2; ð16Þ

analogous to similar results for atomic systems which have
been obtained under various sets of assumptions
[6,8,14,15,30]. For valence transitions in diatomic mole-
cules, which are the focus of this paper, the dipole matrix
element will always point along the molecular axis, and
therefore for fixed orientation ρ̂0, we can write

hψαj
X
i

r⃗ijψ0i≡Dα0ρ̂0 ð17Þ

and

PðαÞ
e;CMR ¼

�
me

M

�
2

q2η2jDα0j2: ð18Þ

We note that this result was also derived earlier in the
context of neutron scattering in Ref. [5]. Furthermore, Dα0

can be experimentally determined using spectroscopy since
it is essentially the oscillator strength of the transition,
allowing a data-driven prediction of the CMR Migdal rate
[7]. Since PðαÞ

e;CMR is already proportional to ðme=MÞ2, we
do not need to include the nonadiabatic corrections toΨ0 or
Ψ0

α at this order.

B. NAC Migdal effect

The NAC component of the molecular Migdal effect [23]
arises from corrections to the wave functions rather than the
coordinates, so we may ignore the electronic coordinates in
Eqs. (11) and (12) to leading order in m2

e=M2. We then
compute the matrix element in Eq. (6) as follows, setting
R⃗CM ¼ 0 as we are ignoring c.m. motion:

MðαÞ
NAC ¼ hΨ0

αja1e−i
μ
M1

q⃗·ρ⃗ þ a2e
i μ
M2

q⃗·ρ⃗jΨ0i: ð19Þ

We now include nonadiabatic corrections to the wave
functions. Consider a total wave function Ψα which can be
expressed as χðαÞðψα þ δψαÞ, where ψα is the unperturbed
electronic wave function in the BO approximation. As we
show in Appendix A, the effective perturbing potential in
the electronic Schrödinger equation is given by

δV ¼ −
1

μ

∇ρχ

χ
·∇ρ: ð20Þ

Note that when the orientation of the molecular axis is
fixed, ∇ρ ≡ d=dρ is an ordinary derivative. We can thus
apply first-order perturbation theory to the electronic wave
functions only,

δψα ¼
X
α0≠α

hψα0 jδVjψαi
ϵα − ϵα0

ψα0 ; ð21Þ

which shows, as long as the perturbation matrix element
does not vanish, that the ground state with α ¼ 0 contains
admixtures of the excited electronic states, and vice versa.
Multiplying by the nuclear wave function χðαÞ, we

identify the first nonadiabatic correction to the molecular
wave function,

δΨα ¼
1

μ
ð∇ρχ

ðαÞÞ ·
X
α0≠α

G⃗α0α

ϵα0 − ϵα
ψα0 ðr⃗i; ρα0 Þ; ð22Þ

where ϵα are the energies of the electronic states α [the
eigenvalues of the electronic equation (4)], and the non-
adiabatic coupling vectors G⃗α0α are defined as

G⃗α0α ¼
Z Y

i

d3r⃗iψ�
α0 ðr⃗i; ρα0 Þð∇⃗ρψαðr⃗i; ρÞÞjρ¼ρα

: ð23Þ

Note that the gradient is evaluated at the equilibrium
position ρα for the state α. Furthermore, only wave
functions ψα0 with the same symmetry as the ground state
contribute to the sum since only those can experience
avoided crossings, as opposed to real crossings between
states with distinct symmetry. With fixed molecular ori-
entation, the nonadiabatic coupling vectors always point
along the molecular axis, so we can write

G⃗α0α ≡Gα0αρ̂0: ð24Þ

The wave-function corrections δΨα yield nonzero matrix
elements in Eq. (19), despite the fact that the operator in
Eq. (19) only contains nuclear coordinates because (for
example) hΨαjδΨ0i ∝ Gα0hψαjψαi ¼ Gα0 by orthonormal-
ity of the BO wave functions. As we show in Appendix A,
the NAC matrix element for a final state at vibrational level
n is given by
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MðαÞ
NAC;n ¼

iqηGα0

ϵα − ϵ0

×

�hχðαÞn ja1e−i
μ
M1

qρηjχ0i
M1

−
hχðαÞn ja2eþi μ

M2
qρηjχ0i

M2

�
;

ð25Þ
where ϵ0 is the ground-state electronic energy.
To facilitate comparison to the CMRmatrix elements, we

can write the NAC probability as

PðαÞ
NAC ¼

X
n

jMðαÞ
NAC;nj2 ≡ PðαÞ

e;NAC × PðαÞ
N;NAC; ð26Þ

where

PðαÞ
e;NAC ¼ q2η2jGα0j2

M2ðϵα − ϵ0Þ2
ð27Þ

and

PðαÞ
N;NAC ¼

X
n

�
jhχðαÞn ja1

M2

μ
e−i

μ
M1

qρη

− a2
M1

μ
eþi μ

M2
qρηjχ0ij2

�
: ð28Þ

In the homonuclear case (M1 ¼ M2 and a1 ¼ a2 ¼ a),

PðαÞ
N;NAC → 16a2

X
n

jhχðαÞn j sinðqρη=2Þjχ0ij2 ðhomÞ: ð29Þ

The prefactor is larger by a factor of 22 ¼ 4 compared to
Eq. (14), which originates from the fact that the NAC
matrix elements scale inversely with the individual nuclear
masses rather than the total mass of the molecule. In the
case of a larger homonuclear molecule with Nn identical
atoms, this factor scales as ðMi

PNn
i ðMiÞ−1Þ2 ¼ N2

n from
reduced mass considerations. Therefore, we might expect
that the NAC Migdal effect becomes significantly more
dominant for larger molecules.

C. Parametric scaling of CMR and NAC

The nuclear matrix elements for CMR and NAC are
parametrically identical for diatomic molecules, as can be
seen directly from Eqs. (14) and (28), up to the factor of 4
mentioned above. Therefore, the parametric scaling of the
CMR and NAC components of the Migdal probability PðαÞ
will be determined primarily by the electronic matrix
elements. For generic states ψα which do not violate
selection rules, the dipole matrix element Dα0 which
governs the CMR rate is proportional to a0, so from
Eq. (18) we have (dropping factors of the anisotropy
parameter η for the purposes of this parametric estimate)

Pe;CMR ∼
�
me

M

�
2

ðqa0Þ2; ð30Þ

as was previously derived for atomic systems [14,15]. For
NAC, ∇ρ ∼ 1=a0 and hence Gα0 ∼ 1=a0, so we have from
Eq. (27)

Pe;NAC ∼
N2

nq2

M2a20ðΔEÞ2
; ð31Þ

where we have attached the factor of N2
n from the nuclear

matrix element to emphasize its role for larger molecules. In
molecular systems, ΔE is of order the Rydberg constant
α2EMme, anda0 ¼ ðαEMmeÞ−1,whereαEM ≃ 1=137 is thefine-
structure constant. Substituting and rearranging terms yields

Pe;NAC ∼
N2

nq2α2EMm
2
e

M2α4EMm
2
e

¼ N2
n

�
me

M

�
2
�

q2

α2EMm
2
e

�

¼ N2
n

�
me

M

�
2

ðqa0Þ2; ð32Þ

which is parametrically identical to Pe;CMR up to the factor
of N2

n.
As we have noted, though, CMR and NAC obey

orthogonal selection rules (and thus their scattering ampli-
tudes do not interfere) since the dipole operator r⃗i only
connects states of opposite electronic parity while the
nuclear gradient ∇ρ preserves electronic parity. That said,
in molecules where states of both parities have similar
energies, we generically expect the CMR and NAC
probabilities to be equal within an order of magnitude or
so. Note that without including NAC, one might have
expected that Migdal transitions which are dipole-forbid-
den would be suppressed by an additional power of
ðme
M Þ2ðqa0Þ2 ≪ 1 from expanding the exponential to the
next order. In fact, though, the probabilities are much
larger; as we will see, NAC typically dominates over CMR
in diatomic molecules, due in part to the factor of N2

n.

D. Examples: H+
2 , N2, CO

We calculate the electronic matrix elements relevant for
the NAC Migdal effect in N2 and CO using the multi-
reference-configuration-interaction (MRCI) method avail-
able in MOLPRO 2019.2 [31]. The derivative operator

hψαðri!; ραÞ
���� ∂
∂ρ

����ψ0ðri!; ρ0Þi ð33Þ

is numerically implemented as the average of a forward and
backward difference scheme using a step size of 0.05a0
around the equilibrium separation ρ0 of the ground elec-
tronic state (2.07a0 for N2 [32] and 2.13a0 for CO [33]). For
each of the geometries, we employ a multi-configuration
self-consistent field (MCSCF) calculation with a full valence
active spacewith two frozen orbitals to obtain a set of natural
orbitals necessary for the MRCI calculation, in which two
states of the same symmetry as the ground state are included.
The calculations are carried out by employing the AVQZ
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basis set [34] for each atom. As a result, we obtain the matrix
elements between the ground electronic state (X1Σ) and the
first excited state with the same symmetry as

jGα0j; ðϵα − ϵ0Þ ¼
�
0.64a−10 ; ð12.4 eVÞ; N2;

1.50a−10 ; ð10.8 eVÞ; CO;
ð34Þ

where we have also given the electronic energies of the
relevant states with respect to the ground state.
At the same level of theory and basis set, we also

compute the transition dipole moment Dα0 between the
ground state and the first dipole-allowed electronic state at
the equilibrium distance, and we find

jDα0j; ðϵα − ϵ0Þ ¼
�
0.70a0 ð12.6 eVÞ; N2;

0.62a0; ð8.1 eVÞ; CO:
ð35Þ

In the case of N2, the electronic states 1Σþ
u and 1Πu are

strongly mixed [35,36]; however, in our case, using two
1Σþ

g states and two 1Πu states in the MCSCF calculation,
we find a transition dipole moment which agrees with the
expected range of values due to the strong mixing. In the
case of CO, we proceed in the same way. However, since
the point group shows C2v symmetry, we include two states
of symmetry A1 and two states of symmetries B1 and B2 in
the MCSCF calculation, yielding a transition dipole
moment which agrees with previous calculations [37–40].
In the spirit of treating diatomic molecules as simple toy

examples, we also investigate the simplest diatomic mol-
ecule Hþ

2 , which contains a single electron. Indeed, this
molecule was studied in the first neutron scattering paper
on the Migdal effect [24]. Because the 3-body Schrödinger
equation is separable in the BO approximation, the elec-
tronic wave functions can be determined by direct numeri-
cal integration without needing to approximate them by a
basis set of atomic orbitals. We determine the electronic
wave functions following Ref. [41], using a step size of
0.02a0 to calculate the NAC gradients. We find

jGα0jðϵα − ϵ0Þ ¼ 0.14a−10 ð11.6 eVÞ; Hþ
2 : ð36Þ

However, as we will see in Sec. III, the large change in
equilibrium separation, from ρ0 ¼ 2.04a0 for the ground
state to ρα ¼ 8.83a0 for the first NAC state, as well as the
large change in the vibrational energies, gives exponen-
tially small overlaps for the nuclear states and hence an
atypically small Migdal rate compared to generic diatomic
molecules.6 Furthermore, the possible CMR states are so
weakly bound that they have only been studied theoreti-
cally [42], and they have the same issues with large
mismatches in the nuclear wave functions. As a result,

in the subsequent discussion we will focus on CO and N2

rather than Hþ
2 .

E. Comparison to inclusive Migdal rates

In Refs. [5,24], it was noted that for NAC, an approxi-
mate sum rule can be used to estimate the inclusive
probability 1 − Pð0Þ for a transition to any electronic state
above the ground state (including the contributions from
ionization, rotational nuclear states, and dissociated
molecular states):

1 − Pð0Þ ≈
q2

M2ϵ2
h∇ρψ0j∇ρψ0i; ð37Þ

where ϵ̄ is an “average” electronic energy above the ground
state, which, strictly speaking, is ill-defined for an inclusive
probability. Unfortunately, 1 − Pð0Þ cannot be calculated
with standard quantum chemistry methods since it requires
at least two electronic states with the same symmetry. In
other words, at least two states are needed to see an avoided
crossing associated with the NAC effect. However, we
estimate an upper bound on 1 − Pð0Þ by considering the
inner product of the orbital parts of ψ0 alone. This yields
h∇ρψ0j∇ρψ0i ≃ 600a−20 for N2 and ≃700a−20 for CO.
Taking ϵ̄ to be the first ionization potential of the molecule
(15.6 eV for N2 and 14.0 eV for CO) as a representative
average between bound and continuum states, we can
estimate

PðαÞ
NAC

1 − Pð0Þ ≳
�
1 × 10−3; N2;

5 × 10−3; CO:
ð38Þ

Reference [24] already calculated 1 − Pð0Þ for Hþ
2 ,

finding that it was 104 times larger than the transition
probability PðαÞ to the first available electronic state,
assuming the nuclear wave function remains in the n ¼
0 state of the new electronic potential. However, we can
understand this large hierarchy between the exclusive and
inclusive probabilities as being due to the significant
mismatch between the equilibrium separations for the
two states. This is to be contrasted with the cases of CO
and N2, where the large nuclear overlaps and large values of
Gα0 result in the transition to the first NAC state giving a
contribution to the inclusive rate which is an order of
magnitude larger than in Hþ

2 .
The above estimates suggest that all of our projected

sensitivities in these molecules may be further improved by
2–3 orders of magnitude by using the inclusive excitation
rate. However, the calculation of the scintillation rate
arising from secondary scattering by an ionized electron
is beyond the scope of this work; furthermore, very high-
energy continuum excitation from core shells may be more
difficult to disentangle from the secondary ionization
(quenching) arising from the recoiling nucleus. Finally,
the inclusive matrix element is isotropic due to a sum over

6At small q, which corresponds to small DM masses, this is
equivalent to the statement that the Franck-Condon factor for the
transition is very small.
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all possible rotational states, so in order to identify the daily
modulation signal, we focus on the exclusive Migdal
probabilities as we discuss in Sec. III.

III. DAILY MODULATION FROM THE MIGDAL
EFFECT

A. Anisotropies from electronic and nuclear matrix
elements

As we have seen in the previous section, there are two
sources of anisotropy in the Migdal probability PðαÞ. The
first comes from the dot product of the momentum transfer
q⃗ with either the molecular dipole (for CMR) or the nuclear
gradient (for NAC), both of which point along the molecu-
lar axis and yield PðαÞ ∝ η2. The second comes from the
nuclear matrix elements, Eqs. (14) and (28), which contain
factors of η in the exponent.
To gain some intuition for the anisotropy from the

nuclear matrix elements, consider the case where the states
jχðαÞn i are governed by the same 1-dimensional harmonic
oscillator potential as the ground state jχ0i, with the same
oscillator frequency ω and the same equilibrium separation.
This is true at the percent level for the NAC transitions in
N2 and CO (see Fig. 2) due to the fact that these molecules
are highly covalent, though not for Hþ

2 or for the CMR
states for N2 and CO. In this case, the matrix elements
are [43]

hχðαÞn jeiq̃1;2ρηjχ0i ∝ ηn
�
q̃1;2ffiffiffiffiffiffi
μω

p
�

n
exp

�
−
q̃21;2η

2

4μω

�
; ð39Þ

where q̃1;2 stands for ðμ=M1Þq or ðμ=M2Þq as appropriate
and we have dropped normalization constants. Squaring
this directly yields a Poisson distribution, but in our case we
have to sum over two terms with different q̃ weighted by
a1;2. Regardless, it is clear that there is strong dependence
on η governed by the typical value of the momentum
transfer, which is in turn determined by the DM mass. We
therefore expect large modulation with amplitude and
phase both depending on the DM mass. We derive the
general expression for the matrix element, with different
oscillator frequencies and equilibrium separations for the
initial and final states, in terms of Hermite polynomials in
Appendix B.

B. Time-dependent rate

For simplicity, consider a model of DM-nuclear scatter-
ing where DM couples equally to protons and neutrons.
The molecular Migdal rate per unit mass is

RðαÞðtÞ
mT

¼ NA

mmolar

ρχ
mχ

σ̄n
μ2χn

Z
d3q⃗
4π

g0ðq⃗;tÞF2
DMðqÞPðαÞðq⃗Þ; ð40Þ

where mT is the mass of the target molecule, mmolar is its
molar mass, NA is Avogadro’s number, σ̄n is a fiducial DM-
nucleon cross section, μχn is the DM-nucleon reduced
mass, and FDMðqÞ is the DM form factor which is equal to
1 for a heavy mediator and is proportional to 1=q2 for a
light mediator. Note that for homonuclear molecules,
PðαÞ ∝ A2 where A is the mass number, and we have
emphasized that PðαÞ is a function of the momentum
transfer q⃗ (both magnitude and direction, through the
anisotropy parameter η).
The time dependence of the rate arises from the DM

velocity distribution (which we take to be the standard halo
model for ease of comparison with the literature) via

g0ðq⃗; tÞ ¼
πv20
qN0

ðe−v−ðq⃗;tÞ2=v20 − e−v
2
esc=v20Þ: ð41Þ

Here

N0 ¼ π3=2v30

�
erf

�
vesc
v0

�
−

2ffiffiffi
π

p vesc
v0

exp

�
−
v2esc
v20

��
ð42Þ

is a normalization constant depending on the dispersion
v0 ¼ 220 km=s and the escape velocity vesc ¼ 544 km=s,
and

v−ðq⃗; tÞ ¼ min

�
vesc;

ΔE
q

þ q
2mχ

þ v⃗⊕ðtÞ · q̂
�

ð43Þ

is the minimum velocity consistent with energy-momentum
conservation, taking ΔE to be the total energy transfer to
the molecule (electronic plus nuclear energies), as shown in
Fig. 1. Since v− arises from integrating the energy-

FIG. 2. Lowest-energy nuclear wave functions χðαÞ0 ðρÞ for the
electronic ground state (blue), first NAC state (orange), and first
CMR state (green) in N2. The similarity of the NAC state to the
electronic ground state in both the equilibrium separation and the
wave-function spread leads to large nuclear overlaps and a larger
rate compared to CMR.
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conserving delta function implicit in PðαÞ, as noted in
Sec. II above, it is often sufficient to approximate ΔE by
just the electronic energy, but strictly speaking, each term in
the sum over the final nuclear states should be weighted by
its own g0 with the appropriate value ofΔE in v−. We adopt
conventions consistent with Refs. [23,44] where the
molecular axis ρ̂0 ¼ ẑ points in the direction of the DM
wind at t ¼ 0, and the Earth velocity is described by

v⃗⊕ðtÞ ¼ jv⃗⊕j

0
BB@

sin θe sinϑ

sin θe cos θeðcos ϑ − 1Þ
cos2θe þ sin2θe cos ϑ

1
CCA; ð44Þ

where ϑðtÞ ¼ 2π × ð t
24 hÞ has the period of a sidereal day,

θe ≈ 42°, and we take jv⃗⊕j ¼ 234 km=s.

C. Daily modulation and sensitivity

Using Eq. (40) along with the previously computed
PðαÞ
CMR and PðαÞ

NAC, we can compute the daily modulation
amplitudes RðαÞðtÞ=hRðαÞi where hRðαÞi is the time-aver-
aged rate, as well as exclusion limits on σ̄n for our toy
examples. Since PðαÞ ∝ q2, the integrand peaks at large q,
and heavy-mediator models with FDM ¼ 1 will maximize
the rate. For Hþ

2 , we numerically determine the complete
spectrum of bound nuclear states corresponding to the
excited electronic state; however, as alluded to previously,
the large difference in equilibrium separations for the two
relevant electronic states leads to exponentially small
nuclear wave-function overlaps, and thus we do not
consider Hþ

2 further because it is not a particularly
representative example.
For CO and N2, we model the effective potential for the

nuclei with a Morse potential. The number of bound
nuclear states varies according to the electronic energy

and effective potential of the CMR or NAC state: for N2

there are 14 (52) for CMR (NAC), and for CO there are 39
(69) for CMR (NAC). The rapid oscillations of highly
excited nuclear states lead to an oscillatory nuclear matrix
element, especially at large q, so it is convenient to have a
closed-form expression for the matrix element to enable
rapid evaluation of the rate. We therefore fit the Morse wave
functions at level n to harmonic oscillator wave functions at
the same level n (in order to match the number of nodes)
with floating normalization, frequency, and equilibrium
separation, and sum up to n ¼ 10 using the analytic matrix
element derived in Appendix B but using the exact Morse
potential energy eigenvalues. We validate this calculation
by instead approximating the nuclear states as harmonic
oscillator states with fixed oscillator frequencies given by
the curvature of the Morse potential at the equilibrium
separation, finding agreement up to Oð1Þ factors. As the
goal of our calculation is to provide an illustration of the
phenomenology of the Migdal effect in molecules, rather
than predict a precise sensitivity for a particular exper-
imental implementation, this level of accuracy suffices for
our purposes. However, cutting off the sum at n ¼ 10 likely
underestimates the rate at large DM masses, where highly
excited states dominate; we discuss the modeling uncer-
tainty from nuclear states in Appendix C. Accurate model-
ing of the nuclear states will be important for generalizing
our work to larger molecules, as both the modulation
amplitude and phase are quite sensitive to the choice of
nuclear states at DM masses above ≃300 MeV.
Figures 3 and 4 illustrate the daily modulation patterns for

N2 and CO with FDM ¼ 1, for both CMR and NAC. As
anticipated, there is a strong dependence on the DM mass,
with the rate peaking at t ¼ 0 hr for light masses but t ¼
12 hr for heavy masses. The crossover occurs at a mass of
about 200–300 MeV independent of the molecular target or

FIG. 3. Daily modulation patterns for CMR (left) and NAC (right) in N2. Both components of the molecular Migdal effect exhibit
similar behavior, featuring modulation patterns that vary considerably for different DMmasses with an inflection point around 200MeV.
The peak-to-trough modulation amplitude saturates to ≃20% at large masses.
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the CMR/NAC matrix element; for this DM mass, the
argument of the exponent in Eq. (39), q2=ð4μωÞ, is order 1
forω ∼ 0.2 eV, μ ∼ 10 GeV, and q ∼mχv ∼ 200–300 keV.
The large peak-to-trough modulation amplitude—exceed-
ing a factor of 2 even for DM masses well above the
electronic excitation threshold and saturating to ≃20% at
large masses—is comparable to the daily modulation
signals in electronic [23,44–46] and phonon [47,48] exci-
tation, as well as defect formation [49–52].
Figure 5 shows the projected 3-event background-free

exclusion limits on the DM-nucleon cross section σ̄n for N2

and CO, assuming a massive mediator (FDM ¼ 1) which
couples equally to all nucleons, and a 1 kg–yr exposure.
The observable signal would be the photon resulting from
the deexcitation of the CMR or NAC state, which from
Eqs. (34) and (35) has energy Oð10 eVÞ, and we assume
100% photon detection efficiency. For both molecules, the
NAC rate (solid) is larger than the CMR rate (dashed), by
an order of magnitude for N2 and 2 orders of magnitude for
CO. This is not inconsistent with our arguments in Sec. II C
about the parametric scaling of CMR and NAC, but it is
simply due to an accumulation of several order-1 factors
which all happen to push the rate in the same direction. In
particular, the NAC states feature larger nuclear overlaps or,
equivalently, large Franck-Condon factors, compared to
CMR for both molecules, as demonstrated in Fig. 2. The
fact that NAC dominates is also consistent with previous
calculations [5] which found that NAC was larger than
CMR by a factor of ∼4 in neutral H2. Indeed, as discussed
in Sec. II C, the factor of 4 in the nuclear matrix element
prefactor suggests that, all else being equal, the NAC rate
will typically exceed the CMR rate in diatomic molecules
and likely also for larger molecules. The sensitivity begins
to decrease around 200 MeV for the same reason the daily
modulation crossover occurs at that mass: the exponential
suppression in the nuclear matrix elements can only be
compensated with highly excited states, which we neglect
in the sum because they correspond to molecular
dissociation.
We also show, for comparison, the existing limits from

Migdal searches and direct nuclear recoil searches in noble
liquids and solid-state calorimeters, as well as projections
for a larger xenon experiment and the Migdal effect in
silicon. The sensitivity of diatomic molecules is within
a factor of 2 from semiconductors in the mass range
10–100 MeV for the same target mass, which motivates
further consideration of more realistic solid-state molecular
targets in light of the large daily modulation signal which

FIG. 4. Same as Fig. 3 but for CO. The modulation curves at small and large DM masses are nearly identical to those for N2.

FIG. 5. Three-event background-free projected exclusion limits
with 1 kg–yr exposure for the CMR (dashed) and NAC (solid)
Migdal effects in CO and N2, assuming 100% signal efficiency.
Current exclusion limits from direct nuclear scattering searches
[53], dedicated Migdal effect searches [54–57], and electron
recoil searches [58–60] analyzed in terms of the Migdal effect [8]
are shown in shaded gray. Projections for xenon [15] (green) and
silicon [8,10,11] (red) with a 2e− threshold are shown for
comparison; the NAC contribution in CO is competitive with
the reach of semiconductors.

CARLOS BLANCO et al. PHYS. REV. D 106, 115015 (2022)

115015-10



can further improve the sensitivity in the presence of
backgrounds.

IV. GENERALIZING THE MOLECULAR MIGDAL
EFFECT TO LARGER MOLECULES

While the present analysis applies specifically to
diatomic molecules, the case of larger molecules is also
covered by the general formalism that describes both the
CMR and NAC Migdal effects. We relegate the precise
generalization to larger molecules and computation of PðαÞ
for experimentally viable molecules to future work, but
here we outline the necessary steps.
The nuclear wave functions may be approximated by

assuming harmonic oscillator states localized to the equi-
librium atomic locations for the relevant electronic states.
This captures the essential features of the transition from
large molecules to semiconductors, where the Migdal effect
may be understood to be mediated by (off-shell) phonons
[10], which are quantized normal mode vibrations.
Additionally, rotational excitations are energetically inac-
cessible in molecular crystals, which simplifies the calcu-
lation as in the diatomic case. The electronic amplitudes,
however, must be treated more carefully.
The CMR calculation follows from the separation of c.m.

motion from the relative motion of the atoms. In general,
the coordinate systems used for larger molecules are more
complicated but can be reduced to a c.m. coordinate and a
set of relative coordinates which are relative to either the
c.m. or to the atoms themselves (so-called internal coor-
dinates). Therefore, the computation of the CMR amplitude
should proceed identically. The electronic matrix element
in Eq. (16) is related to the oscillator strengths of the
electronic transitions, which have been experimentally
measured through spectroscopy for most molecular
scintillators.
Computing the nonadiabatic coupling vectors G⃗α0α is

more difficult as the nuclear gradients become nontrivial
with larger and more complicated molecules, which have
many more degrees of freedom. In practice, this is done
through a finite difference method which involves recalcu-
lating the electronic molecular orbitals at least six times per
atom (three spatial directions for the gradient, evaluated
twice for a difference approximation to the gradient).
However, the computation simplifies if the nuclear gra-
dients can be computed analytically, for example, when the
electronic wave functions are expressed as linear combi-
nations of atomic orbitals (LCAO) [61]. Such a LCAO
approach to molecular orbitals has been shown to be
effective in calculating DM-electron scattering rates in
organic molecules [22,23].

A. Properties of an optimal target

Using the intuition gained from our simple toy examples,
we now turn to an analysis of the physical and chemical

properties relevant for maximizing the molecular Migdal
effect. We note first that the masses of the atoms in the
molecule are not expected to significantly affect the
excitation probability, at least for DM coupling equally
to all nucleons: PðαÞ has a factor of A2 in the numerator
from coherent scattering from the nucleus but a factor of
M2 ∝ A2 in the denominator, so any coherent enhancement
cancels. For the deexcitation photon to be observable, we
also need a material which is transparent to its own
scintillation light, which could be accomplished by e.g.
vibrational broadening or lattice effects.
From Eqs. (14), (16), (27), and (28), we find that there

are experimental observables that might indicate that a
certain molecule would have a particularly large molecu-
lar Migdal amplitude. As mentioned in Sec. II A, the
matrix element in PðαÞ

e;CMR, Eq. (16), is proportional to the
oscillator strength of the electronic transition, which can
be measured through simple UV-visible absorption
experiments. Furthermore, at small q, the matrix element
in PðαÞ

N;CMR (14) is equivalent to the Frank-Condon factor
for the CMR transition to the state α, which can be
inferred from the 0-0 substructure of the UV-visible
absorption band for this transition. Therefore, in order
to determine promising candidates with large CMR
molecular Migdal rates, one might look for molecules
whose UV spectra show significant, low-lying, dipole-
allowed absorption bands which have prominent 0-0
vibrational substructure.
On the other hand, the matrix element in PðαÞ

e;NAC
[Eq. (16)] is the NAC vector, which is a much more subtle
molecular object. These nonadiabatic derivative couplings
are responsible for the Herzberg-Teller effect, wherein
classically forbidden electronic transitions show up in
the absorption spectrum of a molecule with pronounced
vibrational substructure [62–65]. Heuristically, this is
understood to happen when the forbidden dipole matrix
element of the electronic transition depends on the nuclear
coordinate which makes the total molecular dipole matrix
element nonseparable; in the language of Sec. II, the
mismatch between the electronic dipole and the molecular
dipole is of order me=M. In the chemistry literature this is
known as “intensity borrowing” and is a well-known,
experimentally observed nonadiabatic effect. In fact, the
first transition of benzene shows evidence of significant
nonadiabatic couplings [66,67]. Meanwhile, unlike for
CMR, the nuclear matrix element in PðαÞ

N;NAC vanishes at
q ¼ 0, so at small q it is dominated by the nuclear dipole of
the transition. This vibrational dipole amplitude is nonzero
only for integer changes to the vibrational state. Therefore,
the 0-1 vibrational substructure of the IR absorption spectra
should be proportional to this matrix element. Optimal
molecular candidates for the NAC Migdal effect will likely
be molecules whose UV-visible spectra show strong, low-
lying, dipole-forbidden absorption bands while their IR
spectra show significant 0-1 transitions.
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We can extend this reasoning to larger molecules,
particularly aromatic organic compounds such as benzene
and t-stilbene, which were already identified as optimal
targets in a related context in Ref. [68]. The vibrational
states of these molecules, whose electronic transitions
involve delocalized π-electrons, should not change signifi-
cantly between electronic states. This is because delocal-
ized π-electrons involved in the carbon-carbon double bond
are not the dominant orbitals which generate the molecular
structure but rather the σ-electrons on the carbon-carbon
single bonds. This chemical structure will generically lead
to large Franck-Condon factors and thus large nuclear
overlaps, and hence large NAC amplitudes as long as the
nonadiabatic couplings are not parametrically small.

V. CONCLUSIONS

In this paper we have identified two Migdal effects in
molecules wherein DM-nucleus scattering can generate
observable electronic transitions. We have focused on
molecules, rather than isolated atoms or semiconductors,
in part because recent work has shown that molecular
crystals composed of aromatic molecules feature large
anisotropies in their electron-excitation probabilities, lead-
ing toOð1Þ daily modulation amplitudes in the scintillation
signal expected from sub-GeV DM-electron scattering
[23]. The results presented in this paper suggest that these
same anisotropies, and therefore the daily modulation, may
also be expected in the case of DM-nucleus scattering with
an accompanying electronic excitation. We have argued
that the sources of anisotropy and the separation of CMR
and NAC in diatomic molecules should be qualitatively
similar to the case of larger molecules but with the latter
exhibiting a more complex daily modulation pattern due to
the richer spectrum of normal modes. We leave the
dedicated analysis of larger molecules to future work.
The existence of the NAC and CMR components of the

molecular Migdal effect could mean that existing organic
scintillators may be used to great effect in constraining the
DM-nucleon cross section for masses below ∼1 GeV.
Furthermore, we have found that CMR is equivalent to
the semiclassical Migdal effect, long known for atoms and
recently calculated for semiconductors. Our results suggest
that the equivalent NAC effect may be present in semi-
conductors as well since deviations from the BO approxi-
mation are captured by the electron-phonon coupling,
though such a calculation (and, in particular, the relation
between CMR and NAC in semiconductors) is beyond the
scope of this paper. As discussed above, the NAC Migdal
effect in a simple diatomic molecule, carbon monoxide,
shows comparable reach per unit mass compared to the
projected sensitivity of silicon below about 200 MeV and
would outperform xenon in this mass range. Given that
diatomic molecules are also poor scintillators with high
excitation thresholds, we expect the sensitivities presented

here to be a conservative underestimate of the true
sensitivities of generic molecular scintillators.
The molecular Migdal effect may also be a promising,

though challenging, channel to search for coherent neutrino
scattering. The largest flux of solar neutrinos is the low-
energy pp spectrum, with an edge at about 400 keV. This
yields a maximum nuclear recoil energy of 27 eV for
carbon, which is difficult to detect on its own but which can
generate an accompanying electronic excitation through the
molecular Migdal effect. The coherent neutrino-nucleus
scattering rate on carbon is about 1 event=ðkg − yrÞ, and
the NAC Migdal probability (setting a ¼ 1, since the
coupling to nucleons is already accounted for in the
coherent scattering rate, and q ¼ 400 keV) in CO is about
5 × 10−3. In organic crystal detectors, accounting for
smaller ΔE and potentially larger Gα0 as well as the
ionization and dissociation signals we have neglected,
one might optimistically hope to observe a few Migdal
events with a 10–100 kg − yr exposure, with some back-
ground discrimination possible due to the strong direction-
ality of the signal coming from the Sun. The directionality
may also be a useful background discrimination tool for
detection of coherent scattering of the much larger flux of
keV–MeV reactor neutrinos.
While this study is only a first analysis of a new potential

detection channel with molecular detectors, a successful
generalization to larger molecules could allow for the
reanalysis of existing data (for example, from Ref. [22])
in order to constrain the DM-nucleus cross section.
Furthermore, it opens the possibility for organic scintillator
crystals to be used as directional detectors for both DM-
electron scattering and DM-nuclear scattering over the
entire MeV–GeV mass range. The rich structure of non-
adiabatic couplings in molecules is a fruitful area for
collaborations between particle physicists, chemists, and
materials scientists, and we look forward to a dedicated
exploration of these materials for the next generation of
DM detectors.
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APPENDIX A: NONADIABATIC EFFECTS

1. Perturbing Hamiltonian

In this appendix we derive the effective perturbation, δV
in Eq. (20), which induces nonadiabatic mixing of elec-
tronic states from Eq. (21). Our derivation follows closely
that found in the Appendix of Ref. [24] and further in
Ref. [69]. Starting with the Schrödinger equation for the
molecular energy eigenstates, Eq. (2), we plug in the BO
ansatz Ψ ¼ χðαÞψα. The nuclear kinetic terms contain

X2
k¼1

1

Mk
∇2

Rk
Ψ ⊃

X2
k¼1

2

Mk
ð∇Rk

χðαÞÞ · ð∇Rk
ψαÞ ðA1Þ

≪
1

me
χðαÞ∇2

iψα; ðA2Þ

where the inequality follows because me ≪ Mk. Dividing
by χðαÞ, the cross-term is now small compared to the
electronic kinetic energy 1

me
∇2

iψα and can therefore be
included as a perturbation to the electronic Schrödinger
equation (4). Identifying the operator coefficient of ψα as
−2δV1, we have

−2δV1 ¼
1

χðαÞ
X2
k¼1

2

Mk
∇Rk

χðαÞðR⃗1; R⃗2Þ ·∇Rk
ðA3Þ

¼ 1

χðαÞ
2

μ
∇ρχ

ðαÞðρ⃗Þ ·∇ρ ðA4Þ

where in the second line we have switched to relative
coordinates and used ∇R2

¼ −∇R1
¼ ∇ρ when the c.m. is

fixed and electronic coordinates are neglected; note that the
relative minus sign disappears because the gradient is
applied twice. We thus identify the perturbing
Hamiltonian as

δV1 ¼ −
1

μχðαÞ
ð∇ρχ

ðαÞ
μ Þ · ∇ρ; ðA5Þ

which we call δV in the main text.
It should be noted that there exists another cross-term in

Eq. (A1) which is neglected in the BO approximation given
by the following,

X2
k¼1

1

Mk
χðαÞ∇2

Rk
ψα ≪

1

me
χðαÞ∇2

iψα; ðA6Þ

which by similar logic leads to the following electronic
perturbing Hamiltonian,

δV2 ¼ −
1

2μ
∇2

ρ: ðA7Þ

However, we will show in the following section that this
term is subleading compared to δV1 and thus may be
neglected in our analysis.

2. Nonadiabatic matrix elements

The nonadiabatic coupling comes from the perturbing
Hamiltonian δV1 in Eq. (A5). Here we derive the matrix
elements resulting from this coupling. We begin by defin-
ing convenient rescaled momenta as follows,

k⃗1 ¼ −
μ

M1

q⃗; k⃗2 ¼
μ

M2

q⃗: ðA8Þ

Setting aside the scattering lengths ai for now, we can write
the scattering form factors that appear in M,

hΨ0
αjeik⃗i·ρ⃗jΨ0i ¼ hΨ0ð1Þ

α jeik⃗i·ρ⃗jΨð0Þ
0 i

þ hΨ0ð0Þ
α jeik⃗i·ρ⃗jΨð1Þ

0 i; ðA9Þ

where

jΨ0ð0Þ
α i ¼ jχðαÞn ijψαi; ðA10Þ

jΨ0ð1Þ
α i ¼

X
α0

G⃗α0αjψα0 ij∇ρχ
ðαÞ
n i

μðϵα0 − ϵαÞ
: ðA11Þ

The inner products are given by the following,

hΨ0
αjeik⃗i·ρ⃗jΨ0i ¼

X
α0

h∇ρχ
ðαÞ
n jG⃗⋆

α0αhψα0 jψ0ieik⃗i·ρ⃗jχ0i
μðϵα0 − ϵαÞ

þ
X
α0

hχðαÞn jG⃗α00hψαjψα0 ieik⃗i·ρ⃗j∇ρχ0i
μðϵα0 − ϵ0Þ

¼ h∇ρχ
ðαÞ
n jG⃗α0eik⃗i·ρ⃗jχ0i
μðϵα − ϵ0Þ

þ hχðαÞn jG⃗α0eik⃗i·ρ⃗j∇ρχ0i
μðϵα − ϵ0Þ

; ðA12Þ

where we used the orthogonality of hψαjψα0 i ¼ δαα0 as well
as the antisymmetry of the coupling vectors, G⃗⋆

α0α ¼ −G⃗αα0 .
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The inner product becomes

hΨ0
αjeik⃗i·ρ⃗jΨ0i ¼

1

μðϵα − ϵ0Þ
ðh∇ρχ

ðαÞ
n jG⃗α0eik⃗i·ρ⃗jχ0i

þ hχðαÞn jG⃗α0eik⃗i·ρ⃗j∇ρχ0iÞ

¼ −
1

μðϵα − ϵ0Þ
G⃗α0 · hχðαÞn jik⃗ieik⃗i·ρ⃗jχ0i;

ðA13Þ

where we have integrated by parts in the last line and taken
the surface term to be zero due to normalizability.
Furthermore, note that G⃗α0 factors out of the inner product
since it is constant in ρ to first order.
Combining Eq. (A13) with Eq. (19) and replacing k⃗i

with the original expressions in terms of Mi and q⃗, we get

M ¼ i
M1ðϵα − ϵ0Þ

G⃗α0 · hχðαÞn jq⃗e−i μ
M1

q⃗·ρ⃗jχ0i

−
i

M2ðϵα − ϵ0Þ
G⃗α0 · hχðαÞn jq⃗eþi μ

M2
q⃗·ρ⃗jχ0i

¼ iG⃗α0 · q⃗
ϵα − ϵ0

×

�hχðαÞn ja1e−i
μ
M1

q⃗·ρ⃗jχ0i
M1

−
hχðαÞn ja2eþi μ

M2
q⃗·ρ⃗jχ0i

M2

�
;

ðA14Þ

which matches the results of Ref. [24] in the case of
homonuclear molecules.
Finally, recall that the other neglected cross-term propor-

tional to χ∇2
Rk
ψ generated a perturbing Hamiltonian

δV2 ¼ −∇2
ρ=ð2μÞ. Following a similar derivation as above,

one can show that this Hamiltonian leads to a matrix
element which is proportional to the following factor,

M ∼ hχðαÞn jaieþik⃗i·ρ⃗ð∇⃗ρ · G⃗α0Þjχ0i: ðA15Þ

However, since G⃗α0 is independent of ρ⃗ to first order, this
matrix element is a subleading nonadiabatic coupling
which we can take to be zero at this order in the expansion.

APPENDIX B: HARMONIC OSCILLATOR
MATRIX ELEMENTS

In this appendix we derive a closed-form analytic
expression for the matrix element hχðαÞn jeiβqρjχ0i, which
appears in the CMR and NAC nuclear matrix elements.
Here β is an arbitrary real parameter, and the initial and
final states are 1-dimensional harmonic oscillator states:

χ0ðρÞ ¼
�
μω0

π

�
1=4

e−
μω0ðρ−ρ0Þ2

2 ; ðB1Þ

χðαÞn ðρÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2nn!

p
�
μωα

π

�
1=4

e−
μωαðρ−ραÞ2

2

×Hnð
ffiffiffiffiffiffiffiffi
μωα

p ðρ − ραÞÞ; ðB2Þ

with μ the reduced nuclear mass, ρ0 and ω0 the equilibrium
separation and oscillator frequency for the ground state
(likewise for ρα and ωα for the excited electronic state), and
Hn the Hermite polynomials.
It is most convenient to work with momentum-space

wave functions,

χ̃0ðkÞ ¼
e−ikρ0

ðμω0πÞ1=4
exp

�
−
1

2

k2

μω0

�
; ðB3Þ

χ̃ðαÞn ðkÞ ¼ e−ikραffiffiffiffiffiffiffiffiffi
2nn!

p
�

1

μωαπ

�
1=4

ð−iÞn exp
�
−
1

2

k2

μωα

�
×Hnðk= ffiffiffiffiffiffiffiffi

μωα
p Þ; ðB4Þ

which also offer the advantage that the translations in ρ
appear as overall phase factors. The normalization is
chosen so that factors of 1=

ffiffiffiffiffiffi
2π

p
appear in both the

Fourier transform and its inverse:

χ̃ðkÞ¼
Z

dρffiffiffiffiffiffi
2π

p e−ikρχðρÞ; χðρÞ¼
Z

dkffiffiffiffiffiffi
2π

p eþikρχ̃ðkÞ: ðB5Þ

Computing the matrix element in Fourier space yields

hχðαÞn jeiβqρjχ0i¼
Z

dρ
2π

dk1dk2e−ik1ρ½χ̃ðαÞn ðk1Þ�⋆

×eiβqρeik2ρχ̃0ðk2Þ

¼
Z

dk1dk2δðk1−βq−k2Þ½χ̃ðαÞn ðk1Þ�⋆χ̃0ðk2Þ

¼
Z

∞

−∞
dk½χ̃ðαÞn ðkþβqÞ��χ̃0ðkÞ

¼ ineiρ0βq

ðμ2ωαω0Þ1=4
ffiffiffiffiffiffiffiffiffiffiffiffi
2nn!π

p

×
Z

dkeikðρα−ρ0Þexp
�
−
1

2

k2

μωα
−
1

2

ðk−βqÞ2
μω0

�

×Hn

�
kffiffiffiffiffiffiffiffi
μωα

p
�
: ðB6Þ

One can rearrange the integrand by completing the square.
Define

k0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μω0ωα

ω0 þ ωα

s
; ðB7Þ

δρ≡ ρα − ρ0; ðB8Þ
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tβ ≡ k0βq
2μω0

þ i
k0δρ
2

; ðB9Þ

where the notation tβ emphasizes that this variable carries
the dependence on the parameter β. The matrix element
becomes

hχðαÞn jeiβqρjχ0i ¼
ineiρ0βqet

2
β−β

2q2=ð2μω0Þk0
ðμ2ωαω0Þ1=4

ffiffiffiffiffiffiffiffiffiffiffiffi
2nn!π

p

×
Z

dk
k0

e−k
2=k2

0
þ2ðk=k0Þtβ−t2βHnðk=

ffiffiffiffiffiffiffiffi
μωα

p Þ: ðB10Þ

We will now manipulate the integral to obtain the
Hermite generating function:

e2xt−t
2 ¼

X∞
j¼0

tj

j!
HjðxÞ: ðB11Þ

Taking x ¼ k=k0 and

u≡ k0ffiffiffiffiffiffiffiffi
μωα

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0

ω0 þ ωα

s
; ðB12Þ

the desired integral is

I ≡
Z

dxe−x
2þ2xtβ−t2βHnðukÞ

¼
X∞
k¼0

tkβ
k!

Z
dxe−x

2

HkðxÞHnðukÞ: ðB13Þ

Combining the series definition of the Hermite polynomials
and its inverse,

HnðaxÞ ¼ n!
Xbn=2c
m¼0

ð−1Þmð2axÞn−2m
m!ðn − 2mÞ! ; ðB14Þ

ð2xÞs ¼ s!
Xbs=2c
j¼0

Hs−2jðxÞ
j!ðs − 2jÞ! ; ðB15Þ

yields a series expansion for HnðaxÞ in terms of HnðxÞ:

HnðaxÞ¼n!
Xbn=2c
m¼0

ð−1Þman−2m
m!

Xbn=2−mc

j¼0

Hn−2m−2jðxÞ
j!ðn−2m−2jÞ!

¼
Xbn=2c
j¼0

an−2jða2−1Þj n!
ðn−2jÞ!j!Hn−2jðxÞ: ðB16Þ

This permits Eq. (B13) to be integrated term by term using
the orthogonality relation

Z
dxe−x

2

HmðxÞHnðxÞ ¼
ffiffiffi
π

p
2nn!δnm; ðB17Þ

which gives

I ¼
X∞
k¼0

Xbn=2c
j¼0

tkβ
k!

ffiffiffi
π

p
2kk!δk;n−2j

un−2jðu2 − 1Þjn!
ðn − 2jÞ!j!

¼ n!
ffiffiffi
π

p Xbn=2c
j¼0

ðu2 − 1Þj
ðn − 2jÞ!j! ð2utβÞ

n−2j: ðB18Þ

The argument of the sum can now be manipulated to yield
the Hermite series definition, Eq. (B14). In fact,

I ¼ ffiffiffi
π

p ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
Þnn!

Xbn=2c
j¼0

ð−1Þj
j!ðn − 2jÞ!

�
2utβffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
�

n−2j

¼ ffiffiffi
π

p ð1 − u2Þn=2Hn

�
utβffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
�
: ðB19Þ

The argument of Hn is generically complex if δρ ≠ 0
because tβ is complex, so the Hermite polynomials are to be
understood in their analytic continuation. Restoring the
prefactor, we finally have

hχðαÞn jeiβqρjχ0i ¼
ineiρ0βqet

2
β−β

2q2=ð2μω0Þk0
ðμ2ωαω0Þ1=4

ffiffiffiffiffiffiffiffiffi
2nn!

p

× ð1 − u2Þn=2Hn

�
utβffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
�
: ðB20Þ

This closed-form expression permits rapid evaluation of the
required nuclear matrix elements even up to large values
of n.

APPENDIX C: MODELING THE NUCLEAR
WAVE FUNCTIONS

In the main body, we fit the Morse potential wave
functions to harmonic oscillator wave functions at the same
level n in order to exploit the analytic formula (B20).
Figure 6 shows the results of such fits for the CO NAC
states; the n ¼ 0 ground state (left) is extremely well
approximated by the harmonic oscillator ground state,
but a highly excited state (n ¼ 10, right) has a poorer fit
at both large and small ρ where the anharmonicity is most
pronounced.
As shown in Fig. 7, the choice of wave function matters

only at the percent level for NAC, while the choice of where
to cut off the sum in Eqs. (14) and (28) is a much larger
effect. In Fig. 7, the black curves labeled “Harmonic, all
states” extend the sum to the largest value of n such that the
nuclear energy ðnþ 1

2
Þωα − 1

2
ω0 does not exceed the depth

of the Morse potential (8.96 eV for the first NAC state in
CO), yielding n ¼ 34. At the crossover mass of 300 MeV
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where q2=ð4μωαÞ is Oð1Þ, the extra states in the sum cause
the daily modulation to switch phases, from a maximum at
t ¼ 0 hr to a maximum at t ¼ 12 hr. Likewise, for masses
above the crossover mass where many highly excited states
contribute to PðαÞ

N , the sensitivity improves by almost a

factor of 10. We conclude that our sensitivity estimates
using the Morse spectrum cutoff at n ¼ 10 are robust at the
order of magnitude level, but a precise prediction for the
molecular Migdal rate will require accurate modeling of the
highly excited nuclear states of the molecular target.
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