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Nuclear scattering events with large momentum transfer in atomic, molecular, or solid-state systems may
result in electronic excitations. In the context of atomic scattering by dark matter (DM), this is known as the
Migdal effect, but the same effect has also been studied in molecules in the chemistry and neutron
scattering literature. Here we present two distinct Migdal-like effects from DM scattering in molecules,
which we collectively refer to as the molecular Migdal effect: a center-of-mass recoil, equivalent to the
standard Migdal treatment; and a nonadiabatic coupling resulting from corrections to the Born-
Oppenheimer approximation. The molecular bonds break spherical symmetry, leading to large daily
modulation in the Migdal rate from anisotropies in the matrix elements. Our treatment reduces to the
standard Migdal effect in atomic systems but does not rely on the impulse approximation or any
semiclassical treatments of nuclear motion and as such may be extended to models where DM scatters
through a long-range force. We demonstrate all of these features in a few simple toy models of diatomic
molecules, namely, Hz+ , N», and CO, and find total molecular Migdal rates competitive with those in
semiconductors for the same target mass. We discuss how our results may be extended to more realistic

5.6,

targets comprised of larger molecules which could be deployed at the kilogram scale.

DOI: 10.1103/PhysRevD.106.115015

I. INTRODUCTION

The Migdal effect, in which nuclear scattering leads to a
visible electron recoil, is a promising avenue to detect sub-
GeV dark matter (DM) scattering with nuclei. Such light
DM is kinematically mismatched with nuclei and thus leads
to very small elastic scattering energies, often below
detection thresholds. However, because electrons and
nuclei are coupled in all atomic, molecular, and solid-state
systems, perturbations to the nuclei can induce electronic
transitions. The probability of this transition is small, but
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since electronic transition energies are at the eV scale which
is above the thresholds of existing detectors, even a small
rate is favorable compared to an unobservable elastic
scattering signal. The Migdal effect in atoms, in which
recoiling nuclei lead to atomic excitation or ionization, has
a long and interesting history, first proposed nearly a
century ago in the context of alpha and beta decay [1]
and subsequently rediscovered by the WIMP DM com-
munity [2]. Independently, the neutron scattering commu-
nity invoked nucleus-electron correlations similar to the
atomic Migdal effect to explain anomalous cross sections in
compounds containing hydrogen [3-5]. The Migdal effect
in the context of DM has been calculated for isolated atoms
[6,7] and semiconductors [8—11] (see also Refs. [12—18] for
additional theoretical investigations of the Migdal effect),
and there is an active program to try to measure the ionizing
Migdal effect experimentally using Standard Model probes
[19-21].

In this paper, we present for the first time two distinct
directional Migdal-like effects in excitation of molecules
that we call collectively the molecular Migdal effect. This
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can be seen as the low-energy complement of the ionizing
Migdal effect of core electron shells of atoms bound in
molecules (see e.g. Ref. [21]), which is isotropic and does
not depend significantly on the molecular nature of the
nuclear or electronic states." We focus specifically on
diatomic molecules, treating them as toy examples useful
for deriving analytic expressions for the matrix elements;
identify the origin of anisotropy and directionality for the
molecular Migdal effect; and determine parametric scalings
which can generalize to larger molecules. Due to the
anisotropy inherent in the molecular states, we predict
order-1 daily modulation of the Migdal signal for DM
masses of 10 MeV to 1 GeV. Our qualitative results should
generalize to well-oriented molecules with weak intermo-
lecular interactions, such as aromatic organic compounds
that can form molecular crystals and that already serve as
excellent anisotropic targets for DM-electron scattering
which could conceivably be deployed at the kilogram scale
[22,23]. Therefore, we will discuss the path to extending
our formalism to larger molecules and how we may use
existing molecular data to identify targets with large
molecular Migdal rates.

We base our treatment largely on a series of papers
formulating the cross section for molecular excitations
following neutron scattering [3-5,24,25]. We rederive
and adapt for sub-GeV DM scattering the following results:

(i) Migdal excitation has a component proportional to
an electronic dipole matrix element, (y(|7|y;),
where |y;) and |w,) are the initial and final
electronic states, respectively. In previous work in
the DM context, this was understood as arising from
a semiclassical approximation for the struck nucleus
for a contact interaction, but following Ref. [24],
here we show that it arises simply from the mismatch
between the c.m. of the nuclei and the c.m. of the
entire molecule including the electrons (see also
Refs. [26,27]). This component of the Migdal effect,
which we refer to as the center-of-mass recoil
(CMR), thus requires no minimum momentum
transfer in order to stay within the impulse approxi-
mation and holds e(;ually well for scattering through
a long-range force.

(i1) There is a second component of the Migdal ex-
citation probability, arising from corrections to the
Born-Oppenheimer (BO) approximation. Such an
effect does not exist for atoms, which have only a
single nucleus, but instead describes the behavior of
molecular systems where electronic and nuclear
motion may be parametrically separated because
of the small ratio m,/M, where M is the nuclear

'We do not consider the excitation signal arising from a
primary ionization, though this would be an additional source of
sig;lal events.

Despite the nomenclature, the CMR effect exists even if the
c.m. is fixed and does not actually recoil.

mass. The many-body ground state of the molecule
contains admixtures of excited electronic states with
coefficients of order m,/M, referred to in the
literature as a nonadiabatic coupling (NAC), a
nomenclature we adopt. The NAC gives the ground
state a nonzero overlap with excited electronic
states, yielding a Migdal matrix element propor-
tional to (w|V,y;) where V, is the gradient with
respect to the nuclear separation p.
We show that both CMR and NAC probabilities have
identical parametric scalings and compute the relevant
electronic matrix elements for some simple diatomic
molecules (H;, N,, and CO, selected due to their computa-
tional feasibility) to show the interplay of these two effects.
Interestingly, the CMR and NAC Migdal effects have
orthogonal selection rules: the dipole matrix element
connects electronic states of opposite parity, while the
NAC matrix element connects states of like parity.3 This
allows for the two molecular Migdal components to be
distinguished experimentally since these transitions typi-
cally have well-separated energies.

In addition, we point out the following new result
concerning the directional dependence of the scattering.
Consider a situation where the internuclear axis is fixed
along a particular direction py. This is perhaps unrealistic
for diatomic molecules but accurately describes a molecu-
lar crystal where molecules have a fixed orientation within
a unit cell. Defining an anisotropy parameter

n=4q-po (1)

where ¢ is the momentum transfer of the interaction, there
are now two sources of anisotropy in the Migdal excitation
probability:

(1) Both CMR and NAC matrix elements inherit the
anisotropy of the electronic wave functions since the
dipole matrix element and the NAC gradient matrix
element both point along the direction of the
molecular axis py. In both cases the Migdal prob-
ability carries a factor of 7.

(ii)) Both CMR and NAC contain nuclear matrix ele-
ments schematically of the form (y/|e’?|y;) where
ly;) and |y;) are nuclear states. Squaring and
evaluating this matrix element yields additional
anisotropy of the form #7*" exp (— 2w n?), where p
is the reduced mass of the nuclei, w is a characteristic
vibrational frequency, and n depends on the vibra-
tional final state with the largest overlap with the
initial state. The factor ¢>/(2uw) in the exponential
can be order 1 for sub-GeV DM, and thus the

*We will focus exclusively on molecular orbitals consisting of
valence electrons, but since molecular spectroscopic notation is
possibly unfamiliar to some physicists, the like-parity transitions
are analogous to ls — 2s in atomic hydrogen, and those of
opposite parity are analogous to 1s — 2p.
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directionality of the scattering rate depends strongly

on the DM mass.
The anisotropy of the Migdal excitation probability leads to
the appealing possibility of directional detection, which (as
in the case of DM-electron scattering) does not depend on
observing the direction of any final states but rather yields a
sidereal daily modulation in the rate of e.g. photons emitted
from the deexcitation of the excited molecular state. While
diatomic molecules have already been proposed as possible
targets for DM-nuclear scattering [28,29], in a typical
experimental situation with gas detectors, the molecules
will be isotropically distributed. Thus, the directional
dependence we have identified will average out and
disappear. However, in molecular crystals with fixed
orientation, for example, organic scintillator crystals, the
large daily modulation should persist. As we will show, the
daily modulation from the molecular Migdal effect is not a
threshold effect, and it persists at the O(1) level even for
DM masses well above the kinematic threshold for elec-
tronic excitation.

This paper is organized as follows. In Sec. 1I, we review
the nonadiabatic corrections to the BO approximation in
diatomic molecules, compute the electronic transition
probability following a nuclear scattering event to leading
order in m,/M, and identify the CMR and NAC compo-
nents of the molecular Migdal effect. In Sec. III, we
compute the nuclear and electronic matrix elements for
our three diatomic toy examples and show the daily
modulation of the electronic excitation rate as a function
of the DM mass, demonstrating that the NAC contribution
typically dominates and gives competitive sensitivity to
semiconductor targets. In Sec. IV, we outline how our
results may be extended to larger molecules. We conclude
in Sec. V.

II. MOLECULAR MIGDAL EFFECT

A diatomic molecule has a many-body wave function
¥(Ry,R,.7,,;) where R, , are the nuclear positions, 7, ; are
the electron positions, and i runs over all of the electrons in
the molecule. In the BO approximation, the electrons are
treated as responding instantaneously to changes in the
nuclear positions, and the wave function factorizes into a
product of nuclear and electronic wave functions. This
factorization only holds in the strict limit m,/M; — 0,
though, where M, are the nuclear masses. To see this, we
start from the Schrodinger equation for the molecule:

LZWH v—%urv%z Y42E-V)¥=0 (2)
m, = i M, M, B

where E is the energy of the state ¥, and V =V, ,, + V v +
Vyn is the potential which contains electron-electron,
electron-nucleus, and nucleus-nucleus interactions, respec-
tively. The BO ansatz is

lP(I_él’I_é% 7e,i) ~ 9(§CM)Z((Z)(I_€]’ﬁZ)Wa(7i;pa)' (3)

Here, @ is the overall c.m. motion, y'*) depends only on the
nuclear positions, and y, is an electronic wave function
which depends parametrically on the equilibrium separa-
tion between the two nuclei, p,, and for which the
electronic coordinate 7; is taken with respect to the c.m.
of the molecule, 7; = 7, ; — Reum-

Neglecting the c.m. motion which always factors out, the
Schrodinger equation approximately separates as

1
m_zvzz‘//a + 2(606 - Vee - VeN)l//a = 0’ (4)

V% V%
1 2 @) L2 E—e —V @ —=0. (5
QA+M)X +2(E—e, = Vyn)x (5)

The first equation determines the electronic state y, and its
energy eigenvalue €, for fixed nuclear positions, and the
second determines the nuclear state given ¢, as a function
of nuclear positions. Note that the equilibrium separation
P 1s determined by minimizing the effective potential
governed by ¢, and thus depends on the electronic state a,
as illustrated in Fig. 1. Likewise, vibrational excitations
above this equilibrium state depend on «, which we
emphasize with our notation y(@.

A
E
AE:(ea750)+<n+%>wa7%wo
n= 2
=l ~ (n iw,,
Ear 1 I ( u)
|
1
Nz
po
1
€0 + I~ 5w

FIG. 1. Cartoon illustrating the transition from the electronic
ground state (blue) to an excited electronic state (red). The energy
manifolds which govern the nuclear states are determined by the
electronic configuration and are modeled by a Morse potential as
a function of the internuclear separation p. Each electronic state is
split by vibrational substates which are approximately harmonic
near the potential minima.
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The terms neglected in the separation of the Schrodinger
equation are of the form M+2 2V3,y, and

Mim(vl_ﬂ/a)(vl,y((")). As anticipated, these vanish as

M, — oo, but treated as a perturbation to V,y in time-
independent perturbation theory, they will correct the
electronic wave functions, leading to the NAC Migdal
effect [24] as we describe further in Sec. II B below.
The relevant squared matrix element for a Migdal
transition to a particular electronic state v, in a diatomic
molecule, through a momentum deposit g from the DM, is

PO = ST [(Whlay e + arel@ w2 (6)
!/

where ¥, is the molecular ground state and the sum over
W' contains all final nuclear states y(*) associated with y/a.4
We have allowed for the possibility that DM may couple
differently to nuclei 1 and 2 by including arbitrary (real)
coefficients a; and a, (the analogues of different neutron
scattering lengths in the case of neutron-molecule scatter-
ing). For sub-GeV DM, the momentum transfer is always
smaller than the inverse nuclear radius, so the interaction is
always coherent over the nucleus and the nuclear form
factor is unity. A long-range DM interaction may be
accommodated by adding a factor of 1/¢* in the matrix
element, as well as screening effects by e.g. multiplying
a,, by atomic form factors.

Because we have in mind the application of the Migdal
effect to solid-state systems, in particular, scintillation
transitions in molecular crystals, we will narrow our focus
from the general expression (6) in two ways:

(1) We will only consider bound final states, both for the
electrons and the nuclei, as shown in Fig. 1. The total
Migdal rate, which includes both ionized electron
states and dissociated nuclear states, will necessarily
be larger, but the signals are expected to be exper-
imentally distinct. The signature of a single elec-
tronic excitation is a narrow spectral line. In contrast,
ionization of inner shell electrons leads to broad,
energetic spectra that must be distinguished from the
ionization accompanying the elastic nuclear re-
coil [21].

(2) We will neglect both c.m. motion of the molecule
and rotational excitations since these will be highly
suppressed in a crystal compared to vibrational
modes. In particular, we do not take the nuclear
ground state to be the isotropic rotational ground
state where the direction of the molecular axis is

4Strictly speaking, Eq. (6) should contain an energy-conserv-
ing delta function 5(E’ — E,)) inside the sum, but since the nuclear
energies are much smaller than the electronic energies €, E' ~ €,
for all terms in the sum, and the delta function can be
approximately factored out. We will restore the delta function
in Sec. III below.

undetermined, but rather we fix p, = Z, and likewise
for the excited nuclear states.’ In this setup, the
nuclear wave functions )(f{l) (p) are then a function
only of the nuclear separation,

P:|1§2—1§1|1 (7)

and may be labeled by a single integer n character-
izing the vibrational level. Furthermore, all dot
products of the form ¢ -5 can then be written as
qpn, where 5 is the anisotropy parameter defined
in Eq. (1).
In what follows, we will compute Eq. (6) to leading order in
m,/M, and find schematically

P& = PG + PiAc (8)
= P1(\7) X (ngMR + szrAc) 9)

~01) % (™) (gag)? (10)
y ) (4%
where a; is the Bohr radius, M = M| + M,, and PI(\(,’) and
P.” are squared nuclear and electronic matrix elements,
respectively. In particular, we will find that the nuclear
matrix elements for both CMR and NAC are order 1 for
states a with large nuclear wave-function overlaps with the
ground state, and that the CMR and NAC electronic matrix
elements have identical parametric scalings as shown
in Eq. (10).

A. CMR Migdal effect

In a diatomic molecule, the individual nuclear coordi-
nates R, , are related to the c.m. and relative coordinates as
follows:

- - u . m, .

Ri=Rew—-—1-5-"23"7, 11
1 CM Mlﬂ M irl ( )

> > u o m, N

R, =R e ; 12
2 CM+M2,0 " E,- T (12)

where y = MM, /M is the reduced nuclear mass and p =
R, — R, is the nuclear separation vector.

Note that because the c.m. of the molecule includes
contributions from the electronic coordinates, the nuclear
coordinates contain admixtures of the relative electron
coordinates with coefficients m,/M. As a result, the
CMR contribution to P@ is

>Our isolation of vibrational nuclear states from the rotational
motion of the molecule may be seen as focusing on the normal
modes of the molecule, with diatomic molecules having only a
single normal mode but with polyatomic molecules hosting many
more.
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P(Cal\>/[R = |<‘l/a|€_iﬁq.z"r"|‘//0>|2 X PE\?,)CMR (13)

where P;?CMR is the squared nuclear matrix element

—i~qpi it-qp
Pg\l'l,)CMR = Z\(){,({"Hale W 4 aye IR |yg) 2 (14)

summed over vibrational states )(S,a) associated with the

electronic state a. In the particular case of a homonuclear
diatomic molecule, where a; =a,=a and u/M, =
u/My = 1/2, we have

Penr = 40> |G| cos(qpn/2) xo) > (hom).  (15)

In the electronic matrix element, the typical kinematics of
sub-GeV DM are such that (m,/M)q < aj, and thus the
exponential may be Taylor-expanded to yield an electronic
excitation probability

[°4 me 2 - -
Pl = () 7wl Sl (19

analogous to similar results for atomic systems which have
been obtained wunder various sets of assumptions
[6,8,14,15,30]. For valence transitions in diatomic mole-
cules, which are the focus of this paper, the dipole matrix
element will always point along the molecular axis, and
therefore for fixed orientation p,, we can write

(Wal E Filwo) = DaoPo (17)
and
() m,\? 2.2 2
P = [ =¢ D ,|°. 18
¢.CMR <M> q°1°| Do (18)

We note that this result was also derived earlier in the
context of neutron scattering in Ref. [5]. Furthermore, D,
can be experimentally determined using spectroscopy since
it is essentially the oscillator strength of the transition,
allowing a data-driven prediction of the CMR Migdal rate
[7]. Since P:’CMR is already proportional to (m,/M)?, we
do not need to include the nonadiabatic corrections to ¥, or
P! at this order.

B. NAC Migdal effect

The NAC component of the molecular Migdal effect [23]
arises from corrections to the wave functions rather than the
coordinates, so we may ignore the electronic coordinates in
Egs. (11) and (12) to leading order in m2/M?. We then
compute the matrix element in Eq. (6) as follows, setting
Ry = 0 as we are ignoring c.m. motion:

M= (W |a, e 7 1 gy BTy (19)

We now include nonadiabatic corrections to the wave
functions. Consider a total wave function ¥, which can be
expressed as y(? (y, + dy,), where v, is the unperturbed
electronic wave function in the BO approximation. As we
show in Appendix A, the effective perturbing potential in
the electronic Schrédinger equation is given by

1V,x
nox

sV = v (20)

P
Note that when the orientation of the molecular axis is
fixed, V, =d/dp is an ordinary derivative. We can thus
apply first-order perturbation theory to the electronic wave
functions only,

a"sv a
:Z@/ |0V W)

€q — €y

5Wa Yo (2 1)

o #a

which shows, as long as the perturbation matrix element
does not vanish, that the ground state with @ = 0 contains
admixtures of the excited electronic states, and vice versa.

Multiplying by the nuclear wave function y®, we
identify the first nonadiabatic correction to the molecular
wave function,

N
Ga’ a

1 -
o= (T ) Yy i), (22

od+a €q — €q

where €, are the energies of the electronic states a [the
eigenvalues of the electronic equation (4)], and the non-
adiabatic coupling vectors G, are defined as

Guu= [ Ty Gin) Fin),,. (23

Note that the gradient is evaluated at the equilibrium
position p, for the state «. Furthermore, only wave
functions y,, with the same symmetry as the ground state
contribute to the sum since only those can experience
avoided crossings, as opposed to real crossings between
states with distinct symmetry. With fixed molecular ori-
entation, the nonadiabatic coupling vectors always point
along the molecular axis, so we can write

éa’a = Ga’aﬁO- (24)

The wave-function corrections 6%, yield nonzero matrix
elements in Eq. (19), despite the fact that the operator in
Eq. (19) only contains nuclear coordinates because (for
example) <q](1|6q10> & G(IO <l//(1|l//(l> = G(IO by orthonormal-
ity of the BO wave functions. As we show in Appendix A,
the NAC matrix element for a final state at vibrational level
n is given by

115015-5
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iqnGao
MQen = ﬁ
a
ik i
(o lane ) G lae )
M, M, ’

(25)

where € is the ground-state electronic energy.
To facilitate comparison to the CMR matrix elements, we
can write the NAC probability as

Pﬁc = Z|M1(\?1)xc,n|2 = PE‘LKIAC X Pz(\?t.)NAO (26)
where
PSIEIAC = m (27)
and
PI(\(’I.,)NAC = Z <|()($,">|a1 %e—%m
- az%e%"’”wv). (28)

In the homonuclear case (M; = M, and a; = a, = a),
Pikac = 16223 |G sin(gpn/2) ro) P (hom). (29)

The prefactor is larger by a factor of 22 = 4 compared to
Eq. (14), which originates from the fact that the NAC
matrix elements scale inversely with the individual nuclear
masses rather than the total mass of the molecule. In the
case of a larger homonuclear molecule with N,, identical
atoms, this factor scales as (M; 52" (M,;)™)2 = N2 from
reduced mass considerations. Therefore, we might expect
that the NAC Migdal effect becomes significantly more
dominant for larger molecules.

C. Parametric scaling of CMR and NAC

The nuclear matrix elements for CMR and NAC are
parametrically identical for diatomic molecules, as can be
seen directly from Eqs. (14) and (28), up to the factor of 4
mentioned above. Therefore, the parametric scaling of the
CMR and NAC components of the Migdal probability P(®)
will be determined primarily by the electronic matrix
elements. For generic states y, which do not violate
selection rules, the dipole matrix element D,, which
governs the CMR rate is proportional to a,, so from
Eq. (18) we have (dropping factors of the anisotropy
parameter 7 for the purposes of this parametric estimate)

oo~ () (awnr (30)

as was previously derived for atomic systems [14,15]. For
NAC, V, ~ 1/a, and hence G,y ~ 1/aj, so we have from
Eq. (27)

Nig?

VER(SE) o

Pe,NAC ~

where we have attached the factor of N2 from the nuclear
matrix element to emphasize its role for larger molecules. In
molecular systems, AE is of order the Rydberg constant
aym,,anday = (agym,)”!, whereagy ~ 1/137is the fine-
structure constant. Substituting and rearranging terms yields

NZ 2a2 m2 m.\ 2 2
Pe.NACN nd Ogm ZEIN%<—6> <2q 2)

Mgy m? M) \agym?
m.\ 2
=N2(— 2 32
(%) tam) 32)
which is parametrically identical to P, cygr up to the factor

of N2.

As we have noted, though, CMR and NAC obey
orthogonal selection rules (and thus their scattering ampli-
tudes do not interfere) since the dipole operator 7; only
connects states of opposite electronic parity while the
nuclear gradient V, preserves electronic parity. That said,
in molecules where states of both parities have similar
energies, we generically expect the CMR and NAC
probabilities to be equal within an order of magnitude or
so. Note that without including NAC, one might have
expected that Migdal transitions which are dipole-forbid-
den would be suppressed by an additional power of
()*(qap)* < 1 from expanding the exponential to the
next order. In fact, though, the probabilities are much
larger; as we will see, NAC typically dominates over CMR
in diatomic molecules, due in part to the factor of N2.

D. Examples: H;, N,, CO

We calculate the electronic matrix elements relevant for
the NAC Migdal effect in N, and CO using the multi-
reference-configuration-interaction (MRCI) method avail-
able in MOLPRO 2019.2 [31]. The derivative operator

Vo7 pa) % wo(773p0)) (33)

is numerically implemented as the average of a forward and
backward difference scheme using a step size of 0.05a,
around the equilibrium separation p, of the ground elec-
tronic state (2.07a, for N, [32] and 2.13a,, for CO [33]). For
each of the geometries, we employ a multi-configuration
self-consistent field (MCSCEF) calculation with a full valence
active space with two frozen orbitals to obtain a set of natural
orbitals necessary for the MRCI calculation, in which two
states of the same symmetry as the ground state are included.
The calculations are carried out by employing the AVQZ

115015-6
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basis set [34] for each atom. As a result, we obtain the matrix
elements between the ground electronic state (X'X) and the
first excited state with the same symmetry as

(124 eV), N,
(10.8 eV), CO,

0.64a5",

34
1.50a5", (34)

Giol (e =) = {

where we have also given the electronic energies of the
relevant states with respect to the ground state.

At the same level of theory and basis set, we also
compute the transition dipole moment D,, between the
ground state and the first dipole-allowed electronic state at
the equilibrium distance, and we find

0.7030
0.6230 s

(126 CV), N2,

(8.1eV), CO. (35)

Dl (e =) = {

In the case of N,, the electronic states '} and 'TI, are
strongly mixed [35,36]; however, in our case, using two
'S5 states and two 'TI, states in the MCSCF calculation,
we find a transition dipole moment which agrees with the
expected range of values due to the strong mixing. In the
case of CO, we proceed in the same way. However, since
the point group shows C,, symmetry, we include two states
of symmetry A; and two states of symmetries B; and B, in
the MCSCF calculation, yielding a transition dipole
moment which agrees with previous calculations [37—40].

In the spirit of treating diatomic molecules as simple toy
examples, we also investigate the simplest diatomic mol-
ecule H;’ , which contains a single electron. Indeed, this
molecule was studied in the first neutron scattering paper
on the Migdal effect [24]. Because the 3-body Schrodinger
equation is separable in the BO approximation, the elec-
tronic wave functions can be determined by direct numeri-
cal integration without needing to approximate them by a
basis set of atomic orbitals. We determine the electronic
wave functions following Ref. [41], using a step size of
0.02a, to calculate the NAC gradients. We find

Gool(ea —€0) = 0.14a5" (11.6 eV), Hi. (36)

However, as we will see in Sec. III, the large change in
equilibrium separation, from p, = 2.04a, for the ground
state to p, = 8.83a, for the first NAC state, as well as the
large change in the vibrational energies, gives exponen-
tially small overlaps for the nuclear states and hence an
atypically small Migdal rate compared to generic diatomic
molecules.® Furthermore, the possible CMR states are so
weakly bound that they have only been studied theoreti-
cally [42], and they have the same issues with large
mismatches in the nuclear wave functions. As a result,

At small g, which corresponds to small DM masses, this is
equivalent to the statement that the Franck-Condon factor for the
transition is very small.

in the subsequent discussion we will focus on CO and N,
rather than HJ .

E. Comparison to inclusive Migdal rates

In Refs. [5,24], it was noted that for NAC, an approxi-
mate sum rule can be used to estimate the inclusive
probability 1 — P(9) for a transition to any electronic state
above the ground state (including the contributions from
ionization, rotational nuclear states, and dissociated
molecular states):

2

q
1 - PO T (VowolV,wo). (37)

where € is an “average” electronic energy above the ground
state, which, strictly speaking, is ill-defined for an inclusive
probability. Unfortunately, 1 — P(®) cannot be calculated
with standard quantum chemistry methods since it requires
at least two electronic states with the same symmetry. In
other words, at least two states are needed to see an avoided
crossing associated with the NAC effect. However, we
estimate an upper bound on 1 — P by considering the
inner product of the orbital parts of v alone. This yields
(V,wolV,wo) ~600a5? for N, and ~700a;* for CO.
Taking € to be the first ionization potential of the molecule
(15.6 eV for N, and 14.0 eV for CO) as a representative
average between bound and continuum states, we can
estimate
P . { 1x1073, N, 38)
1-PO ™ 5%x107%, CoO.

Reference [24] already calculated 1 — PO for Hj ,
finding that it was 10* times larger than the transition
probability P@ to the first available electronic state,
assuming the nuclear wave function remains in the n =
0 state of the new electronic potential. However, we can
understand this large hierarchy between the exclusive and
inclusive probabilities as being due to the significant
mismatch between the equilibrium separations for the
two states. This is to be contrasted with the cases of CO
and N,, where the large nuclear overlaps and large values of
G, result in the transition to the first NAC state giving a
contribution to the inclusive rate which is an order of
magnitude larger than in H; .

The above estimates suggest that all of our projected
sensitivities in these molecules may be further improved by
2-3 orders of magnitude by using the inclusive excitation
rate. However, the calculation of the scintillation rate
arising from secondary scattering by an ionized electron
is beyond the scope of this work; furthermore, very high-
energy continuum excitation from core shells may be more
difficult to disentangle from the secondary ionization
(quenching) arising from the recoiling nucleus. Finally,
the inclusive matrix element is isotropic due to a sum over
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all possible rotational states, so in order to identify the daily
modulation signal, we focus on the exclusive Migdal
probabilities as we discuss in Sec. III.

I1I. DAILY MODULATION FROM THE MIGDAL
EFFECT

A. Anisotropies from electronic and nuclear matrix
elements

As we have seen in the previous section, there are two
sources of anisotropy in the Migdal probability P(%). The
first comes from the dot product of the momentum transfer
¢ with either the molecular dipole (for CMR) or the nuclear
gradient (for NAC), both of which point along the molecu-
lar axis and yield P*) « #?. The second comes from the
nuclear matrix elements, Eqs. (14) and (28), which contain
factors of # in the exponent.

To gain some intuition for the anisotropy from the
nuclear matrix elements, consider the case where the states
|)(£,a)> are governed by the same 1-dimensional harmonic
oscillator potential as the ground state |y,), with the same
oscillator frequency w and the same equilibrium separation.
This is true at the percent level for the NAC transitions in
N, and CO (see Fig. 2) due to the fact that these molecules
are highly covalent, though not for Hy or for the CMR
states for N, and CO. In this case, the matrix elements
are [43]

~ )
(@)1 ,iG 2pn o 412 \" a1
e'h2 (o3 exp [ — , 39
e s () e (~525). 69
Nuclear Morse wavefunctions, N,
3.0— : : :
— Ground
2.5¢ L NAC
20 — CMR
o
= 1.5 ]
O
1.0p 1
0.5r .
0.0— :
1.5 2.0 2.5 3.0 35

p [ao]
FIG. 2. Lowest-energy nuclear wave functions ;((()“) (p) for the
electronic ground state (blue), first NAC state (orange), and first
CMR state (green) in N,. The similarity of the NAC state to the
electronic ground state in both the equilibrium separation and the
wave-function spread leads to large nuclear overlaps and a larger
rate compared to CMR.

where g, , stands for (u/M/)q or (u/M,)q as appropriate
and we have dropped normalization constants. Squaring
this directly yields a Poisson distribution, but in our case we
have to sum over two terms with different § weighted by
ay 5. Regardless, it is clear that there is strong dependence
on 5 governed by the typical value of the momentum
transfer, which is in turn determined by the DM mass. We
therefore expect large modulation with amplitude and
phase both depending on the DM mass. We derive the
general expression for the matrix element, with different
oscillator frequencies and equilibrium separations for the
initial and final states, in terms of Hermite polynomials in
Appendix B.

B. Time-dependent rate

For simplicity, consider a model of DM-nuclear scatter-
ing where DM couples equally to protons and neutrons.
The molecular Migdal rate per unit mass is

RI(t) Nu p, 6, [dG
N - | 90(@.1) P (q)P(g), (40
mr mmolarmlﬂ)%n/4ﬂ 90(4:1) DM(‘]) (‘7) ( )

where my is the mass of the target molecule, m1,,),, 18 its
molar mass, N, is Avogadro’s number, 6, is a fiducial DM-
nucleon cross section, u,, is the DM-nucleon reduced
mass, and Fpy;(g) is the DM form factor which is equal to
1 for a heavy mediator and is proportional to 1/4> for a
light mediator. Note that for homonuclear molecules,
P@ & A2 where A is the mass number, and we have
emphasized that P(® is a function of the momentum
transfer ¢ (both magnitude and direction, through the
anisotropy parameter 7).

The time dependence of the rate arises from the DM
velocity distribution (which we take to be the standard halo
model for ease of comparison with the literature) via

- v}

1) = —v_(g.0)*/v}
90(g. 1) qNo(e 0

j— e_vgsc/v(z))‘ (41)
Here

UCSC 2 UBSC ngC
o= erafe () - e ()] o

is a normalization constant depending on the dispersion
vo = 220 km/s and the escape velocity v.,, = 544 km/s,
and

o . AE g | . .
v-(g,t) = min <Uesc77 +2—mx+ Ug(1) - Q) (43)

is the minimum velocity consistent with energy-momentum
conservation, taking AE to be the total energy transfer to
the molecule (electronic plus nuclear energies), as shown in
Fig. 1. Since wv_ arises from integrating the energy-
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conserving delta function implicit in P@, as noted in
Sec. II above, it is often sufficient to approximate AE by
just the electronic energy, but strictly speaking, each term in
the sum over the final nuclear states should be weighted by
its own g, with the appropriate value of AE in v_. We adopt
conventions consistent with Refs. [23,44] where the
molecular axis p, = Z points in the direction of the DM
wind at r = 0, and the Earth velocity is described by

sind, sin 9
Ug(t) = |Ug|| sin@,cos,(cosd—1) [, (44)

cos?0, + sin*6, cos 9

where 9(t) = 27 x (577) has the period of a sidereal day,
0, = 42° and we take |vg| = 234 km/s.

C. Daily modulation and sensitivity

Using Eq (40) along with the previously computed
P(CI\Z[R and P{" o we can compute the daily modulation
amplitudes R ‘\EA) R@) where (R@) is the time-aver-
aged rate, as well as exclusion limits on &, for our toy
examples. Since P9 « ¢?, the integrand peaks at large ¢,
and heavy-mediator models with Fpy = 1 will maximize
the rate. For Hy, we numerically determine the complete
spectrum of bound nuclear states corresponding to the
excited electronic state; however, as alluded to previously,
the large difference in equilibrium separations for the two
relevant electronic states leads to exponentially small
nuclear wave-function overlaps, and thus we do not
consider Hj further because it is not a particularly
representative example.

For CO and N,, we model the effective potential for the
nuclei with a Morse potential. The number of bound
nuclear states varies according to the electronic energy

Ny CMR Daily Modulation

——25 MeV — 300 MeV

1.4}
— 50 MeV — 1000 MeV
— 100 MeV
L2r — 200 MeV
e |
SIS
1.0
0.8
0.6 : . ' :
5 10 15 20
Time of Day [hour]
FIG. 3.

and effective potential of the CMR or NAC state: for N,
there are 14 (52) for CMR (NAC), and for CO there are 39
(69) for CMR (NAC). The rapid oscillations of highly
excited nuclear states lead to an oscillatory nuclear matrix
element, especially at large ¢, so it is convenient to have a
closed-form expression for the matrix element to enable
rapid evaluation of the rate. We therefore fit the Morse wave
functions at level n to harmonic oscillator wave functions at
the same level n (in order to match the number of nodes)
with floating normalization, frequency, and equilibrium
separation, and sum up to n = 10 using the analytic matrix
element derived in Appendix B but using the exact Morse
potential energy eigenvalues. We validate this calculation
by instead approximating the nuclear states as harmonic
oscillator states with fixed oscillator frequencies given by
the curvature of the Morse potential at the equilibrium
separation, finding agreement up to O(1) factors. As the
goal of our calculation is to provide an illustration of the
phenomenology of the Migdal effect in molecules, rather
than predict a precise sensitivity for a particular exper-
imental implementation, this level of accuracy suffices for
our purposes. However, cutting off the sum at n = 10 likely
underestimates the rate at large DM masses, where highly
excited states dominate; we discuss the modeling uncer-
tainty from nuclear states in Appendix C. Accurate model-
ing of the nuclear states will be important for generalizing
our work to larger molecules, as both the modulation
amplitude and phase are quite sensitive to the choice of
nuclear states at DM masses above ~300 MeV.

Figures 3 and 4 illustrate the daily modulation patterns for
N, and CO with Fpy = 1, for both CMR and NAC. As
anticipated, there is a strong dependence on the DM mass,
with the rate peaking at + = 0 hr for light masses but r =
12 hr for heavy masses. The crossover occurs at a mass of
about 200-300 MeV independent of the molecular target or

N, NAC Daily Modulation

—25 MeV — 300 MeV
— 50 MeV — 1000 MeV
— 100 MeV

— 200 MeV

R(t)

5 10 15 20
Time of Day [hour]

Daily modulation patterns for CMR (left) and NAC (right) in N,. Both components of the molecular Migdal effect exhibit

similar behavior, featuring modulation patterns that vary considerably for different DM masses with an inflection point around 200 MeV.
The peak-to-trough modulation amplitude saturates to ~20% at large masses.
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CO CMR Daily Modulation
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CO NAC Daily Modulation

——25 MeV — 300 MeV
— 50 MeV — 1000 MeV
— 100 MeV

— 200 MeV

R(t)

0 5 10 15 20
Time of Day [hour]

FIG. 4. Same as Fig. 3 but for CO. The modulation curves at small and large DM masses are nearly identical to those for N,.

the CMR/NAC matrix element; for this DM mass, the
argument of the exponent in Eq. (39), ¢*/(4uw), is order 1
forw~0.2 eV,u~ 10 GeV, and g ~ m,v ~200-300 keV.
The large peak-to-trough modulation amplitude—exceed-
ing a factor of 2 even for DM masses well above the
electronic excitation threshold and saturating to ~20% at
large masses—is comparable to the daily modulation
signals in electronic [23,44-46] and phonon [47,48] exci-
tation, as well as defect formation [49-52].

Figure 5 shows the projected 3-event background-free
exclusion limits on the DM-nucleon cross section &,, for N,

1032
10-33
1034
10—35 :_~
10—36
10—37

7y [cm?)

10—38
10-%°

10-4 ;
10 107 10°

FIG.5. Three-event background-free projected exclusion limits
with 1 kg—yr exposure for the CMR (dashed) and NAC (solid)
Migdal effects in CO and N,, assuming 100% signal efficiency.
Current exclusion limits from direct nuclear scattering searches
[53], dedicated Migdal effect searches [54-57], and electron
recoil searches [58—60] analyzed in terms of the Migdal effect [8]
are shown in shaded gray. Projections for xenon [15] (green) and
silicon [8,10,11] (red) with a 2e~ threshold are shown for
comparison; the NAC contribution in CO is competitive with
the reach of semiconductors.

and CO, assuming a massive mediator (Fpy = 1) which
couples equally to all nucleons, and a 1 kg—yr exposure.
The observable signal would be the photon resulting from
the deexcitation of the CMR or NAC state, which from
Eqgs. (34) and (35) has energy O(10 eV), and we assume
100% photon detection efficiency. For both molecules, the
NAC rate (solid) is larger than the CMR rate (dashed), by
an order of magnitude for N, and 2 orders of magnitude for
CO. This is not inconsistent with our arguments in Sec. II C
about the parametric scaling of CMR and NAC, but it is
simply due to an accumulation of several order-1 factors
which all happen to push the rate in the same direction. In
particular, the NAC states feature larger nuclear overlaps or,
equivalently, large Franck-Condon factors, compared to
CMR for both molecules, as demonstrated in Fig. 2. The
fact that NAC dominates is also consistent with previous
calculations [5] which found that NAC was larger than
CMR by a factor of ~4 in neutral H,. Indeed, as discussed
in Sec. II C, the factor of 4 in the nuclear matrix element
prefactor suggests that, all else being equal, the NAC rate
will typically exceed the CMR rate in diatomic molecules
and likely also for larger molecules. The sensitivity begins
to decrease around 200 MeV for the same reason the daily
modulation crossover occurs at that mass: the exponential
suppression in the nuclear matrix elements can only be
compensated with highly excited states, which we neglect
in the sum because they correspond to molecular
dissociation.

We also show, for comparison, the existing limits from
Migdal searches and direct nuclear recoil searches in noble
liquids and solid-state calorimeters, as well as projections
for a larger xenon experiment and the Migdal effect in
silicon. The sensitivity of diatomic molecules is within
a factor of 2 from semiconductors in the mass range
10-100 MeV for the same target mass, which motivates
further consideration of more realistic solid-state molecular
targets in light of the large daily modulation signal which
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can further improve the sensitivity in the presence of
backgrounds.

IV. GENERALIZING THE MOLECULAR MIGDAL
EFFECT TO LARGER MOLECULES

While the present analysis applies specifically to
diatomic molecules, the case of larger molecules is also
covered by the general formalism that describes both the
CMR and NAC Migdal effects. We relegate the precise
generalization to larger molecules and computation of P(®)
for experimentally viable molecules to future work, but
here we outline the necessary steps.

The nuclear wave functions may be approximated by
assuming harmonic oscillator states localized to the equi-
librium atomic locations for the relevant electronic states.
This captures the essential features of the transition from
large molecules to semiconductors, where the Migdal effect
may be understood to be mediated by (off-shell) phonons
[10], which are quantized normal mode vibrations.
Additionally, rotational excitations are energetically inac-
cessible in molecular crystals, which simplifies the calcu-
lation as in the diatomic case. The electronic amplitudes,
however, must be treated more carefully.

The CMR calculation follows from the separation of c.m.
motion from the relative motion of the atoms. In general,
the coordinate systems used for larger molecules are more
complicated but can be reduced to a c.m. coordinate and a
set of relative coordinates which are relative to either the
c.m. or to the atoms themselves (so-called internal coor-
dinates). Therefore, the computation of the CMR amplitude
should proceed identically. The electronic matrix element
in Eq. (16) is related to the oscillator strengths of the
electronic transitions, which have been experimentally
measured through spectroscopy for most molecular
scintillators. R

Computing the nonadiabatic coupling vectors G, is
more difficult as the nuclear gradients become nontrivial
with larger and more complicated molecules, which have
many more degrees of freedom. In practice, this is done
through a finite difference method which involves recalcu-
lating the electronic molecular orbitals at least six times per
atom (three spatial directions for the gradient, evaluated
twice for a difference approximation to the gradient).
However, the computation simplifies if the nuclear gra-
dients can be computed analytically, for example, when the
electronic wave functions are expressed as linear combi-
nations of atomic orbitals (LCAQO) [61]. Such a LCAO
approach to molecular orbitals has been shown to be
effective in calculating DM-electron scattering rates in
organic molecules [22,23].

A. Properties of an optimal target

Using the intuition gained from our simple toy examples,
we now turn to an analysis of the physical and chemical

properties relevant for maximizing the molecular Migdal
effect. We note first that the masses of the atoms in the
molecule are not expected to significantly affect the
excitation probability, at least for DM coupling equally
to all nucleons: P® has a factor of A in the numerator
from coherent scattering from the nucleus but a factor of
M? x A? in the denominator, so any coherent enhancement
cancels. For the deexcitation photon to be observable, we
also need a material which is transparent to its own
scintillation light, which could be accomplished by e.g.
vibrational broadening or lattice effects.

From Egs. (14), (16), (27), and (28), we find that there
are experimental observables that might indicate that a
certain molecule would have a particularly large molecu-
lar Migdal amplitude. As mentioned in Sec. I A, the
matrix element in P:éMR, Eq. (16), is proportional to the
oscillator strength of the electronic transition, which can
be measured through simple UV-visible absorption
experiments. Furthermore, at small ¢, the matrix element
in PI(\(;.)CMR (14) is equivalent to the Frank-Condon factor
for the CMR transition to the state «, which can be
inferred from the 0-O substructure of the UV-visible
absorption band for this transition. Therefore, in order
to determine promising candidates with large CMR
molecular Migdal rates, one might look for molecules
whose UV spectra show significant, low-lying, dipole-
allowed absorption bands which have prominent 0-0
vibrational substructure.

On the other hand, the matrix element in Pialz, AC
[Eq. (16)] is the NAC vector, which is a much more subtle
molecular object. These nonadiabatic derivative couplings
are responsible for the Herzberg-Teller effect, wherein
classically forbidden electronic transitions show up in
the absorption spectrum of a molecule with pronounced
vibrational substructure [62-65]. Heuristically, this is
understood to happen when the forbidden dipole matrix
element of the electronic transition depends on the nuclear
coordinate which makes the total molecular dipole matrix
element nonseparable; in the language of Sec. II, the
mismatch between the electronic dipole and the molecular
dipole is of order m,/M. In the chemistry literature this is
known as “intensity borrowing” and is a well-known,
experimentally observed nonadiabatic effect. In fact, the
first transition of benzene shows evidence of significant
nonadiabatic couplings [66,67]. Meanwhile, unlike for
CMR, the nuclear matrix element in P](\(II,NAC vanishes at
q = 0, so at small ¢ it is dominated by the nuclear dipole of
the transition. This vibrational dipole amplitude is nonzero
only for integer changes to the vibrational state. Therefore,
the 0-1 vibrational substructure of the IR absorption spectra
should be proportional to this matrix element. Optimal
molecular candidates for the NAC Migdal effect will likely
be molecules whose UV-visible spectra show strong, low-
lying, dipole-forbidden absorption bands while their IR
spectra show significant 0-1 transitions.
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We can extend this reasoning to larger molecules,
particularly aromatic organic compounds such as benzene
and t-stilbene, which were already identified as optimal
targets in a related context in Ref. [68]. The vibrational
states of these molecules, whose electronic transitions
involve delocalized z-electrons, should not change signifi-
cantly between electronic states. This is because delocal-
ized z-electrons involved in the carbon-carbon double bond
are not the dominant orbitals which generate the molecular
structure but rather the o-electrons on the carbon-carbon
single bonds. This chemical structure will generically lead
to large Franck-Condon factors and thus large nuclear
overlaps, and hence large NAC amplitudes as long as the
nonadiabatic couplings are not parametrically small.

V. CONCLUSIONS

In this paper we have identified two Migdal effects in
molecules wherein DM-nucleus scattering can generate
observable electronic transitions. We have focused on
molecules, rather than isolated atoms or semiconductors,
in part because recent work has shown that molecular
crystals composed of aromatic molecules feature large
anisotropies in their electron-excitation probabilities, lead-
ing to O(1) daily modulation amplitudes in the scintillation
signal expected from sub-GeV DM-electron scattering
[23]. The results presented in this paper suggest that these
same anisotropies, and therefore the daily modulation, may
also be expected in the case of DM-nucleus scattering with
an accompanying electronic excitation. We have argued
that the sources of anisotropy and the separation of CMR
and NAC in diatomic molecules should be qualitatively
similar to the case of larger molecules but with the latter
exhibiting a more complex daily modulation pattern due to
the richer spectrum of normal modes. We leave the
dedicated analysis of larger molecules to future work.

The existence of the NAC and CMR components of the
molecular Migdal effect could mean that existing organic
scintillators may be used to great effect in constraining the
DM-nucleon cross section for masses below ~1 GeV.
Furthermore, we have found that CMR is equivalent to
the semiclassical Migdal effect, long known for atoms and
recently calculated for semiconductors. Our results suggest
that the equivalent NAC effect may be present in semi-
conductors as well since deviations from the BO approxi-
mation are captured by the electron-phonon coupling,
though such a calculation (and, in particular, the relation
between CMR and NAC in semiconductors) is beyond the
scope of this paper. As discussed above, the NAC Migdal
effect in a simple diatomic molecule, carbon monoxide,
shows comparable reach per unit mass compared to the
projected sensitivity of silicon below about 200 MeV and
would outperform xenon in this mass range. Given that
diatomic molecules are also poor scintillators with high
excitation thresholds, we expect the sensitivities presented

here to be a conservative underestimate of the true
sensitivities of generic molecular scintillators.

The molecular Migdal effect may also be a promising,
though challenging, channel to search for coherent neutrino
scattering. The largest flux of solar neutrinos is the low-
energy pp spectrum, with an edge at about 400 keV. This
yields a maximum nuclear recoil energy of 27 eV for
carbon, which is difficult to detect on its own but which can
generate an accompanying electronic excitation through the
molecular Migdal effect. The coherent neutrino-nucleus
scattering rate on carbon is about 1 event/(kg — yr), and
the NAC Migdal probability (setting a = 1, since the
coupling to nucleons is already accounted for in the
coherent scattering rate, and ¢ = 400 keV) in CO is about
5x 1073, In organic crystal detectors, accounting for
smaller AE and potentially larger G, as well as the
ionization and dissociation signals we have neglected,
one might optimistically hope to observe a few Migdal
events with a 10-100 kg — yr exposure, with some back-
ground discrimination possible due to the strong direction-
ality of the signal coming from the Sun. The directionality
may also be a useful background discrimination tool for
detection of coherent scattering of the much larger flux of
keV-MeV reactor neutrinos.

While this study is only a first analysis of a new potential
detection channel with molecular detectors, a successful
generalization to larger molecules could allow for the
reanalysis of existing data (for example, from Ref. [22])
in order to constrain the DM-nucleus cross section.
Furthermore, it opens the possibility for organic scintillator
crystals to be used as directional detectors for both DM-
electron scattering and DM-nuclear scattering over the
entire MeV-GeV mass range. The rich structure of non-
adiabatic couplings in molecules is a fruitful area for
collaborations between particle physicists, chemists, and
materials scientists, and we look forward to a dedicated
exploration of these materials for the next generation of
DM detectors.
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APPENDIX A: NONADIABATIC EFFECTS

1. Perturbing Hamiltonian

In this appendix we derive the effective perturbation, 6V
in Eq. (20), which induces nonadiabatic mixing of elec-
tronic states from Eq. (21). Our derivation follows closely
that found in the Appendix of Ref. [24] and further in
Ref. [69]. Starting with the Schrodinger equation for the
molecular energy eigenstates, Eq. (2), we plug in the BO
ansatz ¥ = y(@y,. The nuclear kinetic terms contain

2]
—V Al
; " Z (A1)

(kaZ (kaWa>

1
< _)((a) v%l//a,
m

e

(A2)

where the inequality follows because m, < M. Dividing
by x%, the cross-term is now small compared to the
electronic kinetic energy n—LV%y/a and can therefore be
included as a perturbation to the electronic Schrodinger
equation (4). Identifying the operator coefficient of v, as
—26V, we have

1 &2 oo
=26V, :F;VVR,(I( J(Ri.Ry)- Vg, (A3)
1 2
==V 9p)-V A4
TG, ™

where in the second line we have switched to relative
coordinates and used Vg, = —Vp =V, when the c.m. is
fixed and electronic coordinates are neglected; note that the
relative minus sign disappears because the gradient is

applied twice. We thus identify the perturbing
Hamiltonian as
Vi = —— (Vi) -V (A5)
pr " !

which we call 6V in the main text.

It should be noted that there exists another cross-term in
Eq. (A1) which is neglected in the BO approximation given
by the following,

which by similar logic leads to the following electronic
perturbing Hamiltonian,

1
8V, = ——V-2. A7
2 2# P ( )

However, we will show in the following section that this
term is subleading compared to 6V; and thus may be
neglected in our analysis.

2. Nonadiabatic matrix elements

The nonadiabatic coupling comes from the perturbing
Hamiltonian 6V in Eq. (AS). Here we derive the matrix
elements resulting from this coupling. We begin by defin-
ing convenient rescaled momenta as follows,

ky = 3. (A8)

i
M,

Setting aside the scattering lengths a; for now, we can write
the scattering form factors that appear in M,

wo) = (Wi |7 )
+ (2" |7 wl),

(e

(A9)
where

94%) = L (A10)

M),
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The inner products are given by the following,

e 7y0)
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, (A12)

where we used the orthogonality of (y,|yy) = 54y as well
as the antisymmetry of the coupling vectors, Ga/a = G(m/

115015-13



CARLOS BLANCO et al.

PHYS. REV. D 106, 115015 (2022)

The inner product becomes

(Wle™? W) = (Vo |Gae™ 7 10

H(ea - 60)
+ (8|G0 ™ 7V 120))
1 - ((Z) R=d g
= G- ) ik;e*iP ,
,M(Ea —60) a0 <)( |l i€ I/Y0>
(A13)

where we have integrated by parts in the last line and taken
the surface term to be zero due to normalizability.
Furthermore, note that G(,O factors out of the inner product
since it is constant in p to first order.

Combining Eq. (A13) with Eq. (19) and replacmg k
with the original expressions in terms of M; and g, we get

i

- o _jlzs
M= WG (A0 1Ge T )
_Mz(e —€ )Gao 0( |§e+iM_2q'p|)(0>
_ lGaO i q
€q — €0
s -
X (e |ar e |y _ (e |aze T )
M, M, ’
(A14)

which matches the results of Ref. [24] in the case of
homonuclear molecules.

Finally, recall that the other neglected cross-term propor-
tional to yV% w generated a perturbing Hamiltonian
8V, = —=V2/(2u). Following a similar derivation as above,
one can show that this Hamiltonian leads to a matrix
element which is proportional to the following factor,

M~ (|ai e (Y, - Gu)lzo).  (AIS)
However, since é(,o is independent of p to first order, this
matrix element is a subleading nonadiabatic coupling
which we can take to be zero at this order in the expansion.

APPENDIX B: HARMONIC OSCILLATOR
MATRIX ELEMENTS

In this appendix we derive a closed form analytic
expression for the matrix element (;( |e’/"1/’ l¥o), which
appears in the CMR and NAC nuclear matrix elements.
Here f is an arbitrary real parameter, and the initial and
final states are 1-dimensional harmonic oscillator states:

HO 1/4 _Nv()(/l—/’[)lz
xolp) = | — e

T

(B1)

X(a) (,0) o 1 <@> 1/4e_ﬂwa(ﬂ2—/’a)2
! V2l \ @
X Hn( V /'la)a(p - p(l))’

with p the reduced nuclear mass, py and @, the equilibrium
separation and oscillator frequency for the ground state
(likewise for p, and w,, for the excited electronic state), and
H, the Hermite polynomials.

It is most convenient to work with momentum-space
wave functions,

(B2)

Yolk e LS B3
0= G5 () o
—ikpq 1 1/4 1 k2

~(a) e .
no (k) = ——— —=i)"
2n(K) V2! <ﬂwaﬂ> =) exP( 2/4%)
X H,(k/\/uwy). (B4)

which also offer the advantage that the translations in p
appear as overall phase factors. The normalization is
chosen so that factors of 1/v/2z appear in both the
Fourier transform and its inverse:

dp . / dk . .
= — tkp R - —€+lkp k . B5
/ VT x(P). x(p) NG %(k).  (BS)
Computing the matrix element in Fourier space yields

o 7 d ; a
G ePr]y) = / P gy dkye 7 7 (k)

x ePareiory  (ky)

- / Sk, — B — k) 7 (k)" 70 (ko)

_ / " Ak (7 (k+Ba) ] 7o (k)

i elPoPa
 (1Pwawy) A2 nln
2 _ A2
X /dkeik(pfl_/)U)exp _1 k _ 1 (k :BQ)
2:uwa 2 HO(
k
xH, ( ) . (B6)
Nz

One can rearrange the integrand by completing the square.

Define
2
ko = | HL%a (B7)
@ + Wy
8p = pa — Po- (B8)
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koPq 4 . kodp
2w 27

Ip= (B9)

where the notation 75 emphasizes that this variable carries
the dependence on the parameter f. The matrix element
becomes

in eipoﬂqeflzj—ﬂzqz/(zﬂwo> kO
(1P wawo)' /42" n!n

R+ 2k ko)1 b (k/\/nwy).

(s ePae ) =

X/dk -
-—e
ko

We will now manipulate the integral to obtain the
Hermite generating function:

(B10)

2x - > tj
o~ Z—,H (B11)
j=0
Taking x = k/ky and
k 2
P % (B12)
HWy Wy + g
the desired integral is
I= /dxe_x2+2XI/’_[%an(uk)
) lk
-y / dxe" Hy(x)H, (uk).  (BI13)

k=0

Combining the series definition of the Hermite polynomials
and its inverse,

[n/2] (_1)m(2ax)n—2m
- e

m!(n—2m)! ’ (B14)

(B15)

yields a series expansion for H,(ax) in terms of H,(x):

L"/ZJ l)m n—2m [n/2—m)] H

(ax)=n! g

n—2m-2j (.X)

= Jli(n=2m-2j)!

/2]
—Za” 2% (2= 1) (n 2]),]' H,_(x). (B16)

This permits Eq. (B13) to be integrated term by term using
the orthogonality relation

/ dxe"H,, (x)H, (x) = /7215, (B17)

which gives

~

(n/2] k
p

=Y Y Lr2kksy, s

k=0

~

w2 (u? —1)/n!
(n=2j)4)!

~.
Il
S

[n/2] u2 )j

Z

=0

; (Qutg)"=2. (B13)

The argument of the sum can now be manipulated to yield
the Hermite series definition, Eq. (B14). In fact,

2Mlﬂ n=2j
1— 2

u

[n/2] j
zzmm)mi =D <

= J'(n—2j)!

= V(i - 2y, (B19)

ut B )
Vi—u?)
The argument of H, is generically complex if dp #0
because 7, is complex, so the Hermite polynomials are to be

understood in their analytic continuation. Restoring the
prefactor, we finally have

ineipoﬁqelj—ﬁzqz/(zﬂwo)ko
(1P wawy) ' *\/2"n!

ut
X (1 _ u2>n/2Hn< p

G e o) =

2). (B20)

1—u

This closed-form expression permits rapid evaluation of the
required nuclear matrix elements even up to large values
of n.

APPENDIX C: MODELING THE NUCLEAR
WAVE FUNCTIONS

In the main body, we fit the Morse potential wave
functions to harmonic oscillator wave functions at the same
level n in order to exploit the analytic formula (B20).
Figure 6 shows the results of such fits for the CO NAC
states; the n =0 ground state (left) is extremely well
approximated by the harmonic oscillator ground state,
but a highly excited state (n = 10, right) has a poorer fit
at both large and small p where the anharmonicity is most
pronounced.

As shown in Fig. 7, the choice of wave function matters
only at the percent level for NAC, while the choice of where
to cut off the sum in Eqgs. (14) and (28) is a much larger
effect. In Fig. 7, the black curves labeled “Harmonic, all
states” extend the sum to the largest value of n such that the
nuclear energy (n + 1), — $ @, does not exceed the depth
of the Morse potential (8.96 eV for the first NAC state in
CO), yielding n = 34. At the crossover mass of 300 MeV
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FIG. 6. Fits to Morse wave functions with harmonic oscillator wave functions at the same level n. The fit is excellent for the ground
state but becomes progressively worse for higher excited states which probe the anharmonicity of the Morse potential.
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FIG. 7. Effect of changing the nuclear wave-function sum on the daily modulation curves for m, = 300 MeV (left) and the 3-event
sensitivity (right). The choice of wave function has a relatively small effect compared to the much larger effect of the cutoff level for the
nuclear states. The difference in the phase of the modulation is especially pronounced near the crossover mass of 300 MeV, while the

sensitivity is primarily affected at masses above this crossover.

where ¢*/(4uw,) is O(1), the extra states in the sum cause
the daily modulation to switch phases, from a maximum at
t = 0 hr to a maximum at ¢t = 12 hr. Likewise, for masses
above the crossover mass where many highly excited states
contribute to PI(\(,I), the sensitivity improves by almost a

factor of 10. We conclude that our sensitivity estimates
using the Morse spectrum cutoff at n = 10 are robust at the
order of magnitude level, but a precise prediction for the
molecular Migdal rate will require accurate modeling of the
highly excited nuclear states of the molecular target.
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