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We study the bounded from below (BFB) conditions on a class of three Higgs doublet models (3HDM)
constrained by the symmetry groups Uð1Þ ×Uð1Þ, Uð1Þ × Z2, and Z2 × Z2. These constraints must be
implemented on both the neutral (BFB-n) and charged (BFB-c) directions. The exact necessary and
sufficient BFB conditions are unknown in the Z2 × Z2 case. We develop a general strategy using lower
bounds to find sufficient conditions for BFB-n and BFB-c and apply it to these symmetries. In addition, we
investigate the concern that the use of safe sufficient conditions can ignore valid points which would yield
distinct physical consequences. This is done by performing a full phenomenological simulation of the
Uð1Þ × Uð1Þ and Uð1Þ × Z2 models, where exact necessary and sufficient BFB conditions are possible.
We look specifically at the points allowed by exact solutions but precluded by safe lower bounds. We found
no evidence of remarkable new effects, partly reassuring the use of the lower bounds we propose here, for
those potentials where no exact necessary and sufficient BFB conditions are known.
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I. INTRODUCTION

It is widely accepted that there must be physics beyond the
Standard Model (SM). One reason concerns the necessity
to provide new CP-violating phases and a stronger phase
transition to drive baryogenesis. A second reason concerns
the necessity to find one or more new particles that describe
dark matter. There are also the issues of explaining neutrino
masses and the possibility that these might have a Majorana
character, or of providing an explanation for the observed
mass hierarchies and mixing matrices.
The large majority of models addressing these issues

include extended scalar sectors. Nevertheless, many times,
perhaps because it is a very difficult problem, the issue of
having a potential bounded from below (BFB) or guaran-
teeing that the vacuum is indeed a global (not just local)
minimum is ignored. Occasionally, some BFB conditions
are included without stressing whether such conditions are
necessary, sufficient, or both. And most articles addressing
this problem concentrate on BFB conditions analyzing only
vacua along the neutral directions; that is, vacua that do not
break the electric charge.

However, Faro and Ivanov [1] showed, using the specific
case of a Uð1Þ ×Uð1Þ symmetric three Higgs doublet
model (3HDM), that one can have a minimum of the
potential which satisfies the condition for bounded for
below along charge preserving directions, but is still
unbounded from below along the charge breaking (CB)
directions. They then proceeded to establish necessary and
sufficient conditions for BFB along both neutral (BFB-n)
and charge breaking (BFB-c) directions, for the specific
case of the Uð1Þ ×Uð1Þ 3HDM. Faro [2] extended this
analysis to the Uð1Þ × Z2 symmetric 3HDM, an extension
that is unpublished and little known. For example, the
recent Ref. [3], which has this potential, does not use these
complete necessary and sufficient BFB conditions. We
reproduce this result here.
Surprisingly, there are no known necessary and sufficient

conditions for BFB for such a simple and classical model
as the Z2 × Z2 3HDM. This model was first proposed by
Weinberg in [4], in order to have CP violation in the scalar
sector, without exhibiting flavor changing neutral scalar
couplings. The best result has been derived in [5], which
has the necessary and sufficient conditions for BFB-n and
sufficient conditions for BFB-c.
A first aim of this article is to present a method to derive

BFB-n and BFB-c sufficient conditions, in cases where
necessary and sufficient conditions are not available
through other techniques. The method hinges on finding
a potential that lies lower than the potential desired, and
for which one can apply the copositivity conditions of
Klimenko [6] and Kannike [7] to find BFB conditions for
that new potential. We apply this method to the 3HDMwith
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the symmetries Uð1Þ × Uð1Þ, Uð1Þ × Z2, and Z2 × Z2.
The method can be applied to a generality of other cases;
see, for example, Ref. [8].
If one uses necessary (but not sufficient) conditions for

BFB, one is basing the analysis on some potentials that
are unphysical. Conversely, if one uses sufficient (but not
necessary) conditions for BFB, one is excluding perfectly
good potentials, running the risk that these have some
special features, potentially ignoring interesting new phys-
ics signals. Although we are unaware of any specific case in
which this has happened, there is an even worse possibility
that the potentials which pass sufficient BFB conditions
are all excluded, while those which are physical but do
not pass such sufficient conditions are still allowed. One
would thus erroneously consider as excluded a perfectly
viable model.
It is interesting to address the latter concern, given that

we have both the sufficient BFB conditions (BFB-n and
BFB-c) for the Uð1Þ ×Uð1Þ and Uð1Þ × Z2 3HDM using
our method, and also the complete necessary and sufficient
BFB conditions for these cases. We can thus see if the
points that pass the necessary and sufficient conditions but
do not pass the more stringent sufficient conditions hold
some special physically observable property. This is the
second aim of this article.
Additionally, the 3HDM models based on Uð1Þ ×Uð1Þ,

Uð1Þ × Z2, and Z2 × Z2 are interesting in themselves. As
mentioned, the latter was proposed by Weinberg [4] to have
a model of CP violation in the scalar sector consistent with
natural flavor conservation [9,10]. Branco then showed that
such a model can accommodate spontaneous CP violation
[11]. Different phenomenological consequences of this
model have been revisited many times [12–17]. Recent
studies include [5,18–20], among others. Reference [3]
extends the natural suppression of the flavor changing
neutral couplings of [21] into the 3HDM realm, via a scalar
sector with the Uð1Þ × Z2 symmetry. However, they do not
find sufficient BFB conditions. In contrast, the Uð1Þ ×
Uð1Þ 3HDM model is of theoretical interest. For example,
it was used by Faro and Ivanov [1] to show that certain
putative BFB conditions for theZ2 × Z2 could not possibly
be correct, since they gave the wrong results in the Uð1Þ ×
Uð1Þ limit. Together, these models form an important test
bed for multidoublet possibilities, and it is paramount to
have a study of the correct BFB conditions in these cases.
Our article is organized as follows. We define the

notation for the scalar potential in Sec. II. For the cases
of Uð1Þ ×Uð1Þ and Uð1Þ × Z2, we show in Secs. III and
IV, respectively, the necessary and sufficient conditions
for BFB, the adaptation to these cases of the sufficient
conditions in [5], and the sufficient conditions derived with
our method. The Z2 × Z2 case is discussed in Sec. V.
In Sec. VI we introduce the rotation into the scalar mass

bases, thus allowing a parametrization of the potential
parameters in terms of physical quantities. This is presented

for the three cases in complete form in Appendix A. Next,
we consider in Sec. VII complemented by Appendix D
the Yukawa sector, showing the symmetry and parametri-
zation of the five types of models that preclude flavor
changing neutral scalar exchanges, introducing the so-
called k-notation in Sec. VIII. The scan strategy and results
are discussed in Secs. IX and X, respectively. We present
our conclusions in Sec. XI. We relegate two other technical
details to Appendixes B and C.

II. THE POTENTIAL

We consider the potential defined by

V ¼ V2 þ V4: ð1Þ

As for now we are only interested in the BFB conditions,
and we just consider the quartic terms invariant under the
relevant group G. All symmetry constrained 3HDM poten-
tials have a piece invariant under rephasings, that is,
invariant under Uð1Þ ×Uð1Þ1:

V4;RI ¼ λ1ðϕ†
1ϕ1Þ2 þ λ2ðϕ†

2ϕ2Þ2 þ λ3ðϕ†
3ϕ3Þ2

þ λ4ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ þ λ5ðϕ†
1ϕ1Þðϕ†

3ϕ3Þ
þ λ6ðϕ†

2ϕ2Þðϕ†
3ϕ3Þ þ λ7ðϕ†

1ϕ2Þðϕ†
2ϕ1Þ

þ λ8ðϕ†
1ϕ3Þðϕ†

3ϕ1Þ þ λ9ðϕ†
2ϕ3Þðϕ†

3ϕ2Þ: ð2Þ

The rephasing invariant quartic couplings can be written
alternatively as

V4;RI ¼ VN þ VCB; ð3Þ

where

VN ¼ λ11
2

ðϕ†
1ϕ1Þ2 þ

λ22
2

ðϕ†
2ϕ2Þ2 þ

λ33
2

ðϕ†
3ϕ3Þ2

þ λ12ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ þ λ13ðϕ†
1ϕ1Þðϕ†

3ϕ3Þ
þ λ23ðϕ†

2ϕ2Þðϕ†
3ϕ3Þ; ð4Þ

VCB ¼ λ012z12 þ λ013z13 þ λ023z23; ð5Þ

and [1]

zij ¼ ðϕ†
iϕiÞðϕ†

jϕjÞ − ðϕ†
iϕjÞðϕ†

jϕiÞ ðno sumÞ: ð6Þ

Notice that we always have

0 ≤ zij ≤ rirj; ð7Þ

1Invariance under hypercharge guarantees that requiring
invariance under rephasings of two scalar fields automatically
implies invariance under rephasing of the third field.
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where rk ¼ jϕkj2 (k ¼ 1, 2, 3)—see also Eq. (14) below.
With these conventions the relation between the two
notations is

λ11 → 2λ1; λ22 → 2λ2; λ33 → 2λ3;

λ12 → λ4 þ λ7; λ13 → λ5 þ λ8; ð8Þ
λ23 → λ6 þ λ9; λ012 → −λ7;

λ013 → −λ8; λ023 → −λ9: ð9Þ
Given a potential invariant under a group G, its quartic

part may be written as

V4 ¼ V4;RI þ VG; ð10Þ
where V4;RI is the rephasing invariant piece of Eqs. (2) and
(3), common to all potentials, while VG is the rephasing
noninvariant part of the quartic potential that depends
on the group. The groups G ¼ Uð1Þ ×Uð1Þ (for which,
obviously, VG ¼ 0),Uð1Þ × Z2, andZ2 × Z2 are discussed
in detail in the corresponding sections below.

III. BFB CONDITIONS IN THE Uð1Þ × Uð1Þ CASE
Let us consider the Uð1Þ ×U0ð1Þ transformation2

Uð1Þ∶ ϕ1 → eiθϕ1 ϕ2 → ϕ2 ϕ3 → ϕ3; ð11Þ

U0ð1Þ∶ ϕ1 → ϕ1 ϕ2 → eiθ
0
ϕ2 ϕ3 → ϕ3; ð12Þ

where the transformations are to be implemented for all θ
and θ0. This is the simplest case because the symmetry
forces VG ¼ 0, so

V4 ¼ VN þ VCB; ð13Þ

given in Eqs. (4) and (5).

A. Necessary and sufficient conditions for BFB

The necessary and sufficient conditions for BFB of the
potential for this case were found by Faro and Ivanov [1].
They can be enunciated in three steps. For these, we use
gauge invariance to parametrize the [vacuum expectation
values (VEVs) of the] doublets as [1],

ϕ1 ¼
ffiffiffiffiffi
r1

p �
0

1

�
; ϕ2 ¼

ffiffiffiffiffi
r2

p �
sinðα2Þ

cosðα2Þeiβ2
�
;

ϕ3 ¼
ffiffiffiffiffi
r3

p
eiγ

�
sinðα3Þ

cosðα3Þeiβ3
�
: ð14Þ

1. Step 1

The potential along the neutral directions, VN , can be
written as

VN ¼ 1

2

X
ij

riAijrj; with A ¼

0
B@

λ11 λ12 λ13

λ12 λ22 λ23

λ13 λ23 λ33

1
CA: ð15Þ

For the potential to be BFB, this quadratic form has to be
positive definite for ri ≥ 0. Then we should have the
following relations known as copositivity conditions [6,7]:

A11 ≥ 0; A22 ≥ 0; A33 ≥ 0;

Ā12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A11A22

p
þ A12 ≥ 0; Ā13 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A11A33

p
þ A13 ≥ 0; Ā23 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A22A33

p
þ A23 ≥ 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A11A22A33

p
þ A12

ffiffiffiffiffiffiffi
A33

p
þ A13

ffiffiffiffiffiffiffi
A22

p
þ A23

ffiffiffiffiffiffiffi
A11

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ā12Ā13Ā23

q
≥ 0: ð16Þ

This ensures that VN is BFB. For VCB we need two extra
steps. To avoid a flat direction, we chose at least one
Aij ≠ 0.

2. Step 2

This step is necessary only if at least one of the λ0ij in
Eq. (5) is negative; otherwise because of Eq. (7), the
potential along the charge breaking directions, VCB, is
positive definite. If at least one of the λ0ij is negative, we
construct the matrices

Δ1 ¼

0
B@

0 λ012 0

λ012 0 λ023
0 λ023 0

1
CA; Δ2 ¼

0
B@

0 0 λ013
0 0 λ023
λ013 λ023 0

1
CA;

Δ3 ¼

0
B@

0 λ012 λ013
λ012 0 0

λ013 0 0

1
CA: ð17Þ

Then we form the matrices

Ai ¼ AN þ Δi; ð18Þ
2When convenient to distinguish the two Uð1Þ’s, we will

denote the second one by a prime.
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where AN is obtained from VN . Then check the copositivity
of all Ai.

3. Step 3

If λ012λ
0
13λ

0
23 < 0, a final step is needed. We form the

matrix [1]

Δ4 ¼
1

2

0
BBB@

λ0
12
λ0
13

λ0
23

λ012 λ013

λ012
λ0
12
λ0
23

λ0
13

λ023

λ013 λ023
λ0
13
λ0
23

λ0
12

1
CCCA ð19Þ

and construct the matrix

A4 ¼ AN þ Δ4: ð20Þ

Now, this matrix has to be copositive inside a tetrahedron
in the first octant and with one of the vertices at the origin.
To handle this, in Ref. [1] the authors show that this is
equivalent to finding the copositivity of the matrix

B ¼ RT A4R ð21Þ

in the first octant, where

R ¼

0
B@

jλ023j 0 0

0 jλ013j 0

0 0 jλ012j

1
CA
0
B@

0 1 1

1 0 1

1 1 0

1
CA: ð22Þ

In summary, the copositivity of the matrices
AN; A1; A2; A3; B are the necessary and sufficient condi-
tions for the Uð1Þ ×Uð1Þ potential to be BFB.

B. The sufficient conditions of Ref. [5]

We now consider the conditions from Ref. [5] that are
known to be sufficient but not necessary [1]. These were
derived for the case of Z2 × Z2, but our potential for
Uð1Þ ×Uð1Þ in Eq. (2) is a particular case with, in our
notation [see Eq. (52) below],

λ0010 ¼ λ0011 ¼ λ0012 ¼ 0: ð23Þ

The conditions then read [5]

• λ1 > 0; λ2 > 0; λ3 > 0; ð24Þ

• λx > −2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
; λy > −2

ffiffiffiffiffiffiffiffiffi
λ1λ3

p
; λz > −2

ffiffiffiffiffiffiffiffiffi
λ2λ3

p
;

ð25Þ

• fλx
ffiffiffiffiffi
λ3

p
þ λy

ffiffiffiffiffi
λ2

p
þ λz

ffiffiffiffiffi
λ1

p
≥ 0g

∪ fλ1λ2z þ λ2λ
2
y þ λ3λ

2
x − 4λ1λ2λ3 − λxλyλz < 0g; ð26Þ

where

λx ¼ λ4 þminð0; λ7Þ; λy ¼ λ5 þminð0; λ8Þ;
λz ¼ λ6 þminð0; λ9Þ: ð27Þ

C. Sufficient conditions for a lower bound

In this case we know the necessary and sufficient
conditions but in many other symmetry constrained models
we do not. So we can think of a potential that it is always
lower than V4 and for which the copositivity conditions can
easily be applied. This will be important in the following.
Because of Eq. (7), we should have

VCB ≥ V lower
CB ¼ r1r2 minð0; λ012Þ þ r1r3 minð0; λ013Þ

þ r2r3 minð0; λ023Þ; ð28Þ

and therefore

V4 ≥ V lower
4 ¼ VN þ V lower

CB : ð29Þ

So we just have to check the copositivity of the matrix

0
B@

λ11 λ̂12 λ̂13

λ̂12 λ22 λ̂23

λ̂13 λ̂23 λ33

1
CA; ð30Þ

where we have defined

λ̂12 ≡ λ12 þminð0; λ012Þ; λ̂13 ≡ λ13 þminð0; λ013Þ;
λ̂23 ≡ λ23 þminð0; λ023Þ: ð31Þ

These will ensure sufficient conditions for the potential to
be BFB, but they are not necessary. There will be good
points in parameter space that are discarded by this
procedure. We will come to this issue below when we
compare the respective sets of points.

IV. BFB CONDITIONS IN THE Uð1Þ × Z2 CASE

The quadratic part of our Uð1Þ × Z2 invariant potential
reads

Vquartic ¼ λ1ðϕ†
1ϕ1Þ2 þ λ2ðϕ†

2ϕ2Þ2 þ λ3ðϕ†
3ϕ3Þ2

þ λ4ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ þ λ5ðϕ†
1ϕ1Þðϕ†

3ϕ3Þ
þ λ6ðϕ†

2ϕ2Þðϕ†
3ϕ3Þ þ λ7ðϕ†

1ϕ2Þðϕ†
2ϕ1Þ

þ λ8ðϕ†
1ϕ3Þðϕ†

3ϕ1Þ þ λ9ðϕ†
2ϕ3Þðϕ†

3ϕ2Þ
þ ½λ0012ðϕ†

2ϕ3Þ2 þ H:c:�; ð32Þ

satisfying
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Uð1Þ∶ ϕ1 → eiθϕ1; ϕ2 → ϕ2; ϕ3 → ϕ3; ð33Þ

Z2∶ ϕ1 → ϕ1; ϕ2 → −ϕ2; ϕ3 → ϕ3; ð34Þ

obtained from (12) by setting θ0 ¼ π. In (32), “H.c.” stands
for Hermitian conjugate. Also, we use double primes, λ0012,
to distinguish from the definitions in Eq. (8).

A. The necessary and sufficient conditions for BFB

The conditions for this potential to be BFB were
developed by Faro and can be found in his Master’s thesis
[2]. In an adaptation of his notation,3 the nonrephasing
invariant part of the potential reads

VUð1Þ×Z2
¼ 1

2
½λ̄23ðϕ†

2ϕ3Þ2 þ H:c:�: ð35Þ

Therefore, comparing with Eq. (32), we get the relation

λ̄23 ¼ 2λ0012: ð36Þ

Now the BFB conditions are as in the Uð1Þ ×Uð1Þ case
doing the three steps mentioned there, with the substitu-
tions

λ23 → λ23 − jλ̄23j; λ023 → λ023 þ jλ̄23j: ð37Þ

B. The sufficient conditions of Ref. [5]

We now consider the sufficient conditions from Ref. [5].
They were derived for the Z2 × Z2 case. Comparing our
Uð1Þ × Z2 potential in Eq. (32) with the Z2 × Z2 case in
Eq. (52) we require

λ0010 ¼ λ0011 ¼ 0: ð38Þ

The conditions from Ref. [5] then read

• λ1 > 0; λ2 > 0; λ3 > 0; ð39Þ

• λx > −2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
; λy > −2

ffiffiffiffiffiffiffiffiffi
λ1λ3

p
; λz > −2

ffiffiffiffiffiffiffiffiffi
λ2λ3

p
;

ð40Þ

•fλx
ffiffiffiffiffi
λ3

p
þ λy

ffiffiffiffiffi
λ2

p
þ λz

ffiffiffiffiffi
λ1

p
≥ 0g

∪ fλ1λ2z þ λ2λ
2
y þ λ3λ

2
x − 4λ1λ2λ3 − λxλyλz < 0g; ð41Þ

where

λx ¼ λ4 þminð0; λ7Þ; λy ¼ λ5 þminð0; λ8Þ;
λz ¼ λ6 þminð0; λ9 − 2jλ0012jÞ; ð42Þ

or, with the equivalence of Eq. (36),

λx ¼ λ4 þminð0; λ7Þ; λy ¼ λ5 þminð0; λ8Þ;
λz ¼ λ6 þminð0; λ9 − jλ̄23jÞ: ð43Þ

C. Sufficient conditions for a lower bound

Although in this case there are necessary and sufficient
BFB conditions, it is instructive to find a lower potential
such as in the previous case. This will serve to compare the
set of points regarding physical observables. For the VCB
part, the reasoning is the same as in Eq. (28).
Now, for the VUð1Þ×Z2

part, we note that

ðϕ†
2ϕ3Þ2 þ H:c: ¼ 2Refðϕ†

2ϕ3Þ2g ≥ −2jðϕ†
2ϕ3Þ2j

≥ −2jϕ2j2jϕ3j2 ¼ −2r2r3; ð44Þ

where we have used the parametrization (14) on the last
step. A more complicated route would be to use (14) from
the start, finding

VUð1Þ×Z2
¼ λ̄23r2r3fðα2; α3; β2; β3; γÞ; ð45Þ

where we take λ̄23 to be real but not necessarily positive,
and

fðα2;α3; β2;β3; γÞ ¼ cos2ðα2Þcos2ðα3Þ cos ½2ðβ2 − β3 − γÞ�
þ sin2ðα2Þ sin2ðα3Þ cosð2γÞ þ sinðα2Þ
× cosðα2Þ sinð2α3Þ cosðβ2 − β3 − 2γÞ:

ð46Þ

Now, we can verify that we always have

−1 ≤ fðα2; α3; β2; β3; γÞ ≤ 1: ð47Þ

Thus, using either route, we always have

VUð1Þ×Z2
≥ V lower

Uð1Þ×Z2
¼ −jλ̄23jr2r3: ð48Þ

Combining with Eq. (29) we get

V4 ≥ VN þ V lower
CB þ V lower

Uð1Þ×Z2
: ð49Þ

So we just have to look at the copositivity of the matrix

0
B@

λ11 λ̂12 λ̂13

λ̂12 λ22 λ̂23

λ̂13 λ̂23 λ33

1
CA; ð50Þ3In Faro’s implementation of Uð1Þ × Z2, ϕ3 is the field getting

a phase. In our notation, this role is played by ϕ1. We get from his
to ours with 1 ↔ 3.
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where we have defined

λ̂12 ≡ λ12 þminð0; λ012Þ; λ̂13 ≡ λ13 þminð0; λ013Þ;
λ̂23 ≡ λ23 þminð0; λ023Þ − jλ̄23j: ð51Þ

These will ensure sufficient conditions for the potential to
be BFB, but they are not necessary. There will be good
points in parameter space that are discarded by this
procedure. We will come to this issue below when we
compare the respective sets of points.

V. BFB CONDITIONS IN THE Z2 × Z2 CASE

The quadratic part of our Z2 × Z2 invariant potential
reads

V4 ¼ λ1ðϕ†
1ϕ1Þ2 þ λ2ðϕ†

2ϕ2Þ2 þ λ3ðϕ†
3ϕ3Þ2

þ λ4ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ þ λ5ðϕ†
1ϕ1Þðϕ†

3ϕ3Þ
þ λ6ðϕ†

2ϕ2Þðϕ†
3ϕ3Þ þ λ7ðϕ†

1ϕ2Þðϕ†
2ϕ1Þ

þ λ8ðϕ†
1ϕ3Þðϕ†

3ϕ1Þ þ λ9ðϕ†
2ϕ3Þðϕ†

3ϕ2Þ
þ ½λ0010ðϕ†

1ϕ2Þ2 þ λ0011ðϕ†
1ϕ3Þ2 þ λ0012ðϕ†

2ϕ3Þ2 þ H:c:�;
ð52Þ

satisfying

Z2∶ ϕ1 → −ϕ1; ϕ2 → ϕ2; ϕ3 → ϕ3; ð53Þ

Z0
2∶ ϕ1 → ϕ1; ϕ2 → −ϕ2; ϕ3 → ϕ3; ð54Þ

which can be obtained from Eqs. (11) and (12) by
setting θ ¼ θ0 ¼ π.
The potential can be written as

V4 ¼ VN þ VCB þ VZ2×Z2
; ð55Þ

where VN and VCB are given in Eqs. (4) and (5),
respectively, and

VZ2×Z2
¼ ½λ0010ðϕ†

1ϕ2Þ2þλ0011ðϕ†
1ϕ3Þ2þλ0012ðϕ†

2ϕ3Þ2þH:c:�

¼ 1

2
½λ̄12ðϕ†

1ϕ2Þ2þ λ̄13ðϕ†
1ϕ3Þ2þ λ̄23ðϕ†

2ϕ3Þ2þH:c:�;
ð56Þ

where

λ̄12 ¼ 2λ0010; λ̄13 ¼ 2λ0011; λ̄23 ¼ 2λ0012: ð57Þ

A. The sufficient conditions of Ref. [5]

We now consider the sufficient conditions from Ref. [5],
as implemented in Ref. [22]. We have verified that there is a

misprint in Ref. [22] when quoting Eq. (60) below, taken
here from Ref. [5] (where it is correct). We find

• λ1 > 0; λ2 > 0; λ3 > 0; ð58Þ

• λx > −2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
; λy > −2

ffiffiffiffiffiffiffiffiffi
λ1λ3

p
; λz > −2

ffiffiffiffiffiffiffiffiffi
λ2λ3

p
;

ð59Þ

• fλx
ffiffiffiffiffi
λ3

p
þ λy

ffiffiffiffiffi
λ2

p
þ λz

ffiffiffiffiffi
λ1

p
≥ 0g

∪ fλ1λ2z þ λ2λ
2
y þ λ3λ

2
x − 4λ1λ2λ3 − λxλyλz < 0g; ð60Þ

where

λx ¼ λ4 þminð0; λ7 − 2jλ0010jÞ;
λy ¼ λ5 þminð0; λ8 − 2jλ0011jÞ;
λz ¼ λ6 þminð0; λ9 − 2jλ0012jÞ; ð61Þ

or, with the equivalence of Eq. (57),

λx ¼ λ4 þminð0; λ7 − jλ̄12jÞ;
λy ¼ λ5 þminð0; λ8 − jλ̄13jÞ;
λz ¼ λ6 þminð0; λ9 − jλ̄23jÞ: ð62Þ

B. Sufficient conditions for a lower bound

In the Z2 × Z2 case there are no known necessary and
sufficient BFB conditions. One only has the sufficient
conditions of Ref. [5] described in the previous section.
Thus, it is interesting to find necessary conditions from a
lower potential such as in the previous cases. This will
serve to compare the set of points regarding physical
observables. For the VCB part the reasoning is the same
as in Eq. (28). Now for the VZ2×Z2

part, we can either
follow the steps in (44) or use the parametrization of
Eq. (14) to get

VZ2×Z2
¼ λ̄12 r1r2 cos2ðα2Þ cosð2β2Þ
þ λ̄13 r1r3 cos2ðα3Þ cos ½2ðβ3 þ γÞ�
þ λ̄23 r2r3 fðα2; α3; β2; β3; γÞ; ð63Þ

where we take λ̄ij to be real but not necessarily positive. In
either case, we have always

VZ2×Z2
≥ V lower

Z2×Z2
¼ −jλ̄12jr1r2 − jλ̄13jr1r3 − jλ̄23jr2r3:

ð64Þ

Combining with Eq. (29) we get

V4 ≥ VN þ V lower
CB þ V lower

Z2×Z2
: ð65Þ
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So we have just to look at the copositivity of the matrix

0
B@

λ11 λ̂12 λ̂13

λ̂12 λ22 λ̂23

λ̂13 λ̂23 λ33

1
CA; ð66Þ

where we have now defined

λ̂12 ≡ λ12 þminð0; λ012Þ − jλ̄12j;
λ̂13 ≡ λ13 þminð0; λ013Þ − jλ̄13j;
λ̂23 ≡ λ23 þminð0; λ023Þ − jλ̄23j: ð67Þ

These will ensure sufficient conditions for the potential to
be BFB, but they are not necessary. There will be good
points in parameter space that are discarded by this
procedure. We will come to this issue below when we
compare the respective sets of points.

VI. SETUP OF THE MODELS: SCALAR SECTOR

To be able to compare the phenomenological impact of
the various BFB conditions, we generalized our previous
numerical code [23–26] to the symmetry constrained
potentials we consider here: namely, Uð1Þ × Uð1Þ,
Uð1Þ × Z2, and Z2 × Z2. Comparing Eq. (52) with
Eqs. (32) and (2) we see that the first two can be obtained
from the last by setting some or all of the couplings λ00ij to
zero. To get all the necessary couplings we implemented
the caseZ2 × Z2 in FeynMaster [27,28], and the others follow
from the argument above.
As we want to define the relations of the couplings to

masses and angles, we have to go back and consider the full
potential

V ¼ V2 þ V4; ð68Þ

where the quartic part, V4, is given in Eqs. (2), (32), and
(52), depending on which case we consider, and the
quadratic part is

V2 ¼ m2
11ϕ

†
1ϕ1 þm2

22ϕ
†
2ϕ2 þm2

33ϕ
†
3ϕ3 þ ½m2

12ðϕ†
1ϕ2Þ

þm2
13ðϕ†

1ϕ3Þ þm2
23ðϕ†

2ϕ3Þ þ H:c:�; ð69Þ

where we also include terms, m2
12, m

2
13, and m2

23, that break
the symmetry softly. In our study we consider that the
potentially complex parametersm2

12;m
2
13;m

2
23 and λ

00
10;λ

00
11;λ

00
12

are taken real.
After spontaneous symmetry breaking (SSB), the three

doublets can be parametrized in terms of its component
fields as

ϕi ¼
�

w†
k

ðvi þ xi þ iziÞ=
ffiffiffi
2

p
�

ði ¼ 1; 2; 3Þ; ð70Þ

where vi=
ffiffiffi
2

p
corresponds to the VEV for the neutral

component of ϕi. It is assumed that the scalar sector of
the model explicitly and spontaneously conserves CP.4

That is, all the parameters in the scalar potential are real
and the VEVs v1, v2, and v3 are also real. With this
assumption, the scalar potential contains at most, 18
parameters. The VEVs can be parametrized as follows:

v1 ¼ v cos β1 cos β2; v2 ¼ v sin β1 cos β2;

v3 ¼ v sin β2; ð71Þ

leading to the Higgs basis [30–32] to be obtained by the
following rotation:

0
B@

H0

R1

R2

1
CA ¼ Oβ

0
B@

x1
x2
x3

1
CA ¼

0
B@

cos β2 cos β1 cos β2 sin β1 sin β2
− sin β1 cos β1 0

− cos β1 sin β2 − sin β1 sin β2 cos β2

1
CA
0
B@

x1
x2
x3

1
CA: ð72Þ

The scalar kinetic Lagrangian is written as

Lkin ¼
Xn¼3

k¼1

jDμϕkj2 ð73Þ

and contains the terms relevant to the propagators and
trilinear couplings of the scalars and gauge bosons.
We can now define orthogonal matrices that diagonalize

the squared-mass matrices present in the CP-even scalar,
CP-odd scalar, and charged scalar sectors. These are the

transformations that take us to the physical basis, with states
possessing well-defined masses. Following Refs. [33,34],
the 12 quartic couplings for the Z2 × Z2 can be exchanged
for seven physical masses (three CP-even scalars, two

4Strictly speaking, it is not advisable to assume a real scalar
sector while allowing the Yukawa couplings to carry the phase
necessary for the CKMmatrix. This is also a problem with the so-
called real 2HDM [29]. One can take the view that the complex
terms and their counterterms in the scalar sector exist, with the
former set to zero.
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CP-odd scalars, and two pairs of charged scalars) and five
mixing angles. For the case of Uð1Þ × Z2, we have only ten
λ’s, and therefore we can also solve for two of the soft
masses. Finally, in the case of Uð1Þ ×Uð1Þ one has only
nine λ’s, and one can also solve for all the soft masses. We
give all the explicit expressions in Appendix A.
The mass terms in the neutral scalar sector can be

extracted through the following rotation:

0
B@

h1
h2
h3

1
CA ¼ Oα

0
B@

x1
x2
x3

1
CA; ð74Þ

where we take h1 ≡ h125 to be the 125 GeV Higgs particle
found at LHC. The form chosen for Oα is

R≡Oα ¼ R3:R2:R1; ð75Þ

where

R1 ¼

0
B@

cα1 sα1 0

−sα1 cα1 0

0 0 1

1
CA; R2 ¼

0
B@

cα2 0 sα2
0 1 0

−sα2 0 cα2

1
CA;

R3 ¼

0
B@

1 0 0

0 cα3 sα3
0 −sα3 cα3

1
CA: ð76Þ

For theCP-odd scalar sector, the physical basis is chosen
as ðG0 A1 A2ÞT and the transformation to be

0
B@

G0

A1

A2

1
CA ¼ Oγ1Oβ

0
B@

z1
z2
z3

1
CA; ð77Þ

where

Oγ1 ¼

0
B@

1 0 0

0 cγ1 −sγ1
0 sγ1 cγ1

1
CA; ð78Þ

is defined to diagonalize the 2 × 2 submatrix that remains
nondiagonal in the Higgs basis. For later use, we define the
matrix P as the combination

P≡Oγ1Oβ: ð79Þ

For the charged scalar sector, the physical basis is
ðGþHþ

1 Hþ
2 ÞT and the transformation is

0
B@

Gþ

Hþ
1

Hþ
2

1
CA ¼ Oγ2Oβ

0
B@

w†
1

w†
2

w†
3

1
CA; ð80Þ

where

Oγ2 ¼

0
B@

1 0 0

0 cγ2 −sγ2
0 sγ2 cγ2

1
CA: ð81Þ

We write the masses of Hþ
1 and Hþ

2 as mH�
1
and mH�

2
,

respectively. The matrix Q is defined as the combination

Q≡Oγ2Oβ: ð82Þ

The matrix Q is relevant for the calculation of the oblique
parameters, which we relegate to Appendix B, following
the analysis of [35].
For completeness, we also include in Appendix C the

perturbative unitarity constraints, following Refs. [36,37].
Considering that the states in the physical basis have

well-defined masses, we can obtain relations among the set

fv1; v2; v3; mh1 ; mh2 ; mh3 ; mA1
; mA2

; mH�
1
; mH�

2
; α1; α2;

α3; γ1; γ2; m2
12; m

2
13; m

2
23g; ð83Þ

v1 ¼ v cos β1 cos β2; v2 ¼ v sin β1 cos β2;

v3 ¼ v sin β2; ð84Þ

and the parameters of the potential5 as shown in
Refs. [33,34].

VII. SETUP OF THE MODELS: YUKAWA
INTERACTIONS

The most general quark Yukawa Lagrangian of the
3HDM may be written as

LY ¼ −q̄L½ðΓ1ϕ1 þ Γ2ϕ2 þ Γ3ϕ3ÞnR
þ ðΔ1ϕ̃1 þ Δ2ϕ̃2 þ Δ3ϕ̃3ÞpR� þ H:c:; ð85Þ

where ϕ̃k ≡ iτ2ϕ�
k, while qL, nR, and pR are vectors6 in the

respective three-dimensional flavor vector space of left-
handed quark doublets, right-handed down-type quarks,
and right-handed up-type quarks.

5As mentioned above, for the Uð1Þ × Uð1Þ and Uð1Þ × Z2

cases, since we have fewer parameters, some or all of the soft
mass squared terms can also be solved for, as shown explicitly in
Appendix A.

6These vectors are written in a weak basis, not in the mass
basis. For massless neutrinos, we can take the leptons already in
the mass basis.
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Ignoring neutrino masses, the leptonic Yukawa
Lagrangian of the 3HDM may be similarly written as

LY ¼ −L̄L½ðΠ1ϕ1 þ Π2ϕ2 þ Π3ϕ3ÞlR� þ H:c:; ð86Þ

where LL and lR are vectors in the respective three-
dimensional flavor vector space of left-handed leptonic
doublets and right-handed charged leptons. The 3 × 3
matrices Γk, Δk, and Πk contain the complex Yukawa
couplings to the right-handed down-type quarks, up-type
quarks, and charged leptons, respectively.
As is well known, unless protected by a symmetry, the

Higgs-fermion Yukawa couplings lead to Higgs-mediated
flavor changing neutral couplings (FCNC) at a level
incompatible with experimental observations. FCNC can
be removed by making the Yukawa coupling matrices to
fermions of a given electric charge proportional:

Γ1 ∝ Γ2 ∝ Γ3; Δ1 ∝ Δ2 ∝ Δ3; Π1 ∝ Π2 ∝ Π3:

ð87Þ

It has been shown that, in a general NHDM, Eqs. (87)
remain true (thus removing FCNCs) under the renormal-
ization group running if and only if there is a basis for the
Higgs doublets in which all the fermions of a given electric
charge couple to only one Higgs doublet [38]. This can be
imposed in the 2HDM through a Z2 symmetry [9,10],
leading to four types of models. For N ≥ 3 there are five
possible choices [38], which [39] dubbed Types I, II, X, Y,
and Z, as

Type I∶ ϕu ¼ ϕd ¼ ϕe;

Type II∶ ϕu ≠ ϕd ¼ ϕe;

Type X∶ ϕu ¼ ϕd ≠ ϕe;

Type Y∶ ϕu ¼ ϕe ≠ ϕd;

Type Z∶ ϕu ≠ ϕd; ϕd ≠ ϕe; ϕe ≠ ϕu; ð88Þ

with ϕu;d;e being the single scalar fields that couple
exclusively to the up-type quarks, down-type quarks,
and charged leptons, respectively.

We wish to see how these choices can be implemented in
the Uð1Þ ×U0ð1Þ symmetric 3HDM. [In this section, we
briefly change the notation from Uð1Þ ×Uð1Þ, Uð1Þ × Z2,
and Z2 × Z2, into Uð1Þ ×U0ð1Þ, Uð1Þ × Z0

2, and Z2 × Z0
2,

respectively.] Without loss of generality, we can choose
ϕu ¼ ϕ3, with the scalar fields transforming under Uð1Þ
and U0ð1Þ, respectively, as

Uð1Þ∶ ϕ1 → eiθϕ1 ϕ2 → ϕ2 ϕ3 → ϕ3; ð89Þ

U0ð1Þ∶ ϕ1 → ϕ1 ϕ2 → eiθ
0
ϕ2 ϕ3 → ϕ3: ð90Þ

We choose three fields to remain invariant under the two
groups:

Uð1Þ and U0ð1Þ∶ qL → qL; pR → pR; LL → LL;

ð91Þ

under both Uð1Þ and U0ð1Þ. Equations (89)–(91) ensure
that ϕ3 ¼ ϕu. The various types can now be implemented
by choosing the other fields to transform as in Table I.
The transformations of the fields under Uð1Þ × Z0

2 are
obtained from Table I by changing e�iθ0 → −. Similarly, the
transformations of the fields under Z2 × Z0

2 are obtained
from Table I by changing both e�iθ → − and e�iθ0 → −.
We treat in this main text in detail the Type I models. The

remaining types are relegated to Appendix D. For this case
we assume that under the group all the fermion fields are
unaffected. Therefore they can only couple to ϕ3. When
taking into account the restrictions imposed by the sym-
metry, the Yukawa couplings to fermions can be written in a
compact form. For the couplings of neutral Higgs to
fermions,

LY ∋ −
mf

v
f̄ðafj þ ibfj γ5Þfhj; ð92Þ

where we group the physical Higgs fields in a vector, as
hj ≡ ðh1; h2; h3; A1; A2Þj. We have

TABLE I. All possible models with natural flavor conservation. The transformation properties under Uð1Þ × U0ð1Þ are indicated by
( , ). For instance ð ; eiθ0 Þ indicates that the field is invariant under the firstUð1Þ but transforms as ψ → eiθ

0
ψ underU0ð1Þ. ForUð1Þ × Z0

2

do e�iθ0 → −, and for Z2 × Z0
2 do e�iθ; e�iθ0 → −.

ϕ1 ϕ2 ϕ3 nR lR ϕu ϕd ϕl

Type I ðeiθ; Þ ð ; eiθ0 Þ ( , ) ( , ) ( , ) ϕ3 ϕ3 ϕ3

Type II ðeiθ; Þ ð ; eiθ0 Þ ( , ) ð ; e−iθ0 Þ ð ; e−iθ0 Þ ϕ3 ϕ2 ϕ2

Type X ðeiθ; Þ ð ; eiθ0 Þ ( , ) ( , ) ð ; e−iθ0 Þ ϕ3 ϕ3 ϕ2

Type Y ðeiθ; Þ ð ; eiθ0 Þ ( , ) ð ; e−iθ0 Þ ( , ) ϕ3 ϕ2 ϕ3

Type Z ðeiθ; Þ ð ; eiθ0 Þ ( , ) ð ; e−iθ0 Þ ðe−iθ; Þ ϕ3 ϕ2 ϕ1
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afj →
Rj;3

v̂3
; j ¼ 1; 2; 3 for all leptons;

bfj →
Pj−2;3

v̂3
; j ¼ 4; 5 for all leptons;

afj →
Rj;3

v̂3
; j ¼ 1; 2; 3 for all up quarks;

bfj → −
Pj−2;3

v̂3
; j ¼ 4; 5 for all up quarks;

afj →
Rj;3

v̂3
; j ¼ 1; 2; 3 for all down quarks;

bfj →
Pj−2;3

v̂3
; j ¼ 4; 5 for all down quarks:

ð93Þ

The couplings of the charged Higgs, H�
1 and H�

2 , to
fermions can be expressed as

LY ∋
ffiffiffi
2

p

v
ψdi ½mψdi

V�
jiη

L
k PL þmψuj

V�
jiη

R
k PR�ψuj H

−
k

þ
ffiffiffi
2

p

v
ψ̄ui ½mψdj

Vijη
L
kPR þmψui

Vij η
R
k PL�ψdj H

þ
k ;

ð94Þ

where ðψui ;ψdiÞ is ðui; diÞ for quarks7 or ðνi;liÞ for
leptons. For quarks, V is the Cabibbo–Kobayashi–
Maskawa matrix, while for leptons, Vij ¼ δij since we
are considering massless neutrinos. The couplings are

ηlLk ¼ −
Qkþ1;3

v̂3
; ηlRk ¼ 0; ηqLk ¼ −

Qkþ1;3

v̂3
;

ηqRk ¼ Qkþ1;3

v̂3
; k ¼ 1; 2: ð95Þ

VIII. KAPPAS

We found that it is useful to select points that are already
close to the LHC constraints, using the κ’s formalism. We
require them to be within 3σ of the LHC data [40]. This is
used to generate an initial set of points, to be improved on
below. We list below the expressions for the kappas for the
various types. For all types we have

κW ¼ cosðα2Þ cosðα1 − β1Þ cosðβ2Þ þ sinðα2Þ sinðβ2Þ;
ð96Þ

which gives κW ¼ 1 when α1 ¼ β1 and α2 ¼ β2.

A. Type I

We have

κU ¼ sinðα2Þ
sinðβ2Þ

; κD ¼ sinðα2Þ
sinðβ2Þ

; κL ¼ sinðα2Þ
sinðβ2Þ

: ð97Þ

B. Type II

We have

κU ¼ sinðα2Þ
sinðβ2Þ

; κD ¼ sinðα1Þ cosðα2Þ
sinðβ1Þ cosðβ2Þ

;

κL ¼ sinðα1Þ cosðα2Þ
sinðβ1Þ cosðβ2Þ

: ð98Þ

C. Type X

We have

κU ¼ sinðα2Þ
sinðβ2Þ

; κD ¼ sinðα2Þ
sinðβ2Þ

; κL ¼ sinðα1Þ cosðα2Þ
sinðβ1Þ cosðβ2Þ

:

ð99Þ

D. Type Y

We have

κU ¼ sinðα2Þ
sinðβ2Þ

; κD ¼ sinðα1Þ cosðα2Þ
sinðβ1Þ cosðβ2Þ

; κL ¼ sinðα2Þ
sinðβ2Þ

:

ð100Þ

E. Type Z

We have

κU ¼ sinðα2Þ
sinðβ2Þ

; κD ¼ sinðα1Þ cosðα2Þ
sinðβ1Þ cosðβ2Þ

;

κL ¼ cosðα1Þ cosðα2Þ
cosðβ1Þ cosðβ2Þ

: ð101Þ

IX. SCAN STRATEGY AND CONSTRAINTS

A. The scan

For each of the three symmetry constrained 3HDM, we
built a dedicated code, which is an extension of our
previous codes [23,25,26]. We performed an extensive
scan of the parameter space in Eq. (83). Our fixed inputs are
v ¼ 246 GeV and mh1 ¼ 125 GeV. We then took random
values in the ranges:

7Here, the up-type quarks u and down-type quarks d are
already written in the mass basis.

BOTO, ROMÃO, and SILVA PHYS. REV. D 106, 115010 (2022)

115010-10



α1;α2;α3; γ1; γ2 ∈
h
−
π

2
;
π

2

i
; tanβ1; tanβ2 ∈ ½0; 10�;

mH1
≡mh2 ;mH2

≡mh3 ∈ ½125; 1000� GeV; ð102Þ

mA1
; mA2

mH�
1
; mH�

2
∈ ½100; 1000� GeV; ð103Þ

m2
12; m

2
13; m

2
23 ∈ ½�10−1;�107� GeV2; ð104Þ

where the last expression applies only to the soft masses
that are not obtained as derived quantities (see the expres-
sions in Appendix A). These parameter ranges will be used
in all scans and figures presented below, except where
noted otherwise. The lower limits chosen for the masses
satisfy the constraints listed in Ref. [41].
When studying 3HDM, it was noted [26,33,42] that to be

able to generate good points in an easy way one should not
be far away from alignment, defined as the situation where
the lightest Higgs scalar has the SM couplings. It was
shown in Ref. [33] that this corresponds to the case when

α1 ¼ β1; α2 ¼ β2; ð105Þ

with the remaining parameters allowed to be free, although
subject to the constraints below. It turns out that for Z3

3HDM [26], this constraint alone is not enough to generate
a reasonably large set of good points starting from a
completely unconstrained scan as in Eq. (104). The authors
of Ref. [42] noticed a quite remarkable situation. If, besides
the alignment of Eq. (105), one also requires

γ1 ¼ γ2 ¼ −α3; mH1
¼ mA1

¼ mH�
1
;

mH2
¼ mA2

¼ mH�
2
; ð106Þ

then the potentials of Eqs. (2), (32), and (52) all collapse
into a very symmetric form,

VSym Lim ¼ λSM½ðϕ†
1ϕ1Þ þ ðϕ†

2ϕ2Þ þ ðϕ†
3ϕ3Þ�2; ð107Þ

with

λSM ¼ m2
h

2v2
ð108Þ

being the SM quartic Higgs coupling. This requires that, for
the conditions in Eqs. (105) and (106), we have

λ1 ¼ λ2 ¼ λ3 ¼ λSM; λ4 ¼ λ5 ¼ λ6 ¼ 2λSM; ð109Þ

with all other λ0s vanishing. Imposing the validity of
Eqs. (105) and (106) also implies that the soft masses
can be explicitly solved as

m2
12 ¼ c2β1cγ2sβ2sγ2ðm2

Hþ
1

−m2
Hþ

2

Þ
þ cβ1sβ1 ½s2β2ðc2γ2m2

Hþ
2

þm2
Hþ

1

s2γ2Þ− c2γ2m
2
Hþ

1

−m2
Hþ

2

s2γ2 �
þ cγ2s

2
β1
sβ2sγ2ðm2

Hþ
2

−m2
Hþ

1

Þ; ð110Þ

m2
13 ¼ −cβ2 ½cβ1sβ2ðc2γ2m2

Hþ
2

þm2
Hþ

1

s2γ2Þ
− cγ2sβ1sγ2ðm2

Hþ
1

−m2
Hþ

2

Þ�; ð111Þ

m2
23 ¼ −cβ2 ½cβ1cγ2sγ2ðm2

Hþ
1

−m2
Hþ

2

Þ
þ sβ1sβ2ðc2γ2m2

Hþ
2

þm2
Hþ

1

s2γ2Þ�: ð112Þ

We have verified that this works not only for the case of the
symmetry constrained Z3 of Refs. [26,42] but also for the
case of Uð1Þ × Uð1Þ, Uð1Þ × Z2, and Z2 × Z2. Now it is
easy to understand that all such points are good points.
Because of the alignment, the LHC results on the h125 are
easily obeyed, while the perturbativity unitarity, the Peskin-
Takeuchi parameters S, T, U (STU), and the other con-
straints are automatically obeyed. In fact, we are quite close
to the SM.
In studying the 3HDM with Z3 we found [26] that we

could go away from the conditions of Eqs. (105) and (106)
by a given percentage (10%, 20%, 50%) and enhance the
possibility of some signals, while at the same time being
able to generate enough points. We checked this again for
the three symmetry constrained 3HDM we study here.
Nevertheless, for the case of Uð1Þ × Z2, and specially for
Uð1Þ ×Uð1Þ, we could generate a large set of points
just implementing a percentage of 50% around Eq. (105).
That is,

α1
β1

;
α2
β2

∈ ½0.5; 1.5�; (Al-1) ð113Þ

and not imposing the conditions in Eq. (106). This first
(and less stringent) alignment condition will be denoted by
“Al-1” below. The second, more stringent alignment con-
dition, combines Al-1 with six new conditions,

α1
β1

;
α2
β2

;
γ2
γ1
;
−α3
γ1

;
mA1

mH1

;
mH�

1

mH1

;
mA2

mH2

;
mH�

2

mH2

∈ ½0.5;1.5�; (Al-2)

ð114Þ

and will be denoted by “Al-2” below. For the soft masses, in
the caseswhere they are independent parameters, we also use
the same approach as in Eq. (114) with respect to Eq. (110).
We stress that the alignment constraints do not affect the

BFB conditions; they only affect the time it takes to
generate the datasets for the various symmetries that are
consistent with theoretical and experimental constraints. If
we consider Al-2, we are closer to the symmetric limit of
Ref. [33], and, therefore, all the constraints coming from
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unitarity, the STU parameters, and the alignment implicit in
LHC experimental results are easier to satisfy. Therefore,
starting from Al-2, the number of points satisfying all the
constraints is larger for the same amount of running time,
when compared with the simulations where we start from
the Al-1 alignment conditions. This is especially true for
the case of the Z2 × Z2 symmetry. On the other hand,
restricting our analysis to Al-2 is too constraining, as we
wish to see the impact that the various BFB conditions have
on the general allowed parameter space. Thus, we also
perform a second (computationally much more demanding)
analysis with Al-1 conditions.

B. Constraints on the parameter space

In this section we study the constraints that must be
applied to the model parameters to ensure consistency.
They are both theoretical (consistency of the model) and
experimental, as we describe below.

1. BFB conditions

We start with the BFB conditions. As explained in
Secs. III–V, we do not have necessary and sufficient
conditions for the Z2 × Z2 case, only for the Uð1Þ ×
Uð1Þ and Uð1Þ × Z2 cases. Therefore for the Z2 × Z2

case we use only the sufficient conditions of Sec. VA or of
Sec. V B. One of the main results of this study is the
comparison, for the case when we have a necessary and
sufficient condition, between the set of points that pass this
condition, with those that are eliminated by more restrictive
sufficient conditions. We will do this study below for the
case of the Uð1Þ ×Uð1Þ symmetric 3HDM.

2. Perturbative unitarity

To determine the tree-level unitarity constraints, we use
the algorithm presented in [36], as described in
Appendix C.

3. Oblique parameters STU

To discuss the effect of the S, T, U parameters, we use
the expressions in [35] and the experimental summary in
[43]. We explain in Appendix B how to implement this in
our class of models.

4. Perturbative Yukawa couplings

As we want to explore the range of low tan β1 and tan β2,
we should avoid that the Yukawa couplings become non-
perturbative. The Higgs-fermion couplings are defined in
Eq. (92) and given for the various types in Sec. VII. We
require

Y2

4π
< 1 ⇒ Y <

ffiffiffiffiffiffi
4π

p
ð115Þ

for Yτ, Yb, and Yt.

5. ΔMb;s constraints

We see from Ref. [42] that the constraints coming from
ΔMb;s tend to exclude very low values on tan β. Thus, we
take

log10ðtan β1;2Þ > −0.5 ⇒ tan β1;2 > 10−0.5 ¼ 0.31623:

ð116Þ

6. Limits BRðB → XsγÞ
This is a very important bound for models with charged

Higgs bosons. We follow the discussion of Refs. [25,26],
and following [44], we consider 99% C.L. (3σ) for the
experimental error:

2.87 × 10−4 < BRðB → XsγÞ < 3.77 × 10−4: ð117Þ

7. LHC constraints

For the 125 GeV scalar, the coupling modifiers are
calculated directly from the random angles generated and
constrained to be within 2σ of the most recent ATLAS fit
results [[45] Table 10]. Having chosen a specific production
and decay channel, the collider event rates can be conven-
iently described by the cross section ratios μhif,

μhif ¼
�
σ3HDMi ðpp → hÞ
σSMi ðpp → hÞ

��
BR3HDMðh → fÞ
BRSMðh → fÞ

�
: ð118Þ

Starting from the collision of two protons, the relevant
production mechanisms include the following: gluon fusion
(ggH), vector boson fusion (VBF), associated production
with a vector boson (VH, V ¼ W or Z), and associated
production with a pair of top quarks (ttH). The SM cross
section for the gluon fusion process is calculated using
HIGLU [46], and for the other production mechanisms we
use the results of Ref. [47]. The details can be found
in Ref. [26].
For the heavier neutral and charged scalars, we use

HiggsBounds-5.9.1 in Ref. [48], where a list of all the relevant
experimental analyses can be found. We allow for decays
with off-shell scalar bosons, using the method explained
in [49].

X. RESULTS

A. Comparison of the different BFB conditions

For each of the symmetries—Uð1Þ ×Uð1Þ, Uð1Þ × Z2,
and Z2 × Z2—we have generated a large set of points that
are consistent with Al-1 in (113) and that pass all current
constraints from B-physics, measurements of the 125 GeV
Higgs properties, and searches for extra scalars. We
repeated the process for Al-2 in (114).
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Within each group, we denote by different colors those
points that pass different BFB conditions, using the
following notation:

(i) BFB1 (red points): those points which pass BFB-n
but do not pass BFB-c.

(ii) BFB2 (green points): those points which pass BFB-n
and also pass the necessary and sufficient conditions
for BFB-c. These conditions are only known for
Uð1Þ ×Uð1Þ, shown in Sec. III A, and for
Uð1Þ × Z2, shown in Sec. IVA. The necessary
and sufficient conditions for BFB-c are unknown
in the case of Z2 × Z2, and, thus, there will be no
green points in the corresponding plots.

(iii) BFB3 (orange points): those points that pass BFB-c
and also pass the sufficient conditions for BFB-c
derived in this article but do not pass BFB4 below.

(iv) BFB4 (blue points): those points which pass BFB-c
and also pass the sufficient conditions for BFB-c
adapted from those of the Z2 × Z2 case presented in
Ref. [5] but do not pass BFB3 above.

(v) BFB3þ 4 (gray points): those points that pass
BFB-c and also pass the sufficient conditions for
BFB-c derived in this article, and in addition also
pass the sufficient conditions for BFB-c adapted
from those of the Z2 × Z2 case presented in Ref. [5].
Gray points are the would-be overlap between
orange and blue points.

We first comment on the difference between the two
alignment conditions: Al-1 and Al-2. In Fig. 1(a), we show
in themA1

−mH�
1
plane the points that have survived all the

constraints and that have been generated by a 50% range
around the limit (106), as in Eq. (114). Figure 1(b) repeats
the exercise for the much looser alignment constraints in
(113). Naturally, points that obey Al-1 but do not obey Al-2
are much more difficult to generate than points that obey
Al-2. However, as Fig. 1(b) illustrates, such points are
allowed and correspond to physically interesting regions of

parameter space. Namely, and contrary to popular belief,
the oblique parameters do not require degeneracy within
each scalar family. This confirms and extends results
mentioned in Ref. [22] for the case of a very specific
DM implementation of Z2 × Z2.
Now we turn to a second important issue. Could it be that

by using only BFB-n, without concern about BFB-c, one is
led into wrong physical conclusions? After all, it could be
that points which are BFB-n but not BFB-c do not differ in
their physical consequences from points which obey both
BFB-n and BFB-c. This is not the case, as we illustrate in
Figs. 2(a), 2(b), and 3. We see that points which are BFB-n
but not BFB-c (BFB1-red points) do allow for a negative
and large λ4, together with a positive and large λ7. The same
type of features appear in the λ5–λ8 plane. And this occurs
for all symmetries studied in this article: Uð1Þ × Uð1Þ in
Fig. 2(a);Uð1Þ × Z2 in Fig. 2(b); andZ2 × Z2 in Fig. 3. We
thus conclude that ignoring BFB-c does lead to wrong
physical conclusions. Dealing with the charge breaking
directions is not an option; it is a must.
A third and curious conclusion arises from the imple-

mentation of the different BFB constraints. In the Uð1Þ ×
Uð1Þ andUð1Þ × Z2 cases there are three BFB conditions of
interest: The true necessary and sufficient BFB conditions in
Secs. III A and IVA, respectively; the conditions proposed in
this article; and the adaptation of the sufficient conditions for
BFB-c presented for the Z2 × Z2 case in Ref. [5].
We start by noticing that the green points in Figs. 1(a),

1(b), 2(a), and 2(b) do not seem to occupy regions of
parameter space far different from those allowed by the
more stringent sufficient conditions BFB3, BFB4, and
BFB3þ 4. This is a first hint that maybe using sufficient
conditions does not skew the physical interpretation of
the models. We will come back to this issue below.
Interestingly, there seem to be no single blue point in
Figs. 1(a), 1(b), and 2(a), corresponding to the Uð1Þ ×
Uð1Þ case. Indeed, we have found numerically that all

FIG. 1. Uð1Þ ×Uð1Þ: ðmA1
; mH�

1
Þ for Type 1 with the tight Al-2 conditions (left panel) and loose Al-1 conditions (right panel).

BFB1 ¼ red, BFB2 ¼ green, BFB3 ¼ orange, BFB4 ¼ blue, BFB3þ 4 ¼ gray.

BOUNDED FROM BELOW CONDITIONS ON A CLASS OF … PHYS. REV. D 106, 115010 (2022)

115010-13



points which obey the adaptation to Uð1Þ ×Uð1Þ of the
sufficient BFB-c conditions presented for the Z2 × Z2 case
in Ref. [5] also obey the Uð1Þ ×Uð1Þ sufficient BFB-c
conditions proposed by us in Sec. III C. This is illustrated
by the gray points. The converse is not true. Thus we find in
Figs. 1(a), 1(b), and 2(a) orange points, which correspond
to points that pass the sufficient BFB-c conditions of
Sec. III C but do not pass the sufficient BFB-c conditions
of Sec. III B. In contrast, Fig. 2(b), which corresponds to
the Uð1Þ × Z2 case, contains the following: (i) points in
gray that pass both sets of bounds; (ii) points in orange that
pass the conditions of Sec. III C but do not pass the
conditions of Sec. III B; but also (iii) points in blue that
pass the conditions of Sec. III B but do not pass the
conditions of Sec. III C. In fact, we find the quite curious
result that our simulation consistently generated more blue
points than orange points. This is even more apparent in
Fig. 3 concerning the Z2 × Z2 case. That figure is based on

one simulation where we found 6977 BFB3 orange points,
10087 BFB4 blue points, and 6842 BFB3þ 4 gray overlap
points. This could be due to the following: The sufficient
conditions for the Z2 × Z2 case were found in Ref. [5] by a
careful study of the charge breaking directions of that specific
potential. Thus, it is not surprising that they are more helpful
in that case than in the Uð1Þ ×Uð1Þ or Uð1Þ × Z2 cases.
We now turn to the question of whether using sufficient

BFB-c instead of the correct necessary and sufficient BFB-
c conditions does (or not) constrain unduly the physical
quantities. We have calculated all consequences of the
various points found for the 125 GeV scalar and for
searches into heavier scalars. Next we plotted all pairs
of observables in the respective planes, looking for physical
differences between the placement of the green points
versus points with sufficient BFB-c conditions. We have
found no evidence of a difference. We illustrate such
searches below. We show the μγγ-μZZ plane in Figs. 4(a),
4(b), and 5, for the Uð1Þ ×Uð1Þ, Uð1Þ × Z2, and Z2 × Z2

symmetries, respectively. The exercise is repeated for the
mH�

1
−mH�

2
plane in Figs. 6(a), 6(b), and 7.

It is interesting to note that there can be points not gray
but red or blue. In the first case they pass BFB-n but not
BFB-c. In the second case they pass the conditions of
Ref. [5], but not our BFB4 conditions (orange points), as
gray points are required to pass both of these conditions.
For a given point, it is always possible numerically to check
which conditions pass or fail.
There is no physical difference that can be considered

statistically significant; there are only minor differences
between placement of colors, due to the sparse placement
of a (necessarily) limited numerical simulation.8 By
looking at hundreds of such plots we conclude the
following:

FIG. 2. Left panel: Uð1Þ × Uð1Þ: ðλ4; λ7Þ for Type 1 with the Al-2 conditions. Right panel: Uð1Þ × Z2: ðλ4; λ7Þ for Type 1 with the
Al-2 conditions.

FIG. 3. Z2 × Z2: ðλ4; λ7Þ for Type 1 with the Al-2 conditions.

8See a more detailed discussion of this point in the next section.
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(1) Using BFB-n bounds while ignoring BFB-c con-
siderations does lead to wrong physical conclusions.

(2) In contrast, using safe sufficient BFB-c bounds
versus using (when available) the exact necessary
and sufficient BFB-c conditions does not seem to
introduce a bias in the physical observables.

(3) Moreover, using different safe BFB-c bounds does
affect the number of points generated (for equal
running time) but it does not seem to introduce a bias
in the analysis.

B. Details of the numerical simulation

When discussing Figs. 6 and 7 we mentioned that the
high mass region was sparsely populated. In those figures
we were using the conditions of Eq. (114). As these also
include the exact conditions of Eq. (106), one would not
expect a difficulty in having high masses. To explain this

FIG. 4. Left panel:Uð1Þ × Uð1Þ: μZZ-μγγ plane for the gluon fusion production channel. For Type 1 with Al-2 conditions. Right panel:
Uð1Þ × Z2: μZZ-μγγ plane for the gluon fusion production channel. For Type 1 with Al-2 conditions.

FIG. 5. Z2 × Z2: μZZ-μγγ plane for the gluon fusion production
channel. For Type 1 with Al-2 conditions.

FIG. 6. Left panel: Uð1Þ × Uð1Þ: charged scalar masses for Type 1 with Al-2 conditions. Right panel: Uð1Þ × Z2: charged scalar
masses for Type 1 with Al-2 conditions.
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point one must realize first that the points in those figures
have passed all the cuts imposed by the theoretical and
experimental constraints. Second, and more important,
when we randomly sample as in Eq. (114), it is very
unlikely that we get any point that is close to the conditions
of Eq. (106).
To better illustrate this point, we now focus on the Z2 ×

Z2 model with the lowest bound developed in this article.
We generated four not overlapping sets, where instead of
Eq. (114), we use the following intervals:

(i) Set A: [0%, 1%] red
(ii) Set B: [1%, 10%] green
(iii) Set C: [10%, 20%] orange
(iv) Set D: [20%, 50%] blue.
In the left panel of Fig. 8 we plot the mass of A1 versus

the mass of H1. In the conditions of Eq. (106), this would
just be a straight line. Here, for Set A, we are very close to
those conditions. As we move away from Eq. (106), we

notice two things. First, the line moves into a broader band.
Second, larger masses are being cut. This is especially
true for Set D, where we are more than 20% away from
Eq. (106). This is due to the fact that we are now far away
from the symmetric conditions of Eq. (109), and therefore
from the quasi-SM situation. Then, the combination of
constraints, including the LHC results, makes it increas-
ingly difficult to generate good points with large masses.
We show this in a different way in the right panel of Fig. 8.
We see that high masses are easy to be generated for smaller
deviations from the symmetric situation of Eq. (106). We
notice that there is no contradiction between the right
panels of Figs. 8 and 7. In fact, the points for this figure
were generated according to Eq. (114), which means that
this includes both points close to the symmetric limit of
Eq. (106) and points deviating from it up to 50%.
The reason for including points away from the symmetric

limit is that otherwise we get results that are very close to the
SM, with very little room for new phenomenology.
This is illustrated in Fig. 9 where in the left panel we

plot the signal strengths μZZ versus μγγ for the same four
sets. In the right panel we plot the ratio of the λhhh
coupling to the SM. In both cases we see that, if we remain
too close to the symmetric limit of Eq. (106), the results
are very close to the SM, especially for the Higgs boson
triple coupling.
One final comment is in order. When we compare the left

panel of Fig. 9 with Fig. 5, we see that the former is
included in the later, but covers a smaller region. The
reason again is that our four sets are more constrained than
the generation in Eq. (114). For instance, one can have
some of the parameters at 50% and others at 10%, all
obeying Eq. (114). But, in the logic of the four sets used
in this section, they would be included in none. So, the
final lesson is that we should try to be as far away as
possible from the symmetric limit (but still compatible
with all constraints) to have a richer beyond the SM

FIG. 8. Left panel: mH1
versus mA1

for the four sets indicated in the text. Right panel: Same for mHþ
1
versus mHþ

1
.

FIG. 7. Z2 × Z2: charged scalar masses for Type 1 with Al-2
conditions.

BOTO, ROMÃO, and SILVA PHYS. REV. D 106, 115010 (2022)

115010-16



phenomenology. And, that such large deviations are still
compatible with all present theoretical and experimental
bounds.

XI. CONCLUSIONS

Most models of physics beyond the SM include an
extended scalar sector. The phenomenology of such models
cannot be reliably analyzed before a careful assessment of
whether the potential is bounded from below and whether
the chosen solution of the stationarity equations is indeed a
global minimum. In this article, we address the first issue,
stressing the necessity of studying both the neutral and the
charge breaking directions.
First, we develop a strategy to find sufficient BFB

conditions. It hinges on finding a potential that lies below
the original potential and to which the positivity conditions
[6,7] can be applied. We study in detail the Uð1Þ ×Uð1Þ,
Uð1Þ × Z2, and Z2 × Z2 3HDMs, for both BFB-n and
BFB-c. Then, we adapt the sufficient BFB Z2 × Z2 results
of [5] to the Uð1Þ × Uð1Þ and Uð1Þ × Z2 3HDM, compar-
ing with our bounds and highlighting both the similarities
(gray points in Figs. 1 through 7) and the differences
(orange and blue points in Figs. 1 through 7).
Second, we address the impact that the choice of

sufficient (but not necessary) BFB conditions might have
on phenomenological studies. It could be that the sufficient
conditions used in these models exclude good points that
would yield dramatically new features. This study can be
performed in the Uð1Þ ×Uð1Þ and Uð1Þ × Z2 cases, where
the correct necessary and sufficient BFB conditions are
possible [1,2]. This required us to set up the full model,
including the Yukawa couplings, which we take to be
consistent with the absence of flavor changing neutral
scalar couplings [38,39]. We present in detail all couplings,
but concentrate our phenomenological studies on Type I
models. This facilitates the scrutiny of our results and also
facilitates further detailed studies of specific aspects of the

phenomenology of these models, for all types of Yukawa
couplings.
After analyzing hundreds of correlations in two-

dimensional planes of experimental observables, we find
no evidence that points allowed by the complete necessary
and sufficient BFB conditions but excluded by our suffi-
cient BFB bounds would yield any new phenomenological
features. We did this for both Uð1Þ ×Uð1Þ and Uð1Þ × Z2.
A few examples are shown in Sec. X. Although not an
airtight proof, as is the case in any numerical simulation,
our results provide some reassurance that the sufficient
BFB conditions developed here do not significantly skew
the phenomenology in cases where no complete necessary
and sufficient conditions are known, such as the Z2 × Z2

and Z3 3HMDs.

ACKNOWLEDGMENTS

We are grateful to Dipankar Das for useful suggestions.
This work is supported in part by the Portuguese Fundação
para a Ciência e Tecnologia (FCT) under Contracts
No. CERN/FIS-PAR/0008/2019, No. PTDC/FIS-PAR/
29436/2017, No. UIDB/00777/2020, and No. UIDP/
00777/2020; these projects are partially funded through
POCTI Fundo Europeu de Desenvolvimento Regional
(FEDER), COMPETE, QREN, and the EU. The work of
R. B. is also supported by FCT with the Ph.D. Grant
No. PRT/BD/152268/2021.

APPENDIX A: POTENTIAL PARAMETERS IN
TERMS OF PHYSICAL VARIABLES

We list here the relation of the parameters of the potential
and masses and angles for the three cases.

1. The Uð1Þ × Uð1Þ potential
As there are no λ0010, λ

00
11, and λ

00
12, we can also solve for the

three soft terms. The expressions are

FIG. 9. Left panel: μγγ versus μZZ for the four sets indicated in the text. Right panel: Same for λhhh=λSMhhh versus sinðα1 − β1Þ.
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λ1 ¼
1

2c3β1 c
3
β2
v2

½c2α1c2α2cβ1cβ2m2
h þ c2α1c

2
α3cβ1cβ2m

2
H2
s2α2 þ c2α1cβ1cβ2m

2
H1
s2α2s

2
α3 þ 2cα1cα3cβ1cβ2m

2
H1
sα1sα2sα3

− 2cα1cα3cβ1cβ2m
2
H2
sα1sα2sα3 þ c2α3cβ1cβ2m

2
H1
s2α1 þ cβ1cβ2m

2
H2
s2α1s

2
α3 þ cβ2m

2
12sβ1 þm2

13sβ2 �; ðA1Þ

λ2 ¼
1

2c3β2s
3
β1
v2

½c2α1c2α3cβ2m2
H1
sβ1 þ c2α1cβ2m

2
H2
s2α3sβ1 − 2cα1cα3cβ2m

2
H1
sα1sα2sα3sβ1 þ 2cα1cα3cβ2m

2
H2
sα1sα2sα3sβ1

þ c2α2cβ2m
2
hs

2
α1sβ1 þ c2α3cβ2m

2
H2
s2α1s

2
α2sβ1 þ cβ1cβ2m

2
12 þ cβ2m

2
H1
s2α1s

2
α2s

2
α3sβ1 þm2

23sβ2 �; ðA2Þ

λ3 ¼
1

2s3β2v
2
½c2α2c2α3m2

H2
sβ2 þ c2α2m

2
H1
s2α3sβ2 þ cβ1cβ2m

2
13 þ cβ2m

2
23sβ1 þm2

hs
2
α2sβ2 �; ðA3Þ

λ4 ¼
1

cβ1c
2
β2
sβ1v

2
½−c2α1cα3m2

H1
sα2sα3 þ c2α1cα3m

2
H2
sα2sα3 þ cα1c

2
α2m

2
hsα1 − cα1c

2
α3m

2
H1
sα1 þ cα1c

2
α3m

2
H2
sα1s

2
α2

þ cα1m
2
H1
sα1s

2
α2s

2
α3 − cα1m

2
H2
sα1s

2
α3 þ cα3m

2
H1
s2α1sα2sα3 − cα3m

2
H2
s2α1sα2sα3 − cβ1c

2
β2
λ7sβ1v

2 −m2
12�; ðA4Þ

λ5 ¼
1

cβ1cβ2sβ2v
2
½−cα1cα2c2α3m2

H2
sα2 þ cα1cα2m

2
hsα2 − cα1cα2m

2
H1
sα2s

2
α3

− cα2cα3m
2
H1
sα1sα3 þ cα2cα3m

2
H2
sα1sα3 − cβ1cβ2λ8sβ2v

2 −m2
13�; ðA5Þ

λ6 ¼
1

cβ2sβ1sβ2v
2
½cα1cα2cα3m2

H1
sα3 − cα1cα2cα3m

2
H2
sα3 − cα2c

2
α3m

2
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sα1sα2

þ cα2m
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λ7 ¼ −
2

cβ1c
2
β2
sβ1v

2
½c2β1ðcγ2sβ2sγ2ðm2

H�
2

−m2
H�

1

Þ þm2
12Þ þ cβ1sβ1ðc2γ2ðm2

H�
1

−m2
H�

2

s2β2Þ

þ s2γ2ðm2
H�

2

−m2
H�

1

s2β2ÞÞ þ s2β1ðcγ2sβ2sγ2ðm2
H�

1

−m2
H�

2

Þ þm2
12Þ�; ðA7Þ

λ8 ¼ −
2

cβ1cβ2sβ2v
2
½cβ1cβ2sβ2ðc2γ2m2
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2

þm2
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1

s2γ2Þ þ cβ2cγ2sβ1sγ2ðm2
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2

−m2
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1
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λ9 ¼ −
2

cβ2sβ1sβ2v
2
½cβ2ðcβ1cγ2sγ2ðm2

H�
1

−m2
H�

2

Þ þ c2γ2m
2
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2

sβ1sβ2 þm2
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1

sβ1sβ2s
2
γ2Þ þm2
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m2
12 ¼ c2β1cγ1sβ2sγ1ðm2

A1
−m2
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Þ þ cβ1sβ1ðc2γ1ðm2
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s2β2 −m2
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Þ þ s2γ1ðm2
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s2β2 −m2

A2
ÞÞ þ cγ1s

2
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−m2
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Þ; ðA10Þ

m2
13 ¼ −cβ2ðcβ1sβ2ðc2γ1m2
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þm2

A1
s2γ1Þ þ cγ1sβ1sγ1ðm2

A2
−m2

A1
ÞÞ; ðA11Þ
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23 ¼ −cβ2ðcβ1cγ1sγ1ðm2
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−m2

A2
Þ þ c2γ1m

2
A2
sβ1sβ2 þm2

A1
sβ1sβ2s

2
γ1Þ: ðA12Þ

2. The Uð1Þ × Z2 potential

As there are no λ0011 and λ0012, we can also solve for two of the soft terms. We choose m2
13 and m2

23 leaving m2
12 as

independent. The expressions are

λ1 ¼
1

2c3β1c
3
β2
v2

½c2α1cβ1cβ2ðc2α2m2
h þ s2α2ðc2α3m2

H2
þm2

H1
s2α3ÞÞ þ 2cα1cα3cβ1cβ2sα1sα2sα3ðm2

H1
−m2

H2
Þ

þ c2α3cβ1cβ2m
2
H1
s2α1 þ cβ1cβ2m

2
H2
s2α1s

2
α3 þ cβ2m

2
12sβ1 þm2

13sβ2 �; ðA13Þ
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λ2 ¼
1

2c3β2s
3
β1
v2

½c2α1cβ2sβ1ðc2α3m2
H1

þm2
H2
s2α3Þ þ 2cα1cα3cβ2sα1sα2sα3sβ1ðm2

H2
−m2

H1
Þ

þ c2α2cβ2m
2
hs

2
α1sβ1 þ c2α3cβ2m

2
H2
s2α1s

2
α2sβ1 þ cβ1cβ2m

2
12 þ cβ2m

2
H1
s2α1s

2
α2s

2
α3sβ1 þm2

23sβ2 �; ðA14Þ

λ3 ¼
1

2s3β2v
2
½c2α2c2α3m2

H2
sβ2 þ c2α2m

2
H1
s2α3sβ2 þ cβ1cβ2m

2
13 þ cβ2m

2
23sβ1 þm2

hs
2
α2sβ2 �; ðA15Þ

λ4 ¼
1

cβ1c
2
β2
sβ1v

2
½c2α1cα3sα2sα3ðm2

H2
−m2

H1
Þ þ cα1sα1ðc2α2m2

h þ c2α3ðm2
H2
s2α2 −m2

H1
Þ þ s2α3ðm2

H1
s2α2 −m2

H2
ÞÞ

þ cα3m
2
H1
s2α1sα2sα3 − cα3m

2
H2
s2α1sα2sα3 − cβ1c

2
β2
λ7sβ1v

2 − 2cβ1c
2
β2
λ0010sβ1v

2 −m2
12�; ðA16Þ

λ5 ¼ −
1

cβ1cβ2sβ2v
2
½cα1cα2sα2ðc2α3m2

H2
−m2

h þm2
H1
s2α3Þ þ cα2cα3m

2
H1
sα1sα3−cα2cα3m

2
H2
sα1sα3 þ cβ1cβ2λ8sβ2v

2 þm2
13�;

ðA17Þ

λ6 ¼ −
1

cβ2sβ1sβ2v
2
½cα2ðcα1cα3sα3ðm2

H2
−m2

H1
Þ þ c2α3m

2
H2
sα1sα2 þm2

hð−sα1Þsα2þm2
H1
sα1sα2s

2
α3Þ þ cβ2λ9sβ1sβ2v

2 þm2
23�;

ðA18Þ

λ7 ¼ −
2

cβ1c
2
β2
sβ1v

2
½c3β1c2β2λ0010sβ1v2 þ c2β1ðcγ2sβ2sγ2ðm2

H�
2

−m2
H�

1

Þ þm2
12Þ þ cβ1sβ1ðc2β2λ0010s2β1v2 þ c2γ2ðm2

H�
1

−m2
H�

2

s2β2Þ

−m2
H�

1

s2β2s
2
γ2 þm2

H�
2

s2γ2Þ þ s2β1ðcγ2sβ2sγ2ðm2
H�

1

−m2
H�

2

Þ þm2
12Þ�; ðA19Þ

λ8 ¼ −
2

cβ1cβ2sβ2v
2
½cβ1cβ2sβ2ðc2γ2m2

H�
2

þm2
H�

1

s2γ2Þ þ cβ2cγ2sβ1sγ2ðm2
H�

2

−m2
H�

1

Þ þm2
13�; ðA20Þ

λ9 ¼ −
2

cβ2sβ1sβ2v
2
½cβ2ðcβ1cγ2sγ2zðm2

H�
1

−m2
H�

2

Þ þ c2γ2m
2
H�

2

sβ1sβ2 þm2
H�

1

sβ1sβ2s
2
γ2Þ þm2

23�; ðA21Þ

λ0010 ¼ −
1

2cβ1c
2
β2
sβ1v

2
½c2β1ðcγ1sβ2sγ1ðm2

A2
−m2

A1
Þ þm2

12Þ þ cβ1sβ1ðc2γ1ðm2
A1

−m2
A2
s2β2Þ þ s2γ1ðm2

A2
−m2

A1
s2β2ÞÞ

þ s2β1ðcγ1sβ2sγ1ðm2
A1

−m2
A2
Þ þm2

12Þ�; ðA22Þ

m2
13 ¼ −cβ2 ½cβ1sβ2ðc2γ1m2

A2
þm2

A1
s2γ1Þ þ cγ1sβ1sγ1ðm2

A2
−m2

A1
Þ�; ðA23Þ

m2
23 ¼ −cβ2 ½cβ1cγ1sγ1ðm2

A1
−m2

A2
Þ þ c2γ1m

2
A2
sβ1sβ2 þm2

A1
sβ1sβ2s

2
γ1 �: ðA24Þ

3. The Z2 × Z2 potential

We have

λ1 ¼
1

2c3β1c
3
β2
v2

½c2α1cβ1cβ2ðc2α2m2
h þ s2α2ðc2α3m2

H2
þm2

H1
s2α3ÞÞ þ 2cα1cα3cβ1cβ2sα1sα2sα3ðm2

H1
−m2

H2
Þ

þ c2α3cβ1cβ2m
2
H1
s2α1 þ cβ1cβ2m

2
H2
s2α1s

2
α3 þ cβ2m

2
12sβ1 þm2

13sβ2 �; ðA25Þ

λ2 ¼
1

2c3β2s
3
β1
v2

½c2α1cβ2sβ1ðc2α3m2
H1

þm2
H2
s2α3Þ þ 2cα1cα3cβ2sα1sα2sα3sβ1ðm2

H2
−m2

H1
Þ

þc2α2cβ2m
2
hs

2
α1sβ1 þ c2α3cβ2m

2
H2
s2α1s

2
α2sβ1þcβ1cβ2m

2
12 þ cβ2m

2
H1
s2α1s

2
α2s

2
α3sβ1 þm2

23sβ2 �; ðA26Þ
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λ3 ¼
1

2s3β2v
2
½c2α2c2α3m2

H2
sβ2 þ c2α2m

2
H1
s2α3sβ2 þ cβ1cβ2m

2
13 þ cβ2m

2
23sβ1 þm2

hs
2
α2sβ2 �; ðA27Þ

λ4 ¼
1

cβ1c
2
β2
sβ1v

2
½c2α1cα3sα2sα3ðm2

H2
−m2

H1
Þ þ cα1sα1ðc2α2m2

h þ c2α3ðm2
H2
s2α2 −m2

H1
Þ þ s2α3ðm2

H1
s2α2 −m2

H2
ÞÞ

þ cα3m
2
H1
s2α1sα2sα3 − cα3m

2
H2
s2α1sα2sα3 − cβ1c

2
β2
λ7sβ1v

2 − 2cβ1c
2
β2
λ0010sβ1v

2 −m2
12�; ðA28Þ

λ5 ¼ −
1

cβ1cβ2sβ2v
2
½cα1cα2sα2ðc2α3m2

H2
−m2

h þm2
H1
s2α3Þ þ cα2cα3m

2
H1
sα1sα3

−cα2cα3m
2
H2
sα1sα3 þ cβ1cβ2λ8sβ2v

2 þ 2cβ1cβ2λ
00
11sβ2v

2 þm2
13�; ðA29Þ

λ6 ¼ −
1

cβ2sβ1sβ2v
2
½cα2ðcα1cα3sα3ðm2

H2
−m2

H1
Þ þ c2α3m

2
H2
sα1sα2 þm2

hð−sα1Þsα2
þm2

H1
sα1sα2s

2
α3Þ þ cβ2sβ1sβ2v

2ðλ9 þ 2λ0012Þ þm2
23�; ðA30Þ

λ7 ¼ −
2

cβ1c
2
β2
sβ1v

2
½c3β1c2β2λ0010sβ1v2 þ c2β1ðcγ2sβ2sγ2ðm2

H�
2

−m2
H�

1

Þ þm2
12Þ þ cβ1sβ1ðc2β2λ0010s2β1v2

þ c2γ2ðm2
H�

1

−m2
H�

2

s2β2Þ −m2
H�

1

s2β2s
2
γ2 þm2

H�
2

s2γ2Þ þ s2β1ðcγ2sβ2sγ2ðm2
H�

1

−m2
H�

2

Þ þm2
12Þ�; ðA31Þ

λ8 ¼ −
2

cβ1cβ2sβ2v
2
½cβ1cβ2sβ2ðc2γ2m2

H�
2

þ λ0011v
2 þm2

H�
1

s2γ2Þ þ cβ2cγ2sβ1sγ2ðm2
H�

2

−m2
H�

1

Þ þm2
13�; ðA32Þ

λ9 ¼ −
2

cβ2sβ1sβ2v
2
½cβ2ðcβ1cγ2sγ2ðm2

H�
1

−m2
H�

2

Þ þ c2γ2m
2
H�

2

sβ1sβ2þsβ1sβ2ðλ0012v2 þm2
H�

1

s2γ2ÞÞ þm2
23�; ðA33Þ

λ0010 ¼ −
1

2cβ1c
2
β2
sβ1v

2
½c2β1ðcγ1sβ2sγ1ðm2

A2
−m2

A1
Þ þm2

12Þ þ cβ1sβ1ðc2γ1ðm2
A1

−m2
A2
s2β2Þ

þs2γ1ðm2
A2

−m2
A1
s2β2ÞÞ þ s2β1ðcγ1sβ2sγ1ðm2

A1
−m2

A2
Þ þm2

12Þ�; ðA34Þ

λ0011 ¼ −
cβ1cβ2sβ2ðc2γ1m2

A2
þm2

A1
s2γ1Þ þ cβ2cγ1sβ1sγ1ðm2

A2
−m2

A1
Þ þm2

13

2cβ1cβ2sβ2v
2

; ðA35Þ

λ0012 ¼ −
cβ2ðcβ1cγ1sγ1ðm2

A1
−m2

A2
Þ þ c2γ1m

2
A2
sβ1sβ2 þm2

A1
sβ1sβ2s

2
γ1Þ þm2

23

2cβ2sβ1sβ2v
2

: ðA36Þ

APPENDIX B: OBLIQUE PARAMETERS STU

To discuss the effect of the S, T, U parameters, we use the results in [35]. To apply the relevant expressions, we write the
matrices U and V used in [35] with the notation choices that we made when obtaining the mass eigenstates in Sec. VI. We
start with the 3 × 6 matrix V defined as

0
B@

x1 þ iz1
x2 þ iz2
x3 þ iz3

1
CA ¼ V

0
BBBBBBBB@

G0

h1
h2
h3
A1

A2

1
CCCCCCCCA

ðB1Þ

and find, by comparison with Eqs. (74) and (77), that V is
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V ¼

0
B@

½1.5�iPT
11 RT

11 RT
12 RT

13 iPT
12 iPT

13

iPT
21 RT

21 RT
22 RT

23 iPT
22 iPT

23

iPT
31 RT

31 RT
32 RT

33 iPT
32 iPT

33

1
CA: ðB2Þ

The 3 × 3 matrix U defined as

0
BB@

w†
1

w†
2

w†
3

1
CCA ¼ U

0
B@

G†

Hþ
1

Hþ
2

1
CA ðB3Þ

gives us the correspondence U ¼ QT from Eq. (80).
Having applied the expressions for S, T,U, the constraints

implemented on S and T follow Ref. [43], at 95% confidence
level. For U, we fix the allowed interval to be

U ¼ 0.03� 0.10: ðB4Þ

APPENDIX C: PERTURBATIVE UNITARITY
CONSTRAINTS

To determine the tree-level unitarity constraints, we use
the algorithm presented in [36]. As described there, we
have to impose that the eigenvalues of the scattering
S matrix of two scalars into two scalars have an upper
bound (the unitarity limit). We separate the scattering
matrices according to charge and hypercharge [36], MQ

2Y .
For our models this has been done in Ref. [37], and we
copy here their results. We consider the case of Z2 × Z2, as
the others can be obtained from this by setting some of the
λ0s to zero.

1. M + +
2

We get

Mþþ
2 ¼ diag

8>><
>>:

2
64
2λ1 2λ010 2λ011
2λ010 2λ2 2λ012
2λ011 2λ012 2λ3

3
75; ðλ4 þ λ7Þ; ðλ5 þ λ8Þ; ðλ6 þ λ9Þ

9>>=
>>;
: ðC1Þ

2. M +
2

We get

Mþ
2 ¼ diag

8>><
>>:

2
64
2λ1 2λ010 2λ011
2λ010 2λ2 2λ012
2λ011 2λ012 2λ3

3
75;

�
λ4 λ7

λ7 λ4

�
;

�
λ5 λ8

λ8 λ5

�
;

�
λ6 λ9

λ9 λ6

�
9>>=
>>;
: ðC2Þ

3. M +
0

We get

Mþ
0 ¼ diag

8>><
>>:

2
64
2λ1 λ7 λ8

λ7 2λ2 λ9

λ8 λ9 2λ3

3
75;

�
λ4 2λ010
2λ010 λ4

�
;

�
λ5 2λ011
2λ011 λ5

�
;

�
λ6 2λ012
2λ012 λ6

�
9>>=
>>;
: ðC3Þ

4. M0
0

We get

M0
0 ¼ diag

8>><
>>:
Mþ

0 ;

2
64

6λ1 2λ4 þ λ7 2λ5 þ λ8

2λ4þ λ7 6λ2 2λ6 þ λ9

2λ5þ λ8 2λ6 þ λ9 6λ3

3
75;

�
λ4þ 2λ7 6λ010
6λ010 λ4þ 2λ7

�
;

�
λ5þ 2λ8 6λ011
6λ011 λ5þ 2λ8

�
;

�
λ6þ 2λ9 6λ012
6λ012 λ6þ 2λ9

�
9>>=
>>;
:

ðC4Þ
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Denoting by Λi the eigenvalues of the relevant scattering
matrices, we have 27 Λ’s to calculate for each set of
physical parameters randomly generated, and the condition
to impose is that

jΛij ≤ 8π; i ¼ 1;…; 21: ðC5Þ

The explicit expressions for the different eigenvalues are

Λþþ
1−3 ¼ Roots of∶ x3 þ 2ð−λ1 − λ2 − λ3Þx2

þ 4ð−λ0210 − λ0211 − λ0212 þ λ1λ2 þ λ1λ3 þ λ2λ3Þx
þ 8ðλ3λ0210 þ λ2λ

02
11 þ λ1λ

02
12 − 2λ010λ011λ012 − λ1λ2λ3Þ

¼ 0; ðC6Þ
Λþþ
4 ¼ λ4 þ λ7; ðC7Þ

Λþþ
5 ¼ λ5 þ λ8; ðC8Þ

Λþþ
6 ¼ λ6 þ λ9; ðC9Þ

Λþ;2
1−3 ¼ Λþþ

1−3; ðC10Þ

Λþ;2
4;5 ¼ λ4 � λ7; ðC11Þ

Λþ;2
6;7 ¼ λ5 � λ8; ðC12Þ

Λþ;2
8;9 ¼ λ6 � λ9: ðC13Þ

Λþ;0
1−3 ¼ Roots of∶ x3 þ 2ð−λ1 − λ2 − λ3Þx2

þ ð−λ27 − λ28 − λ29 þ 4λ1λ2 þ 4λ1λ3 þ 4λ2λ3Þx
þ 2ðλ3λ27 þ λ2λ

2
8 þ λ1λ

2
9 − λ7λ8λ9 − 4λ1λ2λ3Þ ¼ 0;

ðC14Þ

Λþ;0
4;5 ¼ λ4 � 2λ010; ðC15Þ

Λþ;0
6;7 ¼ λ5 � 2λ011; ðC16Þ

Λþ;0
8;9 ¼ λ6 � 2λ012; ðC17Þ

Λ0;0
1−9 ¼ Λþ;0

1−9: ðC18Þ

Λ0;0
10−12 ¼ Roots of∶x3 þ 6ð−λ1 − λ2 − λ3Þx2 þ ð−4λ24 − 4λ25 − 4λ26 − λ27 − λ28 − λ29 − 4λ4λ7 − 4λ5λ8

−4λ6λ9 þ 36λ1λ2 þ 36λ1λ3 þ 36λ2λ3Þxþ 2ð12λ3λ24 þ 12λ2λ
2
5 þ 12λ1λ

2
6 þ 3λ3λ

2
7

þ3λ2λ
2
8 þ 3λ1λ

2
9 − 108λ1λ2λ3 − 8λ4λ5λ6 þ 12λ3λ4λ7 þ 12λ2λ5λ8 þ 12λ1λ6λ9

−4λ5λ6λ7 − 4λ4λ6λ8 − 4λ4λ5λ9 − 2λ6λ7λ8 − 2λ5λ7λ9 − 2λ4λ8λ9 − λ7λ8λ9Þ ¼ 0; ðC19Þ
Λ0;0
13−14 ¼ λ4 þ 2λ7 � 6λ010; ðC20Þ

Λ0;0
15−16 ¼ λ5 þ 2λ8 � 6λ011; ðC21Þ

Λ0;0
17−18 ¼ λ6 þ 2λ9 � 6λ012: ðC22Þ

We can take as independent the set

Λþþ
1−3; Λþ;2

4;5 ; Λþ;2
6;7 ; Λþ;2

8;9 ; Λþ;0
1−9; Λ0;0

10−18:

ðC23Þ

Now for the case of Uð1Þ × Z2 the results are obtained
from those above setting λ011 ¼ λ012 ¼ 0, and for the Uð1Þ ×
Uð1Þ case we should put λ010 ¼ λ011 ¼ λ012 ¼ 0. One can
check with Ref. [37] that this leads to the correct results.

APPENDIX D: YUKAWA INTERACTIONS IN
THE MASS BASIS

1. Type II

For this case we assume that under the group

nR → ðþ; e−iθ
0 ÞnR; lR → ðþ; e−iθ

0 ÞlR; ðD1Þ

the other fermion fields remain unaffected, where we have
used the notation of Table I, only altered by using “þ” for
invariance.9 Therefore, up quarks couple to ϕ3 and down
quarks and leptons couple only to ϕ2. With the conventions
of Eqs. (92) and (94) we have

afj →
Rj;2

v̂2
; j ¼ 1; 2; 3 for all leptons;

bfj →
Pj−2;2

v̂2
; j ¼ 4; 5 for all leptons;

afj →
Rj;3

v̂3
; j ¼ 1; 2; 3 for all up quarks;

bfj → −
Pj−2;3

v̂3
; j ¼ 4; 5 for all up quarks;

afj →
Rj;2

v̂2
; j ¼ 1; 2; 3 for all down quarks;

bfj →
Pj−2;2

v̂2
; j ¼ 4; 5 for all down quarks; ðD2Þ

9We used a space instead of “þ” for an invariance in Table I, in
order not to clutter the notation.
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and

ηlLk ¼ −
Qkþ1;2

v̂2
; ηlRk ¼ 0; ηqLk ¼ −

Qkþ1;2

v̂2
;

ηqRk ¼ Qkþ1;3

v̂3
; k ¼ 1; 2: ðD3Þ

2. Type X

For this case we assume that under the group

lR → ðþ; e−iθ
0 ÞlR; ðD4Þ

the other fermion fields remain unaffected, where we have
used the notation of Table I. Therefore, up and down quarks
couple to ϕ3 and leptons couple only to ϕ2. With the
conventions of Eqs. (92) and (94) we have

afj →
Rj;2

v̂2
; j ¼ 1; 2; 3 for all leptons;

bfj →
Pj−2;2

v̂2
; j ¼ 4; 5 for all leptons;

afj →
Rj;3

v̂3
; j ¼ 1; 2; 3 for all up quarks;

bfj → −
Pj−2;3

v̂3
; j ¼ 4; 5 for all up quarks;

afj →
Rj;3

v̂3
; j ¼ 1; 2; 3 for all down quarks;

bfj →
Pj−2;3

v̂3
; j ¼ 4; 5 for all down quarks;

ðD5Þ

and

ηlLk ¼ −
Qkþ1;2

v̂2
; ηlRk ¼ 0; ηqLk ¼ −

Qkþ1;3

v̂3
;

ηqRk ¼ Qkþ1;3

v̂3
; k ¼ 1; 2: ðD6Þ

3. Type Y

For this case we assume that under the group

nR → ðþ; e−iθ
0 ÞnR; ðD7Þ

the other fermion fields remain unaffected, where we have
used the notation of Table I. Therefore, up quarks and
leptons couple to ϕ3 and down quarks couple only to ϕ2.
With the conventions of Eqs. (92) and (94) we have

afj →
Rj;3

v̂3
; j ¼ 1; 2; 3 for all leptons;

bfj →
Pj−2;3

v̂3
; j ¼ 4; 5 for all leptons;

afj →
Rj;3

v̂3
; j ¼ 1; 2; 3 for all up quarks;

bfj → −
Pj−2;3

v̂3
; j ¼ 4; 5 for all up quarks;

afj →
Rj;2

v̂2
; j ¼ 1; 2; 3 for all down quarks;

bfj →
Pj−2;2

v̂2
; j ¼ 4; 5 for all down quarks;

ðD8Þ

and

ηlLk ¼ −
Qkþ1;3

v̂3
; ηlRk ¼ 0; ηqLk ¼ −

Qkþ1;2

v̂2
;

ηqRk ¼ Qkþ1;3

v̂3
; k ¼ 1; 2: ðD9Þ

4. Type Z

For this case we assume that under the group

nR → ðþ; e−iθ
0 ÞnR; lR → ðe−iθ;þÞlR; ðD10Þ

the other fermion fields remain unaffected, where we have
used the notation of Table I. It follows that the Yukawa
coupling matrices are now restricted: ϕ1 has interaction
terms only with the charged leptons, giving them mass; ϕ3

and ϕ2 are responsible for masses of the up- and down-type
quarks, respectively.
With the conventions of Eqs. (92) and (94) we have

afj →
Rj;1

v̂1
; j ¼ 1; 2; 3 for all leptons;

bfj →
Pj−2;1

v̂1
; j ¼ 4; 5 for all leptons;

afj →
Rj;3

v̂3
; j ¼ 1; 2; 3 for all up quarks;

bfj → −
Pj−2;3

v̂3
; j ¼ 4; 5 for all up quarks;

afj →
Rj;2

v̂2
; j ¼ 1; 2; 3 for all down quarks;

bfj →
Pj−2;2

v̂2
; j ¼ 4; 5 for all down quarks;

ðD11Þ
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where we introduce v̂i ¼ vi=v, with the VEVs in Eq. (71). Note how the coupling of each type of fermion depends on
entries of the diagonalization matrices in Eqs. (75) and (79).
The charged couplings are

ηlLk ¼ −
Qkþ1;1

v̂1
; ηlRk ¼ 0; ηqLk ¼ −

Qkþ1;2

v̂2
; ηqRk ¼ Qkþ1;3

v̂3
; k ¼ 1; 2; ðD12Þ

for leptons and quarks, respectively.
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