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We study quark and lepton mass matrices derived from magnetized T?/Z, orbifold models. Quark and
lepton masses have a large hierarchy. In addition, mixing angles are large in the lepton sector, while those
are small in the quark sector. We find that this structure can be realized in certain flavor models, which are
identified by the zero points of the zero-mode wave functions of fermions and Higgs modes. We classify

such realistic flavor models. Fixed points 7 = i, e

27i/3

and ioco of the modulus 7 play a role in realizing a

large mass hierarchy through our scenario, where residual S, ST, and T symmetries remain and the lightest
Higgs modes can correspond to eigenstates of residual symmetries at the leading order. As a result, we find
that there are 24 flavor models in total which can be realistic in a vicinity of S-symmetric vacuum but no

flavor models for S7- and T-symmetric vacua.

DOI: 10.1103/PhysRevD.106.115003

I. INTRODUCTION

The standard model (SM) established by the discovery of
the Higgs particle is a successful theory describing almost
all observations from current experiments. However it still
contains several unsolved issues. The origin of the quark
and lepton flavors is one of such issues. Quark and lepton
masses are required to be hierarchical, and neutrino masses
must be extremely light compared with other fermions by
observational results. In addition, quark mixings are
required to be small but lepton mixings are large. Also
we have CP-violating phases. To describe these observ-
ables in the quark sector, the SM needs ten real parameters:
six quark masses, three mixing angles, and one CP-violating
phase. For the lepton sector, it needs twelve real parameters:
six lepton masses, three mixing angles, and three Dirac and
Majorana CP-violating phases. Understanding the origin of
these parameters is one of the most fundamental and
challenging issues in the current particle physics.

Superstring theory is a promising candidate for the
unified theory. This theory predicts ten-dimensional (10D)
space-time. The extra six-dimensional (6D) space must be
compactified to be unobserved. The low-energy effective
theory of superstring theory leads 10D super-Yang-Mills
theory and its compactification can lead to solutions to the
issues in particle physics. Hence, we can expect that the
quark and lepton flavor structures are originated from this
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6D space. For example, torus and orbifold compactifica-
tions with magnetic flux background give the four-
dimensional chiral theory where wave functions have a
generation structure determined by the size of the magnetic
flux and Yukawa couplings depend on moduli [1-4]. In this
sense, superstring theory on torus compactification and its
orbifoldings with magnetic fluxes is attractive. Indeed,
several numerical studies have shown that realistic flavor
structures can be realized [5-10].

Moreover, torus compactification has another important
aspect. The geometrical symmetry of torus is the modular
symmetry I'=SL(2,Z) as well as T'=SL(2,2)/7,,
which has recently drawn attention from the bottom-up
approach. It is well known that the finite modular subgroups
I'y for N = 2, 3,4, and 5 are isomorphic to S5, A4, S, and
As, respectively [11]. Inspired by these aspects, flavor
models with I'y have been studied intensively in the
bottom-up approach. (See e.g., Refs. [12-61].) In those
models, matter fields are assumed to transform nontrivially
under modular symmetry. In addition, Yukawa couplings
are also modular forms and depend on the modulus z.
Especially, the modular fixed points, 7 = i, ¢**/3 and ico,
are important. Yukawa couplings as well as mass matrices
have S(Z,), ST(Z3), and T(Zy)-symmetries at 7= i,
e?/3_ and ico, respectively, and these residual symmetries
make the structure of Yukawa couplings specific patterns. In
Refs. [33,36,43,55-57], realistic results were obtained at the
vicinity of the modualr fixed points. (See also Ref. [62].)

Here, we study the quark and lepton mass matrices
derived from magnetized T?/Z, orbifold models. Zero
modes in magnetized 72/Z, orbifold models transform
nontrivially under the modular symmetry [63-70].
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In general, compactifications of superstring theory lead to
more than one candidate for Higgs modes, which have the
same quantum numbers under SU(3) x SU(2) x U(1) SM
gauge group and can couple with quarks and leptons. It is
true for torus and orbifold compactification with magnetic
flux. Note that again the generation number of wave
functions is determined by the size of magnetic flux.
Then, the number of Higgs pairs is also determined by
the magnetic fluxes in the quark and lepton sectors and is
larger than one, in general. They can couple to both quarks
and leptons and give multipair Yukawa couplings among
them. Thus mass matrices of quarks and leptons are given
by the liner combination of these Yukawa couplings and
vacuum expectation values (VEVs) of multipair Higgs
fields. We expect that those Higgs modes may have mass
terms, i.e., the so-called u terms, and the lightest linear
combination develops its VEV. Thus, the Higgs VEV
direction is determined by the lightest direction. The mass
terms of Higgs fields are forbidden at the perturbative level
in superstring theory. They can be induced by nonperturba-
tive effects such as D-brane instanton effects. However,
such analyses are not straightforward in explicit models, and
the lightest direction is not clear. In our analysis, as in
Refs. [5-8], we use the direction of Higgs VEVs as
parameters and find the model conditions to lead to
hierarchical masses of quarks and charged lepton, small
mixing of quarks and large mixing of leptons. In addition,
we assume the vicinity at either of three modular fixed
points, 7 = i, e*/3, and ico, and Higgs VEVs are aligned in
the eigenbasis of S, ST, and T transformations, respectively.
As we will show, such vacuum can be led by the leading
order Higgs u term due to D-brane instanton effects.

Also we need to solve the smallness of neutrino masses.
It can be realized by a seesaw mechanism. Majorana
mass terms of a right-handed neutrino can be induced
by D-brane instanton effects [71-75]. In particular, in
Ref. [76], possible forms of right-handed neutrino mass
terms induced by D-brane instanton effects on magnetized
T?/Z, orbifold were studied. Assuming same D-brane
instanton effects, we obtain light neutrino masses through
the seesaw mechanism.

Our purpose of this paper is to realize realistic quark and
lepton mass matrices in magnetized orbifold models. One
of the key points is how to derive a large hierarchy of
fermion masses. Such a hierarchy can be realized in mass
matrices with almost rank one. In Ref. [9], the texture
structure of quark mass matrices was studied and it was
shown that (approximate) rank one quark mass matrices
can be derived through the texture structure. Here, we show
another method to find (approximate) rank one mass
matrices by using properties of wave functions in compact
space. Such a method will be applied to both the quark
sector and charged lepton sector, although only the quark
sector was studied in Ref. [9]. Another key point is how to
drive the large mixing in the lepton sector and the small

mixing in the quark sector. As will be shown, the above
Higgs VEV directions leading to approximate rank one
mass matrices have a problem when we apply it to the
neutrino sector, too. Such a difficulty can be avoided in
some models, which satisfy certain consistency conditions.
We will study such conditions and show explicit models.

The paper is organized as follows. In Sec. II, we review
the zero-mode wave functions and flavor models on the torus
and orbifold with magnetic fluxes. In Sec. III, we study the
conditions to realize quark and lepton flavor structure and
classify the flavor models consistent with them. In Sec. IV,
we also classify the flavor models consistent with the
modular symmetric vacuum. In Sec. V, we give the numeri-
cal studies for the quark and lepton mass matrices in our
models. Section VI concludes this study. In Appendixes A
and B, we review the Majorana mass terms of right-handed
neutrinos and Higgs y terms induced by D-brane instanton
effects, respectively. In Appendix C, we summarize the
Yukawa couplings and Majorana mass terms on the model
studied numerically in Sec. V.

II. MAGNETIZED ORBIFOLD MODEL

A. Torus and orbifold compactifications

First of all, we briefly review the zero-mode wave
functions on the magnetized 72. As in Ref. [9], to make
our analysis simple, we assume U( 1) background magnetic
flux on T?:

iM
F=dA="""g; A dz,
Imz

M

A= ImTIm(zdz), (1)
where z denotes the complex coordinate on 72, 7 denotes
the complex structure modulus, M is a value of flux, and A
is the vector potential one-form. Then the torus identi-
fication z ~ z + m + nt, m,n € Z, makes the value of flux
M be the integer, which is called the Dirac quantization
condition.

The two-dimensional spinor with U(1) unit charge
g=1,y = (y,,w_)T, must satisfy the following boun-
dary conditions:

et 1) = ey o),
y(z+ 1) = e Miy (o), (2)

where «;, i =1, 2 denote Scherk-Schwarz (SS) phases,
which cannot be removed by the gauge transformation.
Imposing these conditions on the massless Dirac equation,
iPy = 0, it is found that when M > 0 (M < 0), y,. (w_)
has the |M| number of degenerate solutions but y_ (. ) has
no solution. Then the jth zero modes of y, for M > 0 are
expressed as
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wg{+al-az)v|M| (Z7T)
1/4 _ (rapa jtay
_ (%) / eznl%eﬂimdz—i@{ [M] :|(|M z M|T),
A —Qy
j=0,1,..., M|—1, (3)

where A denotes the area of 72 and 9 denotes the Jacobi
theta function defined by

9 [ a ] (v,7) = Z rilatt)e 2ri(ate) (u+b) 4)

b ez

Similarly, ones of w_ for M <0 are given. Hereafter

M >0 and denote wﬁf*“‘*“ﬁ’w‘ as

we€ assume

(J+a.a),
TZ
the same way. It can be shown that the zero modes satisfy
the normalization,

M although one can study the M < 0 case in

/d2zw(i+a1 )M (Z,T) (W(j+a1 .az),M(Z’ T))* — (2Im7)_1/25i.j-

(5)

Second, we review the zero-mode wave functions on
the T?/Z, twisted orbifold. The T?/Z, twisted orbifold is
obtained by the Z, twist identification, z ~ —z, in addition
to torus identification. Then the zero modes on T?/Z, are
given by

W (@) = N (e @) - (e (=)

2/

= NUta) (l//g{er(l"(lZ)’M(Z) 4 (_l)m—ZaZW

— Ojksa] saszW<k+(11 ),M
= Oy, 5

T

where m € {0, 1} denotes parities under Z, twist, N'U+e)
is a normalization factor defined by

12 (j+a; =0,M/2),

1/v/2 (otherwise), @)

N(j+al) = {

and
O @M = NUFO (8, 4+ (=1)" 228y 20 i) (8)
Note that SS phases on 72/Z, are restricted to

(a1, @) = (0,0),(1/2,0),(0,1/2),(1/2,1/2),  (9)

TABLE I. The number of zero modes on T?/Z,. Z, parities 0
and 1 denote even and odd modes, respectively.

(Z, parity, ai, a,) M = even M = odd
(0, 0, 0) Yy M1
(1, 0, 0) % -1 MT‘I
0, 172, 0) % @
(1, 172, 0) % %
0, 0, 1/2) % %
(1, 0, 1/2) % MT‘I
0, 172, 1/2) % MT‘I
(1, 172, 1/2) % MTH

;1‘24—(j+(1] ),a).M (Z))

(2), (6)

due to the Z, twist identification. The number of zero
modes is summarized in Table I.

B. Zero points of zero modes on T?/7Z,

Here we study the zero points of zero-mode wave
functions on T?/Z,. Zero points of zero-mode wave
functions are the coordinates on 72/Z, where all zero-

mode wave functions vanish, I//(T];;;;’l"ﬁ’M(z) =0 for all
of j. We focus on zero points at the fixed points which are
invariant points under Z, twist up to lattice translations of
torus. As we will see soon, all zero-mode wave functions
become zero or nonzero at each fixed point. The fixed

points on 7?/Z, are obtained as follows:
1 7 1+72
Pr = — =, — . 1
; {0,2,2, ! } (10)

First we consider the boundary conditions at the fixed
points in order to find the zero points. From Eq. (3), we can
check that the zero modes on 72 satisfy the following
conditions:

W(Tj;ral )M (Z " ny —;ng)

mipIm(ny +ny7)z

i(j iM j+a;+4ny .00 +4n, ) M
— eriljta)m =gty 5 —— (+ar+3m.a+5n) (Z),

T2

where n,,n, € Z. They lead to
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e

. ; ivIm(ny +ny7)z —(J M M
_ em(/_,_al)nle%nmemziw"‘(iﬁz)<_1)(m—Mnlnz—Z(alnl+a2nz))—2(a2+%nl)w;1‘2’1 (j+a1+zn2),az+zm)qM(Z)' (12)

Imz

Thus, the zero modes on 72/Z, also satisfy the following conditions:

(j+ay.a).M (Z +

/7y

2

where

m' =m—Mnin, —2(ayn; + axn,) (mod 2).  (14)
Note that m, m’ = 0 and 1 denote Z, even and odd modes,
respectively. At z = 0, we obtain

(j+ay.ap),M np + nytv
Y7z 2

) : M M
7i(j+a;)n e%mnz (j+ai+3m.a+5n).M (O) (15)

= e T2 /Z;”/

This means that the zero-mode wave function values on
T?/Z, at the fixed points are given in terms of ones at
z = 0; therefore we can find whether zero modes at the
fixed points vanish or not by the values of zero modes
at z =0.

2

a_z WTZ/Z;”

J (j+ar,a).M
2

At z = 0, we obtain

dz ' T°/23 2

Since the derivatives of Z, even and odd modes are Z, odd
and even modes respectively, they satisfy

J (j+a.a).M d (j+ay.a).M

a_ZWTZ/ZI(Z) : (O) - O, a_ZwTZ/ZI;_ ? (O) # 0 (20)
atz = Oforall j, @, ay, and M. This and Eq. (16) mean that
either the first or second terms on the right-hand side in
Eq. (19) vanishes but the remaining term does not vanish.
Thus only the derivatives of Z, even modes vanish at z = 0

and do not vanish at 7 = %,%,%, and other derivatives do

n, + n,t . i ziyim(ny +m29z [ 0 M
+1—2> —e”’(”“l)”leTM"l"ZeM( (m1 +n?) )

i l//(j+a1,a2),M <n1 + n_ZT> — pmi(jta)m =t n,

2 Imz

ny + n,t P ziM imIm(ng +ny7)z i+a; +4n, .a,+4n M
LR = emilitan)m pFnm o iz (jtai+3na.atyny) (Z), (13)

TZ/zm’
2

It follows from the zero-mode formula in Eq. (6) that Z,
even and odd modes satisfy

w(j+al .az),M<0) ;é 0’

j+ay,a,) .M
Sy ey =0 (16)

l//T2 / Zé
at z = 0 for all j, ay, a,, and M. This means that if the Z,
parity of the zero mode on the right-hand side in Eq. (15) is
odd, the zero mode on the left-hand side vanishes. Thus the
zero modes with (m, a;, a,) at the fixed point z = %
become zero if
m' =m—Mnn, —2(ayn; +any) =1 (mod2) (17)
are satisfied. In Table II we have summarized the zero
points of each zero mode at the fixed points.

Also we find the zero points of the derivative of zero-

modes wave functions. The boundary condition in Eq. (13)
leads to the following relation:

(j+ay+4ny.a0+4n,) .M (Z) (18)

9z T 4Ime /73’

J M - (j+ai+4ny.a0+4n,) .M
—+t— 0). 19
()z+4lmr(nl +n21))y/ (0) (19)

/77

not vanish at all fixed points. In Table III we have
summarized the results.

C. Yukawa couplings

Here we study Yukawa couplings which are obtained by
the overlap integrals of the wave functions of the left-
handed fermion, right-handed fermion, and Higgs fields.
First we study Yukawa couplings on 72 instead of ones on
T?/Z,. Yukawa couplings on T are given by the overlap
integral of zero modes on T2:
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TABLE II. Zero points of each zero mode at the fixed points. TABLE III.  Zero points of derivatives of each zero mode at the
Z, parities 0 and 1 denote even and odd modes, respectively. fixed points.
(Z, parity, ay, ay) M = even M = odd (Z, parity; SS phases) M = even M = odd
(0,0,0) None % 0, 0, 0) 0 0
(1,0,0) 0,%,%’% 0’%,% (1,0, 0) None None
(0,1/2,0) %% % 0, 172, 0) 0 0
(1.1/2.0) 0.1 0,%’% (1, 172, 0) None None
0.0.1/2) lie . 0, 0, 1/2) 0 0
©.0, 5’? 151 (1, 0, 1/2) None None
+7

(1,0.172) 0.3 0.3.5° (0,12, 172) 0 0
(0.1/2,172) 33 355,12, 12) None None
(1,1/2,172) 0,% 0

Y1T12k _ (21mr)1/2 /Tz lewgf;'a]LsazL)vML (Z) . wgfjamﬂzk)wMR (Z) . (w;ffz“'am-azy)-MH (Z))*, (21)

where (M, a7, ay¢) with f € {L,R,H} are (flux, SS phases) of the left-handed fermion (L), right-handed fermion (R),
and Higgs fields (H), and g denotes the 3-point coupling in higher dimensional theory. Using the normalization in Eq. (5),

we find

1/4

. . My—1 Mg (i+ay ) =M (j+aig)+M; Mgm
.. ity agp | Gitagg)agr  (k+ayp)a H R 1L L IR LR
ik = ga-tv| MEMR | arigtsyien s e, 19[ LMy
My m=0 0
X (Mpoyg — Mgay,, M MM yt) - 6t imk My -, mo (22)

where My +Mr=My, (a1,0)+ (a1g.®r) =(1.%p), and £ € Z.
Similarly Yukawa couplings on 72/Z, are given by the overlap integral of zero modes on T2/Z,:

ijk
YY =
T2/7,

where m; with f € {L,R,H} is Z, parity of left-handed
fermion (L), right-handed fermion (R), and Higgs fields (H)
and we have my = 0 for Z, even and my = 1 for Z, odd.
From Eq. (8), this can be rewritten by Yukawa couplings
on T? as

ijk — il a0 .My, AJ] @R Gr-MR kK ot 001 My \* ' j K
Yy = Om, o (O ) vt

(24)

Hereafter we denote Yukawa couplings on T2/Z, as Y/
instead of Y;zk .
/2,

D. Quark and lepton flavor models

Here we study quark and lepton flavor models on the
magnetized orbifold model. We start with higher dimen-
sional theory with larger gauge group, e.g., SU(3)x
SU(2)x U(1)y x U(1)". We introduce magnetic flux

g(2Imy)!/2 / Py

P ) - (e ) (23)

|

background along U(1) directions so as to obtain three
generations of quarks and leptons. U(1) gauge bosons
may become massive except U(1)y. See for details of
model building Refs. [6,77]. We consider all possible
zero-mode assignments into left-handed quark doublets
Q = (u,d;)", right-handed up-sector (down-sector)
quark singlets up (dg), left-handed lepton doublets L =
(vp,er)?, right-handed neutrino (charged lepton) singlets
vk (eg), and up and down type Higgs fields H,, ;. Here and
in what follows we denote (flux, Z, parity, SS phases)
of zero modes assigned into each field of f € {Q =
(ML’ dL>T’ Ug, dR‘L - (UL’ eL)T’ UR, eRle Hd} by Bf In
addition, we denote the jth zero-mode wave function of
each field as y ;. Then mass matrices for up-sector quarks,
down-sector quarks, and charged leptons, M,,, M ;, and M ,,
are given by

M, =Yi"HL), My=Y[(H). M =Y (H), (25)
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where

ijk %
Yt =g(2mma)' 2 [ day, oy, - (wa)

= g(2Ime)'? [ ey -y, ()", (26)

v = g2me)' 2 [ Payg -y - (i)

= g(ZImr)l/z dZZl//Qi . l//d,'

R

). @D)

— e — —

d

ijk _ g(2ImT)l/2/dzZl//62 Ve ()"
= g(2Im1')1/2 / A2y W (II/HZ)*, (28)

and (H ’Lj ) denote Higgs VEVs. On the other hand the light

neutrino mass, M,, can be induced through the seesaw
mechanism as follows:

MI/ :MDMI_QIIQME’ (29)

where Mpyp is Majorana mass matrix of right-handed
neutrinos, M7, = Y;/*(H%) is Dirac mass, and

Y = g(2Imz)!/2 / Ay, oy, (). (30)

In Appendix A, we briefly review Majorana mass terms of
right-handed neutrinos induced by the D-brane instanton
effects on the magnetized 72/Z, model. To obtain non-
vanishing Yukawa couplings for quarks and leptons (flux,
Z, parity, SS phases) of each field must satisfy

BQ+BMR:BL +BDR:BH“1 (31)

BQ +BdR = BL +BeR = BH . (32)

d
Because of these conditions, the number of Higgs modes is
larger than one, in general. Furthermore, to cancel the chiral
anomaly the number of up- and down-type Higgs fields
must be the same in four-dimensional supersymmetric
models. Under these conditions, we have obtained 6,460
flavor models in total on the magnetized orbifold. However
realistic quark and lepton flavor structure cannot be realized
in most of models. In the following section, we will see the
difficulties to realize realistic quark and lepton flavor
structure, and find the conditions to avoid them. We will
also classify the flavor models satisfying such conditions.

III. CONDITIONS TO REALIZE QUARK
AND LEPTON FLAVORS

As we have seen in the previous section, we have
obtained 6,460 candidate models for quark and lepton
flavors on the magnetized orbifold models. However it is
not easy to realize realistic flavors due to mass hierarchies
and the differences of mixing angles between quarks and
leptons. Here we study the conditions to realize realistic
quark and lepton flavor observables.

A. Conditions for flavors

First we show four conditions to realize realistic quark
and lepton flavor structure. Here, we assume a linear
combination Hﬁ‘ 4 corresponds to the lightest mode, and
it develops its VEV.

1. Condition for up quark masses

Since an up-sector quark has large mass hierarchy, its
mass matrix can be regarded approximately as a rank one
matrix,

mu
M, = Yi*"(HE) = (Uy)f m, Ut
my;
0(1079)
o (UY)T 0(1073) Uy
1
0
~ (U7 0 Uk (33)

1

where U} and U} are unitary matrices to diagonalize M ,.
That is

y ik
Mu] = lM] <H§> ~ M ank—1 (34)

are required, where M,,_; denotes a rank one matrix. To
realize such a mass matrix, the following direction AX must
exist:

ks Y hk = M, (conditionI).  (35)
Then it is possible to realize the mass hierarchy in the
up-sector quark by taking (HX) = h% + ek such that
e/, ~ (’)(%) ~O(1073).

2. Condition for down quark and charged lepton masses

The down-sector quarks and charged leptons also have
large hierarchies, and their mass matrices can be regarded
approximately as rank one matrices,
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my
My = YI(HY) = (Ud)F m, Us
my,
O(107%)
« (U§)! o102 |Ug
1
0
~WhHtl o |ud (36)
1
me
M, =y (HE) = (Us)T m, Ug
m‘t
O(107%)
« (Us)f 0102  |Ug
1
0
~W)T 0 | Us (37)
1

where U¢ and U4 are unitary matrices to diagonalize M,
and U§ and U§ are ones for M,. That is
y "
M =Yy <H§> ~ MyRank-1-
g -

Mlej = lej <HI[(1> ~ M ank—1 (38)
are required. To realize such mass matrices, the following
direction 2% must exist:

-
3 thtY;{ hl‘; = Mrank—h
Y9*hY = Mygye_y  (conditionIl).  (39)
Then it is possible to realize the down-sector quark and

charged lepton mass hierarchies by taking (H 5> = h’,} + 85
such that e4/hy ~ O(5x) ~ O(E) ~ O(1072).

3. Condition for quark mixing

The absolute values of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements are observed as

0974 0227 0.00361
Verw| = [(U9)TU4] = | 0226 0973  0.0405 |.
0.00854 0.0398  0.999

(40)

which is approximately a unit matrix. This implies that the
following relation

Ui~ Uf (41)

is required. To realize this relation, here we introduce the
unitary matrices uﬁ:‘}lg which diagonalize rank one matrices

ijk
Yl i
0 i
(YT g e |0 ] (42)
1
and impose the following condition:
u¥ = u¢ (conditionIII). (43)

Under this condition, in a basis where u, u¢, u%, and ué
are unit matrices, the quark mass matrices should have the
following forms:

M, =Y,/ (HY)

0
= Y (hk + &) 0 + O(’"—> (44)
1 "
My =Y (HE)
= Yk + £h) 0 + O(ﬁ> (45)
d d d my, ’
1

because of the mass hierarchies. From the above, the
unitary matrices Uﬂe which diagonalize M, , can be
estimated to be

10 0 L0 0@\ [+ = 0 * «  OGs)
Ui~ 0 1 0w 0 1 0 ok 0~ x *  O0G) [ (46)
0 O 1 O(e) 0 00 1 G OG) 1
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10 0 10 o
Ui .~10 1 OG) 0o 1 0
0 O 1 o) 0 1

where * denotes unestimated values. Then the CKM matrix
can be estimated to be

* « O
Vekm ~ * * oG
@) o) 1
* * 0(1072)
~ * * o0(1072) |,  (48)
0(102) 0(102) 1

and this is consistent with the observations in Eq. (40).
Thus it is possible to realize realistic quark mixing under
the condition III in Eq. (43).

4. Condition for lepton mixing
If we take the direction of up-type Higgs VEVs,
(HX) = hk + €k, satisfying Eq. (38), the light neutrino
mass matrix becomes

MY = Y (HY (M)~ (Y] (Hy)
= YR (M)~ (YT 4 O(e,) + O(2). (49)

If the first term is nonvanishing and ¢, is small enough, the
first term is dominant. In this case, the direction of 4, is
determined to satisfy Eq. (34) and there are no parameters
to be used for realizing lepton mixing. Thus it is difficult to
realize realistic lepton mixing unless M pp and Y’ i kh’,j have
ideal structures. To avoid this difficulty, here we impose the
following condition:

Yi*nE = My = YJ*hk =0 (conditionIV).  (50)

In such case the mass matrix of light neutrino is given by

TABLE IV. The conditions I, II, III, and IV.

Conditions
I Ihk st Yf;ikh{j = rank one matrix
I 3 h’; s.t. YV ykh’[‘, = rank one matrix,
ijk h% = rank one matirx
o uf =uf
v Y,i,jkhfj = rank one matrix = Yf,jkhf, =0

x % 0 * * O(:,an)
x 0|~ * « 00 |, (47)
0 0 1 OGe) OGx) 1
|
V= Yimen (M)~ (Y] e, (51)

and we have the possibility to realize realistic lepton mixing
by taking appropriate directions of ¢,.
In Table IV, we summarize all conditions.

B. Zero-point analysis

In the previous subsection, we saw four conditions, I, II,
I, and IV, to realize quark and lepton masses and their
mixing angles. Then Higgs VEV directions h];y 4 leading to
rank one or vanishing mass matrices have been required. In
this subsection, we show such directions can be realized in
several cases by checking the zero points of zero modes.
The procedure is as follows. First we start from Yukawa
couplings between left-handed fermion zero modes !,
right-handed fermion zero modes w%, and Higgs field zero
modes 1;/’,‘1. We consider zero points of zero modes y/ , l;/fe,
and wk. As we will see soon, zero-point patterns on
Yukawa couplings have the information which liner com-
binations of Yukawa matrices lead to rank one or vanishing
mass matrix. Second, we will construct unitary matrices
for Higgs field zero modes which correspond to this liner
combination. Finally, we classify the structure of mass
matrices in each pattern of zero points.

Yukawa couplings between ) , l//{e, and y are given by

ok — gy — g(2tme) [ P2 (2) WA - (Wh(2))
(52)

This leads to the product expansion,
vi(2) wi(z) =y (2). (53)

Here we denote sets of the zero points at the fixed points of

W', wh, and yk as P, ., P, and P, , and ones of the
. . i j k

derivatives of y'!, y%, and yh,; as P, ., P, and P, .
Next, we choose one point p on T2/ Z, (not necessary to

be fixed points) and consider a unitary transformation for

w' such as

vy =yl = U, (p)wi. (54)
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cosf, 0 —sinb, 1 0 0 e”io 0
ui(p)= o 1 0 0 cosf, —sind, 0 eim 0 |, (55)
sinf, 0 cos6, 0 sinf, cosé, 0 0 ei®
where
o = Ang(yy(p))  forp &P,,.
i d ., (56)
a = Ang(a—zy/L(p)) forpepP,, .
~1 L (p)] -1 vl (p)
O =tan" A =T s 1O P E Pu 57
0, = tan~! LD g _ -1 500 () for pe P
1 12w (p)” 72 sin@ |2y (p)[+cos 6 |Zy7 (p)| p WL

For p ¢ P, redefined zero modes ¥/} (z) (i # 2) become
zero at z = p while for p € P, the derivative of redefined
zero modes a—‘llf/i (z) (i #2) become zero at z = p. In a
similar way we can obtain redefined zero modes, yy and
Wy, for yg and yyy by unitary transformations U, (p) and

Uy, (p) such that only y% and 1/71(5” ) are nonvanishing.
Then we consider the structures of redefined Yukawa
couplings,

= g(otme) 7 [ 2 () o) W) (69

From Table II, we can find that conditions for nonvanishing
Yukawa couplings in Eqgs. (31) and (32) mean that when
one point p is in Py, it is also in either Py or Py; when p is
in Pg, it is also in either P; or Py; when p is in Py, it is
also in either P; or Pg. That is, there are four possible
patterns of p:

()p&P,,, pPE&Py,. PEP,,,
2)pep,. peEP,., PEP,,.
3)pep,, p€P,. PEP,(PEP, . PEP,,).
4 p¢P,,, pEP,, pEP,(PEP, . PEP,,).

Note that the derivatives of zero modes which vanish at
7z = p € Pr do not vanish at z = p as can be read from

Tables II and III. In each pattern, we focus on the structures
of Y1) = Uil (p)UY,(p)Y"THUE (p)), where
gy denotes the number of Higgs fields, because we use
the Higgs mode basis such that the wave function for the

(gy — 1)th Higgs mode is nonvanishing at p and the others
vanish.

I-P ¢PII/L’p %P.,,R,p ¢P‘I/H
Table V shows the zero points of redefined zero modes.

In this case, the product expansion in Eq. (53) at z = p
leads to

x8'2 x8/2

= §ikyk (p) o P~ « §25/2  (rank one matrix)
——

x5k (9H—1)
(59)
& YU (D))" = Mgy (60)

2.peP,,.,peP, . .pg&P,,
Table VI shows the zero points of redefined zero modes.

In this case, the product expansion in Eq. (53) at z = p
leads to

TABLE V. Zero points of redefined zero modes in pattern (1).

ji=0 1 2 3 I —2 gn =1
~J jk
W/L:U&HWIE Pllll’p P'I/L’p P / / /
~J jk
W;\’ = Ulilzwllc? PV/R’p PV/R’p P / T / /
~J jk
W;{ZUl;/HWIIEI Pv/va Pl//H’p PWH’p PWH’p P'I/H’p PV’H
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TABLE VI. Zero points of redefined zero modes in pattern (2).

li/L - Ué/,_ V/L PV/L PWL PV/L / o / /
Ul//R'//R PV/R PV/R PV/R / Y / /
AJ - Ul//Hl//H P'l/H’p Pl//H’p P'I/H’p Pll/H’p PU/H’p PV/H
W (p) .1/7{? (p) = gk (p) & Y=l =0 (61) In Egs. (60) and (65), note that unitary transformations
\/0-’ Y \k(/—; U,, and U,,, do not change the rank of the matrix. Thus we
= = " IH ™

can obtain nggs VEV directions hf , = vud(U(g:’d_l )*

leading to rank one fermion mass matrices in three patterns
(1), (3), and (4). On the other hand, the pattern (2) gives
vanishing mass matrices.

& YU () =0. (62)

3-176 1’p$ V’R’pEP‘I/H (pgplllll’pép{llﬂ)
Table VII shows the zero points of redefined zero-mode . . .
wave functions and their derivatives. In this case, the In this subsection, we clasmfy all of the quark and lept.on
product expansion in Eq. (53) at z = p give no information flavor models on the magnetized orbifold model which

for Vi9s=1) Instead of Eq. (53) we consider the derivative satisfy the conditions I, II, III, and IV. In what follows we
of Eq. (53). At z = p, it leads to denote sets of the zero points at the fixed points of each

field f as Py for

C. Classification of models

W (p) - wk(p) = 37834 (p)

S~—— ~——
=0 52 =0 fe {Q: (uL’dL)auRvdeL: (UL,eL),I/R,eR|Hu,Hd}.
y ~J i 0. 0 67
= 5. VL(p) - Wk(p) + 1 (p) - -wk(p) = 37"y (p) (67)
oo ocg(an =) First, we show the constraints of P, to satisfy each
(63)  condition.
& YUn=1) « §72§/2  (rank one matrix) (64) 1. Condition I
1)k N The condition I is that the up-type Higgs VEV direction
< YU (p)" = M- (65) pype H1es

leading to the up-sector quarkmass matrix with the rank one
must exist. Hence,

4'p¢PV/L’pePV/R’p€P'I’H (pépl/llk’pgp{lfﬂ)

-

This case is flipping between y; and yy in the pattern Yil" hly = Mgy (68)
(3); therefore it gives the same result as the pattern (3),

(on—)k is required. As shown in the previous subsection, this

YU ()" = Miyank-1- (66) requirement means that the following point p, must exist:

TABLE VII. Zero points of redefined zero modes and their derivatives in pattern (3).

j=0 1 2 3 e gy — 2 gy — 1
‘/A’i =U ilkLl//]l(l Py, Py, Py, / T / /
l;?:UV/Rl//R Py p Py p Py, / / /
1/751 UV/H ‘//H Py, Py, Py, Py, Py, Py,
gqﬂ = Uy, Lyk Py,.p Py,.p Py, / / /
Ly = U vl Puop Py,p Pyyp Py, Py Py,
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(1)peP, .pEP, .PEP,,

Ip, = ps.t.

3)pep, .pgP,, .pEP, (PEP, .PEP,,), (69)

4) pgP,.peP, . .peP, (pgP,.pEP,,)

for (wi,wgr,wy) = (Q,ug, H,), i.e., constraint L.

2. Condition 11
The condition II is that the down-type Higgs VEV direction leading to the down-sector quark and charged lepton mass

matrices with rank one must exist. Hence,

ijkpk
Yd hd - Mrank—l’

Yijkhlfj = Mrank—l (70)

are required. As shown in the previous subsection, this requirement means that the following point p, must exist:

(1)p¢PWL’p¢PWR’p¢PWH

3ps = ps.t.

3)pep,,.p¢P,.pEP, (PEP, .PEP,,), (71)

4 peépP,.peP,.peP, (p&P, . .pEP,,)

for (wp,wr,wy) = (Q,dg, Hy), i.e., constraint II; and for (w;,yg,wy) = (L, eg, Hy), i.e., constraint II,.

3. Condition III

The condition III is that unitary matrices u{ which
ijk hk

diagonalize rank one matrices Y A7

4 must satisfy
u¥ = u¢. When the condition I is satisfied, that is, the
constraint I is satisfied, we can find the up-sector quark

mass matrix with the rank one,
vi*ns = v, YU (pa)", (72)
and they are diagonalized as
il . i' 'k —k % . .
U, (p) U () v Y (U ()" 82612 (73)

for (w..wg.wy) = (Q.ug.H,). Note that U, , U,,,
and U, are defined by Eq. (55) and the sentence below.
Similarly, when the condition II is satisfied, that is, the
constraints II; and II, are satisfied, we can find the down-
sector quark mass matrix with the rank one,

YR = v, YU (pa)), (74)

and they are diagonalized as

i ! i'j gu—1)k * i2gj
Uit (pa) Uil (pa)vaY (UM (pg))* & 672602 (75)

for (wi,wg.wy) = (Q,dg, Hy). Then u¥ = uf is equiv-

alent to the equation

Uy, (p) = Uy, (pa) fory, = Q. (76)

|
Obviously this can be satisfied by

Pu = pa (constraintIII). (77)

4. Condition IV

The condition IV is that when the up-sector quark mass
matrix is a rank one matrix, the neutrino Dirac mass matrix
must vanish. Hence,

TEpe — M = YRk =0, (78)

is required. As shown in the previous subsection, this
requirement means that the following point p, must exist:

Ip.=pst2)pe P,.p€EP, . .pEP,,. (79)

for (w,wr,wy) = (L,vg, H,), i.e., constraint IV.

In Table VIII, we summarize all constraints.

Next, we classify all possible flavor models satisfying
the above constraints. See Table VIII. From the
constraint I, p, = p; = p must consist. Furthermore,
from the constraint IV, p must be in Pr and satisfy

pPEPL

peEP,, pEPy. (80)

From the constraint I, this makes p be the pattern (1) for
(wr.wr.wy) = (Q,ug, H,) in Eq. (69), i.e.,
p &Py,

pgEP,. pEPy,. (81)
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TABLE VIII.  The constraints I, II, II,, I1I, and IV. For example, if p, corresponds to (1), it is not included in Py,.
If p, corresponds to (3), itis included in P,. The bold texts denote the choices in Eq. (84) which are consistent with

all constraints.

Py P, Py, P, P, P, Py, Py,
(1) not in not in not in
I p,is { (3) in not in in
4) not in in in
(1) not in not in not in
I: pgis { (3) in not in in
4) not in in in
(1) not in not in not in
IL,: py is { (3) in e not in in
(4) not in e in e in
I p, = py
IV: p, is in in not in

Similarly, from the constraint II,, p must be the pattern
(3) for (wr,wr.ywy) = (L,eg,Hy) in Eq. (71), ie.,
p € PLa

pépelp pEPHd' (82)

Finally, from the constraint II;, p must be the pattern (4) for
(wr.wr.wy) = (Q.dg,Hy) in Eq. (71), ie.,

ngQ’ pEPdR, pEPHd' (83)

Thus, the point p consistent with all conditions must satisfy

pEPLUPdRUPl/RUPHdCPF7
pg&PyuUP, UP, UPy CPp. (84)

Now we are ready to classify all possible flavor models
satisfying the conditions I, II, III, and IV. We again note
that p, = p, = p € P and therefore we can find flavor
models with consistent p by checking the zero points of
zero modes of each field from Table II. Flavor models are
picked up by Eq. (84) in addition to the nonvanishing
Yukawa coupling conditions, Eqs. (31) and (32) and the
anomaly cancellation condition which makes the number of
up- and down-type Higgs fields the same. The results are
shown in Appendix D of Ref. [78]. There are 408 flavor
models in total.

IV. MODULAR SYMMETRIC MODELS

In this section, we classify the flavor models, which have
a specific property under the S transformation. To calculate
fermion flavors, we need to identify two types of VEVs;
one is the VEV of modulus and another one is the VEVs of
Higgs fields. In the former, we consider the vacuum where
the modulus lies on either of three modular fixed points;

(i) =1 is invariant under § transformation; (i) 7 =
€273 = @ is invariant under ST transformation; (iii) 7 = ico
is invariant under 7 transformation. In the latter, we
consider Higgs VEVs aligned in eigenbasis of the modular
transformation corresponding to each fixed point. We will
show that some flavor models have the possibility to lead to
realistic flavor observations in a vicinity of S-symmetric
vacuum but there are no consistent flavor models for
ST- and T-symmetric vacua.

A. Higgs p term

First, we start from assuming that the value of modulus
is fixed at either of 7 = i, w, and ico. In this subsection,
we study which direction Higgs VEVs are aligned at these
three modular fixed points.

Higgs VEVs are aligned in the lightest mass direction.
Supersymmetric mass term (4 term) of Higgs fields can be
generated by D-brane instanton effects [71-75]. As shown
in Appendix B, actually in a leading order, D-brane
instanton effects give the following Higgs u term:

Wt Hiy HY, = NS0 (20ma) ™ (Y1) e H i Y,
(85)

where A denotes a typical scale such as the compactifica-
tion scale and S;,, denotes the instanton action. Here, Y/,

0% {,) are the 3-point couplings among instanton zero modes
a, f (y), and Higgs fields H, (H) given by

Yi, = g(Imz)!/? / 2y a(2) - wp(2) - (Wi, (2)"

Y] = g(ime)12 / Papa(D) v, @) - Wi Q). (86)
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where ys are the zero-mode wave functions on 72/Z,
corresponding to instanton zero modes a, f# (), and Higgs
fields H, (Hy).

Here, let us consider the modular transformation of this
leading mass term. Under modular transformation, the zero
modes of a, 3, v, and Higgs fields behave as the modular
forms of weight 1/2:

l//a,ﬂ,y - ‘71/2(777 T)ﬁa./},y (]7)1//(1,/1,7/5
U/fiw - -71/2(7’ T)ﬁHM_d(y)ijl//]Hu‘d’ (87)

where J, /2(7.7) is the automophy factor given by

]1/2(3,1) = (_7)1/2,

71/2(§Tﬂ)

j1/2<T’7) =1,
= (=(z+1))"2, (88)

and p,4, and py, , denote 1x1 and gy X gy unitary

matrices for «, B, y, and H,, Then, the modular
|

transformations of 3-point couplings Y, and Yil are
obtained as

Y = J12(7.0)pa(7) - 9p(7) - (Pu, (7)) Vi (89)

Y= J12(7.005a(7) - y(7) - (P, (7)) Y (90)
and it follows from these that the ¢ matrix is transformed as

(@) = J12(7.9) T o (7.7) [Pa(7)p(7)5, (7)
(P, (i) Pu, (7)) 1 (7). o1

At the modular fixed points 7 = i, @, and ico, the leading
mass term becomes invariant under S, ST, and T trans-
formations respectively since S:t=-1/7r, ST:7=
—1/(t+1)and T : 7 = 7 + 1. That is, the 4"/ matrix obeys
the following modular invariance relations:

1 (i) = (T12(8. 1), (8)i)* - [T12(S. D)pal(8)12T1 oS, )pp(8)T1 (S, 1)p, (S)u' (i) - (J12(S. D)pm, (S) )T, (92)
pi(@) = (3,2(ST, @)pp, (ST);p)* - [T1/2(ST, @)p(ST) 2T, o (ST, 0)pp(ST)T 1 (ST, ), (ST ()
- (312(ST. @)py, (ST) ;)1 (93)
u(ico) = (j1/2(T’ ioo):bHu(T)ii’)* : [jl/Z(T7 im)ﬁa(T)]zjuz(T’ ioo)ﬁﬁ(T)juz(T, iw)ﬁy(T)#ij(iOO>
: (.71/2(7", ioo)ﬁHd(T)j’j)T’ (94)

where we have used Eq. (88). These relations mean that
the mass eigenbasis of the leading mass term at each
modular fixed point 7 = i, w, and ioo is also S, ST, and T
transformation eigenbasis, respectively. Let us check
this conclusion at 7 =i as an example. Let us consider
the simple case that 71/2(3 )pe(S) = JI/Z(S i)pp(S) =

J1/2(S l)Py(S) =l and dlag(11/2(5 l)/’H ( )) ( -1),
hence two pairs of Higgs fields. Then the relation Eq. (92)
in S eigenbasis is given by

(#Oo(i) MO'(i)>
ploG) (i

1 0 00(; 01(; 1 0

:( )(/4 (i) (l))( ) (95)

0 —1)\uo0w) wi)/\o -1
and obviously the leading mass matrix is diagonalized due
to u°'(i) = u'°(i) = 0. In a similar way, we can show the
leading mass eigenbasis at each modular fixed point is

also eigenbasis of each residual symmetry of the modular
transformation.

In general, there would exist some configurations giving
a single instanton zero mode; therefore the leading mass
term should be rewritten by the liner combination of
them as

Zd yiaylt = an,ua (96)

where a runs all possible instanton zero-mode configura-
tions and Yi¢ (Yé“) denotes 3-point couplings among
instanton zero modes «,, 3, (y,) and Higgs fields H, (H ).
Under modular transformation, /45{ is transformed as
Eq. (91) and obeys the same modular invariance relations
in Eqgs. (92)-(94). Hence, the general leading mass eigen-
basis at each modular fixed point is also eigenbasis of
corresponding modular transformation. Thus, at the leading
order, Higgs VEVs which are aligned in the lightest mass
direction at 7 = i, w, and ico must be eigenbasis of S, ST,
and T transformations, respectively.

Unfortunately, on the magnetized 72/Z, orbifold mod-
els, we cannot find the leading order Higgs u term being
able to determine the lightest mass direction uniquely
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because of the shortage of number of instanton zero-mode configurations which couple to Higgs fields. In what follows, we
assume that Higgs VEVs are aligned along eigenvectors of residual modular symmetry as the leading order although we do
not know the full order p-term structure. Such Higgs VEVs can be realized as long as the y term transforms under modular

transformation as

D cdHyH) >y A(y.7.a)-

c i HiHY), (97)

where A(7, 7, a) means a modular symmetry anomaly on a u term. In fact, the leading mass term, Eq. (96), is transformed as

anua VHLH S T, (7.7

Z[ﬂaa(r P, (V)y, (7) - coud Hi,HY, (98)

under modular transformation since H, ; behaves as the modular form of weight —1/2:

. Yo~y - - - .
H, ,—~ J—1/2 (7, T)PHM (}’)in';,d- (99)

The modular transformation Eq. (97) ensures the modular invariances of ,u’;" at the fixed points:

ul (i) = A7, @)(T1/2(5, D, (3)i)* (7128, )P (3))" i (1), (100)
i (@) = A(ST.2.a) (7, )2 (ST. ), (ST)yy)* (7, 12T )1, (ST) ) i (@), (101)
i (i00) = AT, 7,a) (7, o(T. 00)pu, (P ) (1o (T i00), (T) ;)i (ic0). (102)

Thus, there is no mixing between Higgs modes with
different eiganvalues of residual symmetry in the g matrix
as seen in Eq. (95). Therefore, the Higgs VEVs are aligned
along eigenvectors of residual modular symmetry.

B. Classification of the modular symmetric models

In this subsection, we investigate the conditions to
realize the Higgs VEVs which correspond to the eigen-
vectors of the residual modular transformation at the
modular fixed points. Note that we ignore 7-symmetric
vacuum because the values of elements of Yukawa matrices
at 7 = ioo are strictly restricted by 7 symmetry and it is

difficult to realize realistic flavor observations. In addition,
the fixed point, 7 = ioo, corresponds the decompactifica-
tion limit, and it is not valid from the viewpoint of four-
dimensional effective theory.

Under § and T transformations, the complex coordinate
on T2 /Z,, z, and the modulus, 7, are transformed as

(z.7) = (—— —l>, (z.7) > (z.z+1).  (103)

T T

This gives the following S and T transformations of zero
modes:

j+ag.m S am)Mq . ika, o, aydt,,, (k+ay,a).M
UM (2, 0) Syl (s - (2,0) = (o) Pp(S) iy KM (¢ ), (104
ay.o )M, o ktay.a).M
Wik (2, 0) Sy a (T (2,0) = p(T)yadody 0 m M (2, ) (105)
where

NG Af (k) demlt oo (M)gw w) i ay (m=0),

p(S)jkala azaz — \/M 5 ( )(k l!) N (106)
Lo (j+ay)(k+o
N Urtan) \f (kb)) die \/A_/I s1n( LA A )5(a2,a1),(a’l,a’2) (m=1),
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ri(j+ap)?

p(T)Jkala azaz — eTé‘j.ké(al,az—aﬁ-%),(O{q ’aé). (107)

Obviously zero modes are mapped into ones with the same SS phases only if @ = @, under S transformation and only if
a; = ay = M/2 (mod 1) under ST transformation. Therefore, modular symmetric Higgs VEVs at least have the following
SS phases:

(aj,ar) = (0,0)or (1/2,1/2) for S-symmetric vacuum, (108)
(aj,ar) = (M/2,M/2) (mod 1) for ST-symmetric vacuum.

In each case, we can find Higgs fields which are eigenbasis of S and ST transformations, respectively. On the other hand, it
is not clear whether the realistic flavor structure is realized in these vacua or not.
Next we study the condition to realize the direction % , = vud(Ug”d_l)k( p))* which are eigenvectors of residual

symmetries at modular fixed points. We have the possibilities of realizing realistic flavor structure by assuming the
vicinity of such an eigenvector directions since fermion mass hierarchies can be realized near i* w.q s described in the end of
Sec. III B. The conditions for the modular eigenvectors h’,j 4 are given by

{ p=0or % for S-symmetric vacuum, (109)
p=20 for ST-symmetric vacuum.
Let us prove the condition for S-symmetric vacuum. To make the direction A% , = v, ,(U I(L?”d_l) k( p))* Seigenstate at T = i,

the nonvanishing redefined zero modes of Higgs fields defined in Eq. (55), yry; g”_l) (z,7)=U ﬁ?j;”"( p)l//’,‘,w (z,7), must be

elgenba51s of § transformation. We will check this by calculating S transformation of 1/72]:’;”( p.i) for p & Py and

~ (95— l)(

az l//HMd ,i) for p € Py, - Note that the redefined zero modes satisfy

{y}j?ﬁ(gH_l) (p’f[) = 0’ l/A/(gH_l)(p,T) # O fO[' p ¢ PH T ( )
" 110

Lo (pog) = 0. Ly (p,7) 0, (§(p.7) =0) for p € Py,
(gr—1

as defined in Eq. (55). For p =0 or % and p & Py, ,, S transformation of nonvanishing mode ;" >( p, i) is given by

(9u=1) (9u=1) gﬁ_l (0.9 forp=0
o (i) S (S 1 (pi)) = (gH D (ter .
H,, ( 5 1) for p =5+
g (0.0) for p =0

= ‘ , (111)

. My
“2miayp, , ,—mi—std A (gu=1) (14i — 1+
e ud @ 2 y/H".d 71 for pP="

from the boundary condition in Eq. (2). Similarly, for p = 0 or % and p € Py, ,, S transformation of (fz I/A/g”d 1)( p.i) is

given by

. H—l
9 ’\((]H_l)( ) S( ) 0 A(qH—l)(S ( )) (_l)ai (g ( ) for p =0
_WHLL p’l —{=! _I'UHu_ : p’l = H .
o o 0 (21) -
<—i>a%u>§3:;‘><o, ,-> for p—= 0
- » | Lo(12)
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from the boundary condition in Eq. (18). As shown in Eq. (104), the transformation law is independent of z; therefore the

same relations consist on z # p,

.
P l//g:'d >(Z, i)

for p=0¢& Py

-1 . u,d
ng:d )(z, )= e . el . , (113)
e lHu,lle_ﬂ'l 2 WHH[ (Z’ l) for p e % ¢ PHu.d
N 9 Algr=1)/_ -
)< Z,1 forp=0€P
wgm—l)(z l)—S> ( ) 0z ¥H,, ( ) p Hyq (1 14)
0z wd (—i)e_ZﬂialH”'de_ﬂl Pud ;Zli/gll‘id 1)(Z, ) for p = % c PH,M,
Using a%i(—i) 4, finally we obtain
wfgfd 1>(z, ) for p=0¢ Py,
. My
2miayy, , —mi—td o (gr=1) (- 1+l
s ]e Iy > (z,i) forp=1t¢ PHM
i ()~ ’ d (115)

=1 .
oy (z.)

—2rioy

'M
e u.d 6_7”

This means that 1/7;;’:’;

Y(z.i) with p =0 or L becomes
eigenbasis of S transformation. This is because z = 0 and
% are invariant under S transformation up to lattice
translations of torus.

On the other hand, the cases p = 5 and are complicated.
The boundary conditions Egs. (13) and (18) may give the
relations

(116)

9 o= (1 2\ 9 (1
5_ZWHL¢.11 E’l oca_zl’UHu.d E’l

in certain patterns of flux, SS phases and Z, parity. If these
exist, 17/5?5”(@ i) with p =
transformation since S : z = S : = £ at 7 = i. However it
is unclear and difficult to show whether the relations in
Eq. (116) exist or not. Instead, we directly calculate

whether the directions 1,?/%’”1_1

1 or 4 can be eigenbasis of S

)(z.i) in each model is
eigenbasis of § transformation or not by using Eq. (104).
As a result, there are no models where @gﬂ;n(z, i) with

p =3 or % is § eigenbasis. Thus, the direction A\, =
1k

v, d(U(gH

ud
S-symmetric vacuum.

In a similar way, we can check the condition for
ST-symmetric vacuum in Eq. (109). The direction hij, y

( p))* with S-invariant points p = 0 and % is

Hu, -1 .
R EN)

for p=0¢€ PHM

for p = e Py

ud

with ST-invariant point p = 0 is ST eigenstate but other
points p € Pr which are not ST invariant lead to not
ST-symmetric vacuum.

Now, we are ready to classify the flavor models whose
h* waq 18 modular symmetric. The conditions are Egs. (108)
and (109). As a result, we cannot find the flavor models
satisfying conditions for ST-symmetric vacuum but we can
find models for S-symmetric vacuum. The results for
S-symmetric vacuum are shown in Table IX. There are
24 flavor models in total.

V. NUMERICAL EXAMPLE

In this section, we study a flavor model shown in Table X
which can be realistic in the vicinity of S eigenvector, and
derive a realistic quark and lepton flavor structure. In this
model, quark doublets Q have (flux, Z, parity, SS phases
aj, @) = (6,0,0,3); right-handed up-sector quarks ug
have (5,0,0.1); right-handed down-sector quarks dy have
(6, 0,2, 0); lepton doublets L have (6, 0,2, 0); right-handed

neutrinos v have (5,0,3 ., 0); right-handed charged leptons
eg have (6,0,0.1); up-type Higgs fields H, have
(11,0,0,0); down-type Higgs fields H,; have (12, O,é 5)
The number of both up- and down-types Higgs fields
are six.

Yukawa couplings Y’ ij, Y ;jk, Y,’;jk, and Y éj k appearing in
this model are summarized in Appendix C 1; the Majorana
mass matrix of the right-handed neutrinos induced by

D-brane instanton effect is shown in Appendix C 2.
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TABLE IX. All quark and lepton flavor models satisfying S-symmetric vacuum conditions in Egs. (108) and (109).
The first to eighth rows show the flux M, Z, parity m (even, odd = 0, 1), and SS phases («;, @, ) of the zero modes of
the fields. gy denotes the number of Higgs fields.

By By, By, By B, B,, By, By, 9H p
5,0,0,0 7,044 6131 6110 61031 5004 1204313 11,134 6 0
5,0,0,0 7,041 61,11 6101 e61i0 s50lo0 12044 11,1k 6 0
5.04.0 6010 6104 6111 5111 5000 11,000 11,1,4L 6 0
5010 6101 6010 6111 5000 s0iloo1nndil 11000 6 LH
50,04 6,001 6110 6111 5111 5000 1,000 11,1,4L 6 0
50011 6130 6004 6111 5000 s51iloo1nndil 11000 6 LH
51,33 7,00 6134 6030 6003 50310 1204.5 11,000 6 LH
5133 700 6134 600731 6040 50045 12035 11,000 6 LH
6,05.0 5010 7110 611l 5111 7044 11,000 13100 6 0
6,0,.0 6,00 61,04 6110 61031 60031 12075131 12,111 6 0
6,0,.0 6,005 6,1,04 6,105 6110 6030 12073131 12,111 6 0
6,0,0,1 5004 7,104 61311 5111 70351 11000 13,1,0,0 6 0
6,0,01 6040 6110 6110 610 60071 12011 121,11 6 0
6,0,0.; 6010 6110 61031 6110 60310 12035 121,31 6 0
6,0,5.4 7,014 7100 7.1.1,0 61310 6003 13000 13,111 7 0
6,0,5.4 7,034 7,100 7,1,0.§ 61,07} 6030 13000 13,111 7 0
6,0,5.5 71,00 7,014 7.1.5,0 6007} 61310 131,51 13000 7 LH
6,0,.4 7100 70314 71,03 60310 61031 131,11 13000 7 LH
6,1,5.0 5005 71,05 6,13} 5,0,0,0 7,1,0,0 11,1,4.4 13,0.1.3 6 Lo
6,1,.0 6,1,0 6,004 60210 600731 61031 12051 12111 6 LH
6,1,.0 6,10 6,004 600 60310 61310 120451 12,111 6 LH
6,1,0.4 s50i0 7110 6111 5000 7100 11,111 1304f 6 H
6,1,01 6110 6010 6010 600 6104 12041 12111 6 LH
6.1,0. 6110 6010 60031 60310 6110 120531 121,31 6 H

In our numerical study, we fix the value of modulus by 7 = i and use Higgs VEV directions as parameters. Higgs VEV
directions satisfying conditions I-1V, hﬁy 4» 1n this model are given by

ht = v,(0.8464,0.5014,0.1759, 0.03657,0.004504, 0.0003144), (117)
h¥ = 1,4(0.4330,0.7696,0.4501,0.1310, 0.02074, 0.001945), (118)
|
where i and h% are S-eigenbasis directions with eigen- ~ VEV directions. Six pairs of up- (down-)type Higgs fields

values +1 and +i, respectively. Thus the modulus is  include three S eigenstates with eigenvalue 41 (4-7) in total.
S-symmetric vacuum, while these Higgs VEV directions =~ We use these three eigenstates as parameters for up- and
correspond to S eigenstates. First, we try to realize flavor ~ down-type Higgs VEVs, respectively. To obtain realistic
observations in exact S-eigenstate directions in the Higgs  flavors, let us choose the following Higgs VEV directions:

TABLE X. Flux, Z, parity (even, odd = 0, 1), SS phases (a;,a,) of quarks, leptons, and Higgs fields in the
model. gy denotes the number of Higgs fields.

BQ BMR BdR BL BvR BeR BH“ BHd 9H
6,010 6001 6101 6101 6110 6010 12011 12111 6
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(HX) = v,(0.8466,0.5009,0.1762,0.03715, 0.004794, 0.0003797), (119)
(HY) = v,(0.5006,0.7890, 0.3521,0.05382, —0.003787, —0.003709). (120)
I
We note that again these directions are eigenbasis of § 0.972  0.235 0.00134
transformation. They lead to the following up quark, down Vernl = | 0233 0964  0.126

quark, and charged lepton mass ratios:
0.0309 0.122  0.992

(my,,m.,m,)/m, = (2.96 x 1075,5.35 x 1074, 1),  (121) 0.990  0.137 0.0134
Venns| = | 0.129 0957 0261 |. (125)
(mg.mg,my)/my, = (436 x 1074, 1.17 x 1072, 1), (122) 0.0487 0257 0.965

_ -4 )
(me, my, me)/me = (436 x 1074, 117 x 1075, 1), (123)  qpe e ratios of quarks and leptons, and the absolute

values of the CKM matrix are roughly realized, but the

absolute values of the PMNS matrix are not realistic. As a

result, in this model it is difficult to realize both quark and

lepton flavors in the exact S eigenvectors of the Higgs VEV
Am512 _ |m51 - m1217| —0.179 (124) directions.

Am?, o\ | m, —m?, T Next, we consider the vicinity of above S eigenvector of

' Higgs VEV directions. We use all six pairs of Higgs VEVs

for normal ordering (NO), m, <m, < my,. Also the as parameters for both up and down types but fix the

absolute values of the CKM matrix, |Vegy|, and the modulus at 7 = i to simplify the analysis. To obtain realistic

and a ratio of the differences of the squares of the neutrino
masses,

Pontecorvo-Maki-Nakagawa-Sakata ~ (PMNS)  matrix,  flavors, in the vicinity of h’;y 4» we have chosen the following
|Vemns|, are obtained as follows: Higgs VEV directions:

(HX) = ,(0.8509, 0.4970, 0.1679, 0.02805, —0.006762, —0.003731), (126)

(HY) = v,4(0.4340,0.7688,0.4499, 0.1283, 0.02538,0.03302). (127)

The norm of 4% in (HX) is 0.9998 and one of 4% in (HX) is 0.9995. In these directions, the mass matrices for quarks and
leptons are given by

07202 05992  0.1214 0.8675 0.3620 0.05514

M,/m,= | 02492 02063 003922 |. My/m,=| 03053 0.1303 0.02287 |, (128
0.03057 0.02249 —0.002550 0.03861 0.03580 0.03967
—0.3614 —0.09456 —0.3323 0.8675  0.3053  0.03861

M,/m, = | —0.09456 —-0.1345 -04077 |,  M,/m,= | 03620 0.1303 0.03580 |.  (129)
—0.3323  —0.4077 —0.5819 0.05514 0.02287 0.03967

Then they lead to the following up quark, down quark, and charged lepton mass ratios:

(my,me,m,)/m; = (3.13 x 107,8.14 x 1073, 1), (130)
(mg, mg,my,)/my, = (8.46 x 1074,4.10 x 1072, 1), (131)
(m,,my,,m;)/m, = (8.46 x 107*,4.10 x 1072, 1), (132)

and a ratio of the differences of the squares of the neutrino masses,
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TABLE XI.

The mass ratios of the quarks and leptons, and the absolute values of the CKM matrix and the PMNS

matrix elements at 7 = i under the vacuum alignments of Higgs fields in Eqgs. (126) and (127). Reference values of
mass ratios are shown in Ref. [79]. Those of the CKM matrix and PMNS matrix elements are shown in

Refs. [80,81].

Obtained values

Reference values

(mu’ me, mt)/mt
(mdﬁ mg, mh)/mb

(3.13 x 1073,8.14 x 1073, 1)
(8.46 x 1074,4.10 x 1072, 1)

|Verml 0.973 0.232  0.00234
< 0.232 0973 0.0162 )
0.00603 0.0152 1.00
VAm?,/Am? 0.162 (NO)
(mg,m,,m;)/m, (8.46 x 1074,4.10 x 1072, 1)
|Vemns| 0.841 0.522 0.147
<0.246 0.608 0.755)
0.483 0.598 0.639

(5.58 x 1076,2.69 x 1073, 1)
(6.86 x 1074, 1.37 x 1072, 1)

0974  0.227 0.00361
( 0226 0973  0.0405 )
0.00854 0.0398  0.999
0.173

(2.78 x 107#,5.88 x 1072, 1)
0.801 —0.845 0.513-0.579 0.143 —0.156
<0.232 —-0.507 0.459 —0.694 0.629 — 0.779)
0.260 —0.526  0.470 — 0.702  0.609 — 0.763

Am?2 e — m2
My T mal o6 33
Am: ; |m,,] - my3|
for NO. For inverted ordering (10), m,, <m, <m,,, itis
difficult to realize realistic the flavor structure. Also the

absolute values of the CKM matrix, |V cgm|, and the PMNS
matrix, |Vpyns|, are obtained as follows:

0973 0232 0.00234
Verm| = | 0232 0973  0.0162 |,
0.00603 0.0152  1.00
0.841 0.522 0.147
[Veuns| = | 0.246  0.608 0.755 (134)

0.483 0.598 0.639

The results are summarized in Table XI. As a result, in this
model we could realize quark and lepton flavor structure in
the vicinity of the S eigenvector of Higgs VEV direction.

VI. CONCLUSION

In this paper, we have investigated the conditions to
realize the quark and lepton flavor structure in magnetized
orbifold models. We have found four conditions I, II, III,
and IV. The condition I demands the directions of up type
Higgs VEVs hf leading to rank one mass matrix for up
quark to realize its mass hierarchy. The condition II
demands the directions of down-type Higgs VEVs h’[‘l
leading to rank one mass matrices for both down-sector
quarks and charged leptons to realize their mass hierar-
chies. The condition III demands the equivalence between
u¥ and u¢ which are unitary matrices diagonalizing rank
one mass matrices to realize small quark mixing. The
condition IV demands that /¥ is also the direction leading
to vanishing neutrino Dirac mass matrix to realize not small

lepton mixing. Note that the rank one mass matrices are
favorable in the limit that we neglect masses of the first
and second generations. Through zero points analysis for
zero modes of each field, we could check whether the
flavor models can satisfy these four conditions or not.
Consequently we have found the 408 flavor models which
are consistent with the conditions I-IV. In such models it is
possible to realize the large hierarchy of up quark, down
quark, and charged lepton masses and realistic mixings of
quark and lepton in the vicinity of A .

Also we have classified the flavor models which can be
realistic in the vicinity of specific points under S symmetry,
where VEV of modulus lies on the fixed point of §
transformation, 7 =i, and Higgs VEVs are aligned in
eigenbasis of S transformation. Indeed Higgs VEVs led
by the leading u term generated by D-brane instanton
effects at 7 =i are generally aligned in eigenbasis of §
transformation. In this paper, we have classified the flavor
models whose h’;_ , becomes eigenbasis of S transformation.
As a result we have found 24 flavor models, and they have
the possibilities to realize realistic flavor observations in the
vicinity of S eigenvector of Higgs VEV direction.

Here, we have given numerical studies on the model
shown in Table X in the exact and the vicinity of §
eigenvector of Higgs VEV direction. In the exact
S-eigenvector direction, we could roughly realize the values
of the quark and lepton mass ratios and the CKM matrix but
the PMNS matrix was not realistic. In the vicinity of §
eigenvector of Higgs VEV direction, we could realize the
values of quark and lepton mass ratios as well as the CKM
and PMNS matrices.

Similar classifications through the zero-point analysis
can be applied for the flavor models in other orbifold
models such as T?/Z5, T?/Z,4, and T?/Z. It would be
possible for magnetized T* and its orbifold models. Also
we need to study Higgs p term through D-brane instanton
effects to check the direction of Higgs VEVs. We would
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study them and examine the possibilities of realization of
quark and lepton flavor structure elsewhere.
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APPENDIX A: MAJORANA NEUTRINO MASSES
BY D-BRANE INSTANTON EFFECTS

Here we give a brief review of Majorana neutrino mass
terms induced by D-brane instanton effects [71-75].

We consider two stacks of D-branes, Dy, and Dy,,
and assume D-brane instanton D;,, with magnetic fluxes.
Right-handed neutrinos vy appear as zero modes of open
strings between Dy, and Dy, ; instanton zero modes S (y)
appear between Dy, (Dy,) and Dj,,. Then D-brane
instanton effects give the following term:

where f# and y are Grasmannian, and di are the 3-point
couplings among f, y, and vy given by

4l = g(Ima)1? / Payi(a) i) - Wi () (A2)

where ys are the zero-mode wave functions on 7%/Z,
corresponding to instanton zero modes S, y and right-
handed neutrinos v;. Mass terms can be generated only if
each of f# and y has two zero modes. By Grasmannian
integral, we obtain Majorana mass term,

Ae_Sins‘ / dz/}dZye_(ImT)—1/211:'1/‘5,'},@7e

= Ae‘Sim‘l(Imr)‘lsijskgdgkdfu%vz = M ek, (A3)
where S;,,; denotes the instanton action and A denotes a
typical sale as the compactification scale. The possible
instanton zero-modes configurations are given by the
following nonvanishing conditions for 3-point couplings:

Mﬂ:I:M],::i:MUR, mg+m, =m,,
(a, @)+ (a1, @), = (2, @2),,,.» (A4)
where My, my and (aj, ) f=p,7,vg denote the

magnetic fluxes, Z, twist parities, and SS phases for zero
modes of f, y, and vg.

APPENDIX B: HIGGS ¢ TERM BY D-BRANE
INSTANTON EFFECTS

Here we give a brief review of Higgs u terms induced by
D-brane instanton effects [71-75].

We consider three stacks of D-branes, D,, D;,, and D,
with magnetic fluxes. The D-brane D), is parallel to D..
Up- (down-)type Higgs fields, H, (H,), appear as zero
modes of open strings between D, and D, (D.). To
generate y terms, we also assume the D-brane instanton
D;, with magnetic flux which has a single zero mode with
each of the other branes. The instanton zero modes «a, f,
and y appear as zero modes of open strings between D,
and Dy, D;, and Dy, and D, and D;,,. Then D-brane
instanton effects give the following term:

[ adpiyemr oy @

where a, f, and y are Grasmannian and Y, (Y{i) are the
3-point couplings among a, S (y), and H, (H!)) given by

Yi, = g(Imz)'/? / Papa(z) - wyl2) - (i, ()7

Y} = g(Imz)'/2 / Lapa(z) wy(2) - (v, () (B2)

where ys are the zero-mode wave functions on 72/7,
corresponding to instanton zero modes a, B(y) and Higgs
fields H, (H ;). Mass terms can be generated only if each of
a, f, and y has a single zero mode. By Grasmannian
integral, we obtain the Higgs u term,

Ae~Sins / dPadpBdye o) YViaHi+ Yot )

= AeSim (ImT)_I (Ylld Y{i)ganLmH{Jn = ﬂijgnan;;mH{ln?
(B3)

where m,n € {1,2} denote components of SU(2), dou-
blet. The possible instanton zero-mode configurations are
given by the following nonvanishing conditions for 3-point
couplings:
Ma :t Mﬂ — :tMHu N
mg +mg=my, . (a1.0), + (a1, 0); = (a1, a2)y, .

(B4)

M, +M, = +My ,
my + m, =mg,, (alv aZ)(l + (al’ aZ)y = (alv a2)H(,’

(BS)
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where M, m; and (al,az)f, f=a,p.y,H, H; denote
the magnetic fluxes, Z, twist parities, and SS phases for
zero modes of a, B, v, H,, and H,.

APPENDIX C: THE MODEL IN THE
NUMERICAL EXAMPLE

1. Yukawa couplings

Here we summarize Yukawa couplings of up-sector
quarks, down-sector quarks, neutrinos, and charged lep-

a. Up quark:

-By,=(6.0.1.0)-(6.0.0.3) - (12.0.3.})

Table XII shows the zero-mode assignments for quark
doublets Q', right-handed up-sector quarks u}, and up-type
Higgs fields HX. Yukawa couplings are given by

BQ_BHR

Yi*HS = iR + Y HY + Y HR 4+ YT H

+ YIHY 4 YIPHS, (C1)

tons, Y/ Y;jk, ik and Y7 in our model. with
Xo %xl 0 0 %XO %XQ
N =coonm| 0 X2 5X | Yll=ceen| X 0 0 )
1 1
0 0 %Xét 0 X5 5Xs
1 1
0 0 X 0 0 -5X,
Y2 — Ccleoin | O \/%XO —lexs) YiZ3—c<6_6_1z> 0 %XS %XO ,
X, %le 0 X; %Xl 0
1
0 —%X_;, —%X3 Xs —5%4 0
i =cooy| Xa O 0 : L =coo)| 0 X~ |,
1 1
0 =X 55X 0 0 X
[
where

5
Xy = Z(—1>"’76(N+1/2)+72n,
n=0

b. Down quark:
(6.0.1.0)-(6.1.0.1) - (12.1.1.})

Table XIII shows the zero-mode assignments for

By-B,, -By, =

and down-type Higgs fields HY. Yukawa couplings are
given by

YEYN = Y HO + Y H, + YPHL + YT H,
ij4 rr4 ij5 175
+ Y HG Y Hy,

quark doublets Q', right-handed down-sector quarks dh, with
TABLE XII.  Zero-mode wave functions in “(6,0,%.0) — (6,0,0.%) — (12,0,3.1)” model.
ol l, HY

0 \%(Wu/zo) +l//(121/2,0),6) (0.1/2):6 %(W( /21/2)02 (22/21/2 12)
72 T 2\

1 1 (3/206 (9/2,0),6) 1 (1,1/2).6 ( 1/2).6 ) 1y (3/2.1/2).12 _ (21/21/2 12)
V2 Yo Lg% V2 Lg% Lg% V2 LR

2 7(111(52/20) +w(72/2,0),6) \/L_(W(z,l/z) ( )6) %(W( /21/2)02 (19/21/2 12)
T T 2\ T? Ve 2\ T?

3 L, (772072002 (17/21/2 )12

75(”’]" )

9/21/D:12 _ | (15/2.1/2).12

4 7§(W<T/ /2) ( /2.1/2) )

121/202 _ | (13/2.1/2)12

5 \/LE(W;/ /2) ( /2.1/2) )
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TABLE XIII.

Zero-mode wave functions in “(6, 0,]

0) = (6,1,0,) — (12,1,1,1)” model.

19 IR
o dy HE
0 \/L_(W(le/zo) +W(lel/2,0),6) %(W(lel/z) +W(T521/2)6) %(W(le/zl/z (T/21/2 12)
1 \/L_(wg/zo) +W(T92/2,0)4,6) \/%(l//;zz]/z) +W(Ttl/2)’6) \/%(W(Tz/zl/z (21/21/2 12>
2 \/L_(V,;-"Z/ZO) +W(T72/2»0><’6) W<T32,1/2),6 \/%( s21/2.02 (19/21/2 12)
3 \/%(WTZ/N/Z (17/21/2 1z>
4 %(W;/ZI/Z ty (15/21/2 1z>
5 ﬁ(l//(lel/z 2L, <n/21/2 12)
1
% 0 0 5Xo Xy 0
0 |
W =coen | -HN Ha 0| Mloanew| 0 0 x|
0 —%X4 X5 _%X3 _\/LEXS 0
0 %Xl X; 0 %xét X,
ij2 1 1 i3 1 |
Yl =ceoon| 55X 55X 0| VP =coon| —5Xs X0 0|
1 1
—5%Xs 0 0 75X 0 0
1 1
\/LQXS ﬁX:; 0 \/§X4 0 0
4 ij5 | !
Yld] 6(6—6—12) O O X] ) Yldj == 6(6—6—12) %X3 %X2 0
1 1
vixa pXo 0 0 Lx X
where
5
Xy = Z(_l)nrl6(N+l/2)+72m =179 [432] (0,4327)
n=0
c. Neutrino: B, -B,, - By =(6,1,0,3)-(6.1,.0)-(12,0.1.})

Table XIV shows the zero-mode assignments for lepton doublets L/, right-handed neutrinos V}} and up-type Higgs fields

HX. Yukawa couplings are given by

TABLE XIV. Zero-mode wave functions in “(6, 1,0, %) — (6, 1,% 0) —(12,0,1 3 2) model.
L vk HY
0 1 (L1726 | ( 1/2).6) L( (1/20) (11/2.0).6) L( 1/21/2 )12 23/21/2 12)
2 ) T ﬁ 72 ﬁ

1 1/ (2.1/2).6 (4.1/2).6 1 (%/2 0).6 (9/2.0).6 1 3/2 1/2).12 21/21/2 )12
%(UITZ ( /—~_)IIIT2 ) T( (/ ).6 (Tz/ )6) 75( Z- / 9/ / )
) 3.1/2).6 1 (5/2006  (7/2.0). o 21/2).12 1 2,1/2).12
Y 2 (l//Tz Vo ) 2 (V T2 )
3 | ( /21/2)02 17/21/2 12
75( 72 )
/21/2.12 _ | (15/21/2).12
4 \/L_( (T / ( /2.1/ )
1/21/2,12 _ (13/21/2).12
5 \/LZ(W(TZ/ /2). ( /2.1/ )
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YR EE = YOHO + Y HY 4 YPH2 YR H3 + Y HS + YPES, (C5)
with
—LX; -5X, 0 5Xo 0 55X,
i0 il
Y = cioog-12) 0 — 55 X3 —%th ; Y7 = cioopmia) —\/%Xz 0 \/%Xs ;
0 0 —X; 0 -X, O
1 1 1 1
V= | BX kX 0 |, VP =coom| -5X Lxo 0 |,
X, 0 0 X, 0 0
1 1 1 1
_TEXS 0 _\/_EXZ \/—§X4 —%X_o, 0
i4 S
Il/] C(6—6— 12) \/LEX3 0 %Xo ’ Il/J (6 —6-12) 0 \%Xz —%Xl s (C6)
0 X, 0 0 0 X,
where

N

5 —_—
N= Z )" M6(N-+1/2)+72n> ny =19 [482] (0,4327).

d. Charged lepton: B, - B, —By, =(61,0.1)-(6.0,1.0)-(12.1,1.})

Table XV shows the zero-mode assignments for lepton doublets L', right-handed charged leptons e{e, and down-type
Higgs fields H%. Yukawa couplings are given by

ijk jik
Yot = I (CT)
2. Majorana mass of right-handed neutrino

Majorana masses of right-handed neutrinos can be induced by D-brane instanton effects as shown in Appendix A. For the
right-handed neutrinos in our model, there are two possible instanton zero-mode configurations, f;, y; and f,, y,,

1 11 1
By — B, (3002> <3,1,2 2)—(6,1,2,0>,

1 1
By, - B, —B,, = (2,0,0,0) — (4, 1,5,0> — (6, 1,5,0). (C8)
TABLE XV. Zero-mode wave functions in “(6, 1,0, ) (6, 0,;,0) (12,1,5 5) model.
L ex HY
1.1/2 5.1/2).6 1/2.0 11/2.0).6 1/2.1/2 2321212
0 \/LE(W(Tz/) +W<T2/)) \/LE( (/ )6 +W(T2/ )) \/LE(W(T’/ /2).12 Ty /2.1/2) )
2.1/2 4.1/2).6 3/2.0 9/2.0).6 /2.1/2).12 2121212
! \/LE(W(Tz/) +W<Tz/)) L\/‘( (/ o +W<Tz/ )) \/LE(W(T /2 ty 2y )
3,1/2).6 5/2.0).6 7/2.0).6 /2.1/2).12 (19/2.1/2).12
2 = %(w;/ 0 T T/ )
7/2,1/2 17/2,1/2).12
3 L @I g 0y
/2.1/2 15/2,1/2).12
4 L @02 g s
11/2,1/2).12 13/2,1/2).12
5 L 2 32
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TABLE XVI.  Zero-mode wave functions in “(3,0,0,1) — (3,1.1.,3) — (6,1,4,0)” model.

9 52’ 2 2’
B 7l vk
0,1/2),3 1/2,1/2),3 5/2.1/2).3 1/2,0).6 11/2,0),6
0 V/<Tz /2) %(W(Tz/ /2) +W(Tz/ /2) ) %(W(Tz/ ) _W(Tz/ ) )
1,1/2).3 2,1/2).3 3/2,1/2),3 3/2,0),6 9/2,0),6
1 \/LQ(W(Tz 83 _ W(Tz 2 ) W(Tz/ 2 \/Li(ll/(rz/ Mo l//(Tz/ ) )
5/2,0).6 7/2,0),6
2 \/Li(l//;z/ M _ l//(Tz/ ) )

However, these two configurations give the same Majorana mass matrix up to overall factor; therefore we concentrate on the
former configuration, f;, y;. Table XVI shows the zero-mode assignments for two zero modes of them. The 3-point

couplings d are given by

i Ms +Mes +Mos 0
do = C(3-3-6) _L( + + ) (C9)
5 Mas + 1135 Mns) M7s+Mos +1ass
ii 0 V2(n4s + i35 + 122s)
di =ci3s6)| ) (C10)
NG (1.5 +Mes +Mos + N75 + o5 + Mas.s) 0
i N7.5 T Mos + M55 0
dy = C(3—3—6)<_l( n > (C11)
3 \Mas +1Mizs + Mns) Mis+Mes +Mos
where
N
Ny E&[ﬂ(o, 547). (C12)

Using above dy, Majorana masses of right-handed neutrinos can be calculated by Eq. (A3).
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