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An extension of the Standard Model with anomaly free Uð1ÞF flavor symmetry is studied in this paper.
With this extension and the addition of the right-handed neutrino states, the solution of anomaly free charge
assignments is found, which gives appealing texture zero and hierarchical Yukawa matrices. This gives us a
natural understanding of the hierarchies between charged fermion masses and Cabibbo-Kobayashi-
Maskawa matrix elements. Neutrino Dirac and Majorana coupling matrices also have desirable structures
leading to successful neutrino oscillations with inverted neutrino mass ordering. Other interesting
implications of the presented scenario are also discussed.
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I. INTRODUCTION

Although being very successful, the Standard Model
(SM) is unable to resolve some puzzles. Among them
is a problem of fermion flavor. The origin of hierarchies
between charged fermion masses and Cabibbo-Kobayashi-
Maskawa (CKM) mixing angles is unexplained. Moreover,
the SM is unable to accommodate the neutrino data [1]. In
this work we consider an extension that gives a simu-
ltaneous resolution of these problems. The extension we
consider is the flavor Uð1ÞF symmetry, which will be
gauged. Besides this, we augment the fermion sector with
right-handed neutrinos (RHNs), which will be responsible
for the generation of light neutrino masses and mixings.
While the Abelian flavor Uð1ÞF is the simplest candidate

for the flavor symmetry [2], its gauging is a challenging
task because the anomaly cancelation conditions give
severe constraints for realistic model building. Below we
present our findings of the Uð1ÞF charge assignment.

II. ANOMALY FREE FLAVOR Uð1ÞF
Earlier attempts to find an anomaly free setup with

Uð1ÞF symmetry exist in the literature [3–5]. These have
been either within the minimal supersymmetric extension
of the SM [3] or within the supersymmetric grand unified
theories (GUTs) [4,5]. In [5] for the finding of the anomaly
free Uð1ÞF symmetries, extended GUT symmetry groups
[unifying SUð5Þ GUT and Uð1ÞF (or some part of the

latter)] has been used. Although this approach is very
attractive, with unification putting additional constraints, it
disallows us to have much texture zeros and predictions.
Besides these, GUTs usually suffer other problems that are
not directly related to the flavor symmetry. Since we feel
that finding anomaly free Uð1ÞF constructions is far from
being fully explored, our study here will be SM extension
with gauged Uð1ÞF symmetry and RHN states.
The nontrivial states under the SM gauge group GSM ¼

SUð3Þc × SUð2ÞL ×Uð1ÞY that we introduce will be just
those of the SM. These are the Higgs doublet φ and three
families of matter fq; uc; dc; l; ecgi¼1;2;3, where i ¼ 1; 2; 3
is the family index.1 As far as the extension is concerned,
the fermionic sector will be augmented with RHNs N1;2;3���.
As already emphasized, the extra gauge symmetryUð1ÞF is
considered, with the scalar field X—the “flavon”—needed
for the Uð1ÞF breaking.
For finding anomaly free Uð1ÞF charges we will use

several simple observations. First of all, recall that the
simplest anomaly free Uð1Þ symmetry is the hypercharge
symmetry Uð1ÞY—the part of the SM gauge sector. So, in
principle forUð1ÞF, the family dependent hypercharges can
be used. Furthermore,by introducing the right-handed
neutrinos one can also build the gauged (B − L) symmetry,
which is also anomaly free. Obviously, with family
dependent (B − L) charges, anomalies will still vanish.
So, one option is to have Uð1ÞF’s charges QiðfÞ as the
following superposition āiYðfÞ þ b̄iQB−LðfÞ, where āi; b̄i
are some constants. With this superposition, all anomalies
of the GSM remain intact, and also the following additional
and mixed anomalies
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ðUð1ÞFÞ3 ∶ A111 ¼
X
i

Q3
i ; ð1aÞ

Uð1ÞY × ðUð1ÞFÞ2 ∶ AY11 ¼
X
i

YiQ2
i ; ð1bÞ

ðUð1ÞYÞ2 ×Uð1ÞF ∶ AYY1 ¼
X
i

Y2
i Qi; ð1cÞ

ðSUð2ÞLÞ2 ×Uð1ÞF ∶ A221 ¼
X
i

½QiðliÞ þ 3QiðqiÞ�; ð1dÞ

ðSUð3ÞcÞ2×Uð1ÞF ∶A331¼
X
i

½2QiðqiÞþQiðuci ÞþQiðdci Þ�;

ð1eÞ

ðGravityÞ2 ×Uð1ÞF ∶ AGG1 ¼
X
i

Qi ð1fÞ

automatically vanish. Although, for theQiðfÞ assignments,
the superposition āiYðfÞ þ b̄iQB−LðfÞ can be considered,
one immediate outcome is that, by requiring that the top
quark has the renormalizable Yukawa coupling (λt ∼ 1)
with the Higgs doublet φ, the bottom quark and the tau
lepton Yukawas will be allowed at renormalizable levels—
with the expectancy that λb; λτ ∼ 1. Besides this unpleasant
fact, with only āi; b̄i we cannot get Yukawa coupling
matrices with many texture zeros. Thus, for the Uð1ÞF’s
charges we will consider the modified superposition

QiðfÞ ¼ āiYðfÞ þ b̄iQB−LðfÞ þ ΔQiðfÞ; ð2Þ

where the additions ΔQiðfÞ will be selected in such a way
that the anomalies AYY1; A221; A331; AGG1 stay intact.
However, for the vanishing of the anomalies A111 and
AY11 additional constraints on the charge prescriptions need
to be imposed. It turns out that for this goal, instead of three
RHNs, we will need four of them—N1;2;3;4. The additions
that satisfy these and give a desirable fermion pattern are

ΔQiðqÞ ¼ q̄3f0; 1; –1g þ q̄8f1; 1; –2g; ð3aÞ

ΔQiðucÞ ¼ ū3f0; 1; –1g þ ū8f1; 1; –2g; ð3bÞ

ΔQiðdcÞ ¼ d̄3f1; –1; 0g þ d̄8f1; 1; –2g; ð3cÞ

ΔQiðlÞ ¼ l̄3f1; –1; 0g þ l̄8f1; 1; –2g; ð3dÞ

ΔQiðecÞ ¼ 0; ð3eÞ

ΔQiðNÞ ¼ n̄f1; 1; 1; –3g; ð3fÞ

where f� � �g stand for diagonal matrices in flavor space
and presented numbers are diagonal elements of the
corresponding matrices. Note that, being traceless, these

additions coincide with diagonal (Cartan) generators of
SUð3Þ [in Eqs. (3a)–(3d)] and SUð4Þ unitary groups [in
Eq. (3f)]. Thus the notations for the constants ðq̄3;8;…; l̄3;8Þ
become obvious. These constants, together with āi; b̄i will
be enough for our purposes. Upon selecting these constants
we will bear in mind some requirements that need to be
satisfied in order to obtain desirable and phenomenologi-
cally viable model. These requirements are as follows:

(i) In order to have top quark Yukawa coupling λt ∼ 1,
theUð1ÞF symmetry should allow coupling q3uc3φ at
a renormalizable level. At the same time, all other
Yukawa terms (responsible for charged fermion
masses) should emerge by spontaneous breaking
of the Uð1ÞF. So, the adequate mass hierarchies and
CKM mixings will be expressed by powers of
hXi=MPl.

(ii) Dirac and Majorana-type couplings involving RHN
N states should be such that naturally generate light
neutrino masses and mixings in order to accommo-
date recent neutrino data [1].

(iii) While the Uð1ÞF charge assignment ansatz of
Eqs. (2), (3) automatically ensure zero anomalies
of (1c)–(1f), an additional constraints need to be
imposed for canceling anomalies of (1a) and (1b).

(iv) Finally, the ratios of the states’ charges should be
rational in order to allow (phenomenologically
required) couplings between them.

Guided by these, in (2) we use normalization such that
YðlÞ ¼ 1 and QB–LðqÞ ¼ 1=3, QB−LðlÞ ¼ −1. Also, with-
out loss of any generality, for the scalar X, we will select
QX ¼ 1. With these and requirements listed above, the best
selection that we find is the following2:

āi¼
1

3
f46;43;10g; b̄i¼

1

3
f−91;35;38g;

fq̄3; ū3; d̄3; l̄3g¼
1

3
f−16;7;−67=2;−3=2g;

fq̄8; ū8; d̄8; l̄8g¼
1

9
f38;−41;23=2;51=2g; n̄¼−

5

3
: ð4Þ

With these, by using (2) and (3a)–(3f) we obtained the
charges given in Table I. One can readily check out that all
anomalies given in (1a)–(1f) vanish. Note that after all
charges are fixed, since whole Lagrangian respects Uð1ÞY
symmetry, by making a family universal charge shift for the
states Q → Qþ αY, all couplings and anomalies will
remain intact. The constant α can be selected to have
convenient form of the charges. We have already exploited
this by setting Qðq3Þ ¼ 0 (see Table I). Presented charge

2Other solutions, we found, either do not give desirable
hierarchies for the whole fermion sector (including neutrinos),
or in some part do not work at all. We do not find it worthy to
present such possibilities in this work; we give only one solution,
which does not have any drawback.
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assignment give interesting textures for charged fermion
mass matrices and neutrinos as well. These we discuss in
the following sections.

III. QUARK AND CHARGED LEPTON
YUKAWA TEXTURES

As mentioned, for the Uð1ÞF gauge symmetry breaking,
the SM singlet scalar X—the flavon field—is introduced
and its Uð1ÞF charge is taken to be QX ¼ 1. The vacuum
expectation value (VEV) hXi breaks the Uð1ÞF and also
forms fermion mass matrices. Since in the Yukawa cou-
plings the appropriate powers of X

MPl
and X�

MPl
will appear, it is

convenient to introduce notations

X
MPl

≡ ε;
X�

MPl
≡ ε̄: ð5Þ

Note that MPl ≃ 2.4 × 1018 GeV is a reduced Planck scale,
which will be treated as a natural cutoff for all higher
dimensional nonrenormalizable operators.
With the Uð1ÞF charges of the Higgs doublet φ of

Qφ ¼ −7, and of the fermion states given in Table I, the
qucφ; qdcφ̃, and lecφ̃ type couplings, involving different
powers of ε and ε̄, will be

ðq1; q2; q3 Þ

0
B@

ε̄8 ε5 ε11

ε̄17 ε̄4 ε2

ε̄19 ε̄6 1

1
CA
0
B@
uc1
uc2
uc3

1
CAφ

þðq1; q2; q3 Þ

0
B@
ε14 ε5 ε13

ε5 ε̄4 ε4

ε3 ε̄6 ε2

1
CA
0
B@
dc1
dc2
dc3

1
CAφ̃

þðl1; l2; l3 Þ

0
B@

ε6 ε̄38 ε̄61

ε48 ε4 ε̄19

ε69 ε25 ε2

1
CA
0
B@
ec1
ec2
ec3

1
CAφ̃þH:c: ð6Þ

In front of each operator of (6) the dimensionless coupling
(omitted here) should stand. Substituting the VEVs
hεi ¼ hε̄i≡ ϵ, and omitting those terms, with high powers
of ϵ, which are irrelevant in practice, the Yukawa matrices
YU, YD, YE corresponding to up, down quarks, and charged
leptons, respectively, are

YU ≃

0
B@

a01ϵ
8 a1ϵ5 0

0 a2ϵ4 ϵ2

0 0 1

1
CAλ0t ; ð7Þ

YD ≃

0
B@

e−iη1 0 0

0 e−iη2 0

0 0 1

1
CA ·

0
B@

0 b1ϵ3 0

b01ϵ
3 b2ϵ2 b02ϵ

2

0 0 1

1
CAκbϵ

2:

ð8Þ

YE ≃

0
B@

c1ϵ4 0 0

0 c2ϵ2 0

0 0 1

1
CAκτϵ

2: ð9Þ

We have made field phase redefinitions in such a way that,
in this basis, the CKM matrix is the unit matrix [it becomes
nontrivial after the diagonalization of YU and YD of Eqs. (7)
and (8), respectively]. Also, we have performed 1–3 and
2–3 rotation of dc states in such a way that 3–1 and 3–2
entries of YD vanishes (this transformation of the dc1;2;3
states is unobservable in the SM). Moreover, YU is real, two
phases η1;2 appear in YD, while YE is real. The phases η1;2
will not contribute to the quark masses, but will be
important for the CKM matrix elements.
Starting with the quark sector, with proper (and

fully natural) selection of input parameters we can get
desirable values for fermion masses and CKM mixing
angles. Since the Yukawa matrices are hierarchical, in a
pretty good approximation we can derive the following
analytic expressions:

λt ¼ λ0t ½1þOðϵ4Þ�; λu
λt

≃
a01ϵ

8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ða1ϵ=a2Þ2

p ;

λc
λt
≃ a2ϵ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ða1ϵ=a2Þ2

q
; ð10Þ

λb ¼ κbϵ
2½1þOðϵ4Þ�; λd

λb
≃

b1b01ϵ
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b22 þ ðb21 þ b021 Þϵ2
p ;

λs
λb

≃ ϵ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 þ ðb21 þ b021 Þϵ2

q
: ð11Þ

For writing down expression of the CKM matrix elements,
it is useful to introduce two angles

tanθu¼
a1
a2

ϵ
ffiffiffiffiffiffiffiffiffiffiffi
1þϵ4

p
; tan2θd¼

2b1b2ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb022 ϵ

4
p

b22−ðb21−b021 Þϵ2
; ð12Þ

and notations sin θu;d ≡ su;d and cos θu;d ≡ cu;d. With these
we have

TABLE I. Uð1ÞF charge (Q) assignment for the states. QX ¼ 1, Qφ ¼ −7.

fq1; q2; q3g fuc1; uc2; uc3g fdc1; dc2; dc3g fl1; l2; l3g fec1; ec2; ec3g fN1; N2; N3; N4g
Q f−11;−2; 0g f26; 13; 7g f−10;−1;−9g f48; 6;−15g f−61;−17; 6g f−32; 10; 11; 5g

SM EXTENSION WITH A GAUGED FLAVOR Uð1ÞF … PHYS. REV. D 106, 115002 (2022)

115002-3



jVusj ¼
����cusdeiη1 − sucd

ðeiη2 þ b20ϵ4Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b202ϵ4

p
����þOðϵ7Þ;

jVcbj ¼ cuϵ2
j1 − eiη2b20ð1þ b22ϵ

4Þjffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b202ϵ4

p þOðϵ8Þ;

jVubj
jVcbj

¼ tan θu: ð13Þ

For the parameter

ρ̄þ iη̄ ¼ −
VudV�

ub

VcdV�
cb
; ð14Þ

related to the CP violation and defined in a phase
convention independent way [6], we obtain

ρ̄þ iη̄ ≃
cucdeiη1 þ susdeiη2

cdsueiη1 − cusdeiη2
tan θu: ð15Þ

Upon parametrization of the Yukawa matrices we have
taken away the factors λ0t and κb. These will be selected in
such a way as to get observed values of massesMt and mb.
Remaining parameters (i.e., ϵ; a1;2; a01; b1;2; b

0
1;2; η1;2) will

determine light quark masses and CKM matrix elements.
Relations (10)–(14) and (15) will help to find parameters
giving desirable fit. Before going to that, let us mention that
all quantities (output observable), obtained at high scale Λ
(which we take close to the GUT scale—few ×1016 GeV),
need to be renormalized at low energies. For this we
perform the renormalization and calculate these quantities
at low scales. We have

λu;c
λt

����
Mt

¼ ηu;c
λu;c
λt

����
Λ
;

λd;s
λb

����
Mt

¼ ηd;s
λd;s
λb

����
Λ
;

VαβjMZ
¼ ηmixVαβjΛ; if ðαβÞ ¼ ðub; cb; td; tsÞ;

VαβjMZ
¼ VαβjΛ; if ðαβÞ ¼ ðud; us; cd; cs; tbÞ: ð16Þ

In one-loop approximation we have ηu;c≃1=ηd;s≃1=ηmix ≃
expð 3

32π2

RΛ
Mt
λ2t dlnμÞ. However, we will perform more

accurate calculations. For the renormalization of the light
family Yukawa couplings and λb;τ we use two-loop
renormalization group (RG) equations, while the runnings
of λt and g3 are performed through three-loop RGs. For the
running of the CKM matrix elements the two-loop RGs [7]
will be used. Upon the running between Mt (the pole mass
of the top quark) and the scale Λ, for boundary values of the
couplings at μ ¼ Mt we use values given in [8].
Doing so, for Mt ¼ 172.5 GeV and α3ðMZÞ ¼ 0.1179

(the values we use throughout of this work) we get

ηu;c ≃ 1.1262þ 0.00187 · ln

�
Λ

2 × 1016 GeV

�
; ð17Þ

ηd;s ≃ 0.8916 − 0.00143 · ln

�
Λ

2 × 1016 GeV

�
; ð18Þ

ηmix ≃ 0.89157 − 0.001433 · ln

�
Λ

2 × 1016 GeV

�
; ð19Þ

which are the interpolated expressions that work pretty well
for 1015 GeV < Λ < MPl.
Also, for light quark masses, the running from Mt down

to low scales need to be performed by the standard technics
[8–10].

A. Fit for charged Fermion masses and CKM elements

A good fit is obtained for the following values of
input parameters (values are given at high scale Λ ¼
2 × 1016 GeV):

ϵ ¼ 0.21; fa1; a10; a2g ¼ f0.6974; 1.7065; 1.6606g;
fη1; η2g ¼ f3.01985;−1.3954g;
fb1; b10; b2; b20g ¼ f0.47834; 0.54541; 0.45448; 0.59088g:

ð20Þ

These, by performing renormalization [using (16)–(19)
and input Mt ¼ 172.5 GeV, mbðmbÞ ¼ 4.18 GeV], at
low scales give

ðmu;md;msÞð2GeVÞ¼ð2.16;4.67;93ÞMeV;

mcðmcÞ¼1.27GeV; atμ¼MZ ∶ jVusj¼0.225;

jVcbj¼0.04182;jVubj¼0.00369; ρ̄¼0.159; η̄¼0.3477;

ð21Þ

where definitions for ρ̄; η̄ are given in Eq. (14). All results
given above are in perfect agreement with experiments [6].
As far as the charged lepton masses are concerned,

from (9) with the input Mτ ¼ 1.777 GeV and

at μ ¼ Λ; fc1; c2g ≃ f0.1437; 1.335g; ð22Þ

and taking into account that λe;μ
λτ
j
MZ

≅ λe;μ
λτ
j
Λ
, we obtain

Me ¼ 0.511 MeV; Mμ ¼ 105.66 MeV; ð23Þ

which is also in agreement with experiments.

IV. NEUTRINO SECTOR

For building the realistic neutrino sector, the singlet
states N1;2;3 will be used as right-handed neutrinos. Since
the N4 is not really needed for these purposes, its couplings
to the leptons and also to N1;2;3 can be easily avoi-
ded by imposing the reflection symmetry N4 → −N4
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(this symmetry and its possible implication will be com-
mented on below). This will make the analysis simpler.
Thus, with Uð1ÞF charges given in Table I the lNφ and
NiNj type couplings (i, j ¼ 1, 2, 3) will be

ð l1; l2; l3 Þ

0
BB@

ε̄9 ε̄51 ε̄52

ε33 ε̄9 ε̄10

ε54 ε12 ε11

1
CCA
0
BB@

N1

N2

N3

1
CCAφ

þ ðN1; N2; N3 Þ

0
B@

ε64 ε22 ε21

ε22 ε̄20 ε̄21

ε21 ε̄21 ε̄22

1
CA
0
BB@

N1

N2

N3

1
CCAMPl: ð24Þ

In these operators the dimensionless couplings are still
omitted. Substituting the VEVs hεi ¼ hε̄i ¼ ϵ, hφi ¼ v and
omitting irrelevant small entries, for neutrino Dirac and
Majorana matrices we get

mD ≃

0
BB@

Aϵ9 0 0

0 B1ϵ
9 C1ϵ

10

0 B2ϵ
12 C2ϵ

11

1
CCAv;

MR ≃

0
BB@

0 aϵ2 dϵ

aϵ2 b cϵ

dϵ cϵ ϵ2

1
CCAc̄MPlϵ

20: ð25Þ

These lead to the light neutrino 3 × 3 mass matrix:

Mν ≃ −mDM−1
R mT

D ≃

0
BB@

β γ γ0

γ α2 α

γ0 α 1

1
CCAm̄; ð26Þ

with m̄ and the dimensionless couplings α; β; γ; γ0
expressed by the scales and couplings appearing in
Eq. (25). Note that Mν’s 2–3 block’s determinant is zero:

Mð2;2Þ
ν Mð3;3Þ

ν − ðMð2;3Þ
ν Þ2 ¼ 0: ð27Þ

The origin of this relation can be understood as follows.

Because of Mð1;1Þ
R ¼ 0, the determinant of the lower 2 × 2

block ofM−1
R is zero. Moreover, since the lower 2 × 2 block

of mD decouples [i.e., (1,2) and (1,3) entries in mD are
zero], the seesaw formula Mν ≃ −mDM−1

R mT
D gives the

relation of Eq. (27). The latter gives specific predictions, on
which we will focus now.
Since the charged lepton mass matrix YE is essentially

diagonal, the whole lepton mixing matrixU comes from the
neutrino sector. Therefore, we have

Mν ¼ PU�P0MDiag
ν U†P; ð28Þ

where in a standard parametrization, U has the follow-
ing form:

U ¼

0
BB@

c13c12 c13s12 s13e−iδ

−c23s12 − s23s13c12eiδ c23c12 − s23s13s12eiδ s23c13
s23s12 − c23s13c12eiδ −s23c12 − c23s13s12eiδ c23c13

1
CCA; ð29Þ

with sij ¼ sin θij and cij ¼ cos θij. The phase matrices P,
P0 are given by

P¼Diagðeiω1 ;eiω2 ;eiω3Þ; P0 ¼Diagð1;eiρ1 ;eiρ2Þ; ð30Þ
where ω1;2;3; ρ1;2 are some phases.
As was investigated in details (see second Ref. in [5]),

the relation (27) excludes the possibility of the normal
ordering of the neutrino masses. Using Eqs. (28)–(30) in
(27) we obtain

eiρ1m1m2s213þeiðρ2þ2δÞðm1s212þeiρ1m2c212Þm3c213¼ 0;

ð31Þ

which in turn gives

cos ρ1 ¼
m2

1m
2
2 tan

4 θ13 −m2
3ðm2

1s
4
12 þm2

2c
4
12Þ

2m1m2m2
3s

2
12c

2
12

; ð32Þ

2δ ¼ �π − ρ2 þ Arg

�
s212e

iρ1 þm2

m1

c212

�
: ð33Þ

These two relations, together with measured values of
Δm2

sol and Δm2
atm allow us to have only one free phase (out

of the three phases δ; ρ1;2) and one free mass (out of the
three light neutrino massesm1;2;3). However, as we will see
below, the latter’s range will turn out to be quite narrow.
Using recent results from the neutrino experiments [1],

we can easily verify that the relation of Eq. (32) is
incompatible with normal ordering of neutrino masses.
On the other hand, inverted ordering of neutrino masses is
possible. Using the best fit values (bfvs) of θij;Δm2

sol ¼
m2

2 −m2
1, Δm2

atm ¼ m2
2 −m2

3, expressing m1;2 by m3 as
m1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm − Δm2
sol þm2

3

p
, m2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm þm2
3

p
, from

Eq. (32) we can get an allowed region for m3:

0.001129 eV≲m3 ≲ 0.002833 eV: ð34Þ
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This implies 0.1002 eV≲P
mi ≲ 0.1021 eV, satisfying

the current upper bound
P

mi < 0.12 eV [11], which is
obtained from cosmology.
Moreover, for neutrino less double β-decay (0νββ)

parameter mββ ¼ jPU2
eimiP0

i � j we obtain

mββ ¼ jc212c213m1 þ s212c
2
13m2eiρ1 þ s213m3eið2δþρ2Þj; ð35Þ

which taking into account Eqs. (32), (33) and bfvs of the
oscillation parameters leads to

0.01864 eV≲mββ ≲ 0.0483 eV: ð36Þ

This range is also compatible with limits provided by 0νββ
experiments [12]. In fact, due to predictive relations in
Eqs. (32), (33) both parameters

P
mi and mββ are

unequivocally determined by the m3 values.3 Thus, there
is correlation between

P
mi and mββ, which is given in

Fig. 1. Hopefully, future experiments will be able to test
viability of this scenario [13].
Now we give one selection of the parameters, appearing

in (25), which blends well with this neutrino scenario and
then discuss some implications and outcomes. With the
choice

fa; b; c; d; c̄g ≃ f3.2672ei1.5473; 0.79405ei0.0053733;
0.89097ei0.0028735; 0.15853e1.5586;

0.56333e2.9194g;
fA; B1; B2; C1; C2g ≃ f2.0236; 2.0236; 1.6189; 2.4283;

− 0.8094g; ð37Þ

for the light neutrino masses and mixing angles we obtain

fm1; m2; m3g ¼ f0.049197; 0.049942; 0.0015g eV; ð38Þ

fsin2θ12;sin2θ23;sin2θ13g¼f0.3035;0.57;0.02235g: ð39Þ

From (38) we get

Δm2
sol ¼ m2

2 −m2
1 ¼ 7.39 × 10−5 eV2;

Δm2
atm ¼ m2

2 −m2
3 ¼ 2.492 × 10−3 eV2: ð40Þ

Results of (39) and (40) correspond to the bfvs of the
inverted ordering neutrino scenario [1]. Moreover, for the
phases we get

fδ; ρ1; ρ2g ¼ f276°; 91.69°; 11.49°g;ω1;2;3 ¼ 0: ð41Þ

For this case we have mββ ≃ 0.0362 eV and
P

mi ≃
0.101 eV. These certainly blend with the discussed pre-
dictions of Eqs. (32), (33) and Fig. 1.
From the input (37) for the heavy RHN masses we get

fMN1
;MN2

;MN3
g ≃ f1.6; 953.5; 32480g GeV: ð42Þ

A few remarks about the heavy RHN sector are in order.
The state N1 (with MN1

≃ 1.6 GeV) can be produced in
decays of heavy mesons; however the corresponding
mixing jUeN1

j2 ≃ 2.76 × 10−11 is a bit below (by factor
of ≈3) the sensitivity of the SHiP experiment [14]. As a
separate study, it would be interesting to do a more detailed
investigation/exploration of the model’s parameters from
the perspective of this experiment.
Since the lightest RHN’s mass is MN1

≃ 1.6 GeV, and it
mixes with νe, there will be an additional contribution to the
02ββ parameter, which is given by [15]

����
X3
i¼1

U2
eimiP0

i � þ
MN1

1þM2
N1
=hp2iU

2
eN1

����
¼

����e−0.421i0.0362 eVþ e−0.151i2.76 × 10−11MN1

1þM2
N1
=hp2i

����
¼ 0.0368 eV; ðfor hp2i ¼ ð200 MeVÞ2Þ: ð43Þ

The second term in the absolute values of Eq. (43) is the
contribution from the N1. The hp2i is averaged momentum
squared corresponding to this process. As can be seen, for
hp2i ¼ ð100–200 MeVÞ2 [15,16] the correction from the
N1 state is within ð0.5–1.8Þ%, i.e., negligible. Therefore,
the predictions, made from the light neutrino sector (and
correlation of Fig. 1) are robust.
With N1’s mass within the GeV scale, we need to ensure

its sufficiently fast decay (within ≲0.3 sec.) in order to not
affect the standard big bang nucleosynthesis (BBN).
Dominant decays of N1 are three body decays via neutral

FIG. 1. Correlation between
P

mi andmββ. Solid (middle) blue
line corresponds to the bfvs of the oscillation parameters [1].
Green (wider) area corresponds to the cases with oscillation
parameters within the 1σ deviations.

3Note that, thanks to the relations of (32) and (33), the phase ρ1
and the combination 2δþ ρ2 entering in (35) are unequivocally
determined by the m3.
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and charged currents (i.e., via Z� and W�ð�Þ exchange).
These are leptonic N1 → νiνjν̄j; νie−j e

þ
j ; e

−
i e

þ
j νj and semi-

leptonic N1 → νiqjq̄j; e−i ujd̄k decays. For the leptonic
decay widths we use expressions given in Ref. [17]. For
the semileptonic decays, taking into account all inclusive
decays into the quarks, by proper use of the matching RG
factor [18] one can get a quite reasonable estimate.
Summing all kinematically allowed channels of N1 ’s
decays and using proper expressions [17,18], for the total
width (i.e., for inverse lifetime) we obtain

ΓðN1Þ¼
1

τN1

≃
G2

FM
5
N1

16π3
ð1.37jU1N1

j2þ1.35jU2N1
j2þ0.487jU3N1

j2Þ

≃
1

0.0038 s:
; ð44Þ

which is compatible with BBN. In Eq. (44), for the squared
mixing matrix elements we have used values obtained
within our model:

jUiN1
j2 ≃ f2.76; 1.29; 1.09g × 10−11; ð45Þ

which obtained from the inputs of (37). The states N2;3 will
decay much rapidly via the N2;3 → φl channel (with
lifetimes ≈7 × 10−3 ps and 2 × 10−4 ps, respectively).
As far as the state N4 (which presence is important for
anomaly cancelation) is concerned, because of the

reflection symmetry N4 → −N4 (we have introduced), its
mixing with N1;2;3 and couplings to the SM leptons are
forbidden. However, it will gain the mass via the
1
2
MPlε̄

10N4N4 operator: MN4
∼MPlϵ

10 ≈ 4 × 1011 GeV.
For its decay are responsible the operators,

λ1ε̄

M2
Pl

ðN4uc3Þðdc1dc2Þ þ
λ2ε

M2
Pl

ðN4uc2Þðdc1dc3Þ þ H:c:; ð46Þ

which are allowed if all quarks also change sign. [i.e.,
ðq; uc; dcÞ → −ðq; uc; dcÞ under reflection symmetry.
This does not affect the charged fermion and neutrino
sectors.] These operators will give decays N4 →
uc3d

c
1d

c
2; u

c
2d

c
2d

c
3. Since N4 is a Majorana state, also N4 →

ūc3d̄
c
1d̄

c
2; ū

c
2d̄

c
2d̄

c
3 decays will proceed. All these give

ΓðN4Þ¼
ðjλ1j2þjλ2j2ÞM5

N4
ϵ2

128π3M4
Pl

¼ 1
10−4 sec:ð

MN4

4×1011GeVÞ
5
(with λ1;2¼1),

and therefore making N4 harmless for the BBN. It would
have been interesting to have a scenario with N4 having
proper value of mass and needed couplings for serving as a
dark matter candidate. This turned out impossible with a
presented Uð1ÞF charge assignment. Perhaps a separate
study focused on this issue is also worthwhile.
In summary, exploring the possibility of anomaly free

gaugedUð1ÞF flavor symmetry offered an attractive pattern
for the charged fermion masses, neutrino oscillations, and
also interesting phenomenological implications. These
motivate us to think more and try to find other possibilities
within the framework discussed in this work.
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