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We discuss the use of quantum simulation to study an N-flavor theory of interacting relativistic fermions
in (1þ 1) dimensions on noisy intermediate-scale quantum (NISQ)-era machines. The case of two flavors
is particularly interesting as it can be mapped to the Hubbard model. We derive the appropriate qubit
Hamiltonians and associated quantum circuits. We compare classical simulation and density matrix
renormalization group/time-evolving blocked decimation calculations with the results of quantum
simulation on various platforms for N ¼ 2 and 4-flavors. We demonstrate that the four steps needed
for calculations of real-time scattering can be implemented using current NISQ devices.
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I. INTRODUCTION

Doing ab initio lattice QCD calculations in real-time or
at finite density would have a significant impact on our
interpretation of hadron collider data and our understanding
of nuclear matter. However, because of sign problems, such
calculations cannot be handled efficiently with importance
sampling (Monte Carlo) methods. In contrast, these cal-
culations could be handled efficiently by using quantum
devices capable of manipulating large enough Hilbert
spaces that can be mapped into those relevant for the
QCD Hamiltonian. The possibility of using universal
quantum computers [1–20], or analog quantum simulations
with cold atoms [21–35] has motivated road maps [36–40]
to implement sequences of models of increasing complex-
ity and dimension using the rapidly evolving noisy inter-
mediate-scale quantum (NISQ) technology [41].
In this context, the Schwinger model has often been

the first model to try [10,17,26,33,42–45]. However, the
Gross-Neveu (GN) model with N species of fermions in
1þ 1 dimensions is also a particularly important step in the
study of relativistic fermions. As for QCD, this model is
asymptotically free and capable of dynamical mass gen-
eration and has a rich phase structure at finite temperature
and finite density [46]. An efficient initial-state preparation
for the massive GN model in one spatial dimension has
been developed by Moosavian and Jordan [47]. Because of
the limited entanglement entropy in one spatial dimension,
this model can also be handled efficiently with classical

computers using the density matrix renormalization group
(DMRG) and the time-evolving block decimation (TEBD)
methods based on matrix product states (MPS) [48–50] in
order to explore and validate quantum simulations.
In this article, we show how to map the continuum

Hamiltonian for the GN model to a spatial lattice qubit
system using a Jordan-Wigner transformation [51,52] and
derive quantum circuits which can be used for its time
evolution with first-order Trotter approximation and to
find the ground-state wave function for the massless model
for a range of values of the four-fermion coupling using
the variational quantum eigensolver (VQE) algorithm. We
then compare Trotterized evolution of wave function on
two platforms—the IBM-Q Guadalupe and Honeywell
Quantinuum machines—with the results of exact diago-
nalization and DMRG/TEBD calculations. We demonstrate
that the four steps of calculations needed for real-time
scattering as outlined by Jordan, Lee and Preskill (JLP)
[1,2], namely, (1) vacuum preparation, (2) excitation of
single-particle wave packets, (3) unitary time evolution,
and (4) measurements for the final state, can all be achieved
with current NISQ technology for small systems.
The lattice formulation of the GN model exhibits

connections with several different condensed-matter sys-
tems including the Hubbard model [53–55] and the Su-
Schrieffer-Heeger model of polyacetylene [49,50,56–59].
Inhomogeneous phases are present at finite temperature and
density [60] and can be studied using numerical lattice
simulations [61], ultracold fermionic atoms in optical
lattices [62–65] or with transmon qubits [53]. The use of
configurable arrays of Rydberg atoms, proposed for the
Schwinger model [66–68] or the Abelian Higgs model
[69], could also be adapted for the real-time evolution of the
GN model. Complementary to this work the GN model is
also often used to test new field-theoretical methods and
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ideas, for instance for mass gap calculations [70] or to
search for nontrivial infrared fixed points [71].
The article is organized as follows. The lattice formu-

lation, the Jordan-Wigner transformation and the Trotter
approximation of the N-flavor GNmodel in two space-time
dimensions are presented in Sec. II. The massless two-
flavor model, its symmetries and the choice of the Trotter
step are discussed in Sec. III. The preparation of the ground
state with a variational quantum eigensolver is explained in
Sec. IV and the scattering of wave packets is discussed in
Sec. V. The formulation of the Hamiltonian for the DMRG
calculation is explained in Appendix A, while construction
of the different building blocks of the Trotter evolution
circuit is discussed in Appendix B. Finally Trotter evolu-
tion results for the four-flavor GN model is presented in
Appendix C.

II. FROM CONTINUUM HAMILTONIAN TO
QUANTUM CIRCUIT

We start from the general form of the continuum
Hamiltonian for one Dirac fermion in one spatial dimension:

H ¼
Z

dx iψ†α∂xψ þmψ†βψ : ð1Þ

To discretize we place the theory on a lattice and replace the
continuum derivative by the symmetric difference operator
∂ → Δn0 n ¼ 1

2
ðδn0 nþ1 − δn0 n−1Þ. In addition, we employ a

staggered fermion construction in which the original field ψ
is replaced by a new field λ via the unitary transformation
ψðnÞ ¼ αnλðnÞwhere n labels the lattice site. This yields the
lattice Hamiltonian

H ¼
XL
n¼1

�
i
2
λ†ðnÞ½λðnþ 1Þ − λðn − 1Þ�

þmð−1Þnλ†ðnÞβλðnÞ
�
: ð2Þ

The sum is over all lattice sites and depending on the
boundary conditions some kinetic terms at the lattice edges
need to be omitted or modified. In the usual Euclidean
path integral the staggering transformation has the effect of
reducing the spinor structure of the fermion operator to the
unit matrix and in consequence all but one of the spinor
components can be discarded. In a Hamiltonian formulation
one can only do this for the derivative but not the mass
term. Instead we allocate the 2-spinor components to even
and odd lattice sites corresponding to the choice α ¼ σx.
Choosing β ¼ σz then generates the staggered mass term
mð−1Þnλ†ðnÞλðnÞ. If we denote χeven ¼ λ1 and χodd ¼ λ2

this can be trivially rewritten:

H ¼ i
2

XL
n¼1

χ†ðnÞ½χðnþ 1Þ − χðn − 1Þ�

þm
XL
n¼1

ð−1Þnχ†ðnÞχðnÞ: ð3Þ

For N-flavors of Dirac fermions we can then add a four-
fermion term to generate a Gross-Neveu model [46].
Rescaling mass m and the four-fermion coupling G2 allows
us to omit the factor in front of the kinetic term:

HðNÞ ¼
X
n

"
i
XN
a¼1

χa†ðnÞ½χaðnþ 1Þ − χaðn− 1Þ�

þmð−1Þnχa†ðnÞχaðnÞ þG2

 XN
a¼1

χa†ðnÞχaðnÞ
!

2
#
:

ð4Þ

The resultant Hamiltonian has a manifest SUðNÞ symmetry.
To simulate this system on a quantum computer we first
need to rewrite the theory in terms of Pauli matrix or qubit
operators. We use the Jordan-Wigner transformation [51,52]

χaðnÞ ¼
Y
b<a

PðσbÞðLÞ
Y
a

PðσaÞðn − 1ÞσaþðnÞ; ð5Þ

where

PðσaÞðnÞ ¼
Yn
y¼1

σa3ðyÞ ð6Þ

and σ� ¼ 1
2
ðσ1 � iσ2Þ. It is straightforward to show that this

representation respects the fundamental anticommutator
required for fermion operators:

½χa†ðxÞ; χbðyÞ�þ ¼ δxyδ
ab: ð7Þ

We have used open boundary conditions in our work. In this
representation the free massive Hamiltonian becomes

HðNÞ
0;m ¼

XN
a¼1

1

2

�
i
XL−1
n¼1

ðσaþðnÞσa−ðnþ 1Þ − σa−ðnÞσaþðnþ 1ÞÞ

þm
XL
n¼1

ð−1Þnðσa−ðnÞσaþðnÞÞ
�
þ H:c:

¼
XN
a¼1

�XL−1
n¼1

ð−σa1ðnÞσa2ðnþ 1Þ þ σa2ðnÞσa1ðn − 1ÞÞ

þm
XL
n¼1

ð−1Þnð1 − σa3Þ
�
; ð8Þ

while the four-Fermi term is
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HðNÞ
G ¼ 1

2
G2
XL
n¼1

XN
a¼1

X
b;b>a

ðI − σa3ðnÞÞðI − σb3ðnÞÞ: ð9Þ

Notice that one can think of flavor as another lattice
dimension. That is, one can imagine that the problem maps
to a ladder geometry where each leg of an N-leg ladder
corresponds to the spatial lattice while the vertical rungs
correspond to four-fermion interactions between pairs of
flavors. Alternatively we can map all N legs into a single
one-dimensional lattice with the different flavors mapping
into consecutive lattice sites in such a way that the unit cell of
the lattice is of length N [49].
We consider Trotter evolution of the Hamiltonian with

zero staggered mass. This reduces HðNÞ
0;m to HðNÞ

0;0 and can be
obtained from Eq. (8) omitting the last term. Thus the
Hamiltonian for the N-flavor massless staggered fermions
can be written as

HðNÞ
m¼0 ¼ HðNÞ

0;0 þHðNÞ
G : ð10Þ

To evolve the system in time requires exponentiation of the
Hamiltonian. Since it is composed of noncommuting pieces
we have employed the first-order Suzuki-Trotter approxi-
mation for a small time step Δt ¼ t=n [72–75]:

e−iðH
ðNÞ
0;0 þHðNÞ

G Þt ≈
�
e−iH

ðNÞ
m¼0

t=ne−iH
ðNÞ
G

t
n

�
n þOðtΔtÞ; ð11Þ

where the contribution of the kinetic term Hk for a fixed
flavor a can be decomposed into elementary 2-qubit
operations Q1 ¼ exp½iΔtσa1ðnÞ ⊗ σa2ðnþ 1Þ� and Q2 ¼
exp ½−iΔtσa2ðnÞ ⊗ σa1ðnþ 1Þ�. The four-fermion interac-

tion term HðNÞ
G couples two such flavors a and b at the

same physical site introducing additional qubit operators
of the form Q3 ¼ exp½i Δt

2
G2σa3ðnÞ ⊗ σb3ðnÞ� and Rz ¼

exp ½−i Δt
2
G2σa3ðnÞ�. A schematic diagram showing how

these operations are combined to generate a single time
step is shown in Fig. 1. The individual gates needed to
generate Q1, Q2, and Q3 appear in Figs. 14, 15, and 13
in Appendix B, which gives a detailed description of
how these elementary circuit blocks involving controlled
NOT gate (CNOT), Hadamard, and rotation gates imple-
ment the elementary qubit operations needed for the
Hamiltonian.

From this point on we will focus on the results of our
quantum simulations for N ¼ 2-flavor GN model in the
main text.

III. TIME EVOLUTION

Interestingly the 2-flavor model atm ¼ 0 can be mapped
into the Hubbard model [55] at a particular value of the
chemical potential [76]. The four-Fermi interaction clearly
corresponds to a Hubbard term after identifying n↑ ¼ χ1†χ1

and n↓ ¼ χ2†χ2. In addition, the kinetic operator can be
mapped to the usual Hubbard hopping term after perform-
ing an additional unitary transformation χaðnÞ → inχðnÞ. In
this case the manifest SUð2Þ symmetry of the two-flavor
theory is enhanced to SOð4Þ which is most easily seen by
decomposing each staggered field in terms of real (or
reduced staggered) fields via the mapping

χ1† ¼ ξ1 þ iξ2
χ1 ¼ ξ1 − iξ2
χ2† ¼ ξ3 − iξ4
χ2 ¼ ξ3 þ iξ4

9>>>=
>>>;
: ð12Þ

The Hamiltonian including the four-Fermi term can then
be written:

Hð2Þ
m¼0 ¼

X
n

ξiðnÞξiðnþ 1Þ þ G2

12
ϵijklξ

iðnÞξjðnÞξkðnÞξlðnÞ:

ð13Þ

In this form it can be identified with recent path integral
studies of reduced staggered fermions capable of symmetric
mass generation in (spacetime) dimension D ≥ 2 [77–81].
We have simulated the model using a first-order Trotter

update on both the IBM-Q Guadalupe QPU and the
Honeywell Quantinuum platforms. The Quantinuum pro-
vider gives access to two H1 generations of QPU: H1-1 and
H1-2. Results of the Trotter evolution are shown in Fig. 3
for G2 ¼ 2.0,m ¼ 0.0 and Trotter step δt ¼ 0.6 on a lattice
with two sites. The initial wave function can be written in
the computational basis jψi ¼ j0100i. From the classical
exact diagonalization analysis, it is found out that to capture
the characteristics of the time-evolved wave function at
G2 ¼ 2.0 we need to consider computing Trotter evolution
up to a time t ∼ 3.0. Hence, we used a large Trotter step due
to practical limitations of computing Trotter evolution for
large number of steps with NISQ-era machines. It has been
demonstrated previously for the quantum Ising model that
the Trotter step can be taken 20 or 30 times larger compared
to the theoretical bound of the first-order Trotter step Δt2
before large discretization errors are encountered [15,82].
We performed an identical analysis with our model and
found the conclusion to be true for our model too. We
compute the norm of the following operator:

FIG. 1. Schematic diagram of the quantum operations in the
circuit form is shown for a single step of Trotter evolution for two
flavors. Here, ϕ1 ¼ 2Δt and ϕ2 ¼ G2Δt.
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ΔU ¼ e−iH
ð2Þ
m¼0

δt − e−iH
ð2Þ
0;0δte−iG

2Hð2Þ
G δt: ð14Þ

Here the norm is defined to be the largest singular value
of the corresponding operator. The theoretical bound up
to the second order in δt of the norm in this quantity is

B ¼ ðG2=2Þk½Hð2Þ
0;0; H

ð2Þ
G �kðδtÞ2. However the actual bound

kΔUk is strictly less in the region 0.55 < t < 0.95, and we
numerically find that the actual bound is consistent with a
linear approximation in δt,

kΔUk ∼ 1.49ð1Þδt − 0.304ð7Þ: ð15Þ

Figure 2 shows the comparison of the second-order Trotter
bound (B) from first-order Trotterization with the actual
value of the difference in the norm (kΔUk). The choice of
the Trotter step δt ¼ 0.6 is justified where kΔUk ∼ 0.6. In
Fig. 2, the quantum simulations are compared with exact
diagonalization, first-order Trotterization code, and the
TEBD algorithm written using the ITensor library [83].
Before implementing the circuit on quantum hardware

we also simulated the circuit using the device-noise
model. For the IBMQ QPU, we used the aer-simulator

using a basic device-noise model derived from the backend
properties. The noise model incorporates a simplified
model for the gate-error probability of each basis gate
on each qubit taking into account the relaxation time and
readout probability of each qubit. Figure 3 shows that for a
small number of qubits Q ¼ N × L ¼ 4, the error model
predicts the results from the QPU quite well out to four
Trotter steps. We also performed analysis with the noise
model of the Quantinuum machine in the native simulator
of Quantinuum provider. The noise-model simulator was
seen to predict the Trotter evolution from the Quantinuum
machine extremely accurately up to five Trotter steps.
Table I shows the circuit depth of the implemented

circuits.1 We also note the number of CNOT gates for each
case. Notice that twice as many CNOT gates are required in
the case of the IBM-Q relative to the Honeywell machine.
The reduced number of gates for the latter machine reflects
the all-to-all qubit connectivity which eliminates the need
for additional SWAP operations requiring three CNOT
gates. These facts account for the observed difference in
the two platforms. Our overall conclusion is that the layout
of the physical qubits plays a very important role in the
efficiency with which quantum simulation can be accom-
plished on NISQ-era hardware.

IV. COMPUTATION OF THE GROUND STATE

One of the fundamental goals of investigating any
interacting lattice fermionic model is to understand its
phase structure. The first step of doing that is to prepare
the ground state. In our work, we designed a quantum
circuit that is suitable for use with the Variational Quantum
Eigensolver (VQE) algorithm [84] to determine the ground-
state wave function of the system as a function of the four-
Fermi coupling. The inputs to the algorithm are the qubit
Hamiltonian and a parametrized quantum circuit whose
function is to evaluate the expectation value of the
Hamiltonian on a trial ground-state wave function. The

FIG. 2. Comparison of the first-order Trotter-bound (B) with the
practical bound (kΔUk): differences in the norm of the unitaries
kΔUk computed using matrix exponentiations of our model.

FIG. 3. Trotter evolution for the N ¼ 2-flavor model with L ¼ 2

lattice sites and G2 ¼ 2.0, m ¼ 0.0 and time step δt ¼ 0.6 from
initial state jψi ¼ j0010i. The number of shots used for Guadalupe
and Quantinuum simulation are 4000 and 300 respectively.

TABLE I. Circuit depth d and the number of CNOT (CX) gates
required for the implementation of the Trotter evolution for
different numbers of steps n.

IBMQ Quantinuum

Trotter step, n d CX d CX

1 24 4 10 4
2 47 18 22 12
3 70 32 34 20
4 93 46 46 28
5 116 60 58 36

1The original circuit is transpiled before submitting the circuit
to the QPU in order to express the circuit in terms of the native
gates and optimize the mapping of qubits to the QPU. The depth
noted here is the depth for the transpiled circuit.
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algorithm uses a classical computer to minimize the energy
of the state with the quantum circuit being used to evaluate
the expectation value of the Hamiltonian on the trial wave
function at each stage of the iteration. The wave function
ansatz for the ground state for two flavors is the well-known
Hardware Efficient Approximation (HEA) [85] shown in
Fig. 4, where a set of rotation angles θa; a ¼ 0; 1…15
are used as variational parameters. For a Q-qubit lattice
model, the expression of the HEAwave function ansatz in
terms of rotation gates R and 2-qubit entangling operators
Umn which entangle the mth qubit and nth qubit can be
written as

jψi ¼
XQ
i¼1

��Y
a

Ri
a

��Y
b

Ui;iþ1
b

��Y
c

Ri
c

��
jψ0i

≡MαðfθgÞjψ0i: ð16Þ

Here, the subscript in Ri
a denotes different rotation

operators along different axes with a; c ¼ fx; y; zg, and
the subscript in Ub denotes different entangling operators
Ub ∈ fCX;CY; CZ; CH;CRZ;CU; � � �g. The number of
product terms in each part can be varied and a suitable
number of terms can be chosen for approximating the
ground state. In principle, the operator MαðfθgÞ can be
repeated as many times as needed with a new set of
parameters for each Mα block. Thus, in general, the
structure of the HEA ansatz can be written as

jψi ¼
Y
αðfθgÞ

MαðfθgÞjψ0i: ð17Þ

Repeating the block (Mα) N-times increases the number
of parameters by the same factor. The number of parameters
p needed is bounded by p < QN

P
i li where l1 and l3

denote the number of rotation layers in the first and the
last stage respectively and l2 the number of layers of
entangling gates. VQE then uses Ritz’s variational principle
to update the parameters θi [86]. We used the Constrained
Optimization by Linear Approximation (COBYLA) opti-
mizer [87–89] with the state-vector simulator of Qiskit to
determine the change of the parameters at each stage of
the iteration. The COBYLA optimizer is based on a linear
approximation of the objective functions and the constraints.
To verify whether the “true” ground state is reached, we
compared the results obtained from the COBYLA optimizer

with the SLSQP optimizer [90]. SLSQP uses Sequential
Least Squares Programming to minimize a function of
several variables. Any combination of bounds, equality
and inequality constraints can be incorporated in the
SLSQP optimization routine. Figure 5 shows a typical
relaxation of the energy to the ground state at G2 ¼ 1.0
for both optimizers. We assumed the algorithm reaches the
ground state when two successive iteration match up to
the fourth order after the decimal point. For the sameG2, the
projection of the obtained ground state jψgi on the computa-
tional basis fjnig is shown and compared with results from
the exact diagonalization and the DMRG result in Fig. 7.
Similar analysis was performed at different values of G2 and
the computed ground-state energy from the VQE is com-
pared with the exact diagonalized result in Fig. 6. For the
computation of the ground state, we choose an arbitrary
wave function by choosing the parameters θi of the “ansatz
wave function” from a random distribution of floating-point
numbers −2π ≤ θi < 2π. Different sets of parameters are
randomly chosen for the wave-function ansatz and error bars
are computed from the standard deviation of the different
results obtained.

V. WAVE PACKET PREPARATION AND
MEASUREMENT

In the previous three sections, we showed results of
the Trotter evolution and the ground-state preparation
procedure for the GN model. In this section, using the
DMRG algorithm we demonstrate that the JLP prescription

FIG. 4. Quantum circuit used in estimating the ground-state wave function for 2 flavors.

FIG. 5. Energy minimization using VQE alogorithm with two
different classical optimizers at G2 ¼ 1.0.
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for real-time scattering can be implemented for the two-
flavor GN model. For the DMRG computation, we used a
different labeling of the qubits with the unit cell of the
lattice containing N sites corresponding to the N different
flavors of the model. Thus a lattice with L unit cells (spatial
points) would require a total ofNL physical lattice sites and
associated qubits. The Hamiltonian reformulated in this
notation is written in Appendix A; see Eq. (A1).
The first step in constructing scattering states is to

prepare the ground state. We obtain the ground state of
the system by running the DMRG algorithm at G2 ¼ −3.0,
m ¼ 0.5 and obtain the ground state as an MPS. This
ground state is then compared with the results obtained
using the variational quantum eigensolver method
described in the previous section. The ground state for
any large negative G2 value consists of all σz ¼ −1 spins
which makes it very suitable as a starting point for wave-
packet creation. After we get the ground state in terms of an
MPS we can feed it into the TEBD algorithm as an initial
state to start our time evolution for the wave packets.
Since the ground state corresponds to down states for all

spins we need to add a new term in our Hamiltonian to

excite particles in precise locations on the chain (the second
step in JLP prescription). The operator He ¼ σþðnÞ does
the trick. Note that there is no implicit sum over the site
index x. Applying this term will change the j0i to a j1i at
that location. Then we can give it some finite momentum so
that this excitation can move along the spin chain:

He ¼ eikσ
þðxÞ: ð18Þ

To mimic single-particle physics we choose to excite only
one site within the unit cell which results in an excitation
that moves within the lattice on only even or odd lattice
sites depending on the original excited site. Since we do not
want to generate particles indefinitely we will only include
this term in the time evolution for one Trotter step and the
remaining time evolution then will be carried out using the
original Hamiltonian.
Now we give simple examples for this procedure. In

Fig. 8 we have excited the first site with k ¼ 0.5 by
including He in the time evolution for 1 < t < 2 with a
Trotter step size δt ¼ 0.5 and then let the system evolve
with the original Hamiltonian up to t ¼ 20. As can be seen
from the plot this results in a right-moving wave packet.
Notice that we have only shown the odd sites in Figs. 8
and 9. This is due to the fact that we have excited the first
site which resulted in an excitation that moves only on
odds sites. By omitting the even sites from the plots the
propagation becomes more visible. Also this effectively
reduces our model to be a single-flavor L ¼ 8model which
might be accessible to NISQ-era machines.

FIG. 7. Projection of the ground state jψgi on the computational
basis jni derived from the VQE. VQE result is compared with the
exact diagonalization and results obtained from DMRG.

FIG. 8. Time evolution for a right-moving wave packet.

FIG. 9. Time evolution for j100…0i.

FIG. 6. Ground-state energy computed from the VQE com-
pared with the results of the exact diagonalization. DMRG results
are not shown here as they match exactly with the exact
diagonalization result.
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One can also excite both ends of the spin chain to create
scattering states. This can be seen in Fig. 10. Due to the way
we have constructed our spin chain the ends of the spin
chain correspond to different flavors of fermions which
results in excitations at all lattice sites.
Alternatively we can just pick our initial state by hand

to simulate wave propagation—for example by starting
with a j100…0i and then time evolving this state under the
original Hamiltonian with G2 ¼ 0,m ¼ 0. This also results
in a right-moving wave packet which can be seen in Fig. 9.
Furthermore one can start with an initial state of the form
j100…1i to obtain a scattering-like state in Fig. 11. The
advantage of choosing the initial state by hand and using
only the kinetic term for the time evolution is that it will
allow us to easily test our results with quantum hardware in
the near future.
General methods to map the position space basis into a

momentum space basis for fermions have been developed
in Refs. [91,92] and can be used to measure various aspects
of the final state. Practical implementations with four qubits
have been used to measure phase shifts using the IBM-Q
and trapped ions [16] for the case of the quantum Ising
model. Implementations with eight qubits are under active
investigation.

VI. CONCLUSIONS

In this paper, we have described a mapping of the
N-flavor GN model into a suitable qubit Hamiltonian using
Jordan-Wigner transformation and have benchmarked

quantum simulations of the two- and four-flavor model
by comparing its time evolution at strong coupling using
two different QPUs—the IBM-Q Guadalupe machine,
which is based on superconducting transmon qubits, and
the Quantinuum H1 machine, which is a trapped-ion based
quantum computer.
The results of the Trotter evolution using the Guadalupe

machine and the Quantinuum H1 machine are compared
with the classical simulations, exact diagonalization, and
DMRG/TEBD calculations. From the comparison with
the exact computations, we find that at the current time,
the Trotter evolution of the 2-flavor GN model can be
reliably measured with both QPUs up to four or five Trotter
steps. However, due to the connectivity requirement of
the qubits in 4-flavor model, we find that to obtain a
reliable qualitative Trotter evolution, connectivity of the
physical qubits in the machines becomes important. The
Quantinuum H1 machine showed superior performance
due to its all-to-all connectivity giving qualitatively sound
results up to four Trotter steps. This indicates that config-
urable connectivity of the qubits is essential for implement-
ing different multiflavor fermionic models on current
quantum machines.
Our study also leads to a similar conclusion to some

previous work—namely that comparatively large Trotter
steps can be used to compensate for the current limitations
of current hardware which lacks quantum error correction.
We advise the readers of an important caveat. We only used
compiler optimization routines in this study for error
mitigation. In our follow-up work on this model, we plan
to use advanced error mitigation techniques like zero-
noise extrapolation. Mitigation techniques potentially can
improve the 4-flavor results with the Guadalupe machine
and also might improve the scaling and number of Trotter
steps accessible to both platforms.
We also presented results for the ground-state prepara-

tion with a variational quantum eigensolver. We did not
attempt to implement this with quantum-processing units
since we suspect that ground-state preparation will be
impossible without advanced mitigation techniques due
to the noise associated with NISQ-era machines. Even with
advanced mitigation techniques, it might not be possible to
prepare the ground state without improved algorithms. The
authors are exploring these avenues and the results will be
presented in the future. We concluded our study with wave-
packet preparation and scattering with DMRG/TEBD
techniques, and this will be further explored with quan-
tum-processing units in the upcoming work.
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APPENDIX A: DETAILS OF THE DMRG
CALCULATION

To get a version of Eq. (8) suitable for DMRG simu-
lations [83,93–95] for any number of N flavors we need to
make a few adjustments. First we need to map all degrees of
freedom to individual lattice sites on the one-dimensional
lattice. This means the unit cell of the lattice is now of
length N. After this transformation the lattice action can be
written as follows:

HðNÞ ¼ i
XL−N
x¼1

−σþðxÞσ−ðxþ NÞ þ σ−ðxÞσþðxþ NÞ

þ 1

2
G2

XL−N
x¼1;1þN;::

XN−1

a¼0

XN−1

b¼0
b>a

σþðxþ aÞσ−ðxþ aÞ

× σþðxþ bÞσ−ðxþ bÞ: ðA1Þ

A mass term can be introduced using a more general
staggered phase ηðxÞ that changes its sign between the unit
cells rather than between each site:

Ms ¼ m
XL
x¼1

ηðxÞσþðxÞσ−ðxÞ: ðA2Þ

To verify our DMRG code is correct we have calculated
the ground-state energy using exact diagonalization of the
original Hamiltonian and compared it with the energies
obtained from DMRG. As can be seen in Fig. 12 there is
very good agreement between the two calculations.

APPENDIX B: CIRCUIT BLOCKS

For the computation of the Trotter evolution, each
term in the Hamiltonian is exponentiated. This amounts
to creating circuit blocks of the exponential of the
tensor product of the σ operators exp ðαQ⊗

n σnÞ. As an
example we describe first the creation of the operator
expð−iðϕ2=2Þσ3 ⊗ σ3Þ in terms of elementary unitary
gates.2 To understand the construction let us first explain
the construction of the CNOT gate:

CNOT10 ¼ j1ih1j ⊗ σ1 þ j0ih0j ⊗ I2: ðB1Þ

Here the subscript of the CNOT gate denotes that it is
applied on qubit 1 and qubit 0 with qubit 0 as a control bit.
We identify the basis of the one-qubit states as column
vectors:

j0i ¼
�
1

0

�
; j1i ¼

�
0

1

�
; ðB2Þ

and σi, i ¼ 1, 2, 3, denotes the usual Pauli matrices. Thus, if
the initial state at position A is jψi, the state at position B is
CNOT10jψi. With these definitions, it is easy to verify that
the CNOT gate applied on 2 qubits where the 0th qubit
works as a control bit satisfy these identities:

CNOT10j00i ¼ j00i;
CNOT10j01i ¼ j01i;
CNOT10j10i ¼ j11i;
CNOT10j11i ¼ j10i: ðB3Þ

Rotation by an angle ϕ2 around the z axis can be
represented by the rotation operator Rz, described by

Rzðϕ2Þ ¼ exp

�
−i

ϕ2

2
σ3

�
¼ cos

ϕ2

2
I2 − i sin

ϕ2

2
σ3: ðB4Þ

This implies that up to the point “C” in Fig. 13 the operator
that is applied on a 2-qubit initial state jψi is

ðI2 ⊗ RzÞCNOT10

¼ cos
ϕ2

2
CNOT10 þ sin

ϕ2

2
ðj1ih1j ⊗ σ2 þ j0ih0j ⊗ σ3Þ:

ðB5Þ

At the final stage at position “D,” the operator takes the
form-5.5

-5
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FIG. 12. Comparing the ground-state energy obtained via
DMRG with exact diagonalization for different numbers of
lattice sites L.

2This manuscript follows the physics textbook convention,
where the qubits are ordered from left to right. Thus a 2-qubit
state is represented as jq0q1i, where the 0th qubit is represented
as the most significant bit in the bit string.
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CNOT10ðI2 ⊗ RzÞCNOT10

¼ cos
ϕ2

2
I4 − i sin

ϕ2

2
ðj0ih0j − j1ih1jÞ ⊗ σ3

¼ exp
�
−i

ϕ2

2
σ3 ⊗ σ3

�
: ðB6Þ

Thus, after the application of the second CNOT gate, the
state obtained is expð−iðϕ2=2Þσ3 ⊗ σ3Þjψi.
The circuit needed for Q1ðϕ1Þ is similar but requires

Hadamard gates to rotate the σz’s to σx and rotation gates
about the x axis Rxðπ=2Þ to rotate σz to σy; see Fig. 14.
Likewise, Q2ð−ϕ1Þ can be described by the circuit
in Fig. 15.

APPENDIX C: FOUR-FLAVOR RESULTS

In this brief section, we present the results on the Trotter
evolution of the N ¼ 4 flavor Gross Neveu model. A
quantum simulation demonstrates that the formulation of
the N-flavor model is straightforward. The results obtained
from the quantum circuit simulation using the Aer
Simulator match with the exact diagonalization and the

TEBD calculations. However, it is evident from Fig. 16 that
the results obtained from the QPUs deviate from the exact
results. The comparison shows that Quantinuum’s H1 QPU
demonstrates superior behavior to IBMQ’s Guadalupe
machine. This observation is similar to that seen in the
2-flavor model discussed in Sec. III. The better perfor-
mance of the H1 machine can mainly be attributed to the
all-to-all connectivity of its physical qubits. Due to the
nature of the interaction terms, it is evident that more
flavors translate to the requirement of more SWAP gates.
For both cases, Trotter evolution results with QPUs deviate
from the exact results more for the N ¼ 4 flavor case
than for the N ¼ 2 flavor model. For example, for the
Quantinuum machine, the deviation from the exact result at
the fifth Trotter step is ∼19% for two flavors, as compared
to ∼49% for the four-flavor model, whereas for the
Guadalupe, the difference is ∼71 and ∼98% for the N ¼
2 and N ¼ 4 flavor cases respectively.3 Furthermore, we
see that the native simulator of the Quantinuum machine
predicts the result quite well. In contrast, the Aer simulator
with the device-noise model of the Guadalupe machine
does not provide an accurate description of the quantum-
processing unit of the Guadalupe QPU.
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