
Strategies for the determination of the running coupling
of (2 + 1)-dimensional QED with quantum computing

Giuseppe Clemente,1,* Arianna Crippa ,1,2,† and Karl Jansen1,‡
1Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany

2Institüt für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany

(Received 23 August 2022; accepted 29 November 2022; published 26 December 2022)

We propose to utilize noisy-intermediate-scale-quantum-era quantum devices to compute short distance
quantities in (2þ 1)-dimensional QED and to combine them with large volume Monte Carlo simulations
and perturbation theory. On the quantum computing side, we perform a calculation of the mass gap in the
small and intermediate regime, demonstrating, in the latter case, that it can be resolved reliably. The so
obtained mass gap can be used to match corresponding results fromMonte Carlo simulations, which can be
used eventually to set the physical scale. In this paper we provide the setup for the quantum computation
and show results for the mass gap and the plaquette expectation value. In addition, we discuss some ideas
that can be applied to the computation of the running coupling. Since the theory is asymptotically free, it
would serve as a training ground for future studies of QCD in 3þ 1 dimensions on quantum computers.
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I. INTRODUCTION

In the last decades, nonperturbative numerical inves-
tigations of quantum field theories using Markov chain
Monte Carlo (MCMC) techniques have reached unprec-
edented levels of reliability and accuracy in the determi-
nation of quantities of physical interest [1]. On the other
hand, the recent advances on quantum hardware open up
the possibility of exploring new techniques and using the
Hamiltonian formulation have the potential to address new
problems such as chemical potentials, topological terms or
real time evolution. However, there are still many chal-
lenges that one has to face for both approaches. In MCMC
simulations, autocorrelation times grow rapidly, in some
cases even exponentially (a phenomenon called critical
slowing down) as the lattice spacing vanishes, making it
hard to investigate the continuum limit. Furthermore, the
path integral used for simulating some models is afflicted
by the infamous sign problem [2,3]. In lattice quantum
chromodynamics, this prevents, e.g., accurately character-
izing the region of the phase diagram at finite baryon
density, which is of phenomenological interest [4–6].

Regarding quantum computation, with the present hard-
ware technology only very small systems can be simulated.
However, no sign problem is present in the Hamiltonian
formalism, and no apparent obstacle hinders the inves-
tigation of finer lattice spacings thus avoiding large
autocorrelation times. For these reasons, we believe that
in the current noisy intermediate-scale quantum era [7] we
can use quantum computing to study small scale properties
of lattice field theories.
The system considered in this work is quantum electro-

dynamics (QED) in 2þ 1 dimensions, which has been
investigated in literature with different techniques [8–13].
Our interest is in the studyof small distancequantities, amost
prominent example being the running coupling. By making
contact with perturbation theory this allows to calculate also
the Λ parameter, ΛQED in (2þ 1)-dimensional QED, analo-
gous to the QCD Λ parameter. Other possible quantities of
interest that is possible to study are, for example, the (scale
dependent) renormalization factors Z [14,15].
It is the main idea of this and follow-up works, to match

the results of short distance quantities obtained from
quantum computations with the ones coming from
MCMC simulations in the strong and intermediate coupling
region. In particular, when such a matching is successfully
carried out, large scale MCMC calculations will provide us
with a physical value of the lattice spacing. This, in turn,
allows us to convert results which are obtained in lattice
units, e.g., the renormalization scale or the Λ parameter, to
physical units.
The paper is organized as follows. In Sec. II we introduce

the system under investigation: the lattice discretization and
Hamiltonian formulation are described in Sec. II A, while
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the electric and magnetic bases are discussed in Sec. II B. In
Sec. III we introduce the numerical setup, in particular, the
encoding adopted (Sec. III A) and the variational technique
(Sec. III B). Numerical results are discussed in Sec. IV,
where we show the behavior of the spectral gap and
plaquette observable with both exact diagonalization data
and the results of the application of variational quantum
techniques on a simulator. In Sec. V we formulate some
proposal to match quantum results with Monte Carlo
simulations and to compute the running of the coupling
in a nonperturbative way. Finally, in Sec. VI we summarize
our findings, and discuss future perspectives.
Two proposal for the improvement of the Ansatz and for

a more efficient encoding are considered in Appendices A
and B respectively, while Appendix C is devoted to present
tests and results for the penalty term method performed
with the pure gauge system and the fermionic case.

II. (2 + 1)-DIMENSIONAL QED ON THE LATTICE

As for QCD in 3þ 1 dimensions, the behavior of QED
in 2þ 1 dimensions presents confinement and asymptotic
freedom. In this section we describe the discretization
adopted [15].

A. Hamiltonian

In order to deal with the fermionic doubling problem
[16–18], i.e., the existence in d-dimensions of 2d flavors for
each physical particle, we consider a Kogut-Susskind
formulation [19].
With this formulation the fermionic degrees of freedom

are discretized on distinct lattices and then separated by 2a
(where a is the lattice spacing). Fermions and antifermions
formulation are represented by single component field
operators ϕ̂n⃗, with n⃗ ¼ ðnx; nyÞ as the position on the
lattice sites, as in Fig. 1.
The Hamiltonian that we use to represent QED [20,21]

consists of four terms:

Htot ¼ HE þHB þHm þHkin: ð1Þ
The first term is

ĤE ¼ g2

2

X
n⃗

ðÊ2
n⃗;x þ Ê2

n⃗;yÞ; ð2Þ

where the field operators Ên⃗;μ (direction μ ¼ x, y) are
dimensionless and act on the links, and g=

ffiffiffi
a

p
→ g is the

coupling constant. The electric fields take integer eigen-
values en⃗ ¼ 0;�1;�2;… with Ên⃗;μjen⃗i ¼ en⃗jen⃗i.
In lattice gauge theories, the following Wilson operators

are introduced [22] on the links,

Û ¼ eiagÂμðn⃗Þ; ð3Þ

where Âμðn⃗Þ is the vector field. They measure the phase
proportional to g acquired by a unit charge moved along
the link and act as a lowering operator on electric field
eigenstates: Ûn⃗;μjen⃗i ¼ jen⃗ − 1i. Thus, we have the follow-
ing commutator

½Ên⃗;μ; Ûn⃗0;ν� ¼ −δn⃗;n⃗0δμ;νÛn⃗;μ: ð4Þ

The magnetic interaction is determined by the plaquette
operator P̂n⃗ ¼ Ûn⃗;xÛn⃗þx;yÛ

†
n⃗þy;xÛ

†
n⃗;y,

ĤB ¼ −
1

2g2
X
n⃗

ðP̂n⃗ þ P̂†
n⃗Þ; ð5Þ

where we set a ¼ 1.
For the fermionic part of the Hamiltonian we have the

mass term

Ĥm ¼ m
X
n⃗

ð−1Þnxþny ϕ̂†
n⃗ϕ̂n⃗; ð6Þ

and the kinetic term,

Ĥkin ¼ Ω
X
n⃗

X
μ¼x;y

ðϕ̂†
n⃗Ûn⃗;μϕ̂n⃗þμ þ H:c:Þ; ð7Þ

where ½Ω� ¼ ½1=ð2aÞ�. It corresponds to the creation or
annihilation of a fermion-antifermion pair on neighboring
lattice sites and the adjustment of the link.
The Hamiltonian is gauge invariant, i.e., it commutes

with the Gauss’s law operators Gn⃗ at each site n⃗

Ĝn⃗ ¼
�X
μ¼x;y

ðÊn⃗;μ − Ên⃗−μ;μÞ − q̂n⃗ −Qn⃗

�

Ĝn⃗jΦi ¼ 0 ⇔ jΦi ∈ Hphys; ð8Þ

where q̂n⃗ are dynamical charges, defined as

qn⃗ ¼ ϕ̂†
n⃗ϕ̂n⃗ −

1

2
ð1þ ð−1Þnxþnyþ1Þ: ð9Þ

Qn⃗ are possible external static charges, which are set to
nonzero values only when one considers the computation
of the static potential.

FIG. 1. One plaquette system. Fermions are on the n⃗ site, fields
and the link operators Û on the links. The arrows follow the
positive directions x, y.
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B. Electric and magnetic basis and fermion
discretization

In this section we consider the calculation of the energy
gap with periodic boundary conditions. These allow us,
unlike open boundary conditions, to properly define the
momentum operator and hence project into the zero-
momentum sector (p⃗tot ¼ 0⃗) along with the total zero-
charge sector (Qtot ¼ 0). In principle it should be easier to
extract the energy difference when the number of states to
be considered is smaller. However, this procedure is not
straightforward in the open boundary case, since no
momentum operator in the sense of generator of trans-
lations exists; in this case, it is still possible to introduce a
pseudomomentum operator [23] whose square can be used
to select only the physical states among all the results
a posteriori, or as a suppression term with the same
procedure described in Sec. III C.
We consider a square lattice formed by four lattice sites.

Due to Gauss’s law, only five of the eight links are
independent, thus we can have a more resource efficient
Hamiltonian, suitable for a wide range of quantum hard-
ware. To conveniently simplify the expressions we use the
set of operators, i.e., rotators and strings [20], which
preserve Gauss’s law, as in Fig. 2. Using periodic boundary
conditions, the momentum-zero sector can be enforced
exactly by using a translational invariant Hamiltonian.1

As mentioned, our analysis include fermionic matter and
excited states and by using a Kogut-Susskind formulation
we have a symmetric fermionic system every two lattice
spacings.

1. Discretization and truncation

In the following, we describe two schemes that allow us
to discretize the continuous Uð1Þ group with Z2Lþ1 which
provides a discrete basis for the operators Ân⃗;μ. Since the
gauge rotators possess discrete but infinite spectra, any
numerical approach requires a truncation of the Hilbert
space. Thus the gauge fields assume integer values in range
½−l; l�, and the dimension of the Hilbert space (within the
gauge part) is ð2lþ 1Þ5. The parameter l is the cutoff value
for the group truncation.
We consider two different representations for the

Hamiltonian, i.e., electric and magnetic. While in the former
the operators associated to the electric field are diagonal, the
plaquette operator corresponds to a nondiagonal expression.
As a consequence, applying a different representation in
the weak coupling regime is preferable. This is performed
through the discrete Fourier transform, that diagonalizes the
lowering operators.
The discrete approximation in the magnetic basis is

related to the parameters l and L. We refer to l as the

truncation level and L as the discretization level. Since the
truncated Uð1Þ and Z2Lþ1 are equivalent in the electric
basis, the parameter L is irrelevant, however it strongly
influences the results derived in the magnetic representa-
tion. For a given l, L defines the resolution of the
approximation centered around the vacuum. The group
is discretized into 2Lþ 1 states and only 2lþ 1 are kept
after the truncation.

2. Jordan-Wigner transformation

For the numerical implementation, the fermionic degrees
of freedom can be mapped to spins using a Jordan-Wigner
transformation [24],

ϕn⃗ ¼
�Y

k⃗<n⃗

ðiσz
k⃗
Þ
�
σ−n⃗ ; ð10Þ

ϕ†
n⃗ ¼

�Y

k⃗<n⃗

ð−iσz
k⃗
Þ
�
σþn⃗ ; ð11Þ

where σz is the z-Pauli matrix, σ� ≡ σx�iσy
2

and the relation
k⃗ < n⃗ is defined by ð0; 0Þ < ð0; 1Þ < ð1; 1Þ < ð1; 0Þ to
satisfy the fermionic commutation relations.
Applying Eqs. (10) to (9), the expressions for the dynami-

cal charges in terms of bosonic spin operators become:

qn⃗ ¼
1

2
ðσzn⃗ þ ð−1Þnxþnyþ1Þ: ð12Þ

III. NUMERICAL SETUPS AND METHODS

A. Encoding

The encoding adopted in [21] maps the N fermionic
states into an equal number of qubits and gauge physical
states onto 2lþ 1 qubits using

FIG. 2. 2 × 2 periodic boundary condition lattice. By applying
the Gauss’s law we can write R4 (thin line) in terms of the other
three rotators.

1However, after gauge fixing and for a finite truncation,
symmetry cannot be enforced exactly on the remaining gauge
degrees of freedom (i.e., rotators and strings).
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j−lþ jiphys ↦ j0 � � � 0
zfflffl}|fflffl{j

10 � � � 0
zfflffl}|fflffl{2l−j

i: ð13Þ

The truncated electric field and link operators (for a single
edge) can be expressed starting from their expressions in
the physical basis:

Ê ¼
Xl

i¼−l
ijiiphyshijphys; ð14Þ

Û ¼
Xl

i¼−lþ1

ji − 1iphyshijphys: ð15Þ

For example, for l ¼ 1 the corresponding 2lþ 1 possible
states are encoded as

j−1iphys ↦ j100i; ð16Þ

j0iphys ↦ j010i; ð17Þ

j1iphys ↦j001i: ð18Þ

However, this mapping is not resource efficient since we
would need 2lþ 1 qubits for each gauge variable.
Hereby we use another method to encode the physical

states. Instead of using 2lþ 1 qubits for each truncated
gauge variable, one would like to use a compact encoding,
see, e.g., [25]. The minimum number of qubits required per
gauge variable is qmin ¼ ⌈log2ð2lþ 1Þ⌉, such that, using N
truncated gauge variables, the fraction of physical states
ð2lþ 1ÞN among the total number of states in the encoding
is 2Nðflog2ð2lþ1Þg−1Þ, which corresponds to 1

2N
ð1 − 1

4lÞN in the
worst case (when l is a power of 2); using the previous

encoding instead, one would use just a fraction ð2lþ1ÞN
2Nð2lþ1Þ ,

which vanishes exponentially in the limit l → ∞ with a rate
coefficient 2N ln 2.
In principle, one could even encode directly in the qubit

space any number N of gauge variables, so that the
requirement amounts to ⌈log2½Nð2lþ 1Þ�⌉ qubits instead
of N⌈log2ð2lþ 1Þ⌉.
In order to represent a generic transition in the following

discussion, we use the notation

σþ ≡ j1ih0j; σ↑ ≡ j1ih1j;
σ− ≡ j0ih1j; σ↓ ≡ j0ih0j: ð19Þ

Amongst all the possible ð2qmin

2lþ1
Þ compact encodings, it is

convenient to pick the ones that simplify the ladder terms
ji − 1iphyshijphys. in Eq. (15) in such a way that the bit string
representing the state in the computational basis changes
only by one bit. Another way of phrasing this condition
is that we would minimize the number of off-diagonal

operators appearing in the Pauli string decompositions of
these terms. This is realized by the so-called Gray codes.
For example, with l ¼ 1 there are three physical states

jiiphys: for i ∈ f−1; 0; 1g, which can be encoded using only
two qubits using a Gray encoding pattern as shown in
Table I, where the state j10i is considered unphysical.
The expressions for the truncated electric field and link

operators then become

Ê ↦ −j00ih00j þ j11ih11j ¼ −
1

2
½σz0 þ σz1�; ð20Þ

Û↦ j00ih01jþ j01ih11j ¼ 1

2
½σ−0 ðI1þσz1Þþσ−1 ðI0−σz0Þ�:

ð21Þ

The Hamiltonian in the electric and magnetic basis has the
same form as Eqs. (7) and (8) of [21], where the following
relation is considered for one-hot encoding:

Ê ↦ Ŝz; ð22Þ

Û ↦ V̂−: ð23Þ

In our analysis we also consider dynamical matter fields,
using the Hamiltonian of [20].
In addition to the number of qubits just discussed, one

should consider also the number of Pauli terms in the
Hamiltonian and commuting sets of Paulis, which increases
from 3N − 2 for one-hot encoding and 2η þ η2η−1 − 1 for
Gray encoding in a N-state system (with η ¼ log2 N),
causing nonlocality in the Hamiltonian, as discussed in
[25]. This complexity analysis holds for both electric and
magnetic basis in terms of number of qubits needed. Note
however, that the number of Pauli terms may differ in the
two bases.
Unfortunately, since 2lþ 1, the number physical basis

states for gauge variables, is not a power of two, one has
to deal with the unphysical states so that they would not
appear in the final solutions. This can be done either by
working with a structured Ansatz with rotations allowed
only between physical states (see Appendix A) or by
introducing a penalty term in the Hamiltonian which
suppress solutions with overlap in the unphysical region
of the Hilbert space (see Sec. III C). Another approach
which can be applied in the case of magnetic basis consists

TABLE I. Gray encoding for l ¼ 1.

jiiphys jii jiihij ji − 1ihij
j−1iphys j00i σ↓ ⊗ σ↓ 0
j0iphys j01i σ↓ ⊗ σ↑ σ↓ ⊗ σ−

jþ1iphys j11i σ↑ ⊗ σ↑ σ− ⊗ σ↑

Unphysical j10i
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in changing the discretization in such a way that one can
include the remaining 2⌈log2ð2lþ1Þ⌉ − 2l − 1 states as physi-
cal (see Appendix B).

B. Variational quantum algorithms

In this section we describe the technique adopted to
compute the mass gap and the expectation value of the
plaquette operator, using an extension of the variational
quantum eigensolver (VQE) algorithm [26]. A quantum
device can be used to efficiently evaluate the expectation
value of tensor products of an arbitrary sequence of Pauli
operators [27]. Since the Hamiltonian is written as a
weighted sum of such Pauli string terms, also hHi can
be efficiently estimated.2

In order to find the lowest eigenvalue of a given operator
H, the variational approach finds an approximation to the
eigenvector jψiwhich corresponds to the lowest eigenvalue
and that minimizes

EðθÞ ≔ hψðθÞjHjψðθÞi; ð24Þ

where the state jψðθÞi ¼ UðθÞj0i is realized as a para-
metrized circuit UðθÞ called Ansatz.
This procedure is done by varying a vector θ of scalar

parameters (typically gate rotation angles) through the
combination of a classical and a quantum part.
The variational quantum deflation (VQD) method

[29,30] extends VQE to estimate the kth excited state Ek
by penalizing the solutions of the lowest excited states. This
is done through a minimization of the cost function

CðθkÞ ¼ hψðθkÞjHjψðθkÞiþ
Xk−1

i¼0

βijhψðθkÞjψðθ�i Þij2; ð25Þ

where βi are real-valued coefficients (which must be larger
than the gaps Ek − Ei) and θ�i are the optimal parameters
for the ith excited state. The overlap terms are computed
by either using the inverse circuit3 U†ðθkÞUðθ�i Þj0i and
estimating the occurrence of all-zero measurements or by a
SWAP test [30–32]. This can be interpreted as minimizing
the EðθkÞ with the constraint that jψðθkÞi must be ortho-
gonal to the previous k states. Since our goal is to compute
the energy gap between the ground state E0 and first excited
state E1, we follow three main steps:
(1) Perform the VQE and obtain optimal parameters and

an approximate ground state jψðθ�0Þi;

(2) For E1 define a Hamiltonian:

H1 ¼ H þ βjψðθ�0Þihψðθ�0Þj; ð26Þ

(3) Perform the VQEwith the HamiltonianH1 to find an
approximation of the first excited state hψðθ�1Þj.

In our case, for each value of the coupling g we can
compute the best approximation to the ground state and
extract E0 and the expectation value of the plaquette h□i,
while from the first excited state we just need E1 to estimate
the spectral gap ΔE ¼ E1 − E0.
We have tested different methods to compute the energy

gap, among them subspace search algorithms [33,34];
however we have chosen to utilize the VQD approach
since it showed the best performances for our system.

C. Ansatz and penalty term

In this section we describe the procedure that we used to
deal with unphysical states. Instead of constraining the
reachable states to the physical ones at the level of the
Ansatz (as discussed in Appendix A for the gray encoding),
we consider a generic Ansatz and introduce, directly in
the definition of the Hamiltonian, a penalty term that
suppresses unphysical contributions on the final states
[10]. The form that we used for this suppression term is
the following:

ΔHsuppr ¼ λ

� X
p∈gauge

ΠðuÞ
p þ ΠðQtot≠0Þ

ferm

�
;

where λ is the suppression coefficient, while ΠðuÞ
p and

ΠðQtot≠0Þ
ferm are, respectively, the projectors onto the unphys-

ical Hilbert spaces of single gauge variables (identity on the
other variables) and the projector onto the nonzero charge
space. These operators are diagonal in the computational
basis and can thus be measured efficiently.
At the end of the VQE optimization, we can assess how

much the optimal state reached jψðθ�Þi is unphysical by
measuring its overlap with the unphysical Hilbert space
Hunphys. In practice, this is done by computing the expect-
ation value of the projector into Hunphys,

uðθ�kÞ≡ hψðθ�kÞjΠunphysjψðθ�kÞi: ð27Þ

First, we tested this method for the pure gauge system,
then we considered the fermionic case with a selection
procedure for λ based on a bisection approach. See
Appendix C for details and results.

IV. NUMERICAL RESULTS

Here we discuss results of exact diagonalization (ED) of
the Hamiltonian Eq. (1) in both electric and magnetic basis
and with dynamical matter fields, setting Ω ¼ 1, m ¼ 0 for

2In general, it is possible to choose a grouping strategy to
identify subsets of Pauli strings appearing in the Hamiltonian, it is
possible to reduce the number of independent circuit evaluations
[28].

3Here and in our results we assume the parametrized Ansatz to
be the same UðθÞ for every excited state, but this requirement is
not necessary.
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a single plaquette with periodic boundary conditions. Then
we show some results of the VQD method.

A. Exact diagonalization results

Figures 3 and 4 show, respectively, the ground state
energy and plaquette expectation value for different levels
of truncation l, and for the discretization level L ¼ 8 in the
magnetic basis. As expected, for small values of the
coupling g the convergence in the truncation parameter l
at fixed discretization L is generally faster in the magnetic
basis. In the case of larger couplings the electric basis
performs better, due to the relative dominance of the HE or
HB terms in the Hamiltonian. This behavior is apparent in
Fig. 5, where we plot the estimates to the untruncated
theory as functions of the inverse truncation 1=l for some
selected values of the coupling and for two values of L, i.e.,
4 and 8. For the electric basis, the limit l → ∞ is sufficient
to discuss about convergence to the untruncated theory,
while for the magnetic basis one has to consider a double
limit where also the discretization level L is taken into
account. However, analyzing the spectral gap in the range
g ∈ ½0.2; 0.8�, shown in Fig. 6, one sees a poorer con-
vergence in l of the magnetic basis results with the electric
ones, which for l ¼ 3 are already quite close to the best
estimate of the untruncated theory, which is illustrated by
the dashed line and is represented by the electric basis result
at l ¼ 9. For smaller values of g we expect the magnetic
basis to be more convenient, but since the matching with
MCMC results can be done for the couplings of Oð1Þ or
larger, we decided to consider mainly the electric basis for
the VQD results in the following discussion.

B. VQD results

For the VQD results we adopted the NFT optimizer [35]
with the Qiskit’s Efficient SU(2) [36] generic Ansatz up to
five layers and with full entanglement gates (i.e., CNOT
gates between every pair of qubits) alternated to single-
qubit rotation layers. Since we are testing the feasibility of
the method, numerical results in this paper have been
obtained using a simulator without noise and with an
infinite number of shots.
We first launched some runs to determine the best

estimate to the ground state and its energy. The results
of the ground state energy and the plaquette as a function of

FIG. 3. Exact diagonalization data for ground state energy in
both electric and magnetic basis and selected values of discre-
tization and truncation (see legend). Interval considered for the
coupling is g ∈ ½0.2; 0.8�, which corresponds to 1=g2 ∈
½1.5624; 25�.

FIG. 4. Exact diagonalization data for the plaquette in both
electric and magnetic basis and selected values of discretization
and truncation (see legend). See Fig. 3 for the range of coupling
chosen.

FIG. 5. Exact diagonalization data for ground state energy as a
function of 1=l for both electric and magnetic basis and selected
values of g (see legend).
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g−2 in the range [0.2, 3] for l ¼ 1, 2, 3 in the electric basis
are shown in Figs. 7 and 8. Then we used the best ground
state obtained, for each g and l, as a further penalty term in
order to find the energy of the first excited state, as
described in Sec. III B. From the exact result we have
seen that the gap is quite small, thus we must be careful
during the selection of the λ factor and the number of
iterations. As mentioned in Sec. III C, we consider a
bisection method in order to choose the best value of λ.
Starting from an initial value of λ ∼Oð1Þ,4 we compute the
percentage of the unphysical state and tune the suppression
factor in terms of this percentage. In particular we choose a
threshold of 99% of physical component. Regarding the
expectation value of the plaquette, best results of the VQE
(which minimize E0) are shown in Fig. 4. The discrepancy
between VQE and exact diagonalization results for h□i is
larger especially in the region close to g ¼ 1. This may be
explained by two competing factors. On one hand, due to
the closing of the gap (see Fig. 6) and the accumulation of
quasidegenerate levels in the spectrum for smaller values of
g, the quality of the ground state obtained jψðθ�0Þi (and
therefore also the estimate of the plaquette) is affected,
since it is more likely to converge to a superposition of
quasidegenerate states which cannot be efficiently discrimi-
nated by the VQE optimization process. On the other hand,
besides an irrelevant factor, the plaquette observable
coincides with the magnetic part of the Hamiltonian, which
becomes dominant in the regime of small g, so that a decent
estimate of the ground state energy E0 (which is exactly
what the VQE optimizes) coincides with an acceptable

estimate also for h□i. The ED and best VQD results of the
spectral gap computed in the electric basis are shown in
Fig. 9 for truncation level up to l ¼ 3. As mentioned
previously, the closing of the gap for g < 1, corresponding
to the shaded area on the right of Fig. 9, makes it difficult
for the VQD to reach enough accuracy in the estimation of
both the ground state and first excited levels. In the region
g ≥ 1 the convergence is more under control. We conclude
that a matching between MCMC data and VQD using the
mass gap as observable could be possible only in the region
g ≥ 1, because, due to physical features of the lower part of
the spectrum, the accuracy required does not allow to

FIG. 6. Exact diagonalization data for spectral gap in both
electric and magnetic basis and selected values of discretization
and truncation (see legend). See Fig. 3 for the range of coupling
chosen.

FIG. 7. Best results for VQD ground state energy as a function
of the coupling in the electric basis (dots) at some values of
truncation level l and exact diagonalization (lines). Bottom panel:
discrepancies with the exact values.

FIG. 8. Plaquette measurements on the ground state in Fig. 7 as
a function of the coupling g (m ¼ 0) in the electric basis. VQE
results (dots) and ED (lines).

4The factor must be at least larger than the energy gap, as
depicted in the pure gauge plots in Appendix C 1.
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realistically extend the matching to smaller values of g.
However, as we describe in the next section, in order to
extend the study of the running coupling to the weak
coupling regime with g < 1, we would use information
from the static force instead of the mass gap. Since the
ground state and first excited levels are well separated at
values of the coupling larger than g ¼ 1, the first VQE
optimization stage succeeds with higher probability in
finding a good approximation jψðθ�0Þi to the ground state.
For values of the coupling smaller than g ¼ 1 the ground
state and excited levels get closer and closer, making the
optimization process harder, since these states become
quasidegenerate and more iterations are required to dis-
tinguish the optimal direction from the others in the lower
spectrum. This can also be seen in the bottom panel of
Fig. 7, which shows the discrepancy between the VQE
results and the exact values.

V. OUTLOOK: TOWARDS THE
RUNNING COUPLING

As outlined in the previous sections, it is the main
purpose of this work to establish the connection between
quantum computations of short distance quantities and
large volume Monte Carlo simulations which can provide
us with the value of the lattice spacing. To this end, we have
described here the setup for the quantum computation and
showed that we can compute the mass gap in the relevant
region of bare couplings where we expect to be able to
match Monte Carlo simulations.
As an important example of a short distance quantity

we consider the running coupling. Despite the limited

computational resources of the present quantum computer
hardware, it is still possible to provide definitions of the
running coupling using the plaquette observable, the static
potential or the static force at short distances. In the
following, we describe both approaches shortly, devoting
a more detailed discussion together with first numerical
results to a future work.

A. Matching with MCMC data

To set the scale, i.e., the physical values of the lattice
spacing, we propose to take into consideration the spectral
gap ΔE in the scalar sector and the static potential VðrÞ,
which is defined as the lowest energy of a system of a static
quark-antiquark pair at distance r.
As in QCD, from both lattice and experimental evalu-

ations of VðrÞ, up to an unphysical offset, one can
determine the analog of the Sommer parameter r0 using
the force [37]

r2
∂VðrÞ
∂r

����
r¼r0

¼ c; ð28Þ

where c is an suitably chosen constant which in QCD is
conventionally fixed to cQCD ¼ 1.65 with a phenomeno-
logical value rQCD0 ¼ 0.5 fm. In the continuum, the
expected form of the static potential in (2þ 1)-dimensional
QED is the following [13,38,39]

VðrÞ ¼ V0 þ α log rþ σr; ð29Þ

where the second term is a logarithmic Coulomb term while
the third one represents the confinement term with string
tension σ. On the lattice, one can discretize the derivative in
Eq. (28) by finite differences ∂VðrÞ

∂r ≃ Vðr2Þ−Vðr1Þ
r2−r1

. Despite the
current size limitations for lattices on quantum machines,
it is sufficient to evaluate VðrÞ using just two distances,
which means there are three lattice locations where the
static charges are placed. As we describe in more details in
the following section, in general the QED results for a
single fermionic species depend on both the bare gauge
coupling g and the bare fermionic mass m. From the static
potential computed on a lattice one can estimate the static
force at two distances r and as a function of the couplings
Fðr; g;mÞ. The force and the mass gap can be computed
both, from MCMC simulations and in the Hamiltonian
formalism. In order to match both approaches, the task is
then to find matching values ðg�; m�Þ where the results for
the mass gap the force agree. Such a matching is expected
to be possible in the intermediate coupling regime where,
as we show in this paper with our Hamiltonian setup, we
can reach sufficiently accurate results for the mass gap. A
numerical investigation and matching of the static force
will be discussed in a future work.

FIG. 9. Best results for spectral gap as a function of the
coupling g (m ¼ 0) in the electric basis. VQD results (dots)
and ED (lines); the shaded area corresponds to the region where
we could not obtain results with enough precision to estimate the
gap reliably. For all data points shown, the unphysical part of both
the ground state and first excited does not exceed 0.5%.
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B. Step scaling approach

One approach for computing the running coupling is to
“scale step” [40,41], see [42] for an introduction to
the Schrödinger functional scheme for the step scaling
procedure.
As an example, we consider the coupling defined from

the static potential. Let us take, for illustration purposes a
Coulomb potential5 VðrÞ ¼ αðrÞ=r and a pure gauge theory
with bare coupling g. Then, a running coupling at two
scales r1 and r2 can be defined by αrenðr1Þ ¼ r1Vðr1Þ and
αrenðr2Þ ¼ r2Vðr2Þ. Let us now assume that we have
computed αrenðri¼0

1 ; g0Þ and αrenðri¼0
2 ; g0Þ at a fixed value

of the bare coupling g2 ¼ g20 at a step i ¼ 0. The two
distances can be related by a scale factor s, e.g., s ¼ 2 such
that ri¼0

2 ¼ sri¼0
1 . In the next step, i ¼ 1, the bare coupling

g2 is tuned in such a way that αrenðri¼1
1 ; gÞ ¼ αrenðri¼0

2 ; g0Þ,
which would provide a value g21 where the renormalized
couplings agree and hence the scales match. Applying
the same scale factor s at the found bare coupling g21 one
arrives at the renormalized coupling at the scale
ri¼1
2 ¼ sri¼1

1 ¼ 2sri¼0
1 . Thus we get sequence of renormal-

ized couplings αrenðri¼0
1 ; g0Þ, αrenð2sri¼1

2 ; g1Þ.
This procedure can be repeated N times such that we

obtain the scale dependence of the coupling where the scale
changes by the factor s in each step arriving thus at a
renormalized coupling αrenðNsri¼0

1 ; gmatchÞ with gmatch
chosen large enough that contact with Monte Carlo sim-
ulations can be made. Note that up to this point we have
only worked with quantities in lattice units thus not
knowing the physical values of the scale.
It is exactly at this pointwhere thematching of thequantum

and the classical Monte Carlo computations comes into play.
The Monte Carlo simulation can be performed in large
volumes at intermediate values of the coupling and through
the strategy described below a value of the lattice spacing
canbedetermined. In thisway, the final scale canbe converted
to physical units, i.e., rphys ¼ aNsri¼0

1 , given thus the renor-
malized coupling αrenðrphys; gmatchÞ. The sequence of cou-
plings obtained as outlined above can now be inverted
by subsequently changing the scale by a factor s, i.e.,
ri¼N
phys → ri¼N−1

phys ¼ ri¼N
phys=s → ri¼N−2

phys ¼ ri¼N−1
phys =s; ...;→ ri¼0

phys

with the corresponding changes of the coupling. In this way,
the renormalized coupling is obtained as a function of the
physical scale and, by making contact with perturbation
theory, eventually also the important Λ parameter, which
provides the scale where nonperturbative physics sets in, can
be determined in physical units.
The procedure explained here can, in principle, also be

used to disentangle lattice effects from the real running of
the coupling by taking the continuum limit. However, this

would require large lattices and, as mentioned already,
with present quantum computing hardware resources this is
not feasible and would require future quantum computers
with more and improved—ideally error corrected—qubits.
Nevertheless, the just described procedure can be imple-
mented on already existing quantum devices allowing thus
to go to the deep perturbative regime and to make contact to
low order perturbation theory.

C. Boosted coupling approach and scale setting

An alternative way to determine the running coupling is
to employ the boosted coupling defined by

g2boosted ¼ g2=h□i; ð30Þ

where h□i denotes the expectation value of the plaquette
operator and g2 is the bare gauge coupling. Following the
strategy given in [14] the scale dependence of the coupling
can then be determined employing perturbation theory to a
given order. An essential element in this procedure is the
determination of the renormalization scale in physical units
for which the lattice spacing needs to be calculated. The
general setup for such a calculation is illustrated in Fig. 10
where hO1i and hO2i denote expectation values of two
observables6 which can, in principle, be extracted from
experiments. Thus the physical value of the ratio R ¼
hO1i=hO2i is known (indicated by a “•” in Fig. 10). One
can then tune the parameters of the theory such that at a
certain value of hO1;latti, R is reproduced. At this value of
hO1;latti the lattice spacing can be determined by the
relation aO1;phys ¼ O1;latt.
Examples of O1 and O2 are particle masses (mass gaps)

or the static force at a given physical distance. However,
many more choices are possible and actually used in large
scale lattice simulations. As we show in this paper, mass
gaps become increasingly difficult to determine when the
coupling is decreased towards the continuum limit and
hence we, unfortunately, consider this not to be an option
when we want to work in the perturbative regime.
As an alternative we consider the static force at small

distances. In this case, we can define hOj;physi as
Fphysðrj;physÞ. A difficulty for using this strategy is that
on the lattice the physical distance rphys ¼ aN, with N the
number of lattice points, needs to be kept constant. This can
be achieved, e.g., by demanding that r2FðrÞ ¼ constant. As
a consequence, when going to smaller values of the lattice
spacing, the number of lattice points needs to be increased
correspondingly. We therefore consider the possibility of
using the static force for setting the scale as a conceptually

5The here discusses example can be straightforwardly ex-
tended to the case of (2þ 1)-dimensional QED with the potential
given by Eq. (29).

6The ratio R ought be dimensionless, meaning that O1;phys and
O2;phys have the same mass dimension. In Fig. 10 we assume for
simplicity a mass dimension of one in order to relate the lattice
value hOlatt

1 i to the physical one, hOphys
1 i, and hence extract the

lattice spacing.
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clean way which can, however, only be employed when
significantly larger future quantum computing resources
are available. Hence, we consider the here described
strategy to compute the running coupling as a nice but
only future perspective.

VI. CONCLUSIONS

In this work we have provided a first step to combine
classical Markov chain Monte Carlo simulations with
quantum computations. While MCMC calculations can
be performed on very large lattices nowadays, they are
limited to reach small values of the lattice spacing. On
the other hand, quantum computations which uses the
Hamiltonian formulation can, at least in principle, be used
at arbitrary lattice spacings. However, presently, quantum
computations are limited to small systems given the present
generation of noisy quantum computers. They are therefore
restricted to small distance quantities such as the running
coupling or scale dependent renomalization functions.
It would therefore be ideal to combine both approaches

and perform quantum computations at small values of the
lattice spacing and large volume MCMC simulations to
provide the physical scale. To this end, in this paper
we have

(i) developed a resource efficient encoding for (2þ 1)-
dimensional QED, which allows to simulate the
model eventually on already now available or forth-
coming near term quantum computer with more and
better qubits;

(ii) demonstrated that the introduction of suitable sup-
pression terms can be used to force the final state of
the optimization of a generic Ansatz to have a small
overlap with the unphysical Hilbert space;

(iii) obtained results for the ground state energy in broad
range of coupling which in turns allows us to
compute the plaquette expectation value, or the

static force at small distances which can be related
to the running coupling;

(iv) shown that we can obtain accurate enough results for
the energy gap in the large and intermediate cou-
pling regime, which provides an important first step
to eventually to make the desired contact to MC
simulations.

We also want to remark that the setup of (2þ 1)-
dimensional QED developed here will serve as the basis
for extensions such as adding topological terms, chemical
potential or real time simulations, directions, we want to
follow in the future.
In this work we set the stage for an application of

quantum computing (using VQE in particular) to study
lattice gauge theories in a nonperturbative fashion. The
present work addresses ground state properties as well as
the mass gap of (2þ 1)-dimensional QED with the aim to
reach small values of the lattice spacing without running
into problems with autocorrelations. However the main
advantage of this paradigm comes from the possibility of
being applied to study systems with numerical sign
problems, which poses a challenge to standard MCMC
methods. In future works, given the here developed setup,
we will perform a detailed analysis on the resources needed
to carry out simulation on real quantum hardware. We will
also explore the addition of a chemical potential and
topological θ term to the (2þ 1)-dimensional QED
Hamiltonian, being thus able to go far beyond traditional
MCMC simulations—at least when quantum hardware will
be available to simulate large lattices.
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APPENDIX A: STRUCTURED ANSATZ FOR
INCOMPLETE GRAY ENCODING

Here we discuss how a parameterized circuit should be
adapted in order to allow transitions only between encoded
states.
For the cases where states are encoded using the

computational basis, the Ansätze can be built by identifying
the states to be excluded. For example, in the case of Gray
encoding with l ¼ 1, shown in Table I, one can cycle
between the three encoded states for each link
fj00i; j01i; j11ig, using the parametric circuit shown in
Fig. 11, where the two rotations parameterized by θ1 and θ2
drive the transitions j00i ↔ j01i and j01i ↔ j11i, respec-
tively, while the parametric circuit shown in Fig. 12
entangles the gauge register (q1, q0) with a matter

FIG. 10. Illustration of principle way to determine a value of the
lattice spacing, see discussion in main text.
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component (qc), by rotations which make for the transitions
j00i ↔ j01i and j00i ↔ j11i [the rotation in θ2 is actually
a CRXXðθ2Þ].

APPENDIX B: ANTIPODAL STATE AS
PHYSICAL IN THE MAGNETIC BASIS

As described in Sec. II B 1, the discretization adopted in
[20] to write the Hamiltonian in the magnetic basis involves
an uniform grid of 2Lþ 1 sites on the group Uð1Þ, where
the identity is represented by j0iphys. From these states, only
the 2lþ 1 around the identity are selected as physical ones.
However, as already mentioned in Sec. III A, being the
number of physical states not a power of 2 makes the
optimization problem harder, either at the Hamiltonian or at
the Ansatz level. Including states nonsymmetrically with
respect to the identity (or origin in the electric basis) would
break the charge conjugation symmetry of the Hamiltonian,
therefore introducing another problem.
A straightforward solution, although working only in the

magnetic case, would be to change the discretization
procedure: instead of using 2Lþ 1 sites (i.e., the phases
ϕj ≡ 2πj

2Lþ1
), one can use a 2Lþ 2 grid, in such a way that the

site antipodal to the identity is included in the discretization.
Then, at the truncation stage, besides the 2lþ 1 states
around the identity we can include also the remaining
2⌈log2ð2lþ1Þ⌉ − 2l − 1 as states around the antipodal to the
identity. In this way, all the states used are encoded as
physical states belonging to the discretization grid and one
can use a generic Ansatz without having to penalize
unphysical states for the gauge variables.
Another advantage of this discretization into 2Lþ 2

states is that it is possible to increase the truncation level
from L to L0 ¼ 2Lþ 1 by keeping the previous grid and
inserting sites at its midpoints. Unlike the 2Lþ 1 grid,
which cannot be simply related to finer grids at larger L,

this would allow for a better control on the extrapolation to
infinite discretization.

APPENDIX C: PENALTY TERM METHOD

We first discuss the introduction of a penalty term in the
pure gauge system with periodic system and then we
mention some information about the case with fermions.

1. Test in pure gauge theory

In the upper panel of Fig. 13 is depicted the trend of the
energy eigenvalues [E0 (E1) in a dashed (dotted) line for the
exact diagonalization and violin plot with average value
“⋆” (“•”) for VQD results] for a certain range of λ.
When the suppression coefficient λ is zero the first

excited state is almost degenerate to the ground level.
However, one can see in the corresponding value of
unphysical states in the lower panel, that the result does
not represent a physical solution. As λ increases, the
percentage of unphysical states decreases, until we can
reach an accurate solution after the unphysical part of E0

and E1 is suppressed [λ ∼Oð10Þ].
It is important to not have a large λ when performing

variational method. This because the algorithm cannot reach
a low, acceptable value for the energies. In the rightmost part
of the plot the results deviate from the exact solution, even if
we can avoid unphysical states, the fidelity decreases.7

If we consider more iterations for the optimization
process, the possibilities for the optimizer to converge
increases even if the suppression coefficient λ is large, as
depicted in Figs. 14 and 15.

FIG. 11. Parametric circuit for cycling between encoded states
with the Gray encoding at truncation l ¼ 1.

FIG. 12. Controlled parametric circuit for cycling between
encoded states with the Gray encoding at truncation l ¼ 1.

FIG. 13. Suppression factor method for a given value of g.
Energy eigenvalues from variational approach (optimization with
200 iterations and average of 20 runs) and exact diagonalization
(dotted/dashed lines in upper panel). Lower panel: amount of
unphysical states in the VQD solution.

7In some runs, it may happen that the values found for the first
excited is lower than the one of the ground state. In this case one
can exchange the two states and values.
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2. Penalty term for the fermionic system

For the fermionic case we applied a specific approach
and considered only a small range for the suppression
parameter. In Table II we reported the best results for the
ground state energy and first excited state for the truncation
level l ¼ 1 (see the Supplemental Material [43] for data also

with truncation l ¼ 2, 3) and in the coupling range
g ∈ ½1; 3�. The main criterion was to set a threshold for
the percentage of unphysical states. No explicit dependence
on the number of layers or small variations of λ was found;
this might be due to the variability of the optimization
process.
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