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We study first-order electroweak phase transitions nonperturbatively, assuming any particles beyond the
Standard Model are sufficiently heavy to be integrated out at the phase transition. Utilizing high
temperature dimensional reduction, we perform lattice Monte Carlo simulations to calculate the main
quantities characterizing the transition: the critical temperature, the latent heat, the surface tension and the
bubble nucleation rate, updating and extending previous lattice studies. We focus on the region where the
theory gives first-order phase transitions due to an effective reduction in the Higgs self-coupling and give a
detailed comparison with perturbation theory.
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I. INTRODUCTION

The electroweak phase transition marks a boundary
between epochs in the history of the early Universe. It
was the moment in which the Higgs mechanism activated,
and the last time in which baryon and lepton number
violating processes took place with any degree of rapidity.
In the pure Standard Model (SM) this transition has been
accurately studied using a combination of effective field
theory and lattice Monte Carlo simulations [1]. The tran-
sition has been found to be a crossover, with pseudocritical
temperature 159.5� 1.5 GeV, here defined as the temper-
ature at which the susceptibility of the Higgs condensate has
a maximum.
Beyond the SM, the nature of the electroweak phase

transition depends sensitively on any new physics which lies
near the electroweak scale. Models with a first-order
electroweak phase transition can provide the necessary
departure from equilibrium for successful baryogenesis at
the electroweak scale [2–5]. This possibility also requires
new sources of CP violation, and although such sources are
strongly constrained by experimental bounds on the electron
electric dipole moment [6], viable models are nevertheless
possible, e.g., those based on CP violation in the τ lepton
sector [7,8].

Collider experiments can in principle test scenarios
predicting first-order electroweak phase transitions, because
such scenarios require new fields with sizeable couplings to
the Higgs field [9]. Precise measurements of the Higgs
boson’s properties and interactions constitute a major aim of
the Large Hadron Collider through its high luminosity phase
[10], and the construction of a Higgs factory was deemed
the highest priority initiative in the recent European strategy
for particle physics update [11].
Gravitational wave experiments offer an alternative, and

more direct, test of the nature of the electroweak phase
transition: Models in which the electroweak phase transition
is first-order also produce a stochastic gravitational wave
background, with a spectrum peaked around the mHz range;
for reviews see Refs. [12,13]. Planned gravitational wave
observatories including LISA [14–16], DECIGO [17], BBO
[18], and Taiji [19] may be sensitive to this signal.
For a given particle physics model, predicting the

thermal evolution of the Universe around the electroweak
phase transition requires tackling a number of theoretical
challenges. At high temperatures, infrared bosonic degrees
of freedom become highly occupied, thereby increasing
their effective couplings. This results in large theoretical
uncertainties at low perturbative orders, often amounting
to several orders of magnitude undertainty for the gravi-
tational wave peak amplitude [20,21]. Sufficiently long
wavelength modes become strongly coupled. For non-
Abelian gauge theories, such as the electroweak theory,
this happens generically, and is known as Linde’s infrared
problem [22]. It implies that any perturbative approach to
the study of the electroweak phase transition is funda-
mentally incomplete.
Direct lattice simulation of the electroweak theory at

high temperatures is thwarted by the Nielsen-Ninomiya
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theorem [23,24], which prevents the simulation of Weyl
fermions with a chiral gauge coupling. Nevertheless, a
nonperturbative solution to Linde’s infrared problem is
possible, and was formulated in Refs. [25–27]. It involves
first constructing a three-dimensional effective field theory
(3D EFT) for the nonperturbative infrared bosonic modes,
and then simulating this EFT on the lattice. In the first step,
called high temperature dimensional reduction, the effects
of all weakly coupled modes are accounted for perturba-
tively, including those of the chiral fermions. The result is a
much simpler EFT describing only the infrared bosonic
modes, which can be straightforwardly simulated on the
lattice. This is the approach we will adopt in the following.
To study time-dependent and nonequilibrium quantities,

such as the bubble nucleation rate, one must go beyond
dimensional reduction which describes only static quan-
tities. Direct lattice simulations are then thwarted by the
sign problem of real-time evolution. However, at high
temperatures, an alternative EFT approach is possible: The
time evolution of the longest wavelength modes, together
with screening and other plasma effects, is described by
Langevin-type equations up to corrections suppressed by
1= logð1=gÞ [28]. This framework was adopted in Ref. [29]
to nonperturbatively compute the bubble nucleation rate,
and is the approach we will adopt in this paper.
A wide range of theories beyond the Standard Model

(BSM) have the same infrared degrees of freedom in the
vicinity of the electroweak phase transition, and are there-
fore described by the same high temperature EFTas the SM.
Any new BSM particles need only be heavy compared to
the effective mass of the Higgs, which becomes light in the
vicinity of the transition. Only the infrared degrees of
freedom may have nonperturbative effective couplings, so
only these require numerical lattice simulations. In this
paper we will perform new lattice simulations to provide a
quantitatively reliable description of the thermodynamics of
the SM-like high temperature EFT, extending the results of
Refs. [27,29,30]. We will focus on regions of parameter
space where the electroweak phase transition is of first order.
This can occur due to Higgs-portal couplings, through
which BSM particles can induce the effective Higgs self-
coupling to be weaker than it is in the SM.
This approach has been successfully utilized to study

phase transitions in several BSM theories, including the
minimally supersymmetric Standard Model [31–34], the
two Higgs doublet model [35–38], the singlet extended
Standard Model (XSM) [39,40], and the real triplet scalar
extension of the Standard Model [41]. In Ref. [40] lattice
simulations of the SM-like high temperature EFTwere used
to provide the first nonperturbative predictions of the
gravitational wave signal of a first-order cosmological phase
transition. These were however limited due to the existence
of only a single nonperturbative calculation of the bubble
nucleation rate [29]. One motivation for this paper was to
remedy this deficit by nonperturbatively computing the

bubble nucleation rate at other parameter points, and
thereby extending the scope for making nonperturbative
predictions of the gravitational wave signal of first-order
electroweak phase transitions.
A final key motivation for this paper is the delineation of

the validity of perturbation theory to describe first-order
electroweak phase transitions; see also Ref. [42]. While
perturbation theory is fundamentally incomplete at high
temperatures due to the infrared problem, it is nevertheless
still useful when the transition is strongly first order. In this
case, one can construct the first few orders of a perturbative
expansion in ratios of couplings. This expansion contains
half-integer [43,44] and quarter-integer [45–47] powers of
the gauge coupling. It therefore both converges slowly and
breaks down at finite order. Its quantitative reliability can
only be reliably determined by a nonperturbative calculation.
In Sec. II we discuss the high temperature EFT of the

electroweak phase transition, giving an overview of our
existing knowledge of this EFT and of its applications to
BSM theories. In the following sections we present our
calculations and results for the thermodynamics of the EFT,
starting with the equilibrium thermodynamics in Sec. III. In
Sec. IV we present our calculations and results for the
bubble nucleation rate. Though requiring significant com-
putational resources, we are able to take controlled con-
tinuum limits for the first time, and to study the parametric
dependence of the bubble nucleation rate. In Sec. IV B we
show some visualizations of critical bubbles taken from our
lattice simulations, extended into a movie of bubble growth
which can be seen at [48]. In Sec. IV C we utilize our
nucleation rate results within a cosmological context. We
conclude in Sec. V. A number of appendices collect details
of our continuum extrapolations and perturbative results.

II. ELECTROWEAK PHYSICS
AT HIGH TEMPERATURES

At high temperatures, the low energy modes of bosonic
fields become highly occupied. The thermodynamics of
these modes is captured by a classical 3D EFT. For the
electroweak phase transition, the relevant EFT contains all
the bosonic fields of the SM: the Higgs and the gauge
bosons. In the presence of additional BSM bosonic fields,
these fields may or may not enter the EFT, depending on
their thermal effective masses.
At a technical level, the 3D nature of the high-temper-

ature EFT can be understood from the imaginary time
formalism, whereby thermodynamics is formulated as
quantum field theory on R3 × S1. The circle S1 has
circumference 1=T and is referred to as the imaginary
time direction. Quantum fields are then expanded in Fourier
modes of the imaginary time direction with frequencies
nπT, where n is an even integer for bosons and an odd
integer for fermions. These are called Matsubara (or
Kaluza-Klein) modes. At sufficiently high temperatures,
such that πT is large compared to other energy scales, all
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nonzero (n ≠ 0) Matsubara modes become heavy and
decouple from the physics of the zero (n ¼ 0) modes.
The zero modes are constant in the imaginary time
direction; the EFT that describes them is therefore 3D.
This EFT describes the static long-wavelength modes of

the thermal bath, in particular those with energies up to
OðgTÞ. Of these modes, the Debye-screened temporal
gauge fields are heaviest, and in turn can be integrated
out [49–51]. Any BSM modes in this energy range can also
be integrated out at this stage; see for example Refs. [38,38].
The result is a simpler 3D EFT, containing only the spatial,
or magnetic, components of the gauge fields, as well as any
sufficiently light scalar fields.
In principle this EFT contains the full complement of

SUð3Þ × SUð2Þ × Uð1Þ spatial gauge fields of the Standard
Model. However, couplings between the Higgs and the
SU(3) gauge fields of the EFT are both indirect and
parametrically suppressed, and hence the latter can be
dropped if we are only interested in the electroweak phase
transition. In addition, we choose to drop the U(1)
hypercharge gauge field. This is for two reasons: first,
due to the smallness of the Weinberg angle the U(1) gauge
field has only a numerically small effect on the phase
transition; second, due to the absence of U(1) gauge self-
interactions, this field does not suffer from Linde’s infrared
problem, and consequently perturbation theory provides a
reliable guide to its contributions [52].
In this paper, we study the 3D SU(2) gauge-Higgs

theory, defined by the following Lagrangian density,

L3 ¼
1

4
Fa
ijF

a
ij þDiϕ

†Diϕþ ðm2
3 þ δm2

3Þϕ†ϕþ λ3ðϕ†ϕÞ2;
ð1Þ

where we have defined

Fa
ij ¼ ∂iAa

j − ∂jAa
i þ g3ϵabcAb

i A
c
j ; ð2Þ

Diϕ ¼ ∂iϕ −
i
2
g3σaAa

i ϕ; ð3Þ

the letters i, j run over the spatial indices, a, b, c run over
the indices of the adjoint representation of SU(2), ϵabc is
the Levi-Civita symbol and σa are the Pauli matrices.
Here the Higgs field ϕ lies in the fundamental representa-
tion of SU(2) with gauge coupling g3, and we have left the
corresponding indices implicit.
As all couplings have nonzero mass dimension, there can

only be nontrivial dependence on the dimensionless ratios,

xðTÞ≡ λ3
g23

; yðTÞ≡m2
3

g43
: ð4Þ

Including the Uð1Þ hypercharge gauge field, with gauge
coupling g023 , would introduce an additional dimensionless
parameter zðTÞ ¼ g023 =g

2
3.

This 3D EFT (1) has been studied extensively both pertur-
batively and nonperturbatively in Refs. [26,27,29,30,51,53–56].
The framework for simulations was initially developed in
Ref. [26], and exact and OðaÞ improved lattice-continuum
relationswere derived inRefs. [57–59]. Efficientmulticanonical
Monte Carlo algorithms for the study of first-order phase
transitions in this theory were presented in Ref. [27] (see
also Ref. [60]).
The phase diagram of the theory contains a line of

first-order phase transitions y ¼ ycðxÞ, for which x ≪ 1.
This line ends in a critical point ðx; yÞ ¼ ðx�; y�Þ at
which there is a second-order phase transition in the
3D Ising universality class [30,61,62]. Numerically, this
happens at

x� ¼ 0.0983ð15Þ; y� ¼ −0.0175ð13Þ ð5Þ

for the MS renormalization scale μ3 ¼ g23 (which we use
throughout). At other renormalization scales, the position
of this point is modified as

y� → y� þ
1

ð4πÞ2
�
−
51

16
− 9x2 þ 12x2

�
log

μ3
g23

: ð6Þ

This identity is exact, due to the superrenormalizability of
the theory [53], and x� is unmodified. The phase diagram is
shown in Fig. 1.
To better understand how the parameters of the 3D EFT

relate to those of the full ultraviolet theory, let us briefly
consider an example: the SM plus an additional real scalar
field (XSM). Denoting the additional field by σ, the
following Higgs portal couplings will generically be present

ΔL ¼ −
1

2
a1σϕ†ϕ −

1

2
a2σ2ϕ†ϕ: ð7Þ

These terms modify the 3D effective couplings away from
their SM values. At tree level in the XSM, the 3D coupling x
reads [39,63]

x ¼ m2
H

8m2
W

�
1þm2

σ −m2
H

m2
H

sin2θ

�
; ð8Þ

where mH and mW are the physical (pole) masses of the
Higgs and W boson, mσ is the physical mass of the BSM
scalar particle and θ is its mixing angle with the Higgs. The
mixing angle is generically nonzero for a1 ≠ 0.
In the pure SM, x ≈m2

H=8m
2
W ≈ 0.3 > x� and the

electroweak phase transition is a crossover [1]. In the
XSM, the second term in Eq. (8) can reduce the value of x,
if mσ < mH, and therefore move the electroweak phase
transition towards being first order. In fact, this possibility
is favored by the recent measurement of theW boson mass
by the CDF collaboration [64,65].
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In the presence of relatively large portal couplings,
one-loop corrections can also modify the value of x
significantly, especially when the real scalar is not too
heavy. In the Z2-symmetric limit of the XSM the scalar
fields do not mix, sin θ ¼ 0, and the leading corrections
from the real scalar field arise at one loop. Assuming the
thermal effective mass of the real scalar lies in the range
gT ≲mσ;3 ≲ πT, this correction to x is of order

Δx ∼
a22T

πg2mσ;3
; ð9Þ

where g is the weak gauge coupling. This correction is
also generically negative for thermal effective masses of
order gT. As a numerical example, for a Z2-symmetric
real scalar with mass mσ ¼ 200 GeV, one finds x < x� for
a2 ≳ 1.3 [40].
Current experimental bounds still leave ample room

for the value of x to be modified. This is because x is
determined by the Higgs four-point self-coupling, and,
while the Higgs mass has been relatively precisely mea-
sured, mH ¼ 125.25� 0.17 GeV [66], its self-couplings
are much less well constrained. Measurements of Higgs pair
production have be used to directly constrain the Higgs
three-point coupling. The current limit can be expressed as
λ=λSM ∈ ð−5.0; 12.0Þ at 95% confidence [67]. Direct con-
straints on the four-point Higgs coupling are even weaker.
Such weak constraints leave open the possibility that
x < x�, and hence for a first-order electroweak phase
transition. This will be the focus of the current article.

III. EQUILIBRIUM QUANTITIES

The equilibrium thermodynamics of the 3D EFT is
relatively straightforward to study on the lattice. There is
no true order parameter in the SUð2Þ Higgs theory, in the
sense of the Landau theory of continuous phase transitions
[68]: The naive candidate hϕi is equal to zero for all
temperatures, being gauge dependent [69]. The volume
average of the quadratic scalar condensate, hϕ†ϕi, provides
a means to distinguish the different phases, although it is
positive for all temperatures. It plays a role analogous to the
density in liquid-gas transitions.

A. Critical temperature

As outlined in Sec. II, the phase diagram of the 3D
SUð2Þ Higgs theory consists of a line of first-order phase
transitions ycðxÞ for x ∈ ð0; x�Þ, terminating in a second-
order phase transition at x ¼ x�. For larger values of x the
transition is merely a crossover.
A given 4D BSM theory at a given temperature maps

to a point on the space of couplings of the 3D EFT. As
the temperature varies, the thermodynamics of the 4D
theory trace out a trajectory through the couplings of the 3D
EFT, parametrized by the temperature ðxðTÞ; yðTÞ; g23ðTÞÞ.

There is a first-order phase transition if this trajectory
intersects the surface of first-order phase transitions,
y ¼ ycðxÞ.
The speed at which the trajectory moves through the

space of 3D couplings, or equivalently the tangent vector, is
naturally quantified by

ηx ≡ dx
d logT

; ηy ≡ dy
d logT

; ηg2
3
≡ dg23

d logT
: ð10Þ

The generic structure of dimensional reduction implies that
ηx ∼ g2 ≪ ηy ∼ g−2, where g2 denotes a perturbative cou-
pling [27,40]. Thus, for any perturbative 4D model, the
trajectory is almost parallel to the y axis. Note also that
ηg2

3
¼ g23 · ð1þOðg2ÞÞ, and hence the relation between

units in 3D and 4D tracks the temperature up to small
corrections.
To calculate ycðxÞ, we fix a value of x < x� and vary y.

At large positive (negative) values of y, equivalent to high
(low) temperatures, there is a single phase, the symmetric
(broken) phase. In between these two extremes, there is a
region of y for which both phases coexist. At the critical
temperature, y ¼ yc, the two phases have equal free
energies, and hence equal probabilities in the thermal
ensemble: a histogram of ϕ†ϕ will show two peaks of
equal probability; see Fig. 2.
An efficient approach to calculate the critical temper-

ature makes use of an exact relation between the probability
distribution of ϕ†ϕ at different values of y [70,71].

FIG. 1. The phase diagram, showing the line of first-order
phase transitions and the second order phase transition at its end
point, marked with a star. Lattice results from this paper and from
Refs. [27,62] are plotted together with two perturbative approx-
imations. Note that the perturbative approach fails to predict an
endpoint to the line of first-order phase transitions. The renorm-
alization group invariant quantity ỹc ≡ yc − βy logðμ3=g23Þ has
been plotted [see Eq. (B1)], rather than simply yc. The green and
blue bands for the perturbative results reflect the renormalization

scale dependence as it is varied over μ3=g23 ∈
h

1ffiffiffiffi
10

p ;
ffiffiffiffiffi
10

p i
.
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We denote this probability distribution, evaluated at some
value φ2, by

pyðφ2Þ ∝
Z

DϕDAδ

�
φ2V −

Z
x
ϕ†ϕ

�
e−

R
x
L3 ; ð11Þ

where δ is the Dirac delta function,
R
x denotes integration

over space, and V is the spatial volume. The crucial
relation, which follows from the definition, is

py0 ðφ2Þ ¼ e−ðy0−yÞφ2Vpyðφ2Þ: ð12Þ

Use of this relation is referred to as reweighting. In
principle one can reweight the results of a simulation at
a single value of y to determine the probability distribution
at all values of y. In practice, there is an overlap problem if
one tries to reweight too far, which will manifest through
larger statistical errors. Once one has found an approximate
value for yc, one can reweight to find a very much more
accurate value. A corresponding relation exists for the
probability distribution of ðϕ†ϕÞ2 and changes in x, though
we have not made use of it.
The two-peak histograms of Fig. 2 have been reweighted

to the critical point, at which the probability in each
phase (area under each peak) is equal. The boundary
between phases can be taken as the local minimum of
the probability, though the precise choice of boundary is
unimportant: in large lattices the value of yc attained is
exponentially insensitive to this choice. Figure 2 shows
examples of the volume and lattice-spacing dependence on
a range of cubic lattices. For each physical parameter point,
simulations were carried out for at least four lattice
spacings, and for each of these, between three and six
different volumes were simulated; see Table V. Suitable
choices for lattice spacings and volumes can be gleaned
from previous work [27], and from comparing results for
different lattices.
As the theory is (nonperturbatively) gapped, for suffi-

ciently large volumes the volume dependence of bulk
observables, such as

R
x ϕ

†ϕ in a given phase, is exponen-
tially suppressed. This is because the exponential barrier
isolates the two phases, ensuring that the thermodynamics
of one phase is independent of the presence of the other.
The volume dependence of yc is more subtle, as it depends
on both phases, and in fact on the precise definition of yc at
finite volume. Defining yc through the maximum of the
susceptibility, or the minimum of the Binder cumulant,
leads to 1=V dependence [27,72], because the relative
widths of the two peaks play a role. So too does defining yc
as the temperature at which the two peaks of the histogram
(Fig. 2) have equal height [27]. However, defining yc as the
temperature at which the two peaks of the histogram have
equal probability leads to exponentially suppressed volume
corrections [72–74]. This is the definition we adopt.
Extrapolations to infinite volume were therefore carried

out simply by averaging the results of the largest lattices,
ensuring that they agree within error. Following this,
extrapolations to zero lattice spacing were performed with
polynomial fits of the lowest degree such that χ2=d:o:f: ∼ 1,
starting with 1þ a. Some examples of our continuum
extrapolations for yc are shown in Appendix A. The full
dataset can be found at [75].
Errors for individual lattices were estimated by perform-

ing a jackknife resampling, after blocking the data into ten
blocks, as we do throughout. For continuum extrapolations,
we quote the error on the fit parameter.
We have also made use of an alternative method to

calculate the critical temperature. In lattices with one side

FIG. 2. Histograms of the spatially averaged Higgs quadratic
condensate, renormalized to match the MS scheme in the
continuum limit. The two peak structure demonstrates the
coexistence of phases, and the first-order nature of the transition.
The upper panel shows the physical volume dependence of the
histogram, from which one can see that states between the two
phases become exponentially unlikely as the volume L3 grows.
The Gaussian width of each peak scales as 1=

ffiffiffiffi
V

p
[26]. The lower

panel shows the relatively mild lattice spacing (a) dependence of
this quantity.
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much longer than the other, which we refer to as cylindrical
lattices, the local minimum in the probability distribution
becomes wider and flatter as the ratio between long and
short sides grows. Physically this wide, flat region in the
probability distribution is dominated by configurations
where the two phases coexist. The tension of the phase
boundary ensures that the boundary will line up perpen-
dicularly to the long axis, as other configurations have
much higher free energy. At the critical temperature, the
free energy (and hence probability) of such a configuration
is independent of the precise fraction of broken phase
versus symmetric phase in the lattice. This is because the
free energy densities of both phases are the same, and
because both configurations have the same area of phase
boundaries. Slightly away from the critical temperature,
changing the fraction of broken phase will change the free
energy, thus the probability distribution of the order
parameter will no longer be flat. One can thus tune y to
the critical temperature by reweighting the probability
distribution until the region between phases becomes flat.
A related method was used in Ref. [76]. An advantage of
this method is that there is no need to wait for slow
tunnelings between phases, as one only needs to know the
probability distribution for mixed configurations. However,
a disadvantage is that one must first find the appropriate
range over which the probability distribution becomes flat,
and this is not known a priori. The two methods we have
used for calculating yc agree within error. Some example
plots showing this can be found in Appendix A.
Our continuum-extrapolated results for yc are presented

in Fig. 1, together with previous results from the literature.
Altogether the data is now rather dense in x, exposing the
smooth behavior of the function ycðxÞ. The numerical
values are collected in Table I.
While Linde’s infrared problem renders perturbation

theory inherently incomplete, it is nevertheless possible
to compute the first few orders of an expansion in x. With a
two-loop computation one can determine the leading
order (LO) and next-to-leading order (NLO) behavior in x.

This is outlined in Appendix B. The calculation of yet
higher order terms involves infinite sets of diagrams
within the 3D EFT, which we do not attempt here; see
Refs. [46,47]. However, by scaling arguments one can
determine that pure gauge diagrams yield an expansion in
powers of x, while pure Higgs diagrams yield an expansion
in powers of x3=2. The expansion for the full theory is thus a
dual expansion in powers of x and x3=2, up to logarithms,
thereby motivating the following fit function [77]:

yfitc ðxÞ ¼
1

128π2x

�
1þ x

�
63

2
log

3

2
−
33

4
−
51

2
log 8πx

�

þ c3=2x3=2 þ c2x2 þ c5=3x5=2
�
: ð13Þ

Performing a least-squares fit, we find

c3=2¼ 16ð6Þ; c2 ¼−490ð60Þ; c5=2¼ 980ð150Þ; ð14Þ

with χ2=d:o:f: ¼ 6. The relatively large values of the
expansion coefficients suggest that perturbation theory in
x breaks down around x ∼ 0.05. Note that despite the
breakdown of perturbation theory, the coefficients c3=2, c2
and c5=2 (but not the coefficients of higher powers of x) can
in principle be computed much more accurately within
perturbation theory, with a resummed three-loop compu-
tation. If this is performed, the fit to the lattice data should
be updated to include higher powers of x, or an alternative
functional form which describes the data better at larger x.

B. Latent heat

The latent heat L is the change in enthalpy density
between phases at the critical temperature. It gives ameasure
of the energy per unit volume released during the phase
transition. In the cosmological evolution, some degree of
supercooling to temperatures below the critical temperature
will take place, due to the slowness of bubble nucleation in
comparison to Hubble expansion (see Sec. IV C). The
resulting energy released is expected to be greater than L,
as additionally energy will be released proportional to the
free energy density difference Δf between phases. The
latent heat nevertheless gives a bound on the energy
released, and a reliable estimate for small supercooling.
The latent heat is determined by the rate of change of the

free energy difference between phases, evaluated at the
critical temperature

L
T4
c
≡ d

d logT

�
Δf
T4

�����
Tc

: ð15Þ

Using the chain rule, and that Δf ¼ 0 at the critical
temperature, this can be written as

TABLE I. Lattice Monte Carlo results for equilibrium quan-
tities describing first-order electroweak phase transitions, from
this work, and from Refs. [27,29]. The result in square brackets
has not been extrapolated to the continuum limit; it is for a single,
nonzero lattice spacing.

x yc Δhϕ†ϕic Δhðϕ†ϕÞ2ic σ3

0.0152473 0.071998(79) 4.9635(54) 24.184(44) � � �
0.0183 0.05904(56) 4.07(13) � � � [0.47(1)]
0.025 0.04015(10) 2.2207(81) 4.906(64) � � �
0.036 0.02058(29) 1.2588(86) 1.558(21) 0.079(4)
0.05 0.00692(11) 0.7692(44) 0.6198(52) 0.02011(62)
0.06444 −0.00146ð35Þ 0.491(8) � � � 0.0119(26)
0.075 −0.00827ð20Þ 0.3780(47) 0.1857(59) 0.00393(58)
0.08970 −0.01531ð69Þ 0.302(18) � � � � � �
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L
T4
c
¼ g63

T3
c
ðηyΔhϕ†ϕic þ ηxΔhðϕ†ϕÞ2icÞ; ð16Þ

where the condensates are expressed in units of g23, and the
eta functions are defined in Eq. (10). The condensates are
defined in terms of the derivatives of the free energy density
with respect to the renormalized couplings [26],

Δhϕ†ϕi≡ 1

g63

∂

∂y

�
Δf
T

�
; ð17Þ

Δhðϕ†ϕÞ2i≡ 1

g63

∂

∂x

�
Δf
T

�
: ð18Þ

We have scaled out powers of g23 so that the condensates are
dimensionless. The quantities then correspond more
closely to what is measured on the lattice, in which we
adopt units where g23 ¼ 1.
These definitions for the condensates, being the deriva-

tive of a finite quantity with respect to finite couplings,
yield the necessary counterterms to make the condensates
finite. The renormalized quartic condensate is equal to a
linear combination of the unrenormalized quartic and
quadratic condensates, the latter arising as a consequence
of the mass counterterm depending on x. Note that the
condensate corresponding to the partial derivative with
respect to g23 (at fixed x and y) is equal to zero at the critical
temperature, being proportional to Δf.
The natural hierarchy ηy ≫ ηx suggests that the second

term in Eq. (16) can be neglected. For relatively weak
transitions, this is indeed correct. However, in very strong
transitions the quartic condensate can become larger than
the quadratic condensate, so in the following we will study
both terms.
Figures 3 and 4 show our continuum-extrapolated results

for the quadratic and quartic Higgs condensates, together
with existing results in the literature. Extrapolations to
infinite volume were carried out as for yc. For the
extrapolations to zero lattice spacing, a → 0, the linear
term in the polynomial fit is absent for data with OðaÞ
improvement [59,78]. To ensure the cancellation of OðaÞ
corrections, measurements of the condensates were carried
out at ycðaÞ, rather than at ycða ¼ 0Þ. Some examples of
our continuum extrapolations are collected in Appendix A,
demonstrating clearly the OðaÞ improvement. The com-
plete data can be found at [75].
The LO and NLO perturbative expressions for the

Higgs condensates are plotted alongside the lattice data
in Figs. 3 and 4. The expressions are given in Appendix B.
In both cases the NLO corrections are large, and move the
perturbative results considerably closer to the lattice data.
Agreement between the lattice and perturbation theory
is noticeably better for the quadratic condensate. This is
consistent with the perturbative expansion parameter, as

given by the ratio NLO/LO, being smaller for the
quadratic condensate.
To compute the latent heat requires the coefficients of the

Higgs condensates in Eq. (16), ηx and ηy defined in Eq. (10).
These are determined by modes with energies of order
OðπTÞ and above, and hence depend on the UV completion
of the 3D EFT that we study. In the Standard Model, they
take the values ηx ∼ −0.06 and ηy ∼ 4.6 in the vicinity of the
electroweak crossover [1]. In perturbative extensions of the
Standard Model, the values are expected to be of the same
order, as argued in Ref. [40]. Let us consider the example of
the XSM. Using the dimensional reduction relations of
Ref. [38], and scanning over the one-step phase transitions

FIG. 3. The discontinuity in the quadratic Higgs condensate.
Note that this goes to zero at x� ¼ 0.0983ð15Þ, illustrated as the
vertical orange band. Lattice results from this paper and from
Ref. [27] are shown. The critical region, where the discontinuity
in the condensate obeys critical scaling and dives down to zero,
appears to be very narrow on this logarithmic plot.

FIG. 4. The discontinuity in the quartic Higgs condensate. This
is the first time lattice results for this quantity have been reported.
Again the critical region appears to be rather narrow.
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considered in Ref. [40], one finds roughly that jηxðTcÞj ≲
0.4 and jηyðTcÞ − 4.6j ∼ 0.6. Figure 5 shows one such
example with ηxðTcÞ ¼ 0.2 and ηyðTcÞ ¼ 4.6. In this case,
for the strongest transition that we study at x ¼ 0.0152473,
the quartic condensate gives a ∼20% contribution to the
latent heat, decreasing for weaker transitions.

C. Surface tension

The surface tension is the free energy per unit area of a
macroscopically flat interface between phases, evaluated at
the critical temperature. It gives some measure of the
strength of the transition, with the surface tension decreas-
ing to zero as one approaches the endpoint of a line of first-
order phase transitions, at which point the phases become
miscible. The surface tension is relevant to the bubble
nucleation rate through the thin wall approximation, where
the energy E of a nucleating spherical bubble of radius R is
given by

E ¼ −
4

3
πR3pþ 4πR2σ: ð19Þ

Here p is the pressure, or free energy density difference,
between the homogeneous phases. The approximation is
justified near the critical temperature, where the bubble
radius is much larger than all other scales in the theory, in
which case Eq. (19) receives corrections at OðRÞ. Note that
when working within the 3D EFT, it is more natural to work
in terms of temperature-scaled quantities S3 ≡ E=T,
Δf3 ≡ p=T, and when working on the lattice we further
scale out powers of g23, so that everything computed is
measured in units where g23 ¼ 1. In this convention, the
dimensionless surface tension is

σ3 ≡ σ

Tg63
: ð20Þ

We measure the surface tension using the standard
histogram method [79]. The known contributions of the
capillary waves are accounted for in the infinite volume
limit by fitting [29,80,81]

σ3 · g63 ¼
1

2L2
1

log
pmax

pmin
þ 1

2L2
1

�
3

2
logL3 − logL1 þ const

�
:

ð21Þ

Here pmax is the maximum of the order parameter histo-
gram, equal to the probability density of being in either
homogeneous phase, and pmin is the minimum of the order
parameter histogram between the two phases, equal to the
probability density of being in a mixed phase containing
two planar interfaces. L1 ¼ L2 and L3 are the physical
lengths of the lattice in the three spatial directions.
An alternative method to calculate the surface tension, by

Fourier analyzing the spectrum of transverse fluctuations of
a phase interface, was presented in Ref. [82], and also used
in Ref. [29]. This method has been shown to give more
accurate results with less computational resources. However,
as the computation of the surface tension is not a major goal
of our paper, we have not pursued this method.
For measurements of the surface tension, typically

cylindrical lattices with one size much longer than the
others, L3 ≫ L1; L2, are used so that interactions between
interfaces are small. We have not carried out any dedicated
simulations on such long lattices, but have merely
attempted to reuse the results from the simulations for
Secs. III A and III B on cubic lattices. As a consequence,
many of our simulations are far from the infinite volume
limit, and the volume dependence of the surface tension
showed marked deviations from the expected form (21).
This was particularly the case for the stronger transitions at
smaller x, so we have only reported results for x ≥ 0.05,
where the infinite volume extrapolations seemed under
better control. Some example plots of the infinite volume
extrapolations are given in Appendix A. Extrapolations to
zero lattice spacing were performed as in Sec. III B.
Our continuum extrapolated results are shown in Fig. 6,

together with existing results from the literature. We also
include the LO and NLO perturbative approximations to
the surface tension, for which the expressions can be found
in Appendix B. Figure 6 shows that there is relatively poor
agreement between the lattice and perturbative results for
the surface tension.

D. Summary of equilibrium results

Our equilibrium lattice results are collected in Table I.
We have also included lattice results from the literature in
which the continuum limit was taken [27,29,30,62]. For
completeness, we note that there are a number of other

FIG. 5. The latent heat for an example using values ηxðTcÞ ¼
0.2 and ηyðTcÞ ¼ 4.6 in Eq. (16), illustrative of phase transitions
in minimal extensions of the electroweak sector such as the XSM.
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lattice results for this model in the literature at finite lattice
spacing [49,61,83–87].
Perturbation theory demonstrates relatively good agree-

ment with the lattice for sufficiently small x, and diverges
from it at larger x. However, the precise level of agreement
depends on the observable, with the surface tension
showing the greatest discrepancies between lattice and
perturbation theory.

IV. BUBBLE NUCLEATION

Bubble nucleation is the first stage of the dynamical
evolution of a first-order phase transition. After nucleation,
the pressure difference between phases causes the bubbles
to accelerate their grow until it reaches a terminal velocity
where the friction of the plasma balances against the
bubbles’ outward pressure. The growing bubbles eventually
meet, colliding and creating sound waves which in turn
create gravitational waves [88–90]. The average dis-
tance between bubbles, and consequently the peak in the
gravitational wave spectrum, is determined by the bubble
nucleation rate. Therefore, developing a quantitative des-
cription of bubble nucleation is crucial for relating gravi-
tational wave observations to the physics of cosmological
phase transitions.
To calculate the bubble nucleation rate on the lattice, we

make use of the Langevin description of the dynamics of
the infrared modes of non-Abelian gauge theories at high

temperature [28,91–100]. For the SU(2) Higgs theory, the
relevant Langevin equations read [29,100]

σelðDtAiÞa ¼ −
δH
δAa

i
þ ξai ; ð22Þ

σelDtϕ ¼ −η
δH
δϕ† þ ξϕ; ð23Þ

where H ¼ R
x L3, and L3 is the Euclidean Lagrangian of

the 3D EFT, Eq. (1). The parameter σel ∼ T= log 1=g is the
SU(2) color conductivity, and the noise terms ξai and ξϕ
satisfy

hξai ðt;xÞξbj ðu; yÞi ¼ 2σelδijδ
abδðx − yÞδðt − uÞ; ð24Þ

hξϕðt;xÞξ†ϕðu; yÞi ¼ 2ησel1δðx − yÞδðt − uÞ; ð25Þ

where η ∼ 1=g2 ≫ 1 is the ratio of evolution rates for the
Higgs field to the gauge bosons, and 1 is the unit matrix for
the fundamental SU(2) indices.
For the nonperturbative infrared gauge fields of the

symmetric phase this describes the full quantum dynamics,
up to corrections of order Oð1= log 1=gÞ. We will assume
the description also applies in the vicinity of the critical
bubble, though the original derivations of the Langevin
equations did not consider this case. The hard-thermal loop
effective theory offers a more accurate dynamical descrip-
tion [101–108], which is correct up to OðgÞ corrections,
and for which numerical schemes exist [109–113].
However, hard-thermal loop effective theory approaches
do not have a continuum limit, and thus we do not pursue
them here. The nucleation rate is of cosmological relevance
when it is roughly e−100 [114,115], in which case an error
of ∼e�1 is only a 1% error on the logarithm of the rate.
In principle, one could calculate the bubble nucleation

rate by simply initializing a lattice in the metastable phase,
evolving it according to the Langevin equations and
waiting to see how long it takes to decay into the stable
phase [116–120]. However, bubble nucleation is an expo-
nentially suppressed process, and for the cosmologically
relevant situation the exponent is Oð100Þ. Thus, unfeasibly
long simulations times would be required to simulate
bubble nucleation directly.
Instead, we adopt the method proposed in Refs. [29,121].

A variant of this method was also used to compute the
broken-phase sphaleron rate [122,123]. The approach fol-
lows the spirit of Langer’s seminal work [124], and general-
izes it beyond the saddlepoint approximation.
When bubble nucleation is very slow, the metastable

phase will have time to equilibrate long before nucleation
occurs. The relative probability of a field configuration on
the metastable side, including bubble configurations, is then
given by its Boltzmann weight. This statistical problem, of
finding the probability of bubble configurations, can be

FIG. 6. The surface tension plotted against x. Note that the
continuum limit has not been taken for the lattice point at smallest
x. Lattice results from this paper and from Refs. [27,29] are
shown. The approach to zero in the critical region is clearer at
smaller x for the surface tension than for the latent heat. Small
values of the surface tension, while the latent heat is still sizeable,
has also been observed in the two Higgs doublet model [42].
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calculated with standard Monte Carlo methods. To turn the
resulting probability into a rate, some additional dynamical
information is required about how often the dynamical end
state of a bubble configuration is indeed in the stable phase
and about the rate of bubble growth. Calculating these
dynamical quantities only requires relatively short Langevin
simulations. In this way, the difficult problem of simulating
an exponentially suppressed process is factorized into two
easier problems: one statistical and the other dynamical.

A. Nucleation rate

To compute the nucleation rate, we follow closely the
approach of Refs. [29,121], where the reader can find
further details. This approach requires an observable which
is phase sensitive, which we take to be the spatially
averaged Higgs quadratic condensate, ϕ†ϕ, as this allows
us to reweight in y. The probability distribution pðϕ†ϕÞ
shows a two-peak structure, with the peak at smaller
(larger) values of ϕ†ϕ corresponding to the symmetric
(broken) phase; see Fig. 2. Any classical real-time trajec-
tory going between symmetric and broken phases must
pass through intermediate values of ϕ†ϕ, which are
exponentially unlikely in the equilibrium distribution. On
an appropriately sized lattice,1 the minimum of pðϕ†ϕÞ
between phases consists of spatially localized critical
bubbles, the gatekeepers between phases.
The process of nucleation is limited by the probability

of critical bubbles. We denote by ϕ†ϕ ¼ φ2
C the location

of the minimum of pðϕ†ϕÞ. This condition defines a
codimension one surface in configuration space, separating
the two phases, called the critical surface or separatrix. The
probability P of being in some small vicinity ϵ around the
critical surface is

Pðjϕ†ϕ − φ2
Cj < ϵ=2Þ ¼

Z
φ2
Cþϵ=2

φ2
C−ϵ=2

pðϕ†ϕÞdðϕ†ϕÞ; ð26Þ

≈pðφ2
CÞϵ: ð27Þ

In the context of the nucleation rate, this should be
normalized relative to the probability of the metastable
phase Pðϕ†ϕ < φ2

CÞ. Some examples of histograms are
shown in Fig. 7, where the region jϕ†ϕ − φ2

Cj < ϵ=2 has
been highlighted and labeled “critical bubble.”
To attain the probability flux through the critical surface

in configuration space, one needs to multiply the probability

density at the critical bubble by the magnitude of the vector
perpendicular to the critical surface, jΔðϕ†ϕÞ=Δtjφ2

C
.

Finally, to attain the nucleation rate from the proba-
bility flux, we must account for the fact that trajectories
can cross the critical surface more than once, and may in
fact cross an even number of times and hence not tunnel.
Some example trajectories are shown in Fig. 8. To
account for this effect, one introduces the following
dynamical prefactor,

d ¼ δtunnel
Ncrossings

; ð28Þ

where δtunnel ¼ 1 if there is tunneling and δtunnel ¼ 0 if
not, and Ncrossings is the number of crossings of the
separatrix. From the definition, one can see that d lies
between zero and one. If all critical bubbles were to be
equally likely to expand to the broken phase or contract
to the symmetric phase, and all were to only cross the
critical surface either once or twice, then hdi ¼ 1=2. In
fact, one expects hdi < 1=2 due to the spiky nature of
Langevin evolution causing multiple crossings; see
Fig. 8. Conversely d increases as the trajectory is
downsampled, though this is compensated for by a
decrease in the magnitude of jΔðϕ†ϕÞ=Δtjφ2

C
, such that

the product is independent of the sampling rate [29].
In sum, the nucleation rate per unit volume, as calculated

on the lattice, is given by the following expression [29,121]

FIG. 7. Histograms showing the probability distribution of the
volume-integrated quadratic Higgs condensate, normalized with
respect to its value in the symmetric phase. This observable has
been plotted, instead of the volume-averaged quadratic Higgs
condensate, because the critical bubble has fixed absolute volume,
and hence its position on this plot agrees for different lattice sizes.
The relative probability of the critical bubble versus the symmetric
phase is what determines the statistical part of the nucleation rate.
This quantity is stable under changes of the lattice size, L,
provided the bubble takes up a volume fraction ≲4π=81 [29].

1As demonstrated in Refs. [29,121], an appropriately sized
lattice must be sufficiently large that the bubble takes up a volume
fraction less than about 4π=81 ≈ 15%. On the other hand, in order
that only one bubble is accommodated, the lattice extent should
be much smaller than the average distance between nucleating
bubbles in infinite volume. In practice this latter condition is
irrelevant, as the exponential suppression of bubble configura-
tions implies that their average separation is exponentially large.
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Γ̃ ¼
�
d
2

����Δðϕ
†ϕÞ

Δt

����
φ2
C

	
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

dynamical

Pðjϕ†ϕ − φ2
Cj < ϵ=2Þ

ϵVPðϕ†ϕ < φ2
CÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

statistical

: ð29Þ

The statistical part of this expression may be calculated
with standard (multicanonical) Monte Carlo simulations.
The dynamical part requires real-time Langevin simula-
tions. The factor of 1=2 removes overcounting, because
half of the transitions between the symmetric and broken
phase are in the wrong direction.
Compared to a simple wait-and-see approach [116–120],

Eq. (29) relies on the crucial assumption that the full rate
factorizes into dynamical and statistical parts. This can be
argued for based on the enormous hierarchy of scales
between the total timescale of nucleation, and the timescale
for which the system remains in the vicinity of the critical
bubble. Over the exponentially long times taken to get from
the symmetric phase to the vicinity of the critical bubble, all
correlations in time are expected to be washed out by the
large numbers of interactions which occur, so that this
process occurs effectively in equilibrium. Only for the short
time spent in the vicinity of the critical bubble is it necessary
to account for correlations in time. Such a factorization can
be explicitly demonstrated within a saddlepoint approxi-
mation of the path integral [124–126]. However, while the
present approach relies on this factorization, lattice simu-
lations go beyond the saddlepoint approximation.
To numerically simulate the Langevin equations,

Eqs. (22) and (23), one could directly discretize the time

derivative, and evolve as a stochastic initial value problem.
However, in this approach finite time step errors will lead to
deviations from the correct thermodynamics of the system,
which may cause havoc for the evolution of a finely
balanced critical bubble. Alternatively, one may perform
simulations using a different dissipative update, if the
relationship to Langevin evolution is known. Following
Ref. [29], we choose to perform heatbath updates on the
gauge fields, which is equivalent to Langevin evolution
where the Langevin time step Δt is related to the number of
heatbath updates per link nhb through

Δt ¼ 1

4
nhbσela2: ð30Þ

This relation was proven for the case where the lattice sites
are updated in a random order [99]. We however adopt a
checkerboard order, which is significantly simpler to
parallelize. This can be partially justified by noting that
for each group of odd or even sites updates are uncorre-
lated, therefore a sequentially ordered update algorithm is
equivalent to a random ordered algorithm within each
group. In addition, we randomly select whether odd or even
sites are updated in each sweep of the lattice.
The evolution of the Higgs field is parametrically faster

than that of the gauge fields, therefore, to leading order in
the couplings, the gauge field sees the Higgs field in
equilibrium [29,99]. To ensure this, for every one gauge-
field update, we perform a large number η ≫ 1 of heatbath
and overrelaxation updates on the Higgs field. Figure 9
shows how the dynamical prefactor depends on η at
x ¼ 0.0152473. This shows that the prefactor initially
grows with η until eventually flattening off, suggesting a
smooth η → ∞ limit. The result of taking this limit gives
the leading order result [99]. We have simply used either
η ¼ 10 or η ¼ 40 in our final results (for specifics see [75]).
The error thereby introduced is comparable to the uncer-
tainty in the statistical part of the rate.
The y dependence of the statistical part of the nucleation

rate can be determined by reweighting, following Eq. (12).
This greatly reduces the computational effort of the
calculation, as for a given value of x, the whole functional
dependence on y follows from one simulation at a single
value of y. There is unfortunately no such trick applicable
to the dynamical part of the nucleation rate. We have thus
studied the y dependence of the dynamical part through
direct simulations, some examples of which are shown in
Fig. 10. As can be seen, the y dependence is very mild,
being consistent with constant within errors.
Figure 10 also reveals some volume dependence of the

dynamical part. However, when incorporated into the full
nucleation rate the total volume dependence is milder,
consistent with volume-independent within errors. The
finite size of ϵ may be responsible for the volume depend-
ence of the dynamical part. This is because, as the volume

FIG. 8. Time evolution of the scalar condensate in the vicinity
of the critical bubble. The light and dark blue lines show two
different instances of the time evolution starting from the same
initial bubble configuration at update step 0. The shaded green
band shows the region satisfying jϕ†ϕ − φ2

Cj < ϵ=2, and the
horizontal black lines show where the simulation is ended as the
bubble grows/shrinks towards the homogeneous phases. A 3D
video of one such trajectory can be seen at Ref. [48].

FIRST-ORDER ELECTROWEAK PHASE TRANSITIONS: A … PHYS. REV. D 106, 114507 (2022)

114507-11



grows, the minimum of the probability distribution for ϕ†ϕ
becomes more strongly curved, leading to bubbles at the
edges of the range jϕ†ϕ − φ2

Cj < ϵ=2 being more repre-
sented in the dynamical prefactor calculation. These bubbles
at the edges of the range are less likely to tunnel, and hence
for them d is smaller. While this effect decreases the
dynamical part, it increases the statistical part, because
the integrated probability Pðjϕ†ϕ − φ2

Cj < ϵ=2Þ grows due
to the increased probability density at the edges of the range.
These two effects cancel, as argued in the appendix
of Ref. [29].
The relationship between the physical nucleation rate Γ,

and the rescaled quantity calculated on the lattice, Γ̃, takes
the form

Γ ¼ g43
σel

· ðg23Þ3 · Γ̃ðx; yÞ: ð31Þ

The prefactors on the right-hand side of Eq. (31) arise from the
relation between physical units and those used on the lattice
[99]. The factors also reflect properties of the typical infrared
gauge configurations relevant to bubble nucleation, with the
first factor being the inverse timescale of their evolution, and
the second factor being their inverse volume scale.
In a sufficiently large lattice, finite volume effects on

bubble nucleation are exponentially small, owing to the
model being gapped. This requires that the bubble fits
inside the lattice with enough space around that it does not
interact with itself through the periodic boundary condi-
tions. As shown in Refs. [29,121], this is equivalent to the
condition the bubble takes up less than an approximately
π2=81 fraction of the total lattice volume. In smaller
lattices, the lowest energy configuration is distorted away

FIG. 10. The dynamical prefactor of the nucleation rate
evaluated on a range of lattices, and plotted as a function of
the degree of supercooling, yc − y. For each given lattice spacing
and volume, fits to a constant independent of yc − y are shown as
the colored bands.

FIG. 9. The dependence of the dynamical prefactor on η, the
number of Higgs field updates for each gauge field update. The
limit 1=η → 0 gives the leading order result.

FIG. 11. The bubble nucleation rate at the strongest transition
which we have studied. Above we show data on finite lattices
together with the continuum extrapolation. Below the extrapo-
lated rate is compared to two perturbative approximations.
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from spherical, becoming either cylindrical or slablike.
Transitions between these discretely different geometrical
configurations appear as kinks in the histograms. There is
another kink for the transition between bulk fluctuations
and localized bubble fluctuations [29,121,127–129].
Figure 11 shows our results for the nucleation rate

x ¼ 0.0152473 on a range of lattices, together with the
continuum extrapolation. Finite lattice results and con-
tinuum extrapolations for the other two values of x
simulated, 0.025 and 0.05, are presented in Appendix A.
All lattices were chosen to be sufficiently large to accom-
modate spherical bubbles. For the smallest lattice spacings,
a number of different lattice volumes are shown, the results
of which agree within error. This demonstrates that our
lattices are sufficiently large that we may neglect volume
dependence. Table II lists the complete set of parameters
and lattice volumes on which we have computed the
nucleation rate.
Also shown in Fig. 11 are the effects of changing the

lattice spacing, while keeping the physical volume fixed.
We perform continuum extrapolations by fitting 1þ a2, for
each value of ycðaÞ − y. This is justified because all our
simulations were performed with an OðaÞ improved lattice
action. The only place where OðaÞ corrections may in
principle arise is through the relation between Langevin
and heatbath updates [99], though we expect such correc-
tions to be small, if present, as they only affect the
dynamical prefactor.
The calculated nucleation rate is a function of y, with

error bars, for each value of x. For convenience of future
use, we fit our numerical results to the following function

− log Γ̃ðx; yÞ ¼ s−2
ðyc − yÞ2 þ

s−1
yc − y

þ s0: ð32Þ

For each value of x we perform the fit over the range of
yc − y shown in Figs. 11 and 12. This function is motivated
by the expected form in the thin-wall limit, ðyc − yÞ → 0þ.
In this limit, the action grows as

− log Γ̃ðx; yÞ → 16πσ33
3ðΔhϕ†ϕicÞ2ðyc − yÞ2 ; ð33Þ

here written in terms of the surface tension and jump in the
quadratic condensate, each evaluated at y ¼ yc. Note, how-
ever, that we do not perform the fit in the limit y → yc, but
rather in some range of nonzero yc − y. Thus, our fit results si
are not the coefficients in an expansion about y ¼ yc, but
simply parametrize our results over the range of y studied.
The results are collected in Table III.
Constructing the perturbative expansion for the nuclea-

tion rate requires some care. We utilize the EFTapproach to
bubble nucleation [125], and perform a strict expansion in x
to ensure order-by-order gauge and renormalization-scale
invariance [125,130,131]. Details are given in Appendix B.

FIG. 12. The bubble nucleation rate at two weaker transi-
tions which we have studied, together with two perturbative
approximations.

TABLE II. Lattices used for the simulations of bubble nuclea-
tion. A complete list of runs can be found at [75]. Note that larger
lattices were required at larger x, because, due to the small surface
tension, the cosmologically relevant critical bubbles, for which
− log Γ̃ ∼ 100, are closer to the thin-wall limit. All volumes are
sufficiently large that the bubble takes up a small volume fraction
ðφ2

C − φ2
SÞ=ðφ2

B − φ2
SÞ≲ 4π=81, ensuring that the bubble does not

see itself [29]. Here φ2
S and φ

2
B refer to the positions of the peaks of

the symmetric and broken phases, respectively.

x ag23 Volumes=a3

0.0152473 0.5455087 603, 803

0.3636364 903

0.2727273 1203

0.2181818 1503

0.025 0.4285714 1083, 1123, 1203

0.2857143 1683

0.2142857 2243

0.05 0.5 1683

0.3333333 2243
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Beyond LO, the difference between the values of yc in
successive approximations poses difficulties for a strict
expansion, because at yc the rate is nonanalytic and the
logarithm of the rate is singular. This issue can be
overcome by computing the rate at fixed δy≡ yc − y,
rather than at fixed y. At NLO, this means that one writes
y ¼ yLOc þ yNLOc − δy, and then splits the LO and NLO
parts of yc between the corresponding parts of the action.
Without this trick, perturbation theory breaks down
altogether: log Γ̃NLO > 0 for all the values of x studied.
Though we have not done so here, the next-to-

next-to-leading order (NNLO) perturbative results
could be constructed from the numerical results of
Refs. [47,132], following the prescription for scale
shifters in Ref. [125].
Comparing lattice and perturbation theory for the nucle-

ation rate shows a similar trend as for the equilibrium
quantities: NLO corrections are essential for any quantitative
agreement, but still sizeable discrepancies remain. At fixed
yc − y and at LO in powers of x, perturbation theory
significantly overestimates the nucleation rate: ð− log Γ̃LOÞ=
ð− log Γ̃Þ ∼ 1=2, or very roughly Γ̃LO=Γ̃ ∼ e60. The pertur-
bative rate is also a shallower function of yc − y over the
range studied. Conversely, if one is interested in the degree
of supercooling at a fixed value of the rate, LO perturbation
theory gives a significant underestimate: ðyc − yÞLO=
ðyc − yÞ ∼ 1=2.
Extending to NLO in powers of x, perturbation theory

performs significantly better. The logarithm of the NLO
nucleation rate at fixed yc − y agrees with the lattice to
within about 20% over the range studied. However, in all
cases the slope of the rate appears to disagree significantly,
implying disagreement on the duration of the transition
(see Sec. IV C) and on the rate at both larger and smaller
supercooling.

B. Visualizing bubble nucleation

Typical lattice field configurations in the Boltzmann
distribution have fluctuations on the lattice scale. In the
continuum limit a → 0, these fluctuations give an infinite
contribution to the free energy, and to the mass of the

Higgs field, essentially a manifestation of the ultraviolet
catastrophe. These infinite contributions are canceled by
counterterms, which grow as 1=a and log a in the con-
tinuum limit. Due to the superrenormalizability of this
theory, its ultraviolet behavior is simple, and hence the
counterterms can be computed exactly [57]. This cancels
divergences in physical observables such as the latent heat
or surface tension, but not in the lattice field configurations
themselves, which retain lattice-scale fluctuations. Thus,
bare lattice configurations do not have a good continuum
limit, and we cannot simply identify the most likely
configurations between the two phases as physical critical
bubbles.
We can, however, construct a field configuration with

a good continuum limit by coarse graining over the
lattice scale. Such coarse graining is also motivated
within perturbative approaches to bubble nucleation
[125,133]: In the presence of a hierarchy of scales
coarse graining is necessary to correctly describe the
critical bubble at leading order. In radiatively induced
transitions (such as this one) coarse graining is also
necessary for the existence of the critical bubble within
perturbation theory.
For our coarse-graining procedure, we smooth the

Higgs field by combining the field at each point with its
neighbors, suitably parallel transported,

ϕðxÞ → 1

4
ϕðxÞ þ 1

8

X
i

UiðxÞϕðxþ iÞ

þ 1

8

X
i

U†
i ðx − iÞϕðx − iÞ; ð34Þ

where i runs over the three positive links to neighboring
lattice sites, and UiðxÞ refers to the lattice gauge link
variables. After smoothing the field n times, structures
smaller than na are washed out, but larger scale structures
are largely unaffected. Thus, if one is interested in the field
on physical length scales ∼l, this should be well exhibited
by choosing 1 ≪ n ≪ l=a.
Figure 13 shows two isosurface plots of ϕ†ϕ after

smoothing the Higgs field to remove lattice-scale noise.
The particular configuration was extracted from the
Boltzmann distribution, saved to file as the Markov chain
crossed the separatrix ϕ†ϕ ¼ φ2

C. The origin of the coor-
dinates has been shifted so that the bubble lies in the center.
A video showing a sequence of isosurface plots for an
example real-time trajectory of bubble growth can be seen
at [48].
For weaker transitions (larger x), the bubble configu-

rations relevant for transitions with − log Γ̃ ∼ 100 are
comparatively larger. The trend in bubble size can be
understood from an argument based on the thin wall

TABLE III. Lattice Monte Carlo results for fits to the bubble
nucleation rate, from this work, and from Ref. [29]. The (large)
errors for x ¼ 0.036 follow from assuming �1 errors on the rate
[29]. The asterisks ð�Þ are a reminder that, for these values of x,
only two lattice spacings have been used to extrapolate to a → 0.

xc s−2 s−1 s0

0.0152473 0.0506(66) 5.93(40) −91.9ð6.0Þ
0.025 0.01419(48) 1.612(56) −35.0ð1.6Þ
0.036� 0.0061(30) 0.15(64) −1ð34Þ
0.05� 0.001410(99) 0.081(40) 7.2(4.5)
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approximation, as a consequence of the surface tension
decreasing for weaker transitions. That is, for a bubble of
fixed size, decreasing the surface tension increases the
nucleation rate, and thus to return to − log Γ̃ ∼ 100 one
must increase the size of the bubble.

C. Cosmological evolution

Given the bubble nucleation rate, one can determine
the bulk evolution of the phase transition [114,115,134].
The onset of the transition, when there is approximately
one bubble nucleated within a Hubble volume, occurs
approximately when

− log
Γ
H4

þ log
β

H
¼ 0; ð35Þ

where H is the Hubble rate, and β can be defined as2

β≡ d
dt

log
Γ
T4

¼ −HT
d
dT

log
Γ
T4

; ð36Þ

equal to the inverse of the time over which fsym varies by
an Oð1Þ amount. In the second equality of Eq. (36), we
have made the assumption of radiation domination, so
that dT=dt ¼ −HT.
As the phase transition proceeds, the fraction of space

which remains in the symmetric phase fsym satisfies the
following approximate equality

− logΓþ log β4 − log
8π

3
v3w þ logð− log fsymÞ ¼ 0; ð37Þ

where vw is the bubble wall speed. Due to the strong
exponential growth of the bubble nucleation rate with time,
the temperature at which the phase transition takes place is
relatively well defined, independently of the precise choice
of fsym ∼ 1.
Rewriting Eq. (37) in terms of the rescaled lattice

nucleation rate gives the following approximate condition
for percolation

− log Γ̃þ 4 log β̃ ≈ 137; ð38Þ

where we have defined β̃≡ −∂y log Γ̃. In deriving the
numerical value on the right-hand side, we have assumed
the transition to take place at T ≈ 140 GeV [9,40], and have

FIG. 13. Isosurface plot of ϕ†ϕ showing a configuration
from the separatrix, from a simulation at the parameter point
x ¼ 0.02602457, y ¼ 0.0152473, g23a ¼ 4=7.332605. The coor-
dinate axes are displayed in lattice units, in which the box size is
603. The bubble center has been translated to the center of the
box. To remove some lattice-scale fluctuations, the Higgs field
has been smoothed according to Eq. (34).

FIG. 14. The degree of supercooling at percolation, as deter-
mined by Eq. (38). Lattice results from this paper and from
Ref. [29] are shown.

2In the semiclassical approximation, the rate can be written
Γ ¼ Ae−S, and the usual definition reads β≡ −dS=dt. Beyond
the semiclassical approximation, there is a degree of arbitrariness
in how one generalizes this, amounting to a small uncertainty in β
of the form d logðA=T4Þ=d logT.
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substituted SM-like parameters in order to arrive at the
numerical values [16,29]. This value, 137, will vary by
Oð1Þ depending on the specific 4D model considered. We
have also approximated the factor β as

β ≈Hηy · β̃; ð39Þ

neglecting the parametrically slower T dependence of x and
g23=T, in comparison with that of y; see the discussion
around Eq. (10). Note the factorization of ultraviolet and
infrared contributions in Eq. (39).
Figure 14 shows the degree of supercooling at percola-

tion, yc − yp, and Fig. 15 shows the (scaled) inverse
duration of the transition, β̃p. Together with the lattice
data, we have included the LO and NLO perturbative
results. Again we have used a strict expansion in x to
determine the NLO values, thereby ensuring order-by-order
gauge invariance. The NLO perturbative results agree well
with the lattice for the smallest value of x, but by x ¼ 0.05
are no closer than the LO results. The numerical lattice
results for yc − yp and β̃p are collected in Table IV.

V. CONCLUSIONS

In this paper, we have carried out extensive lattice
Monte Carlo simulations and continuum extrapolations
of the SU(2) Higgs 3D EFT. This model describes the
high temperature thermodynamics of the Standard Model
electroweak sector (up to small corrections), as well as the
thermodynamics of a wide range of BSM extensions of the
electroweak sector. We have focused on the region of
parameter space containing first-order phase transitions in
this EFT, motivated by planned gravitational wave experi-
ments, and by the possibility of successful electroweak
baryogenesis.
Our results significantly extend those of the original

works [27,29], and provide a data resource which can be
used to reliably and quantitatively determine properties of
first-order phase transitions in extensions of the electro-
weak sector. Due to the factorization of infrared and
ultraviolet contributions, evidenced in Eqs. (16), (20),
(31) and (39), once the effective couplings of this 3D
EFT have been calculated for a given 4D model, the
nonperturbative thermodynamics of the 4D model can be
simply read off. The results for the bubble nucleation
rate also allow one to estimate the gravitational wave
spectrum produced by sound waves in the fluid plasma
[88–90]. This approach was adopted in Ref. [40], using the
single lattice result for the bubble nucleation rate from
Ref. [29].
The results of this paper are directly applicable to BSM

scenarios in which new degrees of freedom, with effective
masses at the transition of order OðgTÞ or greater, induce
the Higgs symmetry-breaking transition to be first order.
However, in scenarios where BSM degrees of freedom are
lighter than this, or participate directly in the transition, such
as in two-step phase transitions, new lattice Monte Carlo
simulations in other 3D EFTs are necessary; see for example
Refs. [42,60,135–138], and Refs. [139,140] in a different
context.
By densely scanning the parameter space of the 3D

SU(2) Higgs model, we have revealed information on the
functional forms of key thermodynamic quantities, such as
the critical mass and the jump in the Higgs quadratic
condensate. Beyond their intrinsic value, these can be
used to provide rigorous tests of different perturbative
approaches [46,47,56,141], and alternative nonperturbative
approaches [142,143], as a function of the perturbative
expansion parameter; see for example Refs. [138,144,145].
While perturbative approaches to the thermodynamics of
non-Abelian gauge theories are fundamentally incomplete
[22], the computational cost of lattice Monte Carlo sim-
ulations means that complementary approaches are neces-
sary for exploring the high dimensional parameter spaces
of possible physical models. Reliably benchmarking our
confidence in such complementary methods is therefore
imperative.

FIG. 15. The (scaled) inverse duration of the transition,
evaluated at percolation. Lattice results from this paper and from
Ref. [29] are shown.

TABLE IV. Lattice Monte Carlo results for the degree of
supercooling and (scaled) inverse duration of the transition, from
this work, and from Ref. [29]. The asterisks ð�Þ are a reminder
that, for these values of x, only two lattice spacings have been
used to extrapolate to a → 0.

x yc − yp β̃p

0.0152473 0.03741(47) 6.052ð80Þ × 103

0.025 0.01809(16) 9.93ð18Þ × 103

0.036� 0.00865(30) 2.06ð21Þ × 104

0.05� 0.004461(51) 3.547ð98Þ × 104
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We have tested the first two orders of the perturbative
expansion in x, and find the NLO approximation to
provide reasonable estimates for most of the quantities
studied, at least for x≲ 0.05. However, further work at
higher orders in this expansion is necessary to determine
to what extent it converges onto the lattice results,
especially given the large disparity between LO and
NLO. The extension to NNLO is presented in contem-
porary works [46,47].
A possible extension of this work would be to perform a

similar lattice Monte Carlo study of the 3D U(1) Higgs
model. This model does not suffer from the infrared
problem [22], its infrared sector being free. Hence, by
extending Refs. [146,147] and simulating a number of
different phase transition strengths in the U(1) Higgs model,
one would be able to address the question: how numerically
important is the infrared problem?
The simulations presented in this paper made use of

well-understood and highly efficient algorithms for the
study of the thermodynamics of 3D bosonic theories
[27,148]. However, our study has revealed a need to
develop more efficient algorithms specifically for the
study of the bubble nucleation rate. The calculation of
the bubble nucleation rate requires large lattices to com-
fortably fit a critical bubble, and in this case the multi-
canonical algorithm of Ref. [27] requires very long
Markov chains in order to sample the full phase space.
The underlying reason is that the volume-averaged order
parameter ϕ†ϕ cannot distinguish between nascent, local-
ized bubbles and delocalized fluctuations spread over
the lattice, preventing the multicanonical algorithm
from efficiently tunneling between the symmetric phase
and field configurations containing critical bubbles.
Development of more efficient algorithms for simulating
bubble nucleation is therefore an important next step.
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APPENDIX A: CONTINUUM EXTRAPOLATIONS

In this appendix, we collect together a representative set
of plots showing our continuum extrapolations of lattice
data on finite lattices; see Figs. 16, 17, 18, 19, and 20. As
discussed in Secs. III A, III B, III C and IVA, the volume
and lattice-spacing dependence differs depending on the
observable.
Observables depending only on bulk quantities in

homogeneous phases, yc, Δhϕ†ϕic, and Δhðϕ†ϕÞ2ic, have
only exponentially small volume dependence in sufficiently
large volumes. The same is true for the bubble nucleation
rate on lattices where the bubble takes up a sufficiently
small fraction of the lattice, such that it cannot see itself
through the periodic boundaries. In these cases, we simply
fit a constant to the results from the largest few lattices,
ensuring that they agree within error. The lattice spacing of
the surface tension is more complicated, but the leading
dependence is known analytically so it can be subtracted
off, and a fit can be made to the remaining a dependence.

FIG. 16. Extrapolations to the continuum limit for the critical
mass yc at two different values of x.
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Without the OðaÞ improvement, all the physical quan-
tities that we consider suffer fromOðaÞ corrections at finite
lattice spacing. In all these cases we have performed
polynomial fits, choosing the lowest degree polynomial
such that χ2=d:o:f: ∼ 1, either 1þ a or 1þ aþ a2. With
the OðaÞ improvement, the linear lattice spacing depend-
ence of all quantities except yc is canceled, so the linear
term is omitted from the polynomial fits. The benefits of the
OðaÞ improvement for the condensates and surface tension
are marked.

APPENDIX B: PERTURBATIVE RESULTS

Here we collect some perturbative results for the 3D
SU(2) Higgs theory. The beta functions, βκ ≡ dκ=d log μ3,
are [53]

βy ¼
1

ð4πÞ2
�
−
51

16
− 9xþ 12x2

�
; ðB1Þ

βx ¼ βg2
3
¼ 0: ðB2Þ

These are exact, due to the superrenormalizability of the
theory.
At tree level in the 3D EFT, symmetry-breaking phase

transitions occur at m2
3 ¼ 0 and appear to be of second

order. However, loop corrections may modify the order of
the transition, and for a first-order phase transition the
critical temperature occurs for m2

3 > 0. A strict loop
expansion for the transition leads to infrared divergences
and stray imaginary parts atOðℏ2Þ [149], demonstrating the
inapplicability of the loop expansion in this case.
For sufficiently small x, a perturbative expansion in x can

be constructed [29,77,146]. Doing so requires including
some one-loop terms into the LO approximation, thereby
resumming the loop expansion. The resulting expansion is

FIG. 17. Extrapolations to the continuum limit for the Higgs
quadratic condensate at two different values of x.

FIG. 18. Extrapolations to the infinite-volume limit for the
critical temperature at x ¼ 0.025 (above), and the surface tension
at x ¼ 0.075 (below). For the critical temperature, volume
corrections are exponentially suppressed, and hence we simply
fit a constant to the largest few volumes. For the surface tension,
the extrapolation of the surface tension subtracts off the known
contributions of capillary waves, Eq. (21).
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closely related to the coupling expansion for the case where
the 4D couplings satisfy λ ∼ g3 [44,45]. In contemporary
works, this expansion has been formalized and extended to
NNLO [46,47].
The EFT approach to thermal bubble nucleation [125]

offers a consistent method to calculate the nucleation rate in
perturbation theory. This approach is based on the con-
struction of the nucleation scale effective action Snucl by
integrating out all parametrically heavier modes, which can
be carried out directly at the level of the path integral [150].
In the context of the SU(2) Higgs theory at small x, the
gauge fields can become parametrically heavier than the
Higgs field on the bubble, and therefore must be integrated
out. The gauge fields are however light in the symmetric
phase; they are scale shifters [125]. Integrating out the
gauge fields yields terms in the effective action which are
local at LO and NLO but nonlocal at higher orders.
At LO, the nucleation scale effective action is

SLOnucl ¼
Z

d3x

�
1

2
ð∂iϕÞ2 þ

1

2
m2

3ϕ
2 −

g33jϕj3
4ð4πÞ þ

1

4
λ3ϕ

4

�
:

which is ofOðx−3=2Þ when evaluated on the critical bubble,
assuming the mass is not parametrically smaller than the
critical mass. Here ϕ is a real-valued background field.
The NLO corrections to the nucleation scale effective

action are

SNLOnucl ¼
Z

d3x

�
1

2

�
−

11g3
4ð4πÞjϕj

�
ð∂iϕÞ2

þ g43ϕ
2

ð4πÞ2
�
51

32
log

�
μ3

g3jϕj
�
þ 33

64
−
63

32
log

�
3

2

���
;

which is ofOðx−1=2Þ when evaluated on the critical bubble.
This nucleation scale effective action has been discussed in
Refs. [29,125,130–132].

FIG. 19. The figure above shows the extrapolation to the
continuum limit for the surface tension at x ¼ 0.075. The figure
below shows the extrapolation to the infinite volume limit for the
discontinuity in the quadratic Higgs condensate. For the latter,
volume corrections are exponentially suppressed, and hence we
simply fit a constant to the largest few volumes.

FIG. 20. Extrapolations to the continuum limit for the nucleation rate at two different values of x.
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Corrections to SLOnucl þ SNLOnucl arise at Oðx0Þ due to
nucleation scale, or lighter, modes fluctuating in the bubble
background. This holds as long as the mass is not para-
metrically smaller than the critical mass. These corrections
depend on the shape of the critical bubble, and make up the
statistical prefactor of the nucleation rate, which for this
theory has been calculated in Refs. [47,132]. At this same
order, the nucleation rate receives corrections related to the
real-time growth of the critical bubble, the dynamical
prefactor [124–126]. We have stopped short of computing
these corrections in our perturbative analysis.
The nucleation scale effective action can also be used to

calculate the equilibrium properties of the phase transition.
This is no accident and follows because the largest
contributions to the change in free energy ΔF are those
which are due to the heaviest modes, and hence ΔF ≈
TSnucl at LO and NLO. The perturbative results for
equilibrium quantities are

yc ¼
1 − 51

2
x log μ̃3

2ð8πÞ2x ; ðB3Þ

Δhϕ†ϕic ¼
1þ 51

2
x

2ð8πxÞ2 ; ðB4Þ

Δhðϕ†ϕÞ2ic ¼
1þ 51x
4ð8πxÞ4 ; ðB5Þ

σ3 ¼
1þ ð51π2

4
− 339

4
Þx

6
ffiffiffi
2

p ð8πÞ3x5=2 ; ðB6Þ

where μ̃3 ≡ e−
11
34
þ42

34
log3

2ð8πxμ3Þ ≈ 1.19ð8πxμ3Þ. The expres-
sions are accurate up toOðx3=2Þ in the numerators. Here we
have performed a strict expansion in x, which ensures
order-by-order gauge invariance [130,131]. The μ3 depend-
ence of yc ensures that yc − y is renormalization group
invariant at this order; see Eq. (B1).

APPENDIX C: LATTICE VOLUMES

Lattice volumes used for the computation of equilibrium
thermodynamics are listed in Table V, and results for each
lattice are collected in [75].

TABLE V. Lattices used for the simulations of equilibrium
thermodynamics. Asterisks mark lattices where OðaÞ improve-
ment was used.

x ag23 Volumes=a3

0.0152473 0.5455087� 163, 243, 323, 162 × 80

242 × 120, 322 × 160
0.3636364� 243, 323, 483, 242 × 120

322 × 160, 482 × 240
0.2727273� 323, 483, 643, 322 × 160

482 × 240, 642 × 320
0.2181818� 403, 603, 803, 402 × 300

602 × 400, 802 × 600
0.025 0.5714286 183, 243, 303

0.4444444 243, 303, 363

0.4444444� 243, 303, 363

0.4285714� 202 × 100, 202 × 140

242 × 120, 242 × 144

362 × 360
0.3333333 303, 403, 503

0.3333333� 303, 403, 503

0.2857143� 302 × 180, 482 × 288

562 × 336, 602 × 360
0.25 403, 543, 683

0.25� 403, 543, 683

0.2222222� 483, 603, 803

0.2142857� 402 × 240, 502 × 300

602 × 360, 802 × 480
0.036 0.5714286 183, 243, 303

0.4444444 243, 303, 363

0.3333333 303, 403, 503

0.25 403, 543, 683

0.05 0.5714286 183, 243, 303

0.5� 183, 243, 303, 363, 423

0.4444444 243, 303, 363

0.3333333 303, 403, 503

0.3333333� 303, 363, 483, 543, 603

0.25 403, 543, 683

0.25� 323, 403, 483, 643, 723

0.075 0.4444444 243, 303, 363

0.4285714� 203, 303, 403, 202 × 120

302 × 180, 402 × 240
0.3333333 303, 403, 503

0.2857143� 303, 483, 603, 302 × 180

402 × 240, 502 × 300
0.25 403, 543, 683

0.2142857� 403, 603, 803, 402 × 240

502 × 300, 602 × 360
0.2 503, 683, 843
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