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We present the vector, scalar, and tensor renormalization constants (RCs) using overlap fermions with
either regularization independent momentum subtraction (RI=MOM) or symmetric momentum subtraction
(RI=SMOM) as the intermediate scheme on the lattice with lattice spacings a from 0.04 fm to 0.12 fm. Our
gauge field configurations from the MILC and RBC/UKQCD collaborations include sea quarks using
either the domain wall or the HISQ action, respectively. The results show that RI=MOM and RI=SMOM
can provide consistent renormalization constants to the MS scheme, after proper a2p2 extrapolations. But
at p ∼ 2 GeV, both RI=MOM and RI=SMOM suffer from nonperturbative effects which cannot be
removed by the perturbative matching. The comparison between the results with different sea actions also
suggests that the renormalization constant is discernibly sensitive to the lattice spacing but not to the bare
gauge coupling in the gauge action.
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I. INTRODUCTION

Lattice QCD has been shown to be a very powerful and
accurate framework for predicting the hadron spectrum,
since the spectrum is scale and scheme independent, and
can provide reliable and model-independent predictions
once systematic uncertainties such as finite volume, lattice
spacing, quark masses, and QED effects are under control.
For scale dependent quantities, such as physical quark
masses, chiral condensates, parton distribution functions
and so on, the situation is more nuanced as these quantities
are typically considered under the MS renormalization
procedure in phenomenological studies, and then are
generally different from the bare quantities one can
determine nonperturbatively from lattice QCD. When the

lattice spacing a is small enough and so the ultraviolet
cutoff 1=a is large, the difference is due to that of lattice
regularization and dimensional regularization, which can
be calculated and matched perturbatively. Such a matching
is equivalent to calculating the same vertex correction in a
regularization independent (RI) scheme under both regu-
larizations, and taking the ratio. In such a sense, the
calculation under lattice regularization can be done with
a nonperturbative simulation, followed by a perturbative
calculation under dimensional regularization.
These are various choices for such a regularization

independent scheme. A straightforward choice is the regu-
larization independent momentum subtraction (RI=MOM)
scheme, which considers the vertex correction in the forward
off-shell parton state [1]. The corresponding perturbative
calculation is relatively simple and those for the quark
bilinear currents with all 16 gamma matrices have been
obtained at three loops or more [2–5]. But the singularity
from the zero momentum transfer at the current position can
create nonperturbative effects and poor perturbative con-
vergence, especially for the scalar current renormalization
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constant ZS which is crucial for the quark mass and chiral
condensate determination. Eventually it can causemore than
1% uncertainty on ZS which is difficult to suppress despite a
better nonperturbative lattice QCD calculation.
In view of this, Refs. [6,7] proposed the symmetric

momentum subtraction (RI=SMOM) scheme, which
requires that the momentum transfer at the current is the
same as that on the external parton leg. With such a setup,
the perturbative convergence has been verified to be better
than that of RI=MOM scheme up to the 3-loop level for the
scalar current, and the nonperturbative effects such as the
1=mn

q poles in the scalar and pseudoscalar currents dis-
appear [7]. Thus the RI=SMOM scheme seems to be
helpful in suppressing the systematic uncertainty of ZS
to the ∼0.2% level, and has been widely used in quark mass
determinations, i.e., [8–10].
In our previous study [11], we calculated ZS using

overlap fermions on 2þ 1 domain wall fermion (DWF)
gauge ensembles at a ¼ 0.114 fm with physical pion mass,
through both the RI=MOM and RI=SMOM schemes. With
1-step of HYP smearing applied on the fermion action, we
found that it is impossible to find a good a2p2 extrapolation

window to remove the discretization error of ZMS
S (2 GeV)

in the RI=SMOM case. There is also a recent work which
found a 10–20% discrepancy between the ZS through the
RI=MOM and RI=SMOM schemes using the clover fer-
mion at a ¼ 0.116 and 0.093 fm, even though the discrep-
ancy decreases with the lattice spacing [12]. Thus, a more
careful comparison of the RI=MOM and RI=SMOM
schemes with a larger range of lattice spacings is warranted
for accurate hadron structure studies in the future.
The setup of our calculation, including the detailed

definition of RI=MOM and RI=SMOM, and fermion and
gauge actions, will be presented in Sec. II. Section III
provides a study on the quark self-energy definition and the
vector/axial-vector current normalization, and the details of
the systematic uncertainty analysis are given in Sec. IV. The
results at lattice spacings a from 0.04 fm to 0.20 fm using
either the DWF sea or the highly improved staggered quark
(HISQ) sea are presented in Sec. VI.

II. NUMERICAL SETUP

In this work, we use overlap fermions [13–15] as valence
quarks to calculate the renormalization constants (RCs)
in the RI=MOM and RI=SMOM schemes. Overlap fer-
mions have perfect chiral symmetry which guarantees that
ZP ¼ ZS and ZA ¼ ZV when the nonperturbative effects in
the IR region are removed properly. The overlap Dirac
operator is written as

DovðρÞ ¼ ρð1þ γ5ϵðγ5Dwð−ρÞÞÞ; ð1Þ

whereDwð−ρÞ is the Wilson fermion operator. ρ is the mass
parameter and is chosen to be ρ ¼ 1.5 in our calculation.

ϵ is the sign function and satisfies ϵ2 ¼ 1. One can easily
find that DwðρÞ satisfies the Ginsparg-Wilson relation [16],

Dovγ5 þ γ5Dov ¼
1

ρ
Dovγ5Dov; ð2Þ

and the effective Dirac operator is defined as

Dc ¼
Dov

1 − 1
2ρDov

; ð3Þ

which satisfies fDc; γ5g ¼ 0 [17]. The massive effective
inverse Dirac operator is DcðmÞ−1 ¼ 1=ðDc −mÞ which
has the same form as that in the continuum [15].
In our calculations, we use two sets of dynamical gauge

configurations, namely those with 2þ 1 flavor domain wall
fermions (DWF) [18] with the Iwasaki gauge action from
the RBC/UKQCD collaboration [19–21] and those with
2þ 1þ 1 flavor highly improved staggered quarks (HISQ)
[22,23] with the Symanzik gauge action from the MILC
collaboration [24–26]. The information of the ensembles
we use in this work can be found in Table I.
The RCs in different renormalization schemes can be

obtained through imposing the specific renormalization
conditions on the bare amputated Green’s functions. If one
uses a point source in a lattice simulation, then the bare
Green’s function GO can be defined as

GOðp1; p2Þ ¼
X
x;y

e−iðp1·x−p2·yÞhψðxÞOð0Þψ̄ðyÞi; ð4Þ

whereO ¼ ψ̄Γψ is the quark operator and the interpolation
gamma matrix Γ is chosen to be I, γ5, γμ, γμγ5 and σμν for
the scalar (S), pseudoscalar (P), vector (V), axial-vector (A)
or tensor (T) currents, respectively. Then the amputated
Green function can be obtained by

TABLE I. Setup of the ensembles, including the bare coupling
constant g, lattice size L3 × T, lattice spacing a and sea pion
mass mπ .

Tag 6=g2 L T a (fm) mπ (MeV)

24D 1.633 24 64 0.194(2) 139
24DH 1.633 24 64 0.194(2) 337
32Dfine 1.75 32 64 0.143(2) 139
48I 2.13 48 96 0.1141(2) 139
24I 2.13 24 64 0.1105(2) 340=432=576=693
64I 2.25 64 128 0.0837(2) 139
48If 2.31 48 96 0.0711(3) 280
32If 2.37 32 64 0.0626(4) 371
HISQ12L 3.60 48 64 0.1213(9) 130
HISQ12H 3.60 24 64 0.1213(9) 310
HISQ09L 3.60 64 96 0.0882(7) 130
HISQ09H 3.78 32 96 0.0882(7) 310
HISQ06 4.03 48 144 0.0574(5) 310
HISQ04 4.20 64 192 0.0425(4) 310
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ΛOðp1; p2Þ ¼ S−1ðp1ÞGOðp1; p2ÞS−1ðp2Þ; ð5Þ

where SðpÞ is the point source quark propagator

SðpÞ ¼
X
x

e−ip·xhψðxÞψ̄ð0Þi: ð6Þ

According to the LSZ reduction, one can define the
renormalized amputated Green’s function as

Λr
O;Rðp1; p2Þ ¼

Zr
O

Zr
q
ΛO;Bðp1; p2Þ; ð7Þ

where r ∈ fMS;RI=MOM;RI=SMOMg represents one of
the different renormalization schemes we will consider in
this work, the Zr are the RCs of the quark field and
operators, and subscripts R and B represent the renormal-
ized and bare quantities, respectively,

SrR ¼ Zr
qSrB; Or

R ¼ Zr
OOB: ð8Þ

In the RI=MOM scheme, the RCs can be determined by
the following renormalization conditions [1],

ZRI=MOM
q ¼ lim

mR→0

−i
48

Tr

�
γμ

∂S−1B ðpÞ
∂pμ

�
p2¼μ2

; ð9aÞ

ZRI=MOM
O ¼ lim

mR→0

ZRI=MOM
q

1
12
Tr½ΛO;Bðp;pÞΛtree

O ðp;pÞ−1�p2¼μ2
; ð9bÞ

where the momenta of the external quark legs are chosen to
satisfy p1 ¼ p2 ¼ p and μ2 ¼ p2 is the renormalization
scale of the RI=MOM scheme. However, the definition in
Eq. (9a) needs to calculate the derivative with respect to the
momentum, and this will inevitably introduce a systematic
error since the momentum is discrete in lattice simulations.
A more convenient method to obtain ZRI=MOM

q is using the
vector vertex correction

ZRI=MOM
q ¼ lim

mR→0

ZV

48
Tr½Λμ

V;BðpÞγμ�p2¼μ2 : ð10Þ

It is easy to verify that Eqs. (9a) and (10) are equivalent by
using the Ward identity [1],

ZVΛV;BðpÞ ¼ −i
∂S−1B ðpÞ
∂pμ

: ð11Þ

A modified version of the RI=MOM scheme is the
RI0=MOM scheme, which replaces ZRI=MOM

q by ZRI0
q [4],

ZRI0
q ¼ lim

m→0

−i
12p2

Tr½S−1B ðpÞp�p2¼μ2 : ð12Þ

Based on the Lorentz structure of the vector current vertex
correction, one can obtain another expression of ZRI0

q

through the transverse projection on the forward vector
current,

ZRI0;ver
q ¼ lim

m→0

ZV

36
Tr

�
Λμ
V;BðpÞ

�
γμ −

ppμ

p2

��
: ð13Þ

On the other hand, RI=SMOM is an alternative non-
perturbative renormalization scheme [6,7]. In this scheme,
the momenta of external quark legs are symmetrically set
to be

p2
1 ¼ p2

2 ¼ ðp2 − p1Þ2 ¼ μ2: ð14Þ

The renormalization conditions for scalar, pseudoscalar and
tensor currents are similar to those in the RI=MOM scheme.
The renormalization conditions for the quark self energy
and quark bilinear operators are chosen to be

ZRI=SMOM
q ¼ ZRI0

q ; ð15aÞ

ZRI=SMOM
O¼S=P=T ¼ lim

m→0

ZRI=SMOM
q

1
12
Tr½ΛO;Bðp1; p2ÞΛtree

O ðp1; p2Þ−1�
;

ZRI=SMOM
V ¼ lim

m→0

ZRI=SMOM
q

1
12q2 Tr½qμΛ

μ
V;Bðp1; p2Þq �

; ð15bÞ

ZRI=SMOM
A ¼ lim

m→0

ZRI=SMOM
q

1
12q2 Tr½qμΛ

μ
A;Bðp1; p2Þγ5=q�

; ð15cÞ

Eq. (15a) is the definition of the RC of the quark field
strength in the RI0 scheme [4]. Using Eq. (15b), one can
obtain the Zq in the RI=SMOM scheme by

ZRI=SMOM;ver
q ¼ lim

mR→0

ZV

12q2
Tr½qμΛμ

V;Bðp1; p2Þ=q�: ð16Þ

In the perturbative theory, the bare quark propagator can be
written in the generic form

−iS−1B ðpÞ ¼ pΣ1ðp2Þ −m0Σ2ðp2Þ: ð17Þ

Then one can verify that ZRI=SMOM;ver
q from Eq. (16) and

ZRI0
q defined in Eq. (12) are equivalent in the continuum

limit using the Ward identity [27,28],

ZVqμΛ
μ
V;Bðp1; p2Þ ¼ −iðS−1B ðp2Þ − S−1B ðp1ÞÞ; ð18Þ

where we have used the relation Σ1;2ðp2
1Þ ¼ Σ1;2ðp2

2Þ ¼
Σ1;2ðq2Þ since the momentum is chosen to be symmetric
in the RI=SMOM scheme. In Sec. III A, we will show that
the discretization error would be larger if one chose the
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definition Eq. (12) to calculate ZRI=SMOM
q . So a better choice

is using the vector vertex correction in Eq. (16) to calculate
the RC of the quark field strength.
An RC in the intermediate scheme r ∈ fRI=MOM;

RI=SMOMg can be converted to the MS scheme through

multiplication by the matching factor CMS;r
q=O ,

ZMS
q=OðμÞ ¼ CMS;r

q=O ðμÞZr
q=OðμÞ: ð19Þ

More precisely, the matching factor CRI=MOM
q and the ratio

of CRI=MOM
O to CRI=MOM

q can be obtained through the
following way,

CMS;RI=MOM
q ðμÞ ¼ lim

mR→0

48i

Tr½γμ ∂ðSMS
R Þ−1ðpÞ
∂pμ

�p2¼μ2

; ð20Þ

CMS;RI=MOM
O ðμÞ¼ lim

mR→0

CMS;RI=MOM
q ðμÞ

12

×Tr½ΛMS
O;Rðp;pÞΛtree

O ðp;pÞ−1�p2¼μ2 : ð21Þ
The above equations can be easily obtained through replac-

ingSBðpÞ andΛO;BðpÞ in Eq. (9) bySMS
R ðpÞ andΛMS

O;Rðp; pÞ.
The matching factors between the RI=SMOM and MS
schemes can be determined in a similar way.
When using the RI=MOM and RI=SMOM schemes to

calculate RCs at a specific lattice spacing a, the window of
the renormalization scale μ is chosen to be

ΛQCD ≪ μ ≪ Cπ=a; ð22Þ
where the nonperturbative effects from chiral symmetry
breaking and ultraviolet effects caused by the lattice
spacing are highly suppressed in such a window, and C
is an unknown constant which is sensitive to the regulari-
zation and renormalization schemes.
In our calculation, the boundary conditions of all four

directions are chosen to be periodic. For a discretized
momentum on the lattice,

ap ¼ 2π

�
k1
L
;
k2
L
;
k3
L
;
k4
T

�
; ð23Þ

the leading order discretization error will be proportional to
the “democratic” factor

cðpÞ≡ p½4�

ðp2Þ2 ; where p½4� ¼
X
μ

p4
μ; p2 ¼

X
μ

p2
μ: ð24Þ

In the MOM scheme, we choose cðpÞ < 0.28 for all the
momenta used in the calculation, but the momentum
constraint Eq. (24) in the SMOM scheme can only allow
us to choose the momenta with much larger cðpÞ, such as
the ones used in this work, namely ap1 ¼ ðq; q; 0; 0Þ and
ap2 ¼ ð0; q; q; 0Þ for which cðpÞ ¼ 0.5.

III. QUARK SELF ENERGY
AND NORMALIZATION

A. Definition of Zq

We present the results of ZRI=SMOM;ver
q (data points) from

Eq. (16) and ZRI=SMOM
q ¼ ZRI0

q (curves) from Eq. (12) in the
upper panel of Fig. 1. The lower panel of Fig. 1 shows the
comparison of ZRI0

q (curves) to the alternative vertex

correction version in the MOM case, ZRI0;ver
q (data points)

FIG. 1. The comparison of Zq using the overlap fermion on
the HISQ ensemble (OV/HISQ for short) obtained by the
bare quark propagator and vector current correction. The data
points in the upper panel and lower panel are obtained by Eq. (16)
(ZRI=SMOM;ver

q ¼ limmR→0
ZV

12q2 Tr½qμΛ
μ
V;Bðp1; p2Þ=q�), and Eq. (13)

(ZRI0;ver
q ¼ limm→0

ZV
36
Tr½Λμ

V;BðpÞðγμ − ppμ

p2 Þ�), respectively. The

curves with the four colors correspond to the ZRI0
q ≡

limm→0
−i

12p2 Tr½S−1B ðpÞp�p2¼μ2 defined in Eq. (12). The curve

and data points with the same color correspond to results at
the same lattice spacing, which is specified within parentheses in
the legends. The data points in the lower panel show better
convergence in the continuum extrapolation, since the momen-
tum in the RI0 scheme (lower panel) is chosen to be body diagonal
∼1=2ðp; p; p; pÞ in the forward case while in the RI=SMOM
scheme (upper panel) it is chosen to be

ffiffiffi
2

p
=2ð0; 0; p; pÞ. Thus

the discretization error, as indicated by the convergence of results
for the different ensembles, in the lower panel is smaller that in
the upper panel.
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from Eq. (13). The blue, magenta, purple, and orange dots
represent the results on the HISQ12, HISQ09, HISQ06, and
HISQ04 ensembles, respectively. One can see that the
deviations between the quark propagator and vertex def-
initions increase with μ and decrease with a; thus such a
behavior agrees with our expectation of a discretization
error. Both ZRI0;ver

q and ZRI=SMOM;ver
q have better conver-

gence in the continuum extrapolation, compared to the
original ZRI0

q defined from the quark propagator. The

discretization error of ZRI0;ver
q is even smaller than that of

ZRI=SMOM;ver
q , since the momentum used in the MOM case

is closer to the body diagonal direction and thus has a
smaller cðpÞ.
In the RI=MOM and RI=SMOM schemes, the ratio

ZV=ZA can be obtained by the following ratios,

ZRI=MOM
V

ZRI=MOM
A

¼ Tr½Λμ
A;BðpÞγ5γμ�

Tr½Λμ
V;BðpÞγμ�

����
p2¼μ2

;

ZRI=SMOM
V

ZRI=SMOM
A

¼ Tr½qμΛμ
A;Bðp1; p2Þγ5q�

Tr½qμΛμ
V;Bðp1; p2Þq�

����
p2
1
¼p2

2
¼q2

; ð25Þ

In Fig. 2, we plot the ratios ZV=ZA from the RI=MOM and
RI=SMOM schemes, which have been linearly extrapolated
to the chiral limit. The ratio in RI=MOM is consistent with
1 in the large a2p2 region but deviates from 1 when a2p2 is
small due to the effect of the Goldstone mass pole in the
forward axial vector current [1]. Comparing the results on
the 48I and 64I ensembles (red filled circles and blue filled
boxes), one can see this nonperturbative effect occurs at a
smaller a2p2 region when the lattice spacing is smaller. On
the other hand, the effects on the 48I (cyan diamonds) and
64I (magenta triangles) are highly suppressed in the
RI=SMOM case, as the value of ZV=ZA is consistent with
1 at much lower momentum scale.

B. Normalization of axial vector current

The normalization constant of the axial vector current
can be calculated through the PCAC relation,

ZA∂μAμ ¼ 2ZmZpmqP; ð26Þ

with ZmZp ¼ 1 for overlap fermions. The PCAC relation
can be changed into [11]

ZA ¼ 2mq
P

x⃗hΩjPðt; x⃗ÞP†ð0ÞjΩiP
x⃗hΩj∂μAμðt; x⃗ÞP†ð0ÞjΩi

����
t→∞

: ð27Þ

Then we have

ZA ¼ 4amqCPPðtÞ
CA4Pðt − aÞ − CA4Pðtþ aÞ

����
a→0

; ð28Þ

where CPPðtÞ and CA4PðtÞ are the two-point correlation
functions of pseudoscalar-pseudoscalar operators and pseu-
doscalar-axial vector operators, respectively. In Fig. 3, we
show the 64I result of ZA obtained through the PCAC
relation; the valence quark mass equals mva ¼ 0.012. One
can see the statistical uncertainty of ZA is quite small and
the plateau is stable in the region t ∈ ½6a; 60a�. We obtain
ZA ¼ 1.0753ð1Þ using a constant fit.
In Eq. (28), we replace the derivative by the difference,

so there is an additional discretization error. To make it
clear, we consider the expression of CPPðtÞ and CA4PðtÞ at a
large time separation,

CPPðtÞ ¼ Ae−mπ t þ Ae−mπðT−tÞ;

CA4PðtÞ ¼ Be−mπ t − Be−mπðT−tÞ: ð29Þ

MOM(48I)

MOM(64I)

SMOM(48I)

SMOM(64I)

0 2 4 6 8 10 12 14
0.98

0.99

1.00

1.01

1.02

a2p2

Z V
/Z
A

FIG. 2. ZV=ZA in the chiral limit under the RI=MOM and
RI=SMOM schemes on the 48I and 64I ensembles.

0 10 20 30 40 50 60
1.065

1.070

1.075

1.080

1.085

t/a

Z A

FIG. 3. The result of ZA on the 64I ensemble obtained with the
PCAC relation versus source and sink time separation t=a using
Eq. (28). The quark mass is mqa ¼ 0.012.
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Substituting Eq. (29) into Eq. (28), one can obtain

ZAðmqÞ ¼
4aAmq

B½eamπ − e−amπ �

¼ 2Amq

Bmπ

�
1 −

a2m2
π

6
þOða4m4

πÞ
�
. ð30Þ

In Fig. 4, we plot ZA versus valence quark mass, with
(orange points) and without (blue points) the subtraction of
the −a2m2

π=6 term from the data. It is clear that ZA changes
significantly with the quark mass mq due to the a2m2

π=6
term, while the mq dependence is much milder when that
term is subtracted.
Then we use a linear m2

π extrapolation to obtain ZA ¼
1.07867ð6Þ in the chiral limit. The final results of ZA on
different ensembles are shown in Table II. In order to
estimate the finite volume effect, we dropped the lightest
two quark masses, which have a relatively larger finite
volume effect. Then we obtain that ZA ¼ 1.07865ð6Þ; this
value is very close to the result extrapolated with all quark
masses, with the systematic error caused by the finite
volume less than 0.01%. We list this systematic error in
Table II.
Another issue we would like to discuss here is the quark

mass dependence of ZA. After subtracting the a2m2
π=6 term,

the mq dependence is still nonvanishing as shown in the

orange data of Fig. 4, with ∂ZA
∂mq

¼ 0.020ð1Þ GeV−1 on the

64I ensemble. The slopes on all ensembles we studied in
this work are consistent with an estimate 0.10ð3Þ GeV × a2

within the uncertainty, which thus looks like a discretiza-
tion error.
We also calculate ZA on the four 24I ensembles at the

same lattice spacing a ¼ 0.11 fm but different light sea
quark masses frommla ¼ 0.005 to 0.03, and list the results
in Table III. With larger statistics compared to the previous
studies [29,30], we can extract a nonzero sea quark mass
dependence with the following ansatz

Zðmsea;R
l Þ ¼ Zð0Þ þ cmsea;R

l ; ð31Þ

where msea;R
l ≡ Zsea

m ðmsea
l þmresÞ is the renormalized light

sea quarkmass of the domainwall fermion used in the RBC/
UKQCD gauge ensemble,mres is the residual quark mass of
the domain wall fermion, and Zsea

m ¼ 1.578ð2Þ [8] is the
renormalization constant of the sea quark mass. The slope
we get is c ¼ 0.040ð4Þ GeV−1 and is consistent with the
valence quark mass dependence on the 24I ensemble with
the lightest quark mass, which equals 0.040ð2Þ GeV−1. We
speculate themsea

l dependence on the ensembles at the other
lattice spacings is also a discretization error at the same order
of the valence quark mass mq dependence.

IV. CASE STUDIES

As shown in the previous section, the Zq defined from
the vector current vertex correction and quark propagator
are consistent with each other for both the SMOM and
MOM cases, while ZA=ZV can differ from unity obviously
at small a2p2 in the MOM case. Thus in this section, we
will consider the ratio ZX=ZV instead of ZX=ZA to avoid the
nonperturbative effect in the axial-vector current vertex
corrections in the MOM case. Most of the discussions in

FIG. 4. The renormalization constant ZA versus the square of
the pion mass on the 64I ensemble. The orange and blue data
represent the results with and without the subtraction of the
−a2m2

π=6 term in Eq. (30) from the data, respectively.

TABLE II. The axial current renormalized constants of different ensembles. The values in the two brackets following the central value
correspond to the statistical error and the systematic error caused by the finite volume effect.

Ensemble 24D 24DH 32Dfine 48I 64I 48If 32If

ZA 1.2186(4)(1) 1.2240(3)(1) 1.1417(2)(1) 1.1036(1)(1) 1.0787(1)(1) 1.0698(1)(1) 1.0649(2)(2)

Ensemble HISQ12L HISQ12H HISQ09L HISQ09H HISQ06 HISQ04

ZA 1.1088(3)(1) 1.1092(2)(1) 1.0822(1)(1) 1.0832(1)(1) 1.0617(1)(1) 1.0519(1)(1)

TABLE III. ZA of four different 24I ensembles. The first row
lists the light sea quark masses of these ensembles. Using Eq. (31)
to do the linear extrapolation of light sea quark mass, we obtain
that the slope c for ZA is 0.040ð4Þ GeV−1.

mla 0.005 0.01 0.02 0.03

ZA 1.1020(2) 1.1023(2) 1.1036(2) 1.1047(2)
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this section are based on the physical pion mass ensemble
64I; the procedure is similar on the other ensembles.

A. Quark field renormalization

In Fig. 5, we show the quark mass dependence of the
quark field renormalization constant ZRI=MOM

q =ZV [upper

panel, based on Eq. (10)] and ZRI=SMOM
q =ZV [lower panel,

based on Eq. (16)] on the 64I ensemble. One can see that Zq

weakly depends on the quark mass in both the MOM and
SMOM schemes. As in Ref. [11], the results of the
RI=MOM and RI=SMOM schemes in the massless limit
can be obtained through linear extrapolations,

Zx
q

ZV
ðmqaÞ ¼

Zx
q

ZV
þ cmqa; ð32Þ

where x represents the RI=MOM or RI=SMOM scheme. Z
x
q

ZV

are the RCs in the chiral limit and the solid lines in these
two figures represent the central values of fits.
The chiral extrapolated results can be converted to the

MS scheme by the following matching factors [3,11]

CMS;RI=MOM
q ¼ 1þ

�
−
517

18
þ 12ζ3 þ

5

3
nf

��
αs
4π

�
2

þ
�
−
1287283

648
þ 14197

12
ζ3 þ

79

4
ζ4 −

1165

3
ζ5

þ 18014

81
nf −

368

9
ζ3nf −

1102

243
n2f

��
αs
4π

�
3

þOðα4sÞ; ð33Þ

CMS;RI=SMOM
q ¼ 1þ

�
−
359

9
þ 12ζ3 þ

7

3
nf

��
αs
4π

�
2

þ
�
−
439543

162
þ 8009

6
ζ3 þ

79

4
ζ4 −

1165

3
ζ5

þ 24722

81
nf −

440

9
ζ3nf −

1570

243
n2f

��
αs
4π

�
3

þOðα4sÞ; ð34Þ

where ζn is the Riemann zeta function, and nf ¼ 3 is the
number of light quark flavors. The results in the inter-
mediate scheme with jpj can be converted to the MS
scheme at μ ¼ jpj using the above matching factors and the
strong coupling constants at the same scale. To obtain the
2 GeV results in the MS scheme, we use the perturbative
running from energy scale μ ¼ jpj to 2 GeV. The anoma-

lous dimension of the quark field γMS
q has been calculated

up to four loops in the Landau gauge [3]. With such an

anomalous dimension, one can evolve the value of ZMS
q =ZV

from energy scale μ to 2 GeV. The conversions of

ZRI=MOM
q =ZV and ZRI=SMOM

q =ZV to ZMS
q =ZV (2 GeV) for

the 64I ensemble are plotted in Fig. 6.
The results in the upper panel of Fig. 6 are those using

the intermediate RI=MOM scheme; The yellow data
represent the Zq=ZV in the RI=MOM scheme at different
a2p2 and the green data are the results in the MS scheme at
μ ¼ jpj. The blue data are the results in the MS scheme
with 2 GeV, which is evolved from μ. They exhibit non-
negligible discretization errors, especially in the large a2p2

region. The data show a downward trend in the range
3 ≤ a2p2 ≤ 12 and a gentler upward trend for a2p2 ≥ 12.
In order to remove such a discretization error, we use
following ansatz to fit the blue data,

ZMS
q

ZV
ða2p2Þ ¼ ZMS

q

ZV
þ
X3
i¼1

Cq;M
i ða2p2Þi: ð35Þ

The fit range is chosen to be p2 ∈ ½9 GeV2; 18=a2� and the
χ2=d:o:f: of the fit is less than one. We choose the same
interval for the fit region for the results on the other
ensembles; the lower limit of the fit region is fixed at
p2 ¼ 9 GeV2, and the upper limit is fixed at a2p2 ¼ 18

a2p2=3.04

a2p2=4.06

a2p2=5.22

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
1.05

1.06

1.07

1.08

1.09

mqa

Z qM
O
M
/Z
V

a2p2=1.93

a2p2=3.26

a2p2=4.93

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
1.06

1.07

1.08

1.09

1.10

mqa

Z qS
M
O
M
/Z
V

FIG. 5. The valence quark mass dependence of ZRI=MOM
q =ZV

and ZRI=SMOM
q =ZV at different a2p2 on the 64I ensemble. The

lines in each of the two cases are obtained by linear fits.
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since the infrared effect is dependent on p2 and the
discretization error in the larger p2 region is sensitive to
a2p2. The black curve in the upper panel of Fig. 6 is
constructed from the fit parameters, and it agrees with the

lattice data. We get ZMS
q =ZVð2 GeVÞ equals 1.1009(5) after

extrapolating a2p2 to zero. The fit range, fit results and
χ2=d:o:f: for the other ensembles are listed in Table XVIII.
For the two largest lattice spacing ensembles (24D and
24DH), we apply linear extrapolations to remove the a2p2

dependence. The fit results of the coefficients Cq;M
i for the

different ensembles are listed in Table IV; these discretiza-
tion error terms decrease with decreasing lattice spacing.
In addition to the statistical errors, there are a series of

systematic errors that need to be considered:

(1) Conversion ratio between the RI=MOM and MS
schemes: When nf ¼ 3, the matching factor in
Eq. (33) can be written as

CMS;RI=MOM
q ðμ2Þ¼ 1−0.0589α2sðμ2Þ−0.2352α3sðμ2Þ

þOðα4sÞ; ð36Þ
assuming the coefficient of the Oðα4sÞ term is 4
(≈0.2352=0.0589) times larger than that of theOðα3sÞ
term,we find that the central value ofZMS

q =ZV (2GeV)
becomes 1.0971 if we include such a dummy Oðα4sÞ
term in the matching factor for each of the μ2 ¼ p2;
thus we estimate the systematic error from the con-
version ratio by the difference of the central values,
which is ð1.1009–1.0971Þ=1.1009 ¼ 0.34%. Such a
estimation is different from our previous strategy [11],
where we chose the correction of this dummy Oðα4sÞ
term only at the smallest p2 used in the fit to estimate
the systematic error.

(2) Perturbative running: The MS result at 2 GeV has
been obtained with the quark field anomalous
dimension up to four loops [3]; the systematic error
caused by the anomalous dimension can be esti-
mated through using the anomalous dimension up to
three loops to do the perturbative running. The error
caused by perturbative running is about 0.03%.

(3) ΛMS
QCD: In our calculation, ΛMS

QCD is chosen to be
0.332(17) GeV for three flavors [31]. The 1σ

deviation of ΛMS
QCD will cause the central value of

ZMS
q =ZV (2 GeV) to shift by 0.02%.

(4) Lattice spacing: The lattice spacing of the 64I
ensemble, 0.0837(2) fm, has its uncertainty. If we
modify the lattice spacing by 1σ and redo all the
procedures, the Zq we get will differ by 0.01%which
should be considered as a systematic uncertainty.

(5) Fit range of a2p2: If using p2 ∈ ½9 GeV2; 15=a2� to
do the a2p2 extrapolation, the central value of

ZMS
q =ZV (2GeV) becomes 1.0995 and the uncertainty

caused by the change of the fit range is about 0.13%.

TABLE IV. Fit results of the coefficients for the RI=MOM
scheme; the corresponding fit ansatz is Eq. (35).

Ensemble Cq;M
1 Cq;M

2 Cq;M
3

HISQ12L −0.01033ð39Þ 0.000596(37) −9.2ð1.1Þ × 10−6

HISQ12H −0.01107ð48Þ 0.000628(46) −9.4ð1.4Þ × 10−6

HISQ09 −0.00796ð17Þ 0.000427(18) −5.4ð0.6Þ × 10−6

HISQ06 −0.00565ð44Þ 0.000272(50) −2.2ð1.7Þ × 10−6

HISQ04 −0.00395ð10Þ 0.000151(12) 0.5ð0.4Þ × 10−6

48I −0.01059ð33Þ 0.000592(32) −8.5ð1.0Þ × 10−6

64I −0.00806ð17Þ 0.000420(18) −4.9ð0.6Þ × 10−6

48If −0.00629ð10Þ 0.000293(12) −2.1ð0.4Þ × 10−6

32If −0.00456ð17Þ 0.000162(21) 1.1ð0.8Þ × 10−6

FIG. 6. Conversion of Zq=ZV in the RI=MOM (upper panel)
and RI=SMOM (lower panel) schemes to the MS scheme, on the
64I ensemble. The yellow data represent the results in the
RI=MOM (upper panel) and RI=SMOM (lower panel) schemes.
The green data are the results in the MS scheme with μ ¼ jpj. The
results in the MS scheme after running to 2 GeVare shown by the
blue data. The black curves represent the extrapolation of a2p2

with Eq. (35) using the data in p2 ∈ ½9 GeV2; 18=a2� and using
Eq. (37) with the data in a2p2 ∈ ½1.5; 9.0� for the RI=MOM and
RI=SMOM schemes, respectively. The red curve in the lower
panel is from the fit using Eq. (38) with the data in
a2p2 ∈ ½0.3; 9.0�.
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(6) Finite volume effect: In order to estimate the finite
volume effect, we dropped the lightest two quark
masses in the chiral extrapolation, which have
relatively larger finite volume effects. It introduces
a 0.02% change on Zq.

(7) Nonzero sea strange quark mass: In order to estimate
the effect of nonzero strange quark mass, we
calculated ZMS

q =ZVð2 GeVÞ on the four 24I ensem-
bles and the results are listed in Table V. With the
linear light sea quark mass extrapolation we find the
slope is about 0.038ð2Þ GeV−1, from which we find
an error of 0.17% due to the nonzero strange
quark mass.

The summary for the uncertainties of ZMS
q =ZV is pre-

sented in Table VI. The final result of ZMS
q =ZV on the 64I

ensemble equals 1.1009(45), from which we obtain

ZMS
q ð2 GeVÞ ¼ 1.188ð5Þ given ZV ¼ ZA ¼ 1.0787ð1Þð1Þ

from the AWI.
In the SMOM case, we also choose the linear chiral

extrapolation model to obtain the ZRI=SMOM
q =ZV in the

chiral limit. After converting ZRI=SMOM
q =ZV to the MS

scheme and running the energy scale to 2 GeV, we obtain

the results of ZMS
q =ZVð2 GeVÞ again, which are presented

in the lower panel of Fig. 6. Comparing the results from the

RI=MOM and RI=SMOM schemes, we can see that the
results from the RI=SMOM scheme have stronger non-
linear dependence on a2p2. We use the following ansatzes
to fit the blue data in the lower panel,

ZMS
q

ZV
ða2p2Þ ¼ ZMS

q

ZV
þ
X3
i¼1

Cq;S
i ða2p2Þi ð37Þ

and

ZMS
q

ZV
ða2p2Þ ¼ ZMS

q

ZV
þ Cq;S

−1
a2p2

þ
X3
i¼1

Cq;S
i ða2p2Þi; ð38Þ

where the pole term in Eq. (38) occurs in the operator
product expansion of the quark propagator [32]. The fit
results and χ2=d:o:f: are listed in Table VII. The fit results
are quite sensitive to the fit region, due to the highly
nonlinear a2p2 dependence. Finally, we take fit result
corresponding to a2p2 ∈ ½1.5; 9.0� as the central value
and statistical error. The deviation between the results
obtained by fitting the data in the range a2p2 ∈ ½1.5; 9.0�
and a2p2 ∈ ½3.0; 10.5� is about 1.01%, which is much
larger than that in the RI=MOM case and we use this
deviation to estimate the systematic error due to the fit
range. We also take the discrepancy between the fit results
of Eqs. (37) and (38) to be the systematic error, which is

about 0.23%. One can also use Eq. (38) to fit the ZMS
q data

through the RI=MOM scheme, wherein the coefficient of
the 1=ða2p2Þ term is found to be consistent with zero so
that the result is unchanged.
When nf ¼ 3, the matching factor between the

RI=SMOM scheme and the MS scheme can be rewritten as

CMS;RI=SMOM
q ¼ 1 − 0.1169α2s − 0.4076α3s þOðα4sÞ: ð39Þ

Since both Oðα2sÞ and Oðα3sÞ are larger than in the MOM
case, the conversion ratio here will introduce a larger
systematic uncertainty. We also estimate the other system-
atic uncertainties with similar strategies to the RI=MOM
case, except that of the nonzero strange quark mass. Since
the available data points in the SMOM case on the 24I
ensemble are not as many as those on the ensembles with
larger volume, we just estimate the uncertainty caused by

TABLE V. The results of ZMS
q =ZVð2 GeVÞ and

Z̃MS
q =ZVð4 GeVÞ on the 24I ensemble from the intermediate

RI=MOM and RI=SMOM schemes, respectively. The results
from the RI=MOM scheme have been extrapolated to the

a2p2 → 0 limit, but the Z̃MS
q =ZVð4 GeVÞ are obtained from

the RI=SMOM scheme at the specific a2p2 ¼ 4.93 where
jpj ∼ 4 GeV. The corresponding slopes from the linear extrap-
olations of the light sea quark are 0.038ð2Þ GeV−1 and
0.035ð1Þ GeV−1, respectively.

mla 0.005 0.01 0.02 0.03

ZMS
q =ZVð2 GeVÞ 1.1035(1) 1.1041(1) 1.1054(1) 1.1061(1)

Z̃MS
q =ZVð4 GeVÞ 1.0848(1) 1.0852(1) 1.0863(1) 1.0872(1)

TABLE VI. Summary of uncertainties of RCs in percentage on
the 64I ensemble through the intermediate RI=MOM scheme.

Source ZMS
q =ZV ZMS

S =ZV ZMS
P =ZV ZMS

T =ZV

Statistical 0.04 0.08 0.21 0.01
Conversion ratio 0.34 2.29 2.15 0.40
Perturbative running 0.03 0.11 0.11 0.03

ΛMS
QCD

0.02 0.31 0.26 0.04
Lattice spacing 0.01 0.09 0.09 0.03
Fit range of a2p2 0.13 0.03 0.27 0.01
Finite-volume effect 0.02 0.07 0.14 0.01
msea

s ≠ 0 0.17 0.46 1.61 0.06
Total uncertainty 0.41 2.36 2.73 0.41

TABLE VII. The fit results of ZMS
q =ZV (2 GeV) through

the intermediate RI=SMOM scheme on the 64I ensemble, for
different fit ranges of a2p2.

Fit ansatz Fit range for a2p2 Result χ2=d:o:f:

Eq. (37) [1.0,8.0] 1.0931(30) 0.09
[1.5,9.0] 1.0891(46) 0.10
[3.0,10.5] 1.0781(94) 0.07

Eq. (38) [0.3,9.0] 1.0916(37) 0.72
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the nonzero strange quark mass by the results Z̃MS
q =ZV from

the RI=SMOM at a2p2 ¼ 4.93, as the effect of nonzero sea
quark mass should not be very sensitive to a2p2. Here we

use the Z̃MS
q to represent the results from the RI=SMOM

scheme to distinguish the result from RI=MOM scheme,
where we calculate the results at different a2p2 then
extrapolate to the a2p2 → 0 limit. We list the results

Z̃MS
q =ZV on the 24I ensembles in the third row in Table V.
Eventually we get ZMS

q ð2 GeVÞ on the 64I ensemble to
be 1.175(16) through the intermediate RI=SMOM scheme.
It is consistent with that through the RI=MOM scheme
except it has a factor of 3 larger uncertainty majorly from
the fit range.

B. Scalar and pseudoscalar currents renormalization

We start from the unphysical mass pole of the renorm-
alization constants of the scalar operator and pseudoscalar
operator. The renormalization constants of the scalar and
pseudoscalar operators in the RI=MOM and RI=SMOM
schemes can be obtained through

ZRI=MOM
S;P

ZRI=MOM
V

¼ ΓVðpÞ
ΓS;PðpÞ

����
p2¼μ2

;

ZRI=SMOM
S;P

ZRI=SMOM
V

¼ ΓVðp1; p2Þ
ΓS;Pðp1; p2Þ

����
sym

; ð40Þ

where

ΓSðpÞ ¼
1

12
Tr½ΛS;BðpÞI�;

ΓPðpÞ ¼
1

12
Tr½ΛP;BðpÞγ5�;

ΓSðp1; p2Þ ¼
1

12
Tr½ΛS;Bðp1; p2ÞI�;

ΓPðp1; p2Þ ¼
1

12
Tr½ΛP;Bðp1; p2Þγ5�; ð41Þ

and

ΓVðpÞ ¼
1

48
Tr½Λμ

V;BðpÞγμ�;

ΓVðp1; p2Þ ¼
1

12q2
Tr½qμΛμ

V;Bðp1; p2Þ=q�: ð42Þ

The results of ZRI=MOM
S =ZV on the 64I ensemble versus the

valence quark mass when a2p2 ¼ 3.04, 4.06 and 5.22 are
presented in the left panel of Fig. 7. One can see that the
value of ZRI=MOM

S =ZV diverges when the quark mass
decreases toward zero, especially when a2p2 is small.
The reason for the mass pole is that the amputated Green
function of the scalar quark operator obtains a large
contribution from zero modes of the Dirac operator in
the chiral limit [33], and it causes the renormalization
constants ZS to have a power divergence in the valence
quark mass mq. To extract the RCs in the chiral limit, we
use the following ansatz to fit the lattice results in the
RI=MOM scheme as in Refs. [6,11,29,33],

TABLE VIII. Summary of uncertainties of RCs in percentage
on the 64I ensemble through the intermediate RI=SMOM
scheme.

Source ZMS
q =ZV ZMS

S =ZV ZMS
P =ZV ZMS

T =ZV

Statistical 0.42 0.59 0.63 0.23
Conversion ratio 0.75 0.23 0.22 0.81
Perturbative running 0.01 0.09 0.08 0.01

ΛMS
QCD

0.07 0.18 0.18 0.04
Lattice spacing 0.01 0.06 0.07 0.04
Fit range of a2p2 1.01 1.29 1.79 0.36
Finite-volume effect 0.01 0.02 0.32 0.01
msea

s ≠ 0 0.15 0.05 0.05 0.12
Different fit models 0.23 5.10 5.20 0.46
Total uncertainty 1.36 5.30 5.55 1.03

a2p2=3.04

a2p2=4.06

a2p2=5.22
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FIG. 7. The valence quark mass dependence of ZRI=MOM
S =ZV and ZRI=SMOM

S =ZV on the 64I ensemble with different a2p2. The curves
are the fits using the ansatzes in Eqs. (43) and (45) for the RI=MOM and RI=SMOM schemes.
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ZRI=MOM
S

ZV
ðamqÞ ¼

As

ðamqÞ2
þ Bs þ Csamq; ð43Þ

where Bs is the result of ZRI=MOM
S =ZA in the chiral limit.

The χ2=d:o:f: of the fit is around 1 and the curves in Fig. 7
are constructed using the fit parameters and they agree with
the data.
ForZP=ZV, theunphysical pole in theRI=MOMscheme is

inversely proportional to1=amq or1=m2
π, which corresponds

to the mass pole of the Goldstone meson [34]. The quark
mass dependence of ZRI=MOM

P =ZV when a2p2 ¼ 3.04, 4.06,
5.22 is shown in the left panel of Fig. 8. One can see that
ZRI=MOM
P =ZV will approach zero in the chiral limit. To

subtract the contamination of the unphysical quark mass
pole, we use the following ansatz to fit the lattice data,

ZRI=MOM
P

ZV
ðamqÞ ¼

1
Ap

ðamqÞ þ Bp þ Cpamq

; ð44Þ

where 1=Bp is the result of ZRI=MOM
P =ZV in the chiral limit.

The curves show that the fit predictions are consistent with
the data.
We plot the mass dependence of ZRI=SMOM

S=P =ZV in the
right panels of Figs. 7 and 8, respectively. Comparing with
the results of the RI=MOM scheme, one can see that the
quark mass dependence of ZRI=SMOM

S=P =ZV is free of the
unphysical pole. So we use the following ansatz to
extrapolate the results to the chiral limit,

ZRI=SMOM
S=P

ZV
ðamqÞ ¼ B̃s=p þ C̃s=pamq; ð45Þ

and the fit results agree with the data well.
After the chiral extrapolation, the result in the MS

scheme can be obtained by using the following matching
factor [2,3]

CMS;RI=MOM
S ¼ ZMS

S =ZMS
V

ZRI=MOM
S =ZRI=MOM

V

¼ ZRI=MOM
m

ZMS
m

¼ 1þ 16

3

�
αs
4π

�
þ
�
2246

9
−
89nf
9

−
152ζ3
3

��
αs
4π

�
2

þ
�
8290535

648
−
262282nf

243
þ 8918n2f

729
−
466375ζ3

108
þ 4936ζ3nf

27
þ 32ζ3n2f

27
−
80ζ4nf

3
þ 2960ζ5

9

��
αs
4π

�
3

þOðα4sÞ: ð46Þ

We have used the relation ZMS
V ¼ ZRI=MOM

V ¼ ZRI=SMOM
V

since ZV ¼ ZA and the latter is determined by the PCAC
relation and it should be independent of the renormalization
scheme. The anomalous dimension of the scalar operator

can be obtained through the relation γψ̄ψ ¼ −γm, where γm
is the anomalous dimension of quark mass and it has been
calculated up to three loops in Ref. [3]. The result of

ZMS
S =ZV (2 GeV) from the intermediate RI=MOM scheme
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FIG. 8. The valence quark mass dependence of ZRI=MOM
P =ZV and ZRI=SMOM

P =ZV on the 64I ensemble at different a2p2. The curves in
the left panel are the fits using Eq. (44). The curves in the right panel are obtained by linear extrapolation.
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is plotted in the left panel of Fig. 9. The yellow data are the
results of ZS=ZV in the RI=MOM scheme at different a2p2

and the green data are the results in the MS scheme at
μ ¼ jpj. The blue data are the results in the MS scheme
with 2 GeV, which is evolved from μ. We use the following
ansatz to fit the blue data

ZMS
S

ZV
ða2p2Þ ¼ ZMS

S

ZV
þ
X3
i¼1

CS;M
i ða2p2Þi; ð47Þ

where the fit range is p2 ∈ ½9 GeV2; 18=a2� and the fit
result is ZMS

S =ZVð2 GeVÞ ¼ 0.9588ð8Þ. The solid line in
Fig. 9 is the fit using Eq. (47). The fit range, fit results and
χ2=d:o:f: for the other ensembles are listed in Table XVIII.
The fit results of the coefficients CS;M

i for the different
ensembles are listed in Table IX; the absolute values of
these coefficients decrease with decreasing lattice spacing.

As in the calculation of the quark field renormalization
constant Zq, we also estimate the systematic error due to the
truncation error of the matching factor CRI=SMOM

S . When
nf ¼ 3, the matching factor in Eq. (46) can be rewritten as

CMS;RI=MOM
S;nf¼3 ¼ 1þ 0.4244αs þ 1.0068α2s þ 2.7221α3s

þOðα4sÞ. ð48Þ

Similar to what we did with the renormalization of the
quark field strength Zq, here we also add a dummy Oðα4sÞ
term with coefficient 2.72212=1.0068 ¼ 7.3597 for each of
the μ2 ¼ p2 used in the a2p2 extrapolation; we find the
systematic uncertainty from the conversion ratio to be
2.29%, which is more conservative than our previous
estimate 1.5% [11], which corresponds to the correction
of Oðα4sÞ only at the smallest p2 used in the fit. The final

result of ZMS
S =ZVð2 GeVÞ on the 64I ensemble through the

MOM scheme is 0.959(1)(22)(6), where the first error is
statistical and the latter two uncertainties are from the
conversion ratio and other systematic uncertainties.
For the pseudoscalar current, the numerical results in

Fig. 8 show that its matrix element has a pole in the chiral
limit in the RI=MOM scheme, but this pole effect is much
smaller or nonexistent in the RI=SMOM scheme. We
subtract the Goldstone mass pole by using Eq. (44) to
fit the lattice data of RI=MOM, convert the result of

ZRI=MOM
P =ZRI=MOM

V into ZMS
P =ZMS

V , and then use the anoma-

lous dimension γMS
S to evolve the energy scale to 2 GeV.

Since overlap fermions are chiral, the matching coefficient
and anomalous dimension of the pseudoscalar operator are
the same as those of the scalar operator. The results of

FIG. 9. Conversion and running of ZMS
S =ZV from the RI=MOM scheme (left panel) and RI=SMOM scheme (right panel) on the 64I

ensemble. The yellow data represent the results in the RI=MOM scheme (left panel) and RI=SMOM scheme (right panel). The green
data are the results in the MS scheme with μ ¼ jpj. The results in the MS scheme after running to 2 GeVare shown by the blue data. The
black curves represent the fit using Eq. (47) with data in p2 ∈ ½9 GeV2; 18=a2� and Eq. (47) with data in a2p2 ∈ ½3.5; 9� for the
RI=MOM and RI=SMOM schemes, respectively. The red curve in the right panel is the fit using Eq. (52) with data in a2p2 ∈ ½1; 9�.

TABLE IX. The fit results of coefficients for the RI=MOM
scheme; the corresponding fit ansatz is Eq. (47).

Ensemble CS;M
1 CS;M

2 CS;M
3

HISQ12L −0.0283ð13Þ 0.00134(11) −0.000032ð03Þ
HISQ12H −0.0254ð25Þ 0.00116(20) −0.000029ð05Þ
HISQ09 −0.0163ð05Þ 0.00064(05) −0.000016ð02Þ
HISQ06 −0.0128ð06Þ 0.00051(07) −0.000013ð02Þ
HISQ04 −0.0126ð02Þ 0.00056(02) −0.000014ð01Þ
48I −0.0166ð06Þ 0.00059(05) −0.000016ð02Þ
64I −0.0147ð02Þ 0.00056(02) −0.000015ð01Þ
48If −0.0134ð02Þ 0.00050(02) −0.000013ð01Þ
32If −0.0129ð03Þ 0.00048(03) −0.000012ð01Þ
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ZMS
P =ZV from the RI=MOM scheme are presented in the

left panel of Fig. 10. We use the following ansatz to fit the

lattice data of ZMS
P =ZV and remove the discretization error.

ZMS
P

ZV
ða2p2Þ ¼ ZMS

P

ZV
þ
X3
i¼1

CP;M
i ða2p2Þi: ð49Þ

We take the fit region to be p2 ∈ ½9 GeV2; 18=a2� and
the corresponding fit result is 0.9675(20). Comparing the
coefficients in Tables IX and X, one can see that the
discretization error in the pseudoscalar case is a bit larger
than in the scalar case. The estimation of the systematic

errors of ZMS
P =ZV is similar to the ZS case, while the

nonzero strange quark mass effect is much larger, as shown

in Table XI. The final result of ZMS
P =ZV at 2 GeV is 0.968

(2)(21)(16) and agrees with ZMS
S =ZV well; the three

uncertainties here also correspond to the statistical error,

systematic errors from the conversion ratio and other
sources, respectively.
Now we turn to the SMOM case, which is free of the

unphysical pole and has a trivial chiral extrapolation. The
results of ZMS

S =ZV can also be obtained by using the
matching factor between the RI=SMOM and MS schemes
up to three loops [35–37],

CMS;RI=SMOM
S ¼ ZMS

S =ZMS
V

ZRI=SMOM
S =ZRI=SMOM

V

¼ZRI=SMOM
m

ZMS
m

¼1þ0.6455

�
αs
4π

�

þð23.0244−4.0135nfÞ
�
αs
4π

�
2

þð889.736−169.924nfþ2.1844n3fÞ
�
αs
4π

�
3

þOðα4sÞ: ð50Þ

After converting the result of RI=SMOM into the MS
scheme and perturbatively running it to 2 GeV, we obtain
the results in the right panel of Fig. 9. Compared to the
results from the RI=MOM scheme, the results calculated
with the RI=SMOM scheme have better convergence in the
perturbative matching. However, they also have stronger
nonlinear dependence on a2p2 than that obtained through
the RI=MOM scheme. In order to describe the lattice
data, we use the following two different models [38] to fit
the data,

ZMS
S

ZV
ða2p2Þ ¼ ZMS

S

ZV
þ
X3
i¼1

CS;S
i ða2p2Þi; ð51Þ

(a) (b)

FIG. 10. Conversion and running of ZMS
P =ZV from the RI=MOM scheme (left panel) and RI=SMOM scheme (right panel) on the 64I

ensemble. The yellow data represent the results in the RI=MOM scheme (left panel) and RI=SMOM scheme (right panel). The green
data are the results in the MS scheme with μ ¼ jpj. The results in the MS scheme after running to 2 GeVare shown by the blue data. The
black curves represent the fit using Eq. (47) with data in p2 ∈ ½9 GeV2; 18=a2� and Eq. (47) with data in a2p2 ∈ ½3.5; 9� for the
RI=MOM and RI=SMOM schemes, respectively. The red curve in the right panel is the fit using Eq. (52) with data in a2p2 ∈ ½1; 9�.

TABLE X. The fit results of coefficients for the RI=MOM
scheme; the corresponding fit ansatz is Eq. (49).

Ensemble CP;M
1 CP;M

2 CP;M
3

HISQ12L −0.0372ð30Þ 0.00193(24) −0.000045ð06Þ
HISQ12H −0.0378ð75Þ 0.00201(60) −0.000049ð16Þ
HISQ09 −0.0199ð12Þ 0.00091(11) −0.000023ð03Þ
HISQ06 −0.0137ð13Þ 0.00058(13) −0.000015ð04Þ
HISQ04 −0.0133ð36Þ 0.00062(04) −0.000016ð01Þ
48I −0.0200ð14Þ 0.00083(12) −0.000022ð03Þ
64I −0.0166ð06Þ 0.00071(05) −0.000019ð02Þ
48If −0.0170ð04Þ 0.00078(04) −0.000020ð01Þ
32If −0.0151ð07Þ 0.00067(07) −0.000017ð02Þ
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and also

ZMS
S

ZV
ða2p2Þ ¼ ZMS

S

ZV
þ CS;S

−1
a2p2

þ
X3
i¼1

CS;S
i ða2p2Þi: ð52Þ

The fit results of ZMS
S =ZV and χ2=d:o:f: for different fit

models and fit regions are listed in Table XII. Note that the
1=ða2p2Þ term is not applied to the fit in the RI=MOM case
since the results from the RI=MOM scheme are also
linearly dependent on a2p2 in the smaller a2p2 region
with decreasing lattice spacing. One can anticipate that the
nonperturbative physics region is related to p2 rather than
1=ða2p2Þ. Compared to the fit without the 1=ða2p2Þ term,
the fit with such a term can describe the data with much
smaller a2p2 when we require χ2=d:o:f: < 1.1, but the
central value can be quite different. Since the 1=ða2p2Þ
term reflects the nonperturbative effect in ZS with unknown
origin, we have chosen the result fitted by Eq. (51) with
range a2p2 ∈ ½3.5; 9� to be the central value. Then we use
the result with the ansatz Eq. (51) in the range a2p2 ∈
½2.5; 8� to estimate the systematic error caused by the fit
range, and take the deviation between the central value and
the result fitted by Eq. (52) in the range a2p2 ∈ ½1; 9� as a
systematic error. In summary, the ZMS

S =ZV at 2 GeV
through the RI=SMOM scheme is 0.964(6)(2)(51), with

the latter two uncertainties from the conversion ratio and
the other systematic uncertainties. With nf ¼ 3, the match-

ing coefficient CRI=SMOM
S can be written as

CMS;RI=SMOM
S;nf¼3 ¼ 1þ 0.0514αs þ 0.0696α2s þ 0.2014α3s

þOðα4sÞ; ð53Þ

and the truncation error from the matching is much smaller
than in the RI=MOM case.
The results of ZMS

P =ZVð2 GeVÞ from the RI=SMOM
scheme are presented in the right panel of Fig. 10. Even
though ZP and ZS are very close to each other under the
SMOM scheme at large a2p2, their difference at small a2p2

makes the acceptable fit range with reasonable χ2=d:o:f: to
be different, as shown in Table XIII. With similar analysis,

we determine ZMS
P =ZV at 2 GeV through the RI=SMOM

scheme to be 0.963(6)(2)(53), which is consistent with

ZMS
S =ZV within the uncertainty and the largest uncertainty

comes from the fit model.

C. Tensor current renormalization

The ratios of the RC of the tensor operator to ZV in the
RI=MOM and RI=SMOM schemes can be obtained by

ZRI=MOM
T

ZRI=MOM
V

¼ ΓVðpÞ
ΓTðpÞ

����
p2¼μ2

;

ZRI=SMOM
T

ZRI=SMOM
V

¼ ΓVðp1; p2Þ
ΓTðp1; p2Þ

����
sym

; ð54Þ

respectively, where

ΓTðpÞ ¼
1

144
Tr½Λμν

T;BðpÞσμν�;

ΓTðp1; p2Þ ¼
1

144
Tr½Λμν

T;Bðp1; p2Þσμν�: ð55Þ

The valence quark dependence of ZRI=MOM
T =ZV and

ZRI=SMOM
T =ZV are plotted in Fig. 11.

TABLE XI. The results of ZS=ZV and ZP=ZV through
the RI=MOM and RI=SMOM schemes on the 24I ensemble.
The results at 2 GeV are calculated using the intermediate
RI=MOM scheme, and the corresponding slopes from linear
extrapolation of the light sea quark are 0.087ð17Þ GeV−1 and
0.308ð58Þ GeV−1, respectively. The results in the fourth and fifth
rows are from the RI=SMOM scheme at a2p2 ¼ 4.93, and
the slopes of ZS=ZV and ZP=ZV are 0.011ð1Þ GeV−1 and
0.010ð2Þ GeV−1, respectively.

mla 0.005 0.01 0.02 0.03

ZMS
S =ZVð2 GeVÞ 1.0083(07) 1.0099(08) 1.0134(07) 1.0130(12)

ZMS
P =ZVð2 GeVÞ 1.0225(23) 1.0300(27) 1.0361(27) 1.0450(40)

Z̃MS
S =ZVð4 GeVÞ 0.8907(1) 0.8908(1) 0.8913(1) 0.8914(1)

Z̃MS
P =ZVð4 GeVÞ 0.8905(1) 0.8907(1) 0.8910(1) 0.8912(1)

TABLE XII. The fit results of ZMS
S =ZV (2 GeV) through the

RI=SMOM scheme on the 64I ensemble for different fit ranges of
a2p2.

Fit ansatz a2p2 range Result χ2=d:o:f:

Eq. (51) [2.5,8.0] 0.9767(30) 0.2
[3.5,9.0] 0.9643(57) 0.3
[3.5,10.5] 0.9538(34) 0.8

Eq. (52) [1.0,8.0] 0.9208(70) 0.7
[1.0,9.0] 0.9151(57) 0.8

TABLE XIII. The fit results of ZMS
P =ZV (2 GeV) through the

RI=SMOM scheme on the 64I ensemble, for different fit ranges
of a2p2.

Fit ansatz Fit range for a2p2 Result χ2=d:o:f:

Eq. (51) [3.0,8.0] 0.9803(48) 1.1
[3.5,9.0] 0.9631(61) 1.4
[3.5,10.5] 0.9490(38) 2.1

Eq. (52) [1.0,9.0] 0.9493(58) 2.2
[1.8,9.0] 0.9130(120) 1.5
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As is the case for the quark field renormalization
constant, the dependence of ZT=ZV on the valence quark
mass is mild under both the RI=MOM and RI=SMOM
schemes, so we use linear extrapolation to obtain the
RI=MOM results in the chiral limit. The solid lines in

Fig. 11 are the fits with linear extrapolation and agree with
the data well. ZRI=MOM

T =ZV and ZRI=SMOM
T =ZV can be

converted into the MS scheme with the matching factors
[35,37,39],

CMS;RI=MOM
T ¼ 1 −

1

81
ð4866 − 1656ζ3 − 259nfÞ

�
αs
4π

�
2

þ 1

17496
ð21770010ζ3 þ 231552ζ4 − 6505920ζ5 − 46437951 − 1218240nfζ3 þ 155520nfz4

þ 5421360nf − 6912n2fζ3 − 76336n2fÞ
�
αs
4π

�
3

þOðα4sÞ; ð56Þ

for the RI=MOM scheme and

CMS;RI=SMOM
T ¼ 1 − 0.21517295

�
αs
4π

�
− ð43.38395 − 4.103279nfÞ

�
αs
4π

�
2

þ ð−1950.76129þ 309.82858nf

− 7.06359n2fÞ
�
αs
4π

�
3

þOðα4sÞ; ð57Þ

for the RI=SMOM scheme. The anomalous dimension of

the tensor operator in the MS scheme, γMS
T , has been

calculated up to four loops in Landau gauge [40]. Then we

obtain the results of ZMS
T =ZV at 2 GeV from the inter-

mediate schemes. Similar to other cases, we plot in Fig. 12
the results in the RI=MOM scheme (yellow data), in the MS
scheme at μ¼ jpj (green data) and at 2 GeV (blue data). We
use the following expression to fit the lattice data from the
intermediate RI=MOM scheme,

ZMS
T

ZV
ða2p2Þ ¼ ZMS

T

ZV
þ
X3
i¼1

CT;M
i ða2p2Þi; ð58Þ

and the following expressions

ZMS
T

ZV
ða2p2Þ ¼ ZMS

T

ZV
þ
X3
i¼1

CT;S
i ða2p2Þi; ð59aÞ

ZMS
T

ZV
ða2p2Þ ¼ ZMS

T

ZV
þ CT;S

−1
a2p2

þ
X3
i¼1

CT;S
i ða2p2Þi; ð59bÞ

to fit the results from the RI=SMOM scheme, which is
similar to what we did in the analysis of other renormal-
ization constants. Such a pole effect also has been observed
in another calculation [12]. The fit results with different fit
ansatzes and fit regions are shown in Table XV.
In the RI=MOM case, the fit range is chosen to be

p2 ∈ ½9 GeV2; 18=a2� and the result of ZMS
T =ZV is more

a2p2=3.04

a2p2=4.06

a2p2=5.22
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FIG. 11. The valence quark mass dependence of ZRI=MOM
T =ZV

(top panel) and of ZRI=SMOM
T =ZV (bottom panel) at different a2p2

on the 64I ensemble.
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insensitive to the range selection than other renormalization
constants since the absolute values of the fit results forCT;M

i
listed in Table XIV are smaller than those of other

operators; however, this is not the case for the ZMS
T =ZV

through the RI=SMOM scheme due to much larger a2p2

dependence, as shown in Table XV.
When nf ¼ 3, the conversion functions in Eqs. (56) and

(57) can be rewritten as

CRI=MOM
T;nf¼3 ¼ 1 − 0.1641α2s − 0.4364α3s þOðα4sÞ; ð60Þ

CRI=SMOM
T;nf¼3 ¼ 1 − 0.0171αs − 0.1968α2s − 0.5467α3s

þOðα4sÞ: ð61Þ

Thus the estimate of theOðα4sÞ coefficient0.43642=0.1641 ¼
1.1605 in the RI=MOM case is smaller than that in the
SMOM case, 0.54672=0.1968 ¼ 1.5187.

Finally we get ZMS
T =ZV to be 1.0658(1)(43)(9) through

the RI=MOM scheme and 1.071(2)(9)(6) through the
RI=SMOM scheme. The uncertainty in the first bracket
is the statistic error; the latter two uncertainties are from the
conversion ratio and the other systematic uncertainties. The
truncation error in the RI=SMOM case is smaller compared
with our previous estimation in [11] by using the 3-loop
result from Ref. [37], but the sensitivity to the fit range is
still much larger compared to the RI=MOM case. The
nonzero strange quark mass effect is also estimated using
the 24I ensembles and shown in Table XVI. It turns out to
be smaller than those of the other RCs.

V. RESULTS

Following a similar strategy, the results of RCs on all the
ensembles are listed in Table XVII, and the fit ranges used
for the central values are collected in Tables XVIII and
XIX. For the ensembles with lattice spacing smaller than

TABLE XIV. The fit results of coefficients for the RI=MOM
scheme; the corresponding fit ansatz is Eq. (58).

Ensemble CT;M
1 CT;M

2 CT;M
3

HISQ12L 0.00555(13) −0.000192ð12Þ 6.28ð34Þ × 10−6

HISQ12H 0.00475(26) −0.000130ð27Þ 4.91ð91Þ × 10−6

HISQ09 0.00541(06) −0.000199ð06Þ 6.09ð20Þ × 10−6

HISQ06 0.00554(13) −0.000242ð14Þ 7.10ð51Þ × 10−6

HISQ04 0.00574(04) −0.000269ð04Þ 7.45ð14Þ × 10−6

48I 0.00462(12) −0.000142ð11Þ 5.42ð34Þ × 10−6

64I 0.00496(05) −0.000180ð05Þ 5.80ð16Þ × 10−6

48If 0.00526(03) −0.000209ð04Þ 6.27ð11Þ × 10−6

32If 0.00595(06) −0.000272ð07Þ 7.78ð24Þ × 10−6

TABLE XV. The fit results of ZMS
T =ZV (2 GeV) through the

RI=SMOM scheme on the 64I ensemble.

Fit ansatz Fit range for a2p2 Result χ2=:

Eq. (59a) [1.0,8.0] 1.0714(18) 0.09
[1.5,9.0] 1.0709(25) 0.09
[3.5,10.5] 1.0670(74) 0.02

Eq. (59b) [0.3,9.0] 1.0758(26) 0.85

TABLE XVI. The results of ZMS
T =ZVð2 GeVÞ and

ZMS
T =ZVð4 GeVÞ on the 24I ensemble from the intermediate

RI=MOM and RI=SMOM schemes, respectively. The corre-
sponding slopes from the linear extrapolation of the light sea
quark are 0.012(1) and 0.023ð1Þ GeV−1.

mla 0.005 0.01 0.02 0.03

ZMS
T =ZVð2 GeVÞ 1.0504(1) 1.0505(1) 1.0509(1) 1.0512(1)

Z̃MS
T =ZVð4 GeVÞ 1.0919(1) 1.0921(1) 1.0929(1) 1.0935(1)

FIG. 12. Conversion and running of ZMS
T =ZV from the

RI=MOM scheme (top panel) and RI=SMOM scheme (lower
panel) on the 64I ensemble. The yellow data represent the results
in the RI=MOM (top panel) and the RI=SMOM schemes (lower
panel). The green data are the results in the MS scheme with
μ ¼ jpj. The results in the MS scheme after running to 2 GeVare
shown by the blue data. The black curves represent the fits using
Eq. (58) with data in p2 ∈ ½9 GeV2; 18=a2� and Eq. (59a) with
data in a2p2 ∈ ½1.5; 9� for the RI=MOM and RI=SMOM
schemes, respectively. The red curve in the lower panel represents
the fit using Eq. (59b) with data in a2p2 ∈ ½0.3; 9�.
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0.15 fm, we apply the same fit ansatz to extrapolate the
results from the intermediate RI=MOM scheme to the
a2p2 → 0 limit, and the corresponding fit region is
p2 ∈ ½9 GeV2; 18=a2�. For the two largest lattice spacing
ensembles (24D and 24DH), we apply linear extrapolation
to remove the a2p2 dependence since the region p2 ∈
½9 GeV2; 18=a2� is not sufficiently wide and the fit results
on these two ensembles will suffer large uncertainties
if using the fit ansatz which includes the ða2p2Þ3 term.

The χ2=d:o:f: of the RCs in most of the cases are smaller
than 1; for each much smaller than 1, one might have the
concern of a possible overestimate of the statistical uncer-
tainty of the RC. However, as shown in Tables VI and VIII,
the statistical uncertainty is much smaller than some of the
systematic uncertainties. Therefore, such an overestimate
will not change the total uncertainty. The SMOM scheme is
not applied to the DSDR ensembles since the available data
points are very limited due to the large lattice spacing and

TABLE XVII. The RCs of the scalar, pseudoscalar and tensor operators in the MS scheme at μ ¼ 2 GeV obtained through the
RI=MOM and RI=SMOM schemes. For the convenience of the quark mass and matrix element calculations, we separate the
uncertainties of ZS=P through the RI=MOM scheme into three parts: statistical error, systematic error from the fixed order truncation in
the conversion ratio, and the other systematic errors listed in Table VI. The first and third errors are independent across different
ensembles, while the second one is correlated and will be suppressed in the continuum extrapolation.

ZMS
q ð2 GeVÞ ZMS

S ð2 GeVÞ ZMS
P ð2 GeVÞ ZMS

T ð2 GeVÞ
Ensemble MOM SMOM MOM SMOM MOM SMOM MOM SMOM

HISQ12L 1.233(06) 1.214(28) 1.221(06)(39)(15) 1.181(65) 1.274(13)(39)(40) 1.236(75) 1.150(07) 1.147(58)
HISQ12H 1.245(07) 1.227(31) 1.230(11)(40)(21) 1.258(87) 1.273(33)(40)(53) 1.172(43) 1.155(07) 1.156(48)
HISQ09H 1.190(05) 1.175(12) 1.057(02)(25)(07) 1.050(59) 1.075(04)(24)(18) 1.055(46) 1.149(05) 1.153(13)
HISQ06 1.152(04) 1.148(12) 0.946(02)(15)(05) 0.962(21) 0.950(04)(14)(18) 0.961(22) 1.154(04) 1.160(08)
HISQ04 1.130(03) 1.125(09) 0.894(01)(10)(06) 0.893(21) 0.898(01)(09)(16) 0.892(24) 1.160(04) 1.162(05)
24D 1.364(24) � � � 1.407(07)(51)(14) � � � 1.426(16)(51)(30) � � � 1.229(9) � � �
24DH 1.368(23) � � � 1.426(08)(51)(21) � � � 1.452(24)(51)(49) � � � 1.235(9) � � �
32Dfine 1.298(11) � � � 1.212(06)(54)(19) � � � 1.248(16)(54)(26) � � � 1.180(08) � � �
48I 1.233(06) 1.220(27) 1.133(02)(37)(09) 1.151(57) 1.152(06)(36)(20) 1.153(61) 1.156(07) 1.163(30)
64I 1.188(05) 1.175(16) 1.034(01)(24)(06) 1.040(55) 1.044(02)(22)(17) 1.039(58) 1.150(05) 1.155(12)
48If 1.166(04) 1.159(12) 0.991(01)(19)(05) 1.001(45) 1.008(02)(18)(18) 0.985(59) 1.150(04) 1.156(10)
32If 1.149(04) 1.140(12) 0.965(01)(18)(05) 0.970(50) 0.974(02)(17)(16) 0.971(40) 1.149(04) 1.152(09)

TABLE XVIII. The fit range, fit results and χ2=d:o:f: for the different RCs from the RI=MOM scheme on the 12 gauge ensembles. For
most of the ensembles here, the fit ranges are chosen to be p2 ∈ ½9 GeV2; 18=a2� and the fit ansatzes are defined in Eqs. (35), (47), (49),
and (58) for the four renormalization constants, respectively. For the two largest lattice spacing ensembles (24D and 24DH), we apply
linear extrapolations to remove the a2p2 dependence since the region p2 ∈ ½9 GeV2; 18=a2� is not sufficiently large and the fit result will
suffer large uncertainties if using the fit ansatz which includes the ða2p2Þ3 term. The χ2=d:o:f: of ZMS

P ð2 GeVÞ=ZV are smaller than those
of the other RCs since they have the largest statistical errors compared to the other RCs, which is caused by the contamination from the
infrared physics mentioned in Sec. IV B.

ZMS
q ð2 GeVÞ=ZV ZMS

S ð2 GeVÞ=ZV ZMS
P ð2 GeVÞ=ZV ZMS

T ð2 GeVÞ=ZV

Ensemble Range Results χ2=d:o:f: Range Results χ2=d:o:f: Range Results χ2=d:o:f: Range Results χ2=d:o:f:

HISQ12L [3.4,18] 1.1117(13) 0.21 [3.4,18] 1.101(05) 0.21 [3.4,18] 1.149(12) 0.09 [3.4,18] 1.0375(04) 1.10
HISQ12H [3.4,18] 1.1214(15) 0.31 [3.4,18] 1.083(10) 0.32 [3.4,18] 1.147(30) 0.06 [3.4,18] 1.0413(09) 0.83
HISQ09H [1.8,18] 1.0986(05) 0.56 [1.8,18] 0.975(02) 0.24 [1.8,18] 0.992(04) 0.10 [1.8,18] 1.0604(02) 1.50
HISQ06 [0.8,18] 1.0847(11) 0.09 [0.8,18] 0.891(02) 0.01 [0.8,18] 0.895(04) 0.01 [0.8,18] 1.0864(03) 0.11
HISQ04 [0.4,18] 1.0742(24) 1.30 [0.4,18] 0.850(01) 0.10 [0.4,18] 0.853(01) 0.05 [0.4,18] 1.1023(01) 0.93
24D [7.0,10] 1.1191(36) 0.16 [9.0,13] 1.155(05) 0.23 [9.0,13] 1.170(13) 0.05 [9.0,13] 1.0089(09) 1.50
24DH [7.0,10] 1.1178(60) 0.04 [9.0,13] 1.165(07) 0.15 [9.0,13] 1.186(20) 0.01 [9.0,13] 1.0090(13) 0.58
32Dfine [5.0,18] 1.1371(38) 0.12 [5.0,18] 1.062(05) 0.15 [5.0,18] 1.093(14) 0.06 [5.0,18] 1.0339(11) 1.40
48I [3.0,18] 1.1177(11) 0.18 [3.0,18] 1.026(02) 0.16 [3.0,18] 1.044(05) 0.04 [3.0,18] 1.0472(04) 0.45
64I [1.7,18] 1.1009(05) 0.68 [1.7,18] 0.959(01) 0.05 [1.7,18] 0.968(02) 0.05 [1.7,18] 1.0658(01) 0.42
48If [1.2,18] 1.0899(03) 1.70 [1.2,18] 0.927(01) 0.12 [1.2,18] 0.942(02) 0.19 [1.2,18] 1.0745(01) 1.20
32If [0.9,18] 1.0797(04) 1.30 [0.9,18] 0.906(01) 0.16 [0.9,18] 0.914(02) 0.06 [0.9,18] 1.0793(02) 1.20
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nonperturbative effects in the small a2p2 region. Generally
speaking, both the statistical and systematic uncertainties
are suppressed at smaller lattice spacing, since the calcu-
lation with higher momentum will have smaller quantum
fluctuation and will thus be more precise.
In RI=MOM scheme, there is an unphysical mass pole in

the calculation of each of ZS=ZV and ZP=ZV . Thus, we
have to use Eqs. (43) and (44) to remove these mass poles
and obtain the results in the chiral limit; however, for
Zq=ZV and ZT=ZA we can do linear chiral extrapolations.
The MS results of the quark bilinear operators through the
RI=MOM scheme are almost linearly dependent on a2p2.
It is surprising that the deviation from the linear behavior is
still less than 1% at a2p2 ¼ 14, or more precisely,
a2p2

μ ≃ a2p2=4 ¼ 3.5. It allows us to use the data at large
a2p2 to suppress the influence of the nonperturbative
effects, and guarantees a reliable a2p2 polynomial fit when
we extract the renormalization constant through the
RI=MOM scheme. Ultimately, most of the RC uncertainties
are due to the truncation error in the matching factors,
which can be larger than 1% for ZS=P for most of the lattice
spacings. But such an uncertainty is correlated across all the
lattice spacings, and is suppressed at smaller lattice spacing
thanks to a larger fit range. Thus, we can separate the
uncertainty of each RC into two pieces, that from the match-
ing and the others, and treat them differently in the
continuum extrapolation. For example, assuming the renor-
malized light quark masses at 0.114 and 0.084 fm lattice
spacings are 3.34(4)(10) MeV and 3.34(4)(7) MeV respec-
tively, with the second error from the matching (and fully
correlated at the two lattice spacings) and the first error
from the other sources independent at the two lattice
spacings, then the final result will be something like
3.34(9)(5) MeV, where the first error is obtained by
applying a linear fit to the results on these two ensembles,
or alternatively through error propagation, and the second
error is estimated assuming the truncation error in the
matching of the RCs linearly decreases with decreasing
lattice spacing.

In order to illustrate and compare the discretization errors
of the RCs at different lattice spacings, we normalize
ZRI=MOM
S;T ðp2; aÞ at different lattice spacings under the

RI=MOM scheme with the corresponding MS values

ZMS
O ð2 GeV; aÞ at 2 GeV, with the following definitions:

ZRI=MOM;norm
O ðp2;aÞ
¼ZRI=MOM

O ðp2;aÞ=ZMS
O ð2GeV;aÞ;

ZRI=MOM;subn
O ðp2;aÞ
¼ZRI=MOM;norm

O ðp2;aÞ

−
P

n
i¼1C

O;M
i ða2p2Þi

ZMS
O ð2GeV;aÞCMS;RI=MOM

O ðp2ÞRMS
O ðjpj;2GeVÞ

; ð62Þ

where RMS
O ðμ1; μ2Þ is the evolution ratio under the MS

scheme from the scale μ1 to μ2. Z
RI=MOM;norm
O can also

be calculated under dimensional regularization and it is

simply ZRI=MOM;norm
O ðp2; ϵÞ≡ ðCMS;RI=MOM

O ðp2ÞRMS
O ðjpj;

2 GeVÞÞ−1, and ZRI=MOM;subn describes the normalized
RI=MOM renormalization constant when the discretization
error up to ða2p2Þn order is subtracted.
Since the window we used for the RI=MOM case covers

all the data in the range p2 > 9 GeV2 and the discretization
error is relatively small, we just compare the original
ZRI=MOM;norm
S=T ðp2; aÞ and the ZRI=MOM;sub1

S=T ðp2; aÞ with their

counterpart ZRI=MOM;norm
S=T ðp2; ϵÞ in the dimensional regulari-

zation, as shown in Fig. 13. One can see that the difference
between ZRI=MOM;norm

S=T ðp2; aÞ and ZRI=MOM;norm
S=T ðp2; ϵÞ

becomes smaller when the lattice spacing becomes smaller,
and the subtraction of the lineara2p2 correction improves the
convergence of the ZRI=MOM;sub1

S=T ðp2; aÞ significantly.
Compared with the RI=MOM scheme cases, the effect of

the unphysical mass pole is much smaller in the RI=SMOM
scheme. So we only choose the linear chiral extrapolation

TABLE XIX. The fit range, fit results and χ2=d:o:f: for the different RCs from the RI=SMOM scheme on the 9 gauge ensembles.

ZMS
q ð2 GeVÞ=ZV ZMS

S ð2 GeVÞ=ZV ZMS
P ð2 GeVÞ=ZV ZMS

T ð2 GeVÞ=ZV

Ensemble Range Results χ2=d:o:f: Range Results χ2=d:o:f: Range Results χ2=d:o:f: Range Results χ2=d:o:f:

HISQ12L [1.0,9.0] 1.0953(45) 0.42 [2.0,9.0] 1.065(14) 0.36 [2.0,9.0] 1.115(15) 0.85 [1.0,9.0] 1.0347 (43) 1.30
HISQ12H [1.0,9.0] 1.1064(37) 0.04 [2.0,9.0] 1.134(23) 0.48 [2.0,9.0] 1.057(22) 0.06 [1.0,9.0] 1.0426(28) 0.12
HISQ09 [1.5,9.5] 1.0845(36) 0.07 [3.5,9.5] 0.969(05) 0.07 [3.5,9.5] 0.974(05) 0.44 [1.5,9.5] 1.0642(24) 0.01
HISQ06 [1.0,9.0] 1.0813(78) 0.01 [2.0,9.0] 0.906(02) 1.00 [2.0,9.0] 0.905(02) 0.96 [1.0,9.0] 1.0923(41) 0.01
HISQ04 [1.0,9.0] 1.0690(23) 0.04 [2.5,9.0] 0.848(02) 0.97 [2.5,9.0] 0.847(02) 0.38 [1.0,9.0] 1.1049(19) 0.01
48I [1.0,9.0] 1.1056(37) 0.13 [3.0,9.0] 1.043(07) 0.18 [3.0,9.0] 1.045(07) 0.28 [1.0,9.0] 1.0536(27) 0.10
64I [1.8,9.0] 1.0891(46) 0.10 [3.5,9.0] 0.964(06) 0.30 [3.5,9.0] 0.963(06) 1.40 [1.0,9.0] 1.0709(25) 0.09
48If [1.0,9.0] 1.0836(22) 0.19 [2.5,9.0] 0.936(02) 0.92 [3.0,9.0] 0.920(04) 0.23 [1.0,9.0] 1.0803(17) 0.06
32If [1.5,9.5] 1.0708(46) 0.06 [2.5,9.5] 0.911(02) 0.95 [2.5,9.5] 0.913(02) 1.80 [1.5,9.5] 1.0817(34) 0.02
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to obtain the results in the chiral limit. The perturbative
convergence of the scalar and pseudoscalar operators in the
RI=SMOM scheme are better than that in the RI=MOM
scheme when matched to the MS scheme, while the
situation is opposite for the tensor operator. After con-
verting the results calculated with the RI=SMOM scheme
to MS 2 GeV, the data show very strong dependence on
a2p2; it leads to a large systematic error caused by the fit
region of a2p2, and it contributes most of the uncertainty

to ZMS
q ð2 GeVÞ. For the renormalization constants of

the quark field ZMS
q ð2 GeVÞ and tensor operator

ZMS
T ð2 GeVÞ, the effects of the 1=ða2p2Þ pole are much

smaller compared to those in the scalar and pseudoscalar
cases. For the results of the scalar and pseudoscalar
operators, we find the form with an additional 1=ða2p2Þ
term can have a better description of the data at small
1=ða2p2Þ, while the prediction will differ from that without

this term. Most of the systematical errors of ZMS
S ð2 GeVÞ

and ZMS
P ð2 GeVÞ come from this deviation.

We can also make a similar comparison for the
RI=SMOM case for the discretization error, with the
following definitions,

ZRI=SMOM;norm
O ðp2;aÞ
¼ZRI=SMOM

O ðp2;aÞ=ZMS
O ð2GeV;aÞ;

ZRI=SMOM;subn
O ðp2;aÞ
¼ZRI=SMOM;norm

O ðp2;aÞ

−
P

n
i¼1C

O;S
i ða2p2Þi

ZMS
O ð2GeV;aÞCMS;RI=SMOM

O ðp2ÞRMS
O ðjpj;2GeVÞ

: ð63Þ

As shown in Fig. 14, the original lattice data of
ZRI=SMOM;norm have huge discretization errors, and the
effect is still obvious even after the linear and quadratic
terms of a2p2 are subtracted. At the same time, there

is a sizable difference between ZRI=SMOM;norm
S ðp2; ϵÞ≡

ðCMS;RI=SMOM
O ðp2ÞRMS

O ðjpj; 2 GeVÞÞ−1 under dimensional

regularization and ZRI=SMOM;sub2
O ðp2; aÞ in the small p2

region, which is illustrated in Fig. 14(b); one can see that
the difference becomes larger approaching the continuum
limit in the region p2 ∈ ½5 GeV2; 40GeV2�. It suggests that
there is an unknown effect which should be removed before
the accurate scalar renormalization constant can be
extracted using the SMOM data in the small p2 region.
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FIG. 13. Normalized RI=MOM renormalization constants under the MS scheme (black lines) and lattice regularization (colored
bands). The two left panels show the ZS (upper panel) and ZT (lower panel) cases based on the original lattice results, and the right
panels show the cases with the linear a2p2 correction subtracted.
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VI. SUMMARY

In this work we systematically studied the RCs of quark
field Zq and bilinear quark operators (ZV , ZS, ZP, and ZT)
using the intermediate RI=MOM and RI=SMOM schemes.
We used the overlap valence quark on 2þ 1 DWF gauge
ensembles and 2þ 1þ 1 HISQ gauge ensembles. The
PCAC relation has been used to obtain the RC of axial
vector current. The ratios of Zq to ZV were obtained by the
bare amputated Green function of the axial vector operator.
The ratios of other RCs toZV were obtained though the ratios
of appropriate vertex functions. We converted the RCs to the
MS scheme and used the corresponding anomalous dimen-
sions to run the energy scale to 2GeV.After extrapolating the
results to the a2p2 → 0 limit, we obtained consistent results
from the intermediate RI=MOM and RI=SMOM schemes.
These results are summarized in Table XVII.

We also present these results in Fig. 15. The red and blue
data represent the RCs from the RI=MOM and RI=SMOM
schemes, respectively; the filled boxes are the results on
the HISQ ensembles while the open circles are the results
on the DWF ensembles. Though the bare coupling con-
stants are very different between the HISQ and DWF
ensembles (6=g2 ∼ 3.6 and 2.2 respectively at a ≃ 0.1 fm),
our results show the RCs are more sensitive to the lattice
spacing rather than the bare coupling constants. It means
that the bare g2 is not suitable to be used in the perturbative
expansion. A more suitable coupling constant is very close
to the one in the MS scheme [41], which is sensitive to π=a
but not g2. It also suggests that one can combine the
renormalized overlap fermion results on both the HISQ
and DWF ensembles to obtain a more reliable con-
tinuum limit.
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FIG. 14. Normalized RI=SMOM renormalization constants under the MS scheme (black lines) and lattice regularization (colored
bands). The curves in (a) show the large discrepancy between results under the lattice regularization and dimension regularization,
especially the results on the relatively larger lattice spacing ensembles, which decrease and then increase with increasing p2. The
discretization errors shown in the right panels are larger than that in the RI=MOM case even after the linear and quadratic terms of a2p2

in ZRI=SMOM
O ðp2; aÞ have been subtracted. From (b), one can see that the differences between the dimensional regularized values

ZRI=SMOM;norm
S ðp2; ϵÞ (black bands) and the lattice regularized values ZRI=SMOM;sub2

S ðp2; aÞ (colored bands) at small p2 become larger
when the lattice spacing a becomes smaller; the results on the smaller lattice spacing ensembles are consistent with DR result only when
p2 becomes larger, which can be seen by comparing the orange and black lines.
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In the appendix, we show the preliminary results of the
scalar and tensor renormalization constants using the
interpolating momentum (IMOM) scheme [7,36,42], with
different momentum transfer factor ω≡ ðp2 − p1Þ2=p2

1.
The results suggest that the results with different ω can be
quite sensitive to ω even though they become closer at finer
lattice spacing. Thus the schemes with nonzero momentum
transfer can suffer from additional systematic uncertainties
and require careful treatment, even though the perturbative
convergence in certain cases is extremely good. We note
that the 4-loop perturbative matching of the tensor operator
from the RI0 scheme to MS scheme has been obtained
recently [5]; it shows the 4-loop correction is very small.
We hope the 4-loop perturbative matching of the scalar
operator can be obtained in the future and it will be
very important to improve the precision of ZS from the
RI=MOM scheme.
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APPENDIX: RESULTS THROUGH THE
INTERPOLATING-MOMENTUM SCHEME

In the appendix, we provide preliminary results to
renormalize the scalar quark operator using the interpolat-
ing momentum (IMOM) scheme [7,36,42]. The momenta
in the IMOM scheme are chosen to be

p2
1 ¼ p2

2 ¼ μ2; ðp2 − p1Þ2 ¼ ωμ2: ðA1Þ

The value of ω ranges from 0 to 4, and ω ¼ 0 and ω ¼ 1
correspond to the RI=MOM and RI=SMOM schemes,
respectively. The renormalization conditions in an IMOM

scheme are similar as those in the SMOM scheme in
Eq. (15) except the momentum is set by Eq. (A1). There are
two choices of momentum which can satisfy the condition
(15), as shown in Table XX. Note that on certain lattices
such as HISQ12H (L3 × T ¼ 243 × 64), the momenta
which can be used with Scenario B are very limited and
make a reliable result inaccessible.
In Fig. 16, we plot the valence quark mass dependence of

ZIMOM
S =ZV on the 64I ensemble in two scenarios. Both of

TABLE XX. Different momentum scenario of IMOM scheme
with different ω.

ω p1 p2

Scenario A

ω ¼ 1 (q, q, 0, 0) (q, 0, q, 0)
ω ¼ 2 (q, q, 0, 0) (0, 0, q, q)
ω ¼ 3 (q, q, 0, 0) (0,−q, q, 0)
ω ¼ 4 (q, q, 0, 0) (−q,−q, 0, 0)

Scenario B

ω ¼ 1 (q, q, q, q) (−q, q, q, q)
ω ¼ 2 (q, q, q, q) (−q,−q, q, q)
ω ¼ 3 (q, q, q, q) (−q,−q,−q, q)
ω ¼ 4 (q, q, q, q) (−q,−q,−q,−q)

FIG. 17. The valence quark mass dependence of ZIMOM
T =ZV on the 64I ensemble with different ω when a2p2 ¼ 3.26 for scenario A

and a2p2 ¼ 3.13 for scenario B.

FIG. 16. The valence quark mass dependence of ZIMOM
S =ZV on the 64I ensemble with different ω when a2p2 ¼ 3.26 for scenario A

and a2p2 ¼ 3.13 for scenario B.
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them show the more insensitive dependence on the quark
mass compared with the RI=MOM case. As we did in the
RI=SMOM scheme, we linearly extrapolate the results in
the IMOM scheme to the chiral limit. Similarly, the tensor

current case is also insensitive to quark mass as shown
in Fig. 17.
The results in MS can be obtained by multiplying the

corresponding matching factors CMS;IMOMω
S , which can be

expressed as

CMS;IMOMω
S=T ¼ 1þ

X3
i

�
αs
4π

�
i
Cω
S=T;i; ðA2Þ

and the coefficientsCω
S=T;i are listed in Table XXI. The result

of the RI=SMOM casewithω ¼ 1 has been calculated at the
three-loop level [37], while only the two-loop results are
available for arbitrary ω cases [42,46,47].
Then one can evolve the results to 2 GeV using the

anomalous dimension of the MS scheme, and obtain the

ZMS
S =ZVð2 GeVÞ shown in Fig. 18, with different ω using

either scenario A (left panel) or scenario B (right panel).
The tensor current case is plotted in Fig. 19. One can see
that the cutoff effect with scenario A can introduce
mutation at a2p2 ∼ 5 when ω ¼ 3 or 4, and then it is very
hard to fit the data. Using the parametrizations defined in

FIG. 18. The results of ZMS
S =ZV on the 64I ensemble obtained through the intermediate schemes with different ω in different scenarios.

FIG. 19. The results of ZMS
T =ZV on the 64I ensemble obtained through the intermediate schemes with different ω in different scenarios.

TABLE XXI. The coefficients of the matching factors for scalar
and tensor operators with different ω [37,42,46,47]. The 3-loop
coefficients with ω ≠ 1 are not available in the literature and
marked as “N/A” in the table.

ω Cω
S;1 Cω

S;2 Cω
S;3

1 0.646 −4.014nf þ 23.024 2.184n2f−169.923nfþ889.742
2 −1.994 1.080nf þ 34.591 N=A
3 −4.042 1.195nf − 70.621 N=A
4 −5.757 3.099nf − 95.751 N=A

ω Cω
T;1 Cω

T;2 Cω
T;3

1 −0.215 4.103nf−43.384 −7.064n2fþ309.829nf−1950.761
2 −0.347 4.250nf−38.902 N=A
3 −0.454 4.369nf−34.277 N=A
4 −0.548 4.464nf−31.180 N=A
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Eqs. (51) and (59a), we obtain ZMS
S;T=ZVð2 GeVÞ for

different ω and scenarios, and collect the results in
Tables XXII and XXIII, with only the statistical uncer-
tainties. The fit ranges are same as those listed in
Table XIX and the corresponding χ2=d:o:f: of fits are
smaller than 1. We also illustrate the results at different

lattice spacing and schemes in Fig. 20, with the data on
the HISQ ensembles marked with blue rectangles. As
shown in the figure, the scheme dependence becomes
somehow weaker at smaller lattice spacing, but not as
fast as an Oða2Þ effect. It means that using the IMOM
scheme can be more nontrivial to control the systematic
uncertainties.

TABLE XXII. The fit results of ZMS
S =ZV ð2 GeVÞ from the IMOM scheme with different ω in different scenario on the 7 gauge

ensembles.

ω ¼ 0 ω ¼ 1 ω ¼ 2 ω ¼ 3 ω ¼ 4

Ensemble Scenario B Scenario A Scenario B Scenario A Scenario B Scenario B Scenario B

HISQ09 0.975(02) 0.969(05) 1.016(4) 0.968(3) 0.997(4) 0.974(6) 0.934(08)
HISQ06 0.891(02) 0.906(02) 0.904(2) 0.884(3) 0.889(5) 0.872(8) 0.856(10)
HISQ04 0.850(01) 0.848(02) 0.853(2) 0.835(2) 0.834(2) 0.812(2) 0.800(04)
48I 1.026(02) 1.043(07) 1.063(6) 1.049(4) 1.058(6) 1.029(7) 0.984(12)
64I 0.959(01) 0.964(06) 0.973(3) 0.963(3) 0.950(4) 0.929(5) 0.921(06)
48If 0.927(01) 0.936(02) 0.946(2) 0.916(4) 0.931(3) 0.910(3) 0.894(05)
32If 0.906(01) 0.911(02) 0.925(3) 0.901(6) 0.911(5) 0.894(6) 0.875(09)

TABLE XXIII. The fit results of ZMS
T =ZV ð2 GeVÞ from the IMOM scheme with different ω in different scenario on the 7 gauge

ensembles.

ω ¼ 0 ω ¼ 1 ω ¼ 2 ω ¼ 3 ω ¼ 4

Ensemble Scenario B Scenario A Scenario B Scenario A Scenario B Scenario B Scenario B

HISQ09 1.0604(02) 1.0642(24) 1.0688(22) 1.0671(16) 1.0660(17) 1.0503(15) 1.0361(17)
HISQ06 1.0864(03) 1.0923(41) 1.0964(35) 1.0958(31) 1.0850(29) 1.0740(26) 1.0654(24)
HISQ04 1.1023(01) 1.1049(19) 1.1093(18) 1.1067(13) 1.1041(13) 1.0946(11) 1.0873(13)
48I 1.0472(04) 1.0536(27) 1.0573(31) 1.0580(21) 1.0505(22) 1.0333(20) 1.0122(27)
64I 1.0658(01) 1.0709(25) 1.0783(17) 1.0745(12) 1.0732 (12) 1.0579(10) 1.0443(13)
48If 1.0745(01) 1.0803(17) 1.0849(15) 1.0834(12) 1.0791(12) 1.0646(11) 1.0531(12)
32If 1.0793(02) 1.0817(34) 1.0874(35) 1.0847(23) 1.0838(27) 1.0709(22) 1.0581(21)

FIG. 20. The results of ZMS
S ð2 GeVÞ and ZMS

T ð2 GeVÞ on the different gauge ensembles. The different curves represent the results
obtained from different ω choices in the IMOM schemes. The data in the blue rectangles are the results on the HISQ ensembles.
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