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The advantage of simulating lattice field theory with quantum computers is hamstrung by the limited
resources that induce large errors from finite volume and sizable lattice spacings. Previous work has
shown how classical simulations near the Hamiltonian limit can be used for setting the lattice spacings
in real time through analytical continuation, thereby reducing errors in quantum simulations. In this
work, we derive perturbative relations between bare and renormalized quantities in Euclidean spacetime
at any anisotropy factor—the ratio of spatial to temporal lattice spacings—and in any spatial dimension
for UðNÞ and SUðNÞ. This reduces the required classical preprocessing for quantum simulations. We
find less than 10% discrepancy between our perturbative results and those from existing nonperturbative
determinations of the anisotropy for SUð2Þ and Uð1Þ gauge theories. For the discrete groups Z10, Z100

and BI, we perform lattice Monte Carlo simulations to extract anisotropy factors and observe similar
agreement with our perturbative results.
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I. INTRODUCTION

Quantum computers can make predictions of nonper-
turbative quantum field theories beyond the reach of
classical resources [1–4]. However, quantum simulations
are constrained by limited and noisy resources, and will
continue to be so for the foreseeable future. Current
estimates suggest ∼10 logical qubits per gluon link should
suffice to digitize SUð3Þ [4–11], with similar requirements
for Uð1Þ and SUð2Þ [4–8,11–31]. The total number of
qubits required depends on the phenomena studied;
OððL=aÞ3Þ links are usually required for a 3þ 1d lattice
gauge theories, exacerbating the qubit requirement.
Quantum error corrections can further introduce an over-
head of Oð101−5Þ [32–34] physical qubits per logical qubit
depending on platform. For the gate costs to implement the
time evolution of the theory under a lattice Hamiltonian,

Oð1049Þ T gates are required to compute the shear viscosity
with Oð105Þ logical qubits [9]. This upper bound can be
reduced, e.g. by controlling only errors on low-lying states
[35,36]. Even with these reductions, quantum resources
are far beyond near-term devices. Further, this estimate
neglects state preparation, which often dominates the total
gate costs [37].
Resources can in principle be reduced by using more

clever quantum subroutines and performing better classical
processing. Gate reductions may be possible via other
approximations of UðtÞ [38–43]. Lattice-field-theory spe-
cific error correction [44,45] or mitigation [46–57] could
help further. Recently, quantum circuits for Hamiltonians
with reduced lattice artifacts [58,59] were constructed [60].
A full accounting of resources should also consider any
reductions through classical computations. Lattice calcu-
lations have a number of steps that can potentially be
offloaded to classical resources. The first suggested was
to use Euclidean lattice ensembles to perform stochastic
state preparation yielding shallower individual circuits
[61–64]. Euclidean lattice simulations on classical com-
puters help to quantify the scheme-dependent systematic
errors [6,10,19,65–67]. Further, classical simulations can
be used to set the scales, which via analytical continuation
[68,69] give the lattice spacings of the quantum simulation
with few or no quantum resources [70,71].
Although in [70] the connection between lattice

Hamiltonian at finite real-time temporal lattice spacing
at and Euclidean temporal lattice spacing aτ was made,
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the final step of connecting the Hamiltonian to the bare
parameters used in Euclidean action was missing. The
brute-force approach would compute multiple anisotropies
ξ ¼ a=aτ for a fixed spatial lattice spacing a and then
extrapolate to the desired ξ used in the quantum simulation,
analogous to studies of the relation between Euclidean and
Hamiltonian limits [72,73]. While this will become the
practice as quantum lattice simulations become a precision
endeavor, for now quantum noise and low shot rates
dominate the error budget of calculations [74–76], burying
errors from determining ξ. Thus, the idea of perturbative
calculations of ξ becomes attractive, as it directly gives a
fixed ξ trajectory in terms of the bare parameters. This
implies that only the measurement of the spatial lattice
spacing a through Euclidean simulation is required—
reducing the classical computing resources. Through
analytical continuation to Minkowski spacetime, spatial
(temporal) spacings, a (at), are determined for quantum
simulations [70].
In this paper, we perform the one-loop perturbative

calculation of ξ using the background field method
[77–80]. In the early days of lattice QCD, this technique
along with other methods [81,82] were used to compute the
scale parameter Λ [83,84], high-energy scattering [85]. Of
relevance to quantum simulations, this included matching
isotropic 3þ 1d SUðNÞ lattice results to the Hamiltonian
limit (ξ → ∞) [86]. Later, this was extended to arbitrary
anisotropy [87] and to the Hamiltonian limit in 2þ 1d [88].
Here, we present a unified derivation of ξ for UðNÞ and
SUðNÞ for arbitrary dimensions and anisotropy. We will
focus on the Wilson action and consider its connection
to the Kogut-Susskind Hamiltonian. Similar studies can
be carried out for quantum simulations of improved
Hamiltonians [58–60] following initial work in 3þ 1d
SUðNÞ [89–93]. Since continuous gauge theories can be
digitized for quantum simulations with discrete subgroups,
we further explore whether our perturbative calculations for
the continuous group can predict discrete subgroup results.
This paper is organized as follows. In Sec. II, we review

the background field method and show how to perturba-
tively compute the renormalized anisotropy. This is fol-
lowed by Sec. III and Sec. IV where the special cases of
Uð1Þ and SUðNÞ respectively are investigated. We extend
the calculations to UðNÞ in Sec. V. The anisotropy factors
computed perturbatively are compared with Monte Carlo
results for continuous and discrete groups in Sec. VI, to
demonstrate the effectiveness of our perturbative compu-
tations. We leave Sec. VII to conclude and discuss future
work. Details about the integrals involved in the perturba-
tive calculations are in the Appendices.

II. BACKGROUND FIELD METHOD

Euclidean anisotropic lattices are characterized by the
anisotropy ξ ¼ a=aτ. Throughout this work, we will use
Greek indices ðμ; νÞ to indicate spacetime dimensions,

and Latin indices (i, j) to indication spatial dimensions.
Consider the anistropic Wilson action:

SðUÞ ¼
X
x

�
βσ
X
i>j

ReTrPij þ βτ
X
i

ReTrP0i

�
; ð1Þ

with the plaquette term

Pμν ¼ 1 −Ux;xþμUxþμ;xþμþνU
†
xþν;xþμþνU

†
x;xþν: ð2Þ

The two couplings in Eq. (1) are necessary in order to keep
physics unchanged under independent variations of a
and ξ. They are parametrized as

βσ ¼
z

g2σða; ξÞ
ξ−1 and βτ ¼

z
g2τða; ξÞ

ξ: ð3Þ

Wewill use z ¼ 2 forSUðNÞ andUðNÞ groups, and z ¼ 1 for
Uð1Þ to ensure the canonical kinetic term in the continuum
limit. The speed of light is defined as c ¼ gσ=gτ. We will
denote the two couplings as gμ, with gμ ¼ gσðgτÞ for μ in the
spatial direction (temporal direction). In the weak-coupling
limit, the gμða; ξÞ can be expanded in terms of the isotropic
value β ¼ zg−2E ðaÞ as

1

g2μða; ξÞ
¼ 1

g2EðaÞ
þ cμðξÞ þOðg2E; ξÞ ð4Þ

and ξ ¼ 1 returns the usual isotropic formulation of a lattice
gauge theory with gσ ¼ gτ ¼ gE. In the weak-coupling
regime, the speed of light is given by

c ¼ gσða; ξÞ
gτða; ξÞ

: ð5Þ

In a more symmetric fashion, the action of Eq. (1) can
also be rewritten as

SðUÞ ¼ z
g2ξ

X
x

�
ξ̄−1

X
i>j

ReTrPij þ ξ̄
X
i

ReTrP0i

�
; ð6Þ

where the bare couplings g2ξ ¼ gσgτ ≡ z=βξ and the bare
anisotropy ξ̄ ¼ cξ are introduced; for every ða; ξÞ pair there
is a corresponding pair of bare couplings ðβξ; ξ̄Þ. Following
Eq. (4), we have

1

g2ξ
≈

1

g2EðaÞ
þ cτðξÞ þ cσðξÞ

2
: ð7Þ

The functions cτðξÞ and cσðξÞ can be found by calculating

the effective action SðξÞeff of the lattice gauge theory for the
two different lattice regularization procedures with ξ ¼ 1
and ξ ≠ 1. Requiring that in the continuum limit the
effective action is independent of regularization, we have
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ΔSeff ¼ Sðξ¼1Þ
eff − Sðξ≠1Þeff ¼ 0: ð8Þ

This leads to the determination of cτðξÞ and cσðξÞ. The
effective action can be perturbatively calculated using the
background field method on the lattice [83].
We will denote BμðxÞ as the background field that solves

the classical lattice equation of motion. With the fluctuating
field αμ, the lattice gauge variables can be parametrized as

Ux;xþμ ¼ eiugEaμαμðxÞUð0Þ
x;xþμ;

Uð0Þ
x;xþμ ¼ eiuaμBμðxÞ: ð9Þ

For general dimensions, the couplings and fields may not
be dimensionless, thus we rescale the couplings by a factor
of u ¼ aD=2−2. Note that for one-loop calculations, we can
use the isotropic coupling gE in these exponents instead
of gμ. The covariant derivatives are defined as

DμfðxÞ ¼
1

aμ
ðUx;xþμfðxþ μÞU†

x;xþμ − fðxÞÞ;

D̄μfðxÞ ¼
1

aμ
ðU†

x−μ;xfðx − μÞUx−μ;x − fðxÞÞ: ð10Þ

The lattice derivatives ΔμfðxÞ and Δ̄μfðxÞ follow from

Eq. (10) by setting Ux;xþμ ¼ 1. Taking Ux;xþμ → Uð0Þ
x;xþμ

defines Dð0Þ
μ fðxÞ, D̄ð0Þ

μ fðxÞ. The lattice action can be

expanded around Ux;xþμ ¼ Uð0Þ
x;xþμ as

SðUÞ ¼ S0 þ S2 þ � � � ; ð11Þ

where S0 ¼ SðUð0ÞÞ and S2 includes terms quadratic in αμ.
To preserve the gauge symmetry of the background field,
we work in the background Feynman gauge [94] which
requires adding the gauge-fixing term

Sgf ¼ aD−1aτ
X
x

Tr

�X
μ

D̄ð0Þ
μ αμðxÞ

�
2

ð12Þ

and an associated ghost term SghðϕÞ for a ghost field ϕ
when a non-Abelian gauge theory is considered:

Sgh ¼ 2aD−1aτ
X
x;μ

Tr½ðDð0Þ
μ ϕðxÞÞ†ðDð0Þ

μ ϕðxÞÞ�: ð13Þ

The partition function can be calculated as

Z≡
Z

½dU�e−SðUÞ

≈ e−S0
Z

½dα�½dϕ�e−ðS2þSgfþSghÞð1þOðg2EÞÞ

≈ e−S0
Z

½dϕ�e−Sgh
Z

½dα�e−Sfreee−S02

≈
Z

½dϕ�e−Sgh
Z

½dα�e−Sfree
�
1 − S0 − S02 þ

S022
2

þ � � �
�

∝ e−S
ðξÞ
eff ≈ 1 − SðξÞeff þ � � � ; ð14Þ

where we have extracted the free action Sfree for the
fluctuating field αμ from S2 þ Sgf and denote the rest
as S02. On the fourth line, we have Taylor expanded e

−S0−S02 .
In this article, we consider the F2

μν term in SeffðξÞ at one
loop. This gives the Oðg0EÞ corrections cτðξÞ and cσðξÞ.
Matching terms in Eq. (14) we see SðξÞeff is related to
expectation values computed with respect to Sfree:

SðξÞeff ¼ S0 þ hS02i −
1

2
hS022 i þ hSghiϕ: ð15Þ

Similarly, the contributions from Sgh can be calculated as
hSghiϕ. Higher loop corrections carry additional factors of

the coupling g2E and are negligible at weak coupling.

III. Uð1Þ GAUGE THEORY

We apply the background field methods to UðNÞ and
SUðNÞ to compute the perturbative relations for Euclidean
lattices at any anisotropy and in any dimension. We will
initially consider the simpler Uð1Þ gauge theory, then
consider the more involved case of SUðNÞ gauge theory,
followed by the UðNÞ gauge theory.
For the Uð1Þ gauge theory, Bμ and αμ are the single

component electromagnetic fields and we can trivially
perform the traces in Eq. (12) to find

Sgf ¼
1

2
aD−1aτ

X
x

�X
μ

D̄ð0Þ
μ αμðxÞ

�
2

; ð16Þ

while the Sfree is found to be

Sfree ¼
1

2
aD−1aτ

X
x;μ;ν

ðΔμανÞðΔμανÞ; ð17Þ

and S02 is given by

S02 ¼ −
a2D−5aτ

8

X
x;μ;ν;a

ðaμaνFμνÞ2ðΔμαν − ΔναμÞ2: ð18Þ

The nonvanishing contributions to Eq. (15) are given by
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SðξÞeff ¼ S0 þ hS02i; ð19Þ

where in Uð1Þ we can neglect the hS022 i term as it only
contributes to higher orders of F2

μν. Further, the ghost term

is zero in Uð1Þ. SðξÞeff for Uð1Þ in arbitrary dimensions can
then be written as

SðξÞeff ¼
1

4

Z
dDx

�X
i

½ðFa
i0Þ2 þ ðFa

0iÞ2�½g−2τ − fτðξÞ�

þ
X
i;k

ðFa
ikÞ2½g−2σ − fσðξÞ�

�
ð20Þ

with

fτðξÞ ¼
1

2ξ

�
1 −

D − 2

D − 1
ξ−1I1ðξÞ

�
;

fσðξÞ ¼
I1ðξÞ
D − 1

: ð21Þ

I1ðξÞ and other integrals required for this paper are defined
in Appendix A, following [87]. One can show I1ð1Þ ¼ D−1

D
and fτðξ → ∞Þ ¼ 0. For ξ ¼ 1, both fμð1Þ ¼ 1=D and
thus g2Eðone-loopÞ ¼ g2E½1þ fτð1Þ� ¼ g2E½1þ 1=D� which
agrees with previous D ¼ 4 calculations [95]. From fμðξÞ,
we obtain

cμðξÞ ¼ fμðξÞ − fμðξ ¼ 1Þ: ð22Þ

These functions are shown in Fig. 1 for 3 and 4 dimensions.
In the ξ → ∞ limit, we show in Appendix B that

I1ðξ → ∞Þ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

2
−

1

16

r
ð23Þ

and that cτðξ → ∞Þ ¼ −1=D. Specific numerical values
when D ¼ 3, 4 are

cτðξ → ∞Þ ¼ −
1

3
;−

1

4
ðD ¼ 3; 4Þ;

cσðξ → ∞Þ ¼ 0.146; 0.148 ðD ¼ 3; 4Þ: ð24Þ

IV. SUðNÞ GAUGE THEORY

We now move to consider the more complicated case of
SUðNÞ. Bμ and αμ can be expanded in terms of the group
generators λa; a ¼ 1;…; N2 − 1:

Bμ ¼ Ba
μλ

a=2; αμ ¼ αaμλ
a=2; ð25Þ

with the generators normalized to Trλaλb ¼ 2δab. Using
the gauge-fixing term in Eq. (12) and the ghost term in
Eq. (13), we can rewrite S2 þ Sgf in terms of a tensor ST,
a scalar Ssc and two vector interactions SA and SB:

ST ¼ −
a2D−5aτ
8N

X
x;μ;ν;a

ðaμaνFa
μνÞ2TrðΔμαν − ΔναμÞ2;

Ssc ¼ aD−1aτ
X
x;μ;ν

Tr½ðDð0Þ
μ ανÞðDð0Þ

μ ανÞ�;

SA ¼ aD−1aτ
X
x;μν

aðD−4Þ=2TrðAμνðxÞFμνðxÞÞ;

SB ¼ 1

2
aD−1aτ

X
x;μ;ν

aðD−4Þ=2TrðBμνðxÞFμνðxÞÞ: ð26Þ

AμνðxÞ and BμνðxÞ are antisymmetric and symmetric in the
vector indices, respectively, and given by

AμνðxÞ ¼ −i
�
2½αν;αμ� þ aν½αν; Dð0Þ

ν αμ�

þ aμ½Dð0Þ
μ αν; αμ� þ

aμaν
2

½Dð0Þ
μ αν; D

ð0Þ
ν αμ�

�

BμνðxÞ ¼ −iðaμ½Dð0Þ
ν αμ; αμ� þ aν½αν; Dð0Þ

μ αν�Þ: ð27Þ

From Ssc, we extract the free action for the αμ field:

Sfree ¼ aD−1aτ
X
x;μ;ν

Tr½ðΔμανÞðΔμανÞ� ð28Þ

and define Ssc;I ¼ Ssc − Sfree. The nonvanishing contribu-
tions to the effective action are given by

SðξÞeff ¼ S0 þ hSTi −
1

2
hS2Ai −

1

2
hS2Bi

þD − 2

D

�
hSsc;Ii −

1

2
hS2sc;Ii

�
ð29Þ

with other terms vanishing. Notice that unlike Uð1Þ, hS22i
terms contribute at leading order. The factor D−2

D comes
from the fact that the ghost field contribution cancels 2 outFIG. 1. Anisotropic coefficients for Uð1Þ in D ¼ 3, 4.
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ofD degrees of freedom of αμ. Where again the expectation
values are calculated with respect to Sfree. The final one-
loop corrected action is given by

SðξÞeff ¼
1

4

Z
dDx

�X
i

½ðFa
i0Þ2 þ ðFa

0iÞ2�½g−2τ − fτðξÞ�

þ
X
i;k

ðFa
ikÞ2½g−2σ − fσðξÞ�

�
: ð30Þ

SUðNÞ, fμðξÞ are defined as

fτðξÞ¼ 4N

�
N2−1

16N2

�
ξ−2I1ðξÞ
ðD−1Þ þξ−1I5ðξÞ

�
þ 1

64
I2bðξÞ

þ D−14

384ðD−1ÞI2aðξÞþ
1

256
I4ðξÞξ−2þ

D−8

192
ξ−2I6ðξÞ

þ2−D
384

ξ−2I7ðξÞþ
26−D
24

DIVðξÞ
�
;

fσðξÞ¼ 4N

�
N2−1

8N2

I1ðξÞ
ðD−1Þþ

D−14

192ðD−1ÞI2aðξÞ

þ8−D
192

I3ðξÞþ
1

128
I4ðξÞþ

26−D
24

DIVðξÞ
�
: ð31Þ

The DIV part defined as

DIVðξÞ ¼ 2D−4

ð2πÞD
Z

π=2

−π=2
dD−1x

Z ðπ=2Þξ

ð−π=2Þξ
dx0

×

�XD−1

i¼1

sin2xi þ ξ2sin2ðx0=ξÞ
�

−2
; ð32Þ

is divergent. This divergence comes from SA and Ssc;I terms
which do have corresponding continuum limit and contain
logarithmic divergence as a → 0. With the definition
for cμðξÞ in Eq. (22), the divergence part in DIVðξÞ are
subtracted out. Our calculation gives the same results as
[87] for D ¼ 4 and as [86,88] in the ξ → ∞ limit. The
values of cμðξÞ for SUð3Þ gauge theory are shown in Fig. 2
at different dimensions.

V. UðNÞ GAUGE THEORY

The Lie algebra for UðNÞ group can be constructed by

introducing the additional generator λ0 ¼
ffiffiffi
2
N

q
IN×N to the

SUðNÞ group. Corresponding to any index a for SUðNÞ
group we introduce the index A ¼ ð0; aÞ, so that A runs
from 0 to N2 − 1. With this construction, we still have
Tr½λAλB� ¼ 2δAB; special care has to be taken for the anti-
symmetric structure constant as f0BC ¼ 0. The final one-
loop corrected action is given by

SðξÞeff ¼
1

4

Z
dDx

�X
i

½ðFa
i0Þ2 þ ðFa

0iÞ2�½g−2τ − fτðξÞ�

þ
X
i;k

ðFa
ikÞ2½g−2σ − fσðξÞ�

þ
X
i

½ðF0
i0Þ2 þ ðF0

0iÞ2�½g−2τ − f0;τðξÞ�

þ
X
i;k

ðF0
ikÞ2½g−2σ − f0;σðξÞ�

�
; ð33Þ

with fτðξÞ and fσðξÞ given by Eq. (31) but replacing
N2 − 1 by N2 which changes the factor N2−1

N2 to 1, and
f0;τðξÞ and f0;σðξÞ corresponding to Eq. (21) multiplied by
a factor of N=2.

VI. COMPARING TO NUMERICAL RESULTS

Our values of cσ and cτ computed in Secs. III and IV
can be used to calculate the renormalized anisotropy, ξ
using the relation ξ̄ ¼ cξ, with c given in Eq. (5) and
expressions for gμ in Eq. (4). In this section, we compare
our one-loop calculations of ξ as well as the bare anisotropy
with nonperturbative results obtained from two sets of
Monte Carlo results. The first are existing 2þ 1d Uð1Þ and
SUð2Þ results produced in Refs. [96,97]. The second are
new ensembles produced by us for the discrete cyclic
groups Z10 and Z100, and the binary icosahedral (BI).
These discrete groups are of interest because they are
subgroups of Uð1Þ and SUð2Þ, respectively, and have
been proposed as approximations for use on quantum
computers. Thus, it is interesting to investigate how well
perturbative lattice field theory for the continuous group
can approximate ξ for the discrete subgroups. In both
previous works, smearing was used to reduce the need for
higher statistics. This has the consequence of changing
the lattice spacings by a unknown, potentially large
amount and can introduce some discrepancy between the

FIG. 2. Anisotropic coefficients for SUð3Þ in D ¼ 3, 4.
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perturbative and the nonperturbative results. For this
reason, in our simulations we avoided using smearing at
the cost of a larger number of lattice configurations.
The discrete group ensembles were generated by sam-

pling from the Wilson action using a multi-hit Metropolis
update algorithm, which has been found to be as efficient as
a heat-bath in terms of autocorrelation length but signifi-
cantly cheaper to implement for discrete groups [6]. The
various ensemble parameters are found in Table I. Using
discrete groups, we must worry about crossing into the
frozen phase where all the links take the value of group
identity 1 at a critical coupling βf for isotropic lattice. For
Zn groups, it is known that [98]

βf;n ≈
A

1 − cosð2πn Þ
; ð34Þ

For 3þ 1d in [98], the theoretical value of A was obtained
to be Ath

3d ≈ logð1þ ffiffiffi
2

p Þ, while numerical simulations gave
A3d ¼ 0.78 [99,100]. For the case of 2þ 1d, using the
value βf;2 ¼ 0.761412 obtained from Monte Carlo simu-
lations in [101–103], the theoretical value of A is calculated
following Eq. (34) to be Ath

2d ¼ 1.52282. As a comparison,
we compute A2d with the following procedure. For certain
n, we measure the average plaquette energy hEi as a
function of β. βf;n is determined as the β value that

maximizes the specific heat j ∂hEi
∂β j. We compute βf;n for

n ¼ 2; 3…; 10 on 103 lattices. As an example, we show the
measured value of hEi in Fig. 3 for n ¼ 10 at different β
values. Fitting the βf;n values to Eq. (34), we obtain
A2d ¼ 1.450ð12Þ. Two additional βf;n for n ¼ 12, 15 are
computed and they agree well with the fit. These results are
plotted in Fig. 4. Comparing to the Ath

2d, we expect that
corrections to the theoretical value are needed.

In the case of anisotropic lattices considered here, one
should expect the effects of the freezing-out to occur when
βξξ̄ ¼ βξ;f ξ̄ ≈ βf. However, as we observe, for isotropic
lattice,Z10 deviates fromUð1Þ around β ≈ 5which is much
smaller than βf;10 ¼ 7.6 (See Fig. 3). Hence, we expect that
βξξ̄ ≪ βf is necessary to ensure discrete subgroups being a
reasonable approximation in 2þ 1d. In 3þ 1d, deviations
occur at β values relatively closer to βf compared to
2þ 1d, as observed in [6,104]. To compare with existing
nonperturbative results for Uð1Þ in 2þ 1d studied by
Loan et al. [96], we generate ensembles for Z10 and
Z100 groups at the same set of ðβξ; ξ̄Þ used by them (see
Table II). The two largest pairs investigated in [96] are
βξξ̄ ¼ 1.7 × 3.0 ¼ 5.1 and βξξ̄ ¼ 2.0 × 3.0 ¼ 6.0, not
much smaller than βf;10, and therefore we expect to observe
breakdown of the agreement between Z10 and the Uð1Þ

FIG. 3. Average plaquette energy hEi as a function of β for Z10

and Uð1Þ, with βf;10 ¼ 7.6 indicated by the vertical line.

FIG. 4. βf;n versus n. Zn for n ≤ 10 (black square) were used to
perform the fix, while n > 10 to test the extrapolation.

TABLE I. Ensemble parameters for the lattice simulations:
Group G, coupling β, bare anisotropy ξ̄, Lattice dimensions
ND

s × Nt, decorrelation length ndecor and number of configura-
tions nmeas.

G β ξ̄ ND
s × Nt ndecor nmeas

Z10, Z100 1.35 2.25 162 × 48 10 8 × 106

Z10, Z100 1.35 2.25 242 × 72 10 4 × 106

Z10, Z100 1.55 2.5 162 × 48 10 5 × 106

Z10, Z100 1.55 2.5 242 × 72 10 1 × 106

Z10, Z100 1.7 3.0 162 × 48 10 5 × 106

Z10, Z100 1.7 3.0 202 × 60 10 5 × 106

Z10, Z100 1.7 3.0 242 × 72 10 1 × 106

Z10, Z100 2.0 3.0 162 × 48 10 5 × 106

Z10, Z100 2.0 3.0 202 × 60 10 5 × 106

Z10, Z100 2.0 3.0 242 × 72 10 1 × 106

BI 2.0 2.0 362 × 72 10 5000
BI 3.0 1.33 362 × 72 10 5000
BI 3.0 1.33 363 × 72 10 250
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results. In contrast, βf;100 > 700 so Z100 results should be
indistinguishable from a equivalent Uð1Þ computation.
The results of 2þ 1d SUð2Þ from [97] consider βξξ̄ (see

Table III) above or too close to βf;BI ¼ 9.65ð1Þ that we
calculated by similar procedures described above. Hence in
the following we will not make direct comparisons between
discrete groups and continuous groups, but instead com-
pare the viability of the one-loop calculations with the
SUð2Þ continuous group. Then we computed BI configu-
rations at different values where βξξ̄ ¼ 4 and compare
those results with our one-loop calculations. Additionally,
we performed one simulation of 3þ 1d BI and also
compare with our one-loop calculations.
Different methods are available for determining ξ from

lattice results. Loan et al. [96] utilized the ratio of
subtracted static potentials, where a subtraction point must
be picked. Teper et al. [97] uses two methods: the first
compares correlators in the spatial and temporal direction
which can also be used to determine ξ in real-time
simulations [70], the second computes the dispersion
relation with low-lying momentum states and tunes ξ to
obtain EðpÞ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

P þ p2
p

. These two results are then
averaged to obtain a final estimate of ξ.
We determined ξ for the discrete groups via the “ratio-of-

ratios” method [105]. This method involves computing the
ratios of Wilson loops:

Rssðx; yÞ ¼
Wssðx; yÞ

Wssðxþ 1; yÞ ; Rstðx; tÞ ¼
Wstðx; tÞ

Wstðxþ 1; tÞ ;

ð35Þ

where x, y, t are the integer lattice separations and the
subscripts indicate the orientation of the Wilson loops,
either spatial spatial, or spatial temporal. In the large x limit
where the excited state contamination is suppressed, we
haveWssðx; yÞ ∝ e−axVsðyaÞ andWstðx; tÞ ∝ e−axVsðtaτÞ with
Vs being the static quark-antiquark potential. This lead to

Rssðx; yÞjx→∞ ¼ e−aVsðyaÞ; ð36Þ

Rstðx; tÞjx→∞ ¼ e−aVsðtaτÞ: ð37Þ

We define a variable

δðx; y; tÞ ¼ Rssðx; yÞ
Rstðx; tÞ

− 1; ð38Þ

such that δðx; y; tÞ ¼ 0 will be satisfied in the large x limit
when ya ¼ taτ. We determine ξðyÞ ¼ t=y. Figure 5 (top)
shows the plateau behavior of δðx; y; tÞ when we approach
the large x limit. Typically, the zero crossing does not occur
for integer y, t and thus interpolation between values is
required. An example of this calculation is shown in Fig. 5
(bottom) for Z100 using y ¼ 3, βξ ¼ 1.7, and ξ̄ ¼ 3.0 on a

lattice of size ND
s × Nt ¼ 202 × 60. The final step is to take

the ξðyÞ value in the large y limit as our renormalized ξ,
to again remove excited states contamination (see Fig. 6).
The increasing uncertainty at larger y is due to exponential
decay of the Wilson loop Wssðx; yÞ leading to a signal-to-
noise problem.

FIG. 5. Example calculations of δðx; y; tÞ for y ¼ 3 as a
function of x (top), δðx → ∞; 3; tÞ for various values of t (bottom)
fitted to determine δðx → ∞; y; tÞ ¼ 0, for Z100 using βξ ¼ 1.7,
and ξ̄ ¼ 3.0 on a lattice of size ND

s × Nt ¼ 202 × 60.

FIG. 6. Measured ξ as a function of y. The band corresponds to
the 1σ error band for best fit to the plateau region. The ensemble
parameters are the same as for Fig. 5.
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In Fig. 7, we show the comparisons between the ξ values
from our one-loop calculation to the results from non-
perturbative Monte Carlo simulation from Loan et al. [96]
for Uð1Þ gauge theory in 2þ 1d, alongside with our results
forZ10 andZ100 also in 2þ 1d. It is encouraging to see that
including one-loop effects shifts ξ into better agreement
with the nonperturbative results compared to ξ̄. As a metric
for comparison, we use the relative errors

F g ¼
				1 − ξ1−loop

ξg

				;

F ξ̄
g ¼

				1 − ξ̄

ξg

				; ð39Þ

where g is the nonperturbative data to which we are
comparing our one loop results. For the smeared
results for Uð1Þ, we find FUð1Þ ≤ 4.71ð8Þ% compared to

F ξ̄
Uð1Þ ≤ 13.3ð15Þ%.
The situation with Zn is more involved. For βξ < 1.65,

we find that ξZ10
¼ ξZ100

but are systematically higher
than the Uð1Þ results. At present, we do not understand
why at lower βξ greater disagreement is found between
the discrete and continuous groups, since lower values of βξ
are further from the freezing-out regime and they should
be in better agreement. We investigated whether finite
volume effects could be playing a role, but for all values of
fβξ; ξ̄g, we observed no volume dependence, as seen in
Tables II and III. Two possible sources of the discrepancy
could be the use of smearing in [96,97] or the different
methods of measuring ξ. Future work should be undertaken
where the discrete and continuous groups are analyzed
under the same circumstances. As βξ increases, ξZ100

approaches ξUð1Þ, with Z10 having noticeable and growing
disagreement. Across β, we foundFZ10

≈ FZ100
≤ 9.5ð3Þ%

compared to F ξ̄
Z10;Z100

≤ 18.5ð3Þ%. Higher order loop
corrections, of Oðg4EÞ to the ξ could be important for the
βξ regions considered and effects of monopoles may also be
relevant [95].
We can also compare our ξ1−loop for SUð2Þ in 2þ 1d to

the results from nonperturbative Monte Carlo simulations
[97], which are shown in Fig. 8 and Table III, and to the ξ
values we computed for the BI group (Table III). The effect
of the one-loop correction is to increase ξ by about 10%.

The largest error from using ξ̄ was found to be F ξ̄
SUð2Þ;BI ≤

8ð4Þ%. In contrast, we observe F SUð2Þ ≤ 1ð4Þ% and FBI ¼
1.30ð13Þ% both consistent with 0—albeit the SUð2Þ
Monte Carlo results have larger uncertainties compared
to the Uð1Þ case. This agreement is found in both 2þ 1d
and 3þ 1d BI results (see Table III).
In all the groups studied, F g was found to decrease or

remain constant as βξ was increased—in agreement with
expectation for a weak-coupling calculation, with the
caveat that for discrete groups, βξ should be away from
the freezing-out regime. For all the βξ values investigated
here, we obtain that the systematic error of approximating
the one loop results to the nonperturbative results for both

FIG. 7. Comparison of one-loop ξ to ξ̄, the nonperturbative ξ

value from Loan et al. (r0 ¼
ffiffiffi
2

p
) [96] for 2þ 1d Uð1Þ theory,

and for Zn discrete group.

TABLE II. Renormalized anisotropies of Uð1Þ from 1-loop
calculation, lattice simulations of Z10 and Z100, and Uð1Þ [96].

βξ Ns Nt ξ̄ ξ1−loop

ξ

Z10 Z100 Uð1Þ [96]
1.35 16 48 2.25 2.493 2.738(20) 2.732(30) 2.39(4)
1.35 24 72 2.25 2.493 2.762(10) 2.753(20) � � �
1.55 16 48 2.50 2.750 2.939(29) 2.972(40) 2.72(9)
1.55 24 72 2.50 2.750 2.984(50) 2.972(22) � � �
1.70 16 48 3.00 3.302 3.513(11) 3.572(10) 3.46(6)
1.70 20 60 3.00 3.302 3.512(20) 3.527(16) � � �
1.70 24 72 3.00 3.302 3.527(24) 3.555(20) � � �
2.00 16 48 3.00 3.253 3.259(17) 3.421(15) 3.42(3)
2.00 20 60 3.00 3.253 3.252(38) 3.379(20) � � �
2.00 24 72 3.00 3.253 3.228(48) 3.389(23) � � �

TABLE III. Renormalized anisotropies from 1-loop calcula-
tion, discrete group BI, and [97].

βξ Ns Nt ξ̄ ξ1−loop

ξ

BI SUð2Þ [97]
D ¼ 3
2.00 36 72 2.00 2.097 2.099(1) � � �
2.00 12a 60a 4.00 4.278 � � � 4.35(19)
2.65 16a 64a 4.00 4.207 � � � 4.22(11)
3.00 36 72 1.33 1.351 1.369(19) � � �
4.00 24a 96a 4.00 4.136 � � � 4.08(9)

D ¼ 4
3.0 36 72 1.33 1.351 1.36(1) � � �

aThis is the largest volume simulated.
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discrete group and continuous group is less than 10%.
Given that these βξ values are corresponding to relative
strong coupling, 10% systematic error are conservative for
realistic simulations using quantum computers where larger
βξ values are used.

VII. CONCLUSIONS

Quantum field theories simulated with quantum com-
puters are naturally lattice-regularized theories, requiring
renormalization before comparisons to experiments can
be made. Quantum simulations are constructed within
the Hamiltonian formalism, where a spatial lattice with
spacing a is time evolved. Further approximations are
required, as the time evolution operator UðtÞ built from the
Kogut-Susskind Hamiltonian usually cannot be exactly
implemented in an efficient manner. One common method
for these approximations is trotterization, which introdu-
ces finite temporal lattice spacings at and thus a finite
anisotropy factor a=at in the quantum simulations. As the
trotterized UðtÞ can be related to the Euclidean transfer
matrix on the anisotropic lattice via analytical continu-
ation, it is thus beneficial to have the perturbative
relations between the bare and renormalized quantities
in Euclidean spacetime, e.g. the anisotropy factor ξ as a
function of βξ and ξ̄).
In the near term, studies of quantum field theory on

quantum computing will be limited to low dimensions at
coarse at. In this article, we extended the perturbative
matching of coupling constants to general SUðNÞ and
UðNÞ gauge theories for any anisotropy factor ξ and
general dimensions. The results presented here can be
easily used for Euclidean measurements as well as inputs to
quantum simulations through analytical continuation.
As examples, we compared anisotropy factors obtained
via the one-loop renormalization to those determined from

Monte Carlo simulations, and found great agreement for
SUðNÞ gauge theories. For Uð1Þ gauge theories, the one-
loop calculation corrects most of the renormalization
effects observed in the nonperturbative results. To the best
of our knowledge, these comparisons were not previously
performed before and provide important guidance for the
validity of the perturbative calculations. Taken holistically,
our results suggest that the one-loop ξ can serve as a
replacement for the nonperturbative value in lattice calcu-
lations while inducing a systematic error ≤ 10%, with
SUð2Þ appearing to have better agreement than Uð1Þ in
2þ 1d. In the weak coupling regime at sufficiently small a,
this error is subleading to quantum errors for near term
quantum simulations. Comparing the ξ parameters calcu-
lated perturbatively for continuous groups with those
calculated nonperturbatively for discrete groups, we find
satisfactory agreement, suggesting that the perturbative
relations derived in this paper are also applicable to discrete
groups in the parameter space of interest.
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APPENDIX A: IMPORTANT INTEGRALS FOR
EFFECTIVE ACTION

In the course of deriving the effective action, a number of
integrals are obtained that need to be evaluated numerically.
We have collated them here. Using the abbreviation

b2 ¼
XD−1

i¼1

sin2xi; ðA1Þ

we have

I1ðξÞ ¼ ξ

�
2

π

�
D−1 Z π=2

0

dD−1x
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 þ b2
p ; ðA2Þ

I2aðξÞ ¼ ξ

�
2

π

�
D−1 Z π=2

0

dD−1x
ξ2 þ 2b2

bðξ2 þ b2Þ3=2 ; ðA3Þ

I2bðξÞ¼ ξ3
�
2

π

�
D−1Z π=2

0

dD−1x
1

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2þb2

p
ðbþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2þb2

p
Þ
;

ðA4Þ

FIG. 8. Comparison of one-loop ξ to nonperturbative value of
[97] for 2þ 1d SUð2Þ, with ξ̄ ¼ 4.
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I3ðξÞ ¼ ξ

�
2

π

�
D−1 Z π=2

0

dD−1x
sin2x1sin2x2ðξ2 þ 2b2Þ

b3ðξ2 þ b2Þ3=2 ;

ðA5Þ

I4ðξÞ ¼ ξ

�
2

π

�
D−1 Z π=2

0

dD−1x
sin22x1ðξ2 þ 2b2Þ
b3ðξ2 þ b2Þ−3=2 ; ðA6Þ

I5ðξÞ¼ ξ2
�
2

π

�
D−1Z π=2

0

dD−1x
1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2þb2

p
Þðbþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2þb2

p
Þ
;

ðA7Þ

I6ðξÞ ¼ ξ3
�
2

π

�
D−1 Z π=2

0

dD−1x
cos2x1

bðξ2 þ b2Þ3=2 ; ðA8Þ

I7ðξÞ ¼ ξ3
�
2

π

�
D−1 Z π=2

0

dD−1x
1

bðξ2 þ b2Þ3=2 : ðA9Þ

APPENDIX B: SERIES EXPANSION
OF I1ðξÞ IN TERMS OF ξ − 2n

For the future study of the renormalization of the
Minkowski spacetime anisotropy via analytical continu-
ation, it is useful to obtain the series expansion of the
integrals Eqs. (A2)–(A9) in terms of ξ−1. In this appendix,
we will study I1ðξÞ as an example and give the
special functions related to its expansion. Expanding
ð1þ b2=ξ2Þ−1=2, I1ðξÞ can be written as

I1ðξÞ ¼
�
2

π

�
D−1 Z π=2

0

dD−1x
X∞
k¼0

Γð1=2Þ
Γð1=2 − kÞk!

b2kþ1

ξ2k

¼
X∞
k¼0

Γð1=2Þ
Γð1=2 − kÞk!ξ2k hb

2kþ1iD−1; ðB1Þ

where we have defined

hb2kþ1iD−1 ≡
�
2

π

�
D−1 Z π=2

0

dD−1x b2kþ1: ðB2Þ

To evaluate hb2kþ1iD−1, we define the distribution
function gD−1ðb2Þ:

gD−1ðb2Þ≡
�
2

π

�
D−1Z π=2

0

dD−1xδ

�XD−1

i¼1

sin2xi−b2
�

ðB3Þ

and thus

hb2kþ1iD−1 ¼
Z

D−1

0

db2gD−1ðb2Þb2kþ1: ðB4Þ

The Fourier transform of gD−1 is

FfgD−1gðωÞ

¼
Z

D−1

0

db2e−iωb
2

�
2

π

�
D−1Z π=2

0

dD−1xδ

�XD−1

i¼1

sin2xi−b2
�

¼
YD−1

i¼1

�
2

π

Z
π=2

0

dxiexpð−iωsin2xiÞ
�

¼½e−iω=2J0ðω=2Þ�D−1; ðB5Þ

where J0ðxÞ is the Bessel function of the first kind of order
zero. The inverse Fourier transform has a simple analytic
expression for D − 1 ¼ 1, 2:

g1ðb2Þ ¼
1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2ð1 − b2Þ

p ; 0 < b2 < 1; ðB6Þ

g2ðb2Þ ¼
2

π2
K½1 − ðb2 − 1Þ2�; 0 < b2 < 2; ðB7Þ

where KðkÞ ¼ Fðπ
2
jkÞ ¼ R π=2

0 dθð1 − ksin2θÞ−1=2 is the
incomplete elliptic integral of the first kind with the upper
limit specified. For higher dimensions, we can use the
following relation between gD−1 and gD:

gDðb2Þ ¼
2

π

Z
π=2

0

dxDgD−1ðb2 − sin2xDÞ

¼
Z

1

0

dug1ðuÞgD−1ðb2 − uÞ: ðB8Þ

For D − 1 ¼ 1, 2, 3, the lowest few hb2kþ1i are listed in
Table IV. Noticing that hbiD−1 determines the dimensional
dependence of the limit I1ðξ → ∞Þ, it is helpful to derive
an analytical estimate of hbi in higher dimensions. As each

TABLE IV. hb2kþ1iD−1 values for D − 1 ¼ 1, 2, 3. Columns 2–5 are computed from the exact distribution
functions Eqs. (B6), (B7), and (B8), while the last two columns are from Eqs. (B9) and (B11), respectively.

D − 1 hbiD−1 hb3iD−1 hb5iD−1 hb7iD−1 hbiGaussian
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD − 1Þ=2 − 1=16

p
1 0.63662 0.424413 0.339531 0.291026 0.677765 0.661438
2 0.958091 1.09818 1.46262 2.13298 0.969799 0.968246
3 1.1938 1.9557 3.60865 7.22728 1.19719 1.19896
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sin x2i has a mean value of 1=2 and a variance of 1=8 independently, for a large D, gD−1ðb2Þ can be approximated as the
Gaussian distribution N ðD−1

2
; D−1

8
Þ, with the normalization adjusted to its range ½0; D − 1�:

gD−1ðb2Þ ≈ exp

�
−
4ðb2 −Dþ 1Þ2

D − 1

�
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πðD − 1Þp
Erfð ffiffiffiffiffiffiffiffiffiffiffiffi

D − 1
p Þ ; 0 < b2 < D − 1: ðB9Þ

Approximating the variance of b, σ2b as

σ2b ≈ σ2b2 ×

�
db
db2

�
2
				
b2¼ðD−1Þ=2

¼ D − 1

8
×

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðD − 1Þp
�

2

¼ 1

16
; ðB10Þ

We get

hbiD−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hb2iD−1 − σ2b

q
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

2
−

1

16

r
: ðB11Þ

Both Eqs. (B9) and (B11) give good approximation for hbiD−1 for D − 1 ¼ 2, 3, as listed in Table IV. Using Eq. (B11), the
large anisotropy limit in higher dimensions reads,

I1ðξ → ∞Þ ¼ hbiD−1 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

2
−

1

16

r
: ðB12Þ
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