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Lattice scalar field theories encounter a sign problem when the coupling constant is complex. This is a
close cousin of the real-time sign problems that afflict the lattice Schwinger-Keldysh formalism, and a
more distant relative of the fermion sign problem that plagues calculations of QCD at finite density.
We demonstrate the methods of complex normalizing flows and contour deformations on scalar fields in
0þ 1 and 1þ 1 dimensions, respectively. In both cases, intractable sign problems are readily bypassed.
These methods extend to negative couplings, where the partition function can be defined only by analytic
continuation. Finally, we examine the location of partition function zeros, and discuss their relation to the
performance of these algorithms.
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I. INTRODUCTION

Lattice field theory has proven an important approach
to the study of nonperturbative quantum field theories.
However, lattice Monte Carlo calculations are obstructed in
various regimes by sign problems. The most famous
example of these difficulties is the fermion sign problem,
which occurs in theories of relativistic fermions at finite
fermion density, or, relatedly, in the Hubbard model away
from half-filling. Numerically more severe sign problems
can be obtained in bosonic lattice models when the
Euclidean action is allowed to be complex. This occurs
most naturally for the Schwinger-Keldysh formalism, a
method of obtaining real-time separated observables on the
lattice [1,2]. A similar sign problem can be obtained by
remaining at pure imaginary time, but allowing the mass
and coupling of the field to be complex.
When the mass-squared and coupling are purely imagi-

nary, the sign problem is “infinitely bad”: to be precise, a
Monte Carlo calculation will never converge. However, this
is in some sense not the worst possible case. The physical
theory can be analytically continued to negative real values
of the coupling constant. All physical observables remain
well defined (at least on the lattice), but the original

expression for the partition function is no longer a con-
vergent integral.
Historically, the study of analytically continued field

theories [3] motivated the idea of performing a path integral
along the Lefschetz thimbles—that is, a particular integra-
tion contour in complexified field space [4]. This method
results in an alleviated sign problem. Later, it was found
that integrating along some contour that approximates the
Lefschetz thimbles also yields a strong improvement in
the sign problem [1,2,5,6], and can even be superior to the
thimbles themselves [7]. See [8] for a recent review of these
methods.
Integration on or near the Lefschetz thimbles is

numerically difficult, due in part to the numerical expense
of evolving a differential equation at every Monte Carlo
step. To accelerate the process, it was proposed to train a
neural network to approximate either the thimbles them-
selves or the aforementioned approximation [9]. Later
developments did away entirely with the reference to
Lefschetz thimbles, noting that the choice of manifold
could be directly optimized to minimize the severity of
the sign problem [10–12].
Contour deformations are closely related to complex

normalizing flows [13], which are particular maps from a
real parametrizing space to a complex field space. Under a
complex normalizing flow, a Gaussian measure on the real
space induces a desired physical Boltzmann factor on the
field space. Normalizing flows have recently been applied,
in the context of sign-problem-free lattice field theories
[14–17], as a technique for accelerating the Monte Carlo
sampling of field configurations. When complex normal-
izing flows are considered, much of the same technology
developed in that context is directly applicable to the
problem of removing a sign problem.
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In this paper, we demonstrate the use of optimized contour
deformations and complex normalizing flows in studying a
simple proving ground for bosonic sign problems: lattice
scalar field theory with a complex ϕ4 coupling constant. We
begin in Sec. II by defining contour deformations and
complex normalizing flows, and detailing the algorithms
used to train them. Section III applies these methods to the
quantum anharmonic oscillator, at complex coupling. For
this model, numerical diagonalization of the Hamiltonian is
practical, and so the results of complex normalizing flows
can be compared to an exact computation. Optimized
contour deformations are used directly in Sec. IV to study
two-dimensional scalar field theory. The analytic behavior of
the lattice partition function—in particular, the location of
zeros and their relevance to the (non)existence of perfect
contours—is discussed in Sec. V. Finally, Sec. VI concludes,
including a discussion of the various trade-offs between the
two methods studied here.
All codes used in the simulations discussed in this paper

are available online [18].

II. ALGORITHMS

This paper uses two closely related algorithms for
alleviating or removing sign problems associated to lattice
computations with complex actions. Both stem from the
observation that the domain of integration of the path
integral can be deformed into complex space without
changing the physics of the model. The first algorithm is
the “sign-optimized manifold” approach, introduced in
[10,11] and since applied to a variety of models. The
second algorithm, based on training complex normalizing
flows, was suggested in [13] (the same paper that intro-
duced complex normalizing flows); the current work
represents the first numerical demonstration of machine
learning of complex normalizing flows.
Both algorithms build on the technique of “reweighting”:

a straightforward but inefficient way to deal with any sign
problem. Expectation values with respect to a complex
action SðϕÞ may be expressed in terms of a ratio of
quenched expectation values h·iQ:

hOi ¼ hOðϕÞe−iImSðϕÞiQ
he−iImSðϕÞiQ

where hfðϕÞiQ ≡
R
DϕfðϕÞe−ReSðϕÞR
Dϕe−ReSðϕÞ

: ð1Þ

Computing this ratio of quenched expectation values to
within a fixed precision typically incurs an exponential cost
in the volume of the system—either the physical volume, as
in the case of the finite-fermion-density sign problem, or
the lattice volume, as in the case of bosonic real-time sign
problems. For physically relevant system sizes, this basic
strategy is thus insufficient.

A. Contour deformations

Consider the path integral for a lattice quantum field
theory of a single real scalar field, in Euclidean spacetime:

Z ¼
Z

dVϕe−SðϕÞ: ð2Þ

Here the integral is taken over V real degrees of freedom.
However, under mild conditions, the domain of integration
can be changed—deformed into the complexified space
CV—without affecting the value of Z. Let M be a V-real-
dimensional oriented submanifold of CV such that −M
(that is,Mwith orientation reversed) andRV together form
the boundary of a region Ω∶ ∂Ω ¼ RV −M. Furthermore,
let fðϕÞ be a holomorphic function whose magnitude has
a finite upper bound on Ω. Then it follows from the
multidimensional form of Cauchy’s integral theorem [19]
that two integrals are equal:Z

RV
dVϕfðϕÞ ¼

Z
M

dVϕfðϕÞ: ð3Þ

For any particular function fðϕÞ, the requirement that
jfðϕÞj possesses a finite upper bound is translated into a
constraint on Ω: it may not contain the regions at infinity
where the real part of the action SðϕÞ≡ − log fðϕÞ
becomes arbitrarily small.
Not only does the numerical value of the partition

function not change under appropriate contour deforma-
tions, but expectation values of reasonable observables do
not either. If an observableO can be written as a function of
the fields ϕ such that OðϕÞe−SðϕÞ is holomorphic, then the
numerator of the expectation value

hOi ¼ 1

Z

Z
M

dVϕe−SðϕÞOðϕÞ ð4Þ

is unchanged by deformations of the integration contourM
just as the denominator is. It follows that observables can be
extracted from a Monte Carlo calculation performed on any
appropriately deformed contour.
The severity of a sign problem is usually measured by the

magnitude of the average phase, defined as the ratio of the
partition function to the quenched partition function:

hσi≡ Z
ZQ

≡
R
dVϕe−SðϕÞR jdVϕe−SðϕÞj : ð5Þ

The use of average phase, a measure of the severity of the
sign problem, is motivated by its appearance in the
denominator of Eq. (1). The average phase is always a
complex number of magnitude jhϕij ≤ 1. When the mag-
nitude is near 1, the sign problem is mild; a magnitude near
zero represents a severe sign problem. Crucially, the
average phase does not take the form of an integral of a
holomorphic function. In particular, the denominator is a
nontrivial function of the contour of integration chosen.
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The above discussion suggests that we may be able to
efficiently simulate systems with sign problems by choos-
ing an appropriate contour, and performing a Monte Carlo
along that contour instead of the real plane RV . To this
end we must describe first how a Monte Carlo may be
performed on an arbitrary manifold, and second how a
“good” manifold might be identified.
To integrate along a contourM, we first parametrize the

contour by the real plane.1 That is, we choose a map ϕ̃ðϕÞ
such that M ¼ ϕ̃ðRVÞ. Such a map may be taken as the
definition of the contourM in the first place. We may now
introduce the effective action, which obeys

e−SeffðϕÞ ¼ e−S½ϕ̃ðϕÞ� det
∂ϕ̃

∂ϕ
: ð6Þ

The deformed path integral over ϕ̃ ∈ M is now equal to a
path integral over ϕ ∈ RV which uses the effective action in
place of the original, physical action:

Z
M

dV ϕ̃e−Sðϕ̃Þ ¼
Z
RV

dVϕe−SeffðϕÞ: ð7Þ

Similar identities hold for all observables. This final
expression leads directly to an algorithm for performing
a Monte Carlo on M: we simply perform a Monte Carlo
(using Metropolis or any other method appropriate for
nonlocal actions) on the real plane, and apply ϕ̃ to obtain
physical field configurations for computing observables.
How can an appropriate contour M—or equivalently, a

map ϕ̃—be selected? No general method for this task is
known. However, if we restrict ourselves to some finite-
dimensional family of contours Mλ, the task is more
tractable: we can now perform gradient descent within
this restricted space in an attempt to optimize away the sign
problem. This is the fundamental idea of “sign-optimized
manifolds” [10,11].
Neural networks provide a way to construct a reasonable

family of contours Mλ. Many architectures are possible;
in this paper, a neural network consists of a sequence of
linear transformations ϕ ↦ Aϕþ b interspersed with non-
linear maps σ applied to each element independently:
ϕi ↦ σðϕiÞ. Given two functions defined by neural net-
works fðϕÞ and gðϕÞ, each mapping V real variables to V
real variables, a contour can be defined by the map

ϕ̃ðϕÞ ¼ ϕþ fðϕÞ þ igðϕÞ: ð8Þ

Finally, in order to perform gradient descent (using, in
this paper, ADAM [20]), we must select a cost function.
A natural choice is the real part of the logarithm of the
average phase: CðλÞ ¼ −Re log jhσiMλ

j. The minimum
possible value is zero, corresponding to the complete
removal of a sign problem.
This cost function cannot be evaluated efficiently.

When hσi is small, of order hσi−2 samples are needed to
distinguish it from zero. In physical systems, this yields
exponential scaling with the volume. However, gradient
descent does not use the value of the cost function; only its
derivatives enter the algorithm. The derivatives of CðλÞ are
readily seen to correspond to quenched expectation values:

∂

∂λ
CðλÞ ¼ ∂

∂λ
Re logZQ ¼ −

R
e−ReS ∂

∂λReSR
e−ReS

: ð9Þ

Thus these derivatives may be efficiently computed in a
Monte Carlo even in the presence of a severe sign
problem [11,21].
One final complication must be considered: as discussed

at the beginning of this section, in order for the trained
contour Mλ to yield the same expectation values as the
starting contour RV, it must form (together with the real
plane) the boundary of a region Ω on which the magnitude
of the integrand has a finite upper bound. In order to trust
the contour optimization procedure, it is necessary that we
demonstrate that it can only yield such contours. Without a
carefully engineered family of neural networks, this is
only rigorously true in the limit of slow training and
precisely measured gradients ∂C. In that limit, the gradient
descent procedure may be seen as tracing out the (V þ 1)-
dimensional region Ω, and the boundedness of quenched
partition functions obtained by gradient descent is suffi-
cient to ensure that Ω does not contain regions with
unbounded Boltzmann factors.
To summarize, in the contour deformation method,

a family of integration contoursMλ ⊂ CV is first specified,
and a parametrizing map ϕ̃λ∶ RV → Mλ defined for each.
Next we optimize the choice of λ by performing stochastic
gradient descent on the cost function CðλÞ—each step of
the descent requires a short, sign problem-free Monte Carlo
to measure the gradient given by Eq. (9). Finally, once a
suitable contour is found, a final Monte Carlo calculation is
performed to measure observables via reweighting.

B. Complex normalizing flows

A normalizing flow is a map ϕ̃ðϕÞ with the property�
det

∂ϕ̃

∂ϕ

�
e−S½ϕ̃ðϕÞ� ≈ N e−ϕ

2=2 ð10Þ

for some fixed normalization constant N . In other words,
given normally distributed ϕ, the map ϕ → ϕ̃ðϕÞ induces
the probability distribution e−Sðϕ̃Þ.

1This parametrization step excludes all contours which are not
homeomorphic to RV . An example of such a contour may be
obtained by taking Ω to be topologically the product of [0, 1] and
a V-dimensional ball, identifying the boundaries of the interval
with disjoint regions on RV . Whether such a contour is ever
desirable in fighting a sign problem remains an open question.
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In theories without a sign problem, the algorithmic merit
of a normalizing flow stems from the fact that it can be used
to compute expectation values without the need for a
Markov chain. Independent samples ϕ can be efficiently
obtained from the Gaussian distribution and used to
compute expectation values by applying ϕ̃ to each sample.
In the event that the map ϕ̃ð·Þ is merely an approximate
normalizing flow [that is, Eq. (10) does not hold exactly],
we define the induced action via

�
det

∂ϕ̃

∂ϕ

�
e−Sinduced½ϕ̃ðϕÞ� ¼ e−ϕ

2=2 ð11Þ

and expectation values with respect to the desired action
must now be obtained by reweighting:

hOi ¼ hOeSinduced−Sin
heSinduced−Sin

: ð12Þ

Above, h·in denotes an expectation value taken with respect
to the normal distribution over ϕ.
Normalizing flows have recently emerged as a practical

tool for accelerating Monte Carlo simulations of lattice
field theories [14,15]. In [13], it was observed that when the
action S is permitted to be complex, the defining equation
of normalizing flows, Eq. (10), also defines a parametriza-
tion of a deformed contour on which there is no sign
problem. As a result, attempting to train a normalizing flow
in the presence of a sign problem leads to an algorithm that
has much in common with previously studied contour
deformation-based methods.
In the real case (i.e., in the absence of a sign problem),

normalizing flows are known to always exist. The con-
ditions under which complex normalizing flows exist
remain unclear. Certainly it is the case that a complex
normalizing flow exists if and only if there is a perfect
integration contour on which the average phase has
magnitude exactly 1.
As in the case of contour deformations, it is convenient

to parametrize (a subset of) the space of normalizing flows
via neural networks. It remains to define a suitable cost
function. In this paper, we will adopt a cost function with
two terms, one addressing the log of the magnitude of the
Boltzmann factor, and the second the phase.

CnfðλÞ ¼
�����ϕ

2

2
þRe

�
logdet

∂ϕ̃λ

∂ϕ
− logN − Sðϕ̃λðϕÞÞ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ReðSinduced−SÞ

����2
	

n

þ
�����1−

�
csgndet

∂ϕ̃λ

∂ϕ

�
e−iImðSðϕ̃λðϕÞÞþlogN Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
eiImðSinduced−SÞ

����2
	

n
:

ð13Þ

Above, csgnz ¼ z
jzj denotes the complex signum function.

Although, in principle, a different relative weighting could
be advantageous, we have not explored this. In training,
real and imaginary parts of the normalizationN are treated
as two more parameters to be trained.
Training of a complex normalizing flow is somewhat less

straightforward than training either a real normalizing flow
or an integration contour. In particular, it is difficult to
guarantee that the trained normalizing flow has the correct
asymptotic behavior for Cauchy’s integral theorem to
apply. The strategy of adiabatic training, as discussed
in [14], is useful here. A one-parameter family of actions
Sα is specified, for which S0 is well understood and a
normalizing flow can be exactly prepared, and S1 is the
desired physical action. In small steps of Δα, the action is
advanced through this family, with a normalizing flow
being retrained at each step. Many options for adiabatic
paths through the space of actions are available; for
simplicity, in this paper we use

Sαðϕ̃Þ ¼ αSðϕ̃Þ þ ð1 − αÞ
2

ϕ̃2; ð14Þ

except where otherwise noted,2 and the adiabatic training is
performed with Δα ¼ 0.05.
Since a normalizing flow found numerically is certain to

be only approximate, it is necessary to reweight according
to Eq. (12). When the required reweighting is large enough
to be inconvenient, some performance gains can be
obtained by performing importance sampling in the para-
metrizing space. Because the parametrization is approx-
imately a normalizing flow, the Markov chain is likely to
mix rapidly. As long as the sign problem is not severe, this
represents an alternative method for extracting expectation
values. In this work we take care to train the normalizing
flows precisely enough that this approach is not necessary.
Ordinarily, extracting the partition function itself is not

natural with Monte Carlo methods.3 However, equipped
with an exact normalizing flow, the partition is determined
by the trained value of N . With an approximate normal-
izing flow, the partition function may be determined by
averaging over samples much as with any other observable:

Z
Zn

¼ heSinduced−Si: ð15Þ

2The attentive reader will note that this adiabatic path is not
appropriate for cases where the original path integral fails to
convergewhen taken along the real plane. Thus, a different path is
required for the analytic continuation performed in Sec. III.

3Although the partition function can be extracted, indeed in
polynomial time, by constructing a sequence of Boltzmann
factors connecting the physical Boltzmann factor to a well-
understood trivial (e.g., Gaussian) Boltzmann factor, and meas-
uring the overlaps between adjacent theories.
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III. ANHARMONIC OSCILLATOR

In this section we apply the methods discussed above
to study the anharmonic oscillator at complex coupling λ.
The system is defined by the Hamiltonian

Haho ¼
1

2
p2 þm2

2
x2 þ λx4: ð16Þ

The usual procedure of expanding the partition function
Z ¼ Tre−βH in a Trotter-Suzuki approximation yields an
action defined on a one-dimensional lattice:

Saho ¼
X
x

�ðϕx − ϕxþ1Þ2
2

þm2

2
ϕ2
x þ λϕ4

x

�
; ð17Þ

where the sum is taken over all sites, and periodic boundary
conditions are assumed.
The continuum limit (in time) is obtained either by

adding an explicit lattice spacing δ to the action or,
equivalently, by appropriately rescaling the coupling con-
stants and fields. Withm ¼ δm̂ and λ ¼ δ2λ̂, observables of
the form δαhx2αi approach a well-defined limit, given by
their expectation value under the ground state of the
Hamiltonian in Eq. (16).
For the purposes of numerical tests in this paper, we will

not attempt to approach the continuum limit. Instead,
expectation values obtained using the action of Eq. (17)
are directly compared to those obtained from direct
diagonalization of the Trotterized imaginary-time evolution
operator.
As described in Sec. II B, we construct normalizing

flows ϕ̃ðϕÞ from neural networks. The precise functional
form used is

ϕ̃ðϕÞ ¼ ðMR þ iMIÞϕþ ðLR þ iLIÞfðϕÞ: ð18Þ

The function fðϕÞ is a simple multilayer perceptron, with
σðxÞ ¼ 1

1þe−x—the sigmoid function—as the nonlinear
activation function. The network has V inputs, 2V nodes
on every internal layer, and 2V outputs. Finally, the four
matrices MR, MI , LR, and LI are trainable parameters, as
are the weights and biases of fð·Þ. These matrices, as well
as all parameters in fð·Þ, are real.
At first glance, the separation of the M� terms from the

definition of fð·Þ is unnecessary and redundant. However,
note that because of the choice of activation function, the
asymptotic behavior of fð·Þ is constrained. In particular, for
any fixed set of parameters, fðϕÞ is bounded from both
above and below. As a result, a normalizing flow con-
structed from fð·Þ alone can never map the real plane to a
contour satisfying the conditions of Cauchy’s integral
theorem. The simple linear terms restore this capability
in a straightforward way.

To check our approach and code, we show in Fig. 1 the
expectation value hϕ2i for various complex λ. The exact
line is computed via direct matrix manipulations of the
Trotterized imaginary-time evolution operator. These exact
results show excellent agreement with the Monte Carlo
computations.
After a normalizing flow has been trained adiabatically, it

is generally advantageous to perform a more careful training
with the final parameters. This “refining” step makes the
subsequent sampling more efficient. The performance of the
training process, measured by average phase, for two
different topologies of network is shown in Fig. 2.
In [13] it was argued that perfect integration contours—

that is, contours along which the sign problem vanishes
entirely—are likely to exist for most values of the couplings
m2 and λ. As discussed in that paper, this is equivalent to

FIG. 1. Expectation value hϕ2i as a function of Imλ, with
m2 ¼ 0.5 and Reλ ¼ 0.1, on a one-dimensional, 10-site lattice.
The exact result shown is obtained by direct diagonalization of
the (non-Hermitian) Hamiltonian.

FIG. 2. Average phase achieved, as a function of training step,
for two different topologies of neural networks. The model used
is a 10-site lattice with m2 ¼ 0.5 and λ ¼ 0.1þ i. In both cases,
networks are trained with ADAM’s standard parameters and a
learning rate of 10−4. Each training step is based on 215 samples
from the Gaussian distribution.
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the existence of exact normalizing flows. Figure 2 may
be interpreted as giving weak numerical evidence that a
perfect contour indeed exists for a 10-site lattice with
m2 ¼ 0.5 and λ ¼ 0.1þ i. As we will discuss below, this is
not true for all values of λ.
The theory described by the action Eq. (17) is initially

defined only for Reλ ≥ 0. For negative Reλ, the path
integral

R
Dϕe−S diverges due to the unstable ϕ4 term—

equivalently, the Hamiltonian Eq. (16) is unbounded below.
However, the theory can nevertheless be analytically
continued to values of λ outside the region of convergence
of the initial path integral. The resulting function is analytic
away from the branch point at λ ¼ 0.
A useful way to think about this analytic continuation is as

a rotation of the field variables ϕ → eiθϕ. Under such a
rotation, the coupling transforms via λ ↦ e−4iθλ; thus for any
couplingwe can select θ tomake the path integral convergent,
at the cost of introducing phases on the m2 and ∂

2 terms.
As discussed in Sec. II B, having a normalizing flow

enables the direct computation of the partition function. This
computation is shown in Fig. 3. In this demonstration, a
neural network with one internal layer is used for normal-
izing flows. The procedure for adiabatically training normal-
izing flows is naturally blind to the question of whether the
path integral is convergent on the original (real) domain of
integration. Instead, it is equivalent to performing analytic
continuation along the chosen adiabatic path. To produce the
normalizing flows used for Fig. 3, flows are first prepared at
various radii (0.1; 0.2;…; 1.0) along the real-λ axis, and then
adiabatically retrained while rotating λ in the complex plane.
The process is limited to angles in ½−π; π�, resulting in the
branch cut apparent on the negative λ axis.

IV. TWO DIMENSIONS

In this section we switch to studying two-dimensional
scalar field theory on an isotropic lattice with periodic
boundary conditions. The action defining this model is

Ssft ¼
X
x;y

�ðϕx;y − ϕxþ1;yÞ2
2

þ ðϕx;y − ϕx;yþ1Þ2
2

þm2

2
ϕ2
x;y þ λϕ4

x;y

�
; ð19Þ

wherem2 and λ are again permitted to be arbitrary complex
numbers.
To study this theory, we train integration contours

following the algorithm described in Sec. II A. For
the moderate lattice sizes simulated, linear contours
described by

ϕ̃ðϕÞ ¼ ϕþMRϕþ iMIϕ ð20Þ

are found to sufficiently control the sign problem. HereMR
and MI are V × V real matrices treated as the trainable
parameters, with V the number of sites on the lattice.
Figure 4 shows the performance of integration contours
trained in this way as a function of the lattice size, for lattice
sizes 3 × 3 through 9 × 9. We use a zero-layer network for
training contours. The network is fully connected, and there
are no additional methods used.
The expectation value hϕ2i is shown as a function

of complex coupling λ on the left side of Fig. 5, for an
8 × 8 lattice with m2 ¼ 0.5.
As a check of the correctness of our implementation of

the contour deformation method, we can verify that expect-
ation values, as a function of λ, are in fact holomorphic.
Provided the real-plane computation is trusted, the fact that
the function hϕ2iðλÞ is holomorphic uniquely identifies that
function. Of course this check can only be performed to

FIG. 3. Partition function for lattice scalar field theory in 0þ 1

dimensions, with 10 lattice sites andm2 ¼ 0.5, at complex values
of the coupling λ. The partition function at negative λ is defined
via analytic continuation with a branch cut placed along the
negative real axis. The color scheme is shown on the right, with a
plot of fðλÞ ¼ λ on the same scale.

FIG. 4. Average sign as a function of volume, for two-
dimensional scalar field theory with m2 ¼ 0.5 and λ ¼ 1.0i.
The trained contour is constructed from a zero-layer network; that
is, the integration contour is parametrized by a linear function.
The numbers of configurations are 5 × 106 on the real plane and
5 × 105 on the trained contours, where fewer configurations are
needed due to the improved average sign. (Statistical error bars by
bootstrapping with blocking are shown, but fit within plotted
points.)
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within errors introduced by finite statistics and finite
differencing. Figure 5 shows the antiholomorphic
Wirtinger derivative ∂

∂z̄ ≡ 1
2
ð ∂
∂x þ i ∂

∂yÞ of hϕ2i, approximated
by finite differencing according to

Δ̄fðzÞ≡ 1

4δ

�
fðzþþÞ þ fðzþ−Þ

2
−
fðz−þÞ þ fðz−−Þ

2

þ i

�
fðzþþÞ þ fðz−þÞ

2
−
fðzþ−Þ þ fðz−−Þ

2

��
;

ð21Þ

where zþ� ¼ zþ δ� iδ and z−� ¼ z − δ� iδ. We adopt a
finite difference of δ ¼ 0.1. The small violation confirms
that the Monte Carlo method on deformed contours is
indeed outputting (within our ability to make measure-
ments) a complex analytic function.

V. PARTITION FUNCTION ZEROS

In [13] it was argued that theories with polynomial
actions typically have perfect contours, and several one-
dimensional integrals were examined as examples. In the
previous section, we gave numerical evidence of quantum
mechanical path integrals that also have perfect contours.
In this section, we explore a source of counterexamples: the
zeros of a partition function.
To begin, consider the one-dimensional integral

IðαÞ ¼
Z
R
dz e−αz

2−z4 : ð22Þ

Specific values of α were used as examples in [13], where
perfect integration contours could be found. There are,
however, values of α for which the best possible average
phase becomes arbitrarily close to 0. To see this, we must
establish the following:
(1) For any ϵ > 0, jIðαÞj < ϵ can be satisfied.

(2) For any fixed α, the quenched partition function
IQðαÞ ¼

R je−αz2−z4 j has a nonzero lower bound.
Given that both of these are true, we immediately obtain a
bound on the average phase: hσi ¼ I

IQ
≤ ϵ

B, where B is the

nonzero lower bound on the quenched partition function.
The first observation is an immediate consequence of the

great Picard’s theorem: since I∶ C → C has an essential
singularity at infinity, all values in C with at most one
exception are obtained. In fact, as is often visible numeri-
cally, regions where a partition function becomes arbitrarily
small typically form (topological) balls around zeros of the
partition function.
To establish a lower bound on the quenched partition

function, consider the complex plane in polar coordinates
z ¼ reiθ, and pick some fiducial radius R. Every contour
γ∶ R → C either crosses within R or stays always at r > R.
In the former case, there must be a region ðt−; tþÞ such that
rð½t−; tþ�Þ ¼ ½R;Rþ 1�; that is, the contour must enter the
annulus between radii R and Rþ 1 at coordinate t−, and
exit at tþ. Any such segment of the contour must have a
length of at least 1. Furthermore, there exists a positive CR

such that je−αz2−z4 j > CR for all z in this annulus. As a
result, the contribution of this section of the contour to the
quenched partition function must be at least CR.
In the latter case, the contour must cross through

either θ ∈ ðπ
8
; 3π
8
Þ or θ ∈ ð− π

8
;− 3π

8
Þ while remaining at

radii greater than R—without loss of generality we may
assume the former. In this “unstable” region, the integrand
grows without bound as r is made larger. As a result, there
is again a positiveDR such that je−αz2−z4 j > DR everywhere
in this region. The length of the portion of the contour in
this region must be at least π

4
R, so we obtain a lower bound

of π
4
RDR.

The lesser of the two bounds CR and π
4
RDR provides our

(far from tight) lower bound on the quenched partition
function. In principle, the choice of R can be optimized

FIG. 5. Expectation value of hϕ2i, for m2 ¼ 0.5 on an 8 × 8 lattice. The left panel shows the Monte Carlo estimate of the expectation
value generated from contours trained with 4 × 105 configurations as described in the text. The right panel shows the violation of the
Cauchy-Riemann equations, approximated with finite differencing. Statistical errors, dwarfed by finite differencing errors, fit within the
data points and are not shown. That the violation is small confirms that the Monte Carlo is indeed outputting the analytic continuation of
the real-λ results.
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(and made α dependent) to obtain a stronger bound, but this
is not important here.
A nonzero lower bound on the quenched partition

function is generically available in physical theories,
although it may be difficult to compute a reasonably tight
bound. For this reason, the proximity of partition function
zeros may be seen as an obstacle to the existence of perfect
contours, although not necessarily the only one.
With these considerations in mind, it is worth consid-

ering where zeros of the scalar field partition function
occur. It is to be expected that there are such zeros; for
example, when an external field source is added via a term
Jϕ in the action, the existence of zeros in the complex plane
of J has long been known [22].
Normalizing flows can be used to measure the partition

function directly by a Monte Carlo, as demonstrated in the
previous section; however, this does not immediately make
them a practical tool for studying zeros of the partition
function. A quick glance at Fig. 3 determines that the
presence or absence of zeros is not readily discernible.
Primarily this is due to the fact that, as we have just seen,
near zeros of the partition function, the average phase
becomes arbitrarily small. As a result, determining whether
the partition function is zero or simply arbitrarily small at
any given point is not possible.
Fortunately, the presence of a zero (but not its absolute

location) can be determined exclusively from Monte Carlo
calculations done in a loop around the zero. Consider the
following integral, taken over a loop γ on the complex
plane of λ:

Iγ ¼
1

2πi

I
γ
dλ

Z0ðλÞ
ZðλÞ : ð23Þ

Provided that γ is the boundary of some region on which
ZðλÞ lacks any poles, Iγ is an integer which counts (with
multiplicity) the number of zeros of ZðλÞ in that region. The
integral has an alternate interpretation as the change in the
argument of ZðλÞ as the closed path γ is followed. Thus,
the number of zeros in a region appears as a winding
number measured by walking around that region.
This allows us to study the zeros of the partition function

without being able to perform Monte Carlo calculations
at or near them. In the two-dimensional case studied in
Sec. IV, we have access to only a contour deformation,
making the determination of Z itself more difficult.
However, the argument of Z (i.e., the imaginary part of
the free energy) appears as an argument of the average phase;
that is, only the magnitude of Z is difficult to determine via
Monte Carlo. Since ZðλÞ is holomorphic for λ ≠ 0, it is
possible to locate zeros purely by inspecting the phase.
Figure 6 plots the phase of the partition function

as a function of complex coupling λ, for the first quadrant
of the complex plane. The presence or absence of zeros in
any given region can be read off of the plot by counting

the winding number of a loop around that region. It is
thus clearly visible from this plot that there are no zeros
in the first quadrant of the complex plane (at least for
jλj≲ 2). Since the magnitude of the partition function
is symmetric under complex conjugation of the
coupling—Zðλ̄Þ ¼ ZðλÞ—it is also true that there are no
zeros in the corresponding part of the fourth quadrant.

VI. DISCUSSION

Using complex ϕ4 coupling as a test case, we have
demonstrated the utility of contour deformation-based
approaches, including complex normalizing flows, in the
study of non-Hermitian lattice systems of scalar fields. It
appears likely that, as argued in [13], perfect integration
contours exist for most values of the coupling.
Section V outlined a connection between zeros of the

partition function and contour deformations for treating the
sign problem. Proximity to a zero of the partition function
creates an obstacle to the existence of perfect contour
deformations, and around any such zero there is guaranteed
to be a region where no perfect contour exists. When the
zeros occur on the complex plane of an external field, they
are known as Lee-Yang zeros [23], and their existence and
behavior have long been studied in scalar field theory [22]
and recently in [24] via a flow-based density-of-states
approach. In the complex plane of classical temperature
(ℏ in a quantum path integral), the zeros are referred to as
Fisher zeros [25]. The significance of partition function
zeros for contour deformation-based studies of lattice
systems in physical regimes—where the Hamiltonian is
Hermitian and jZj > 0—remains to be determined.
In this paper we have not discussed phase transitions—

either the second-order transitions that characterize the
continuum limit of the scalar field theory being studied
here, or first-order transitions that occur in many other

FIG. 6. Phases of the partition function for m2 ¼ 0.5 on an
8 × 8 lattice, on the complex-λ plane. Since the partition function
provably has no singularities away from λ ¼ 0 (a branch point),
the number of zeros in any region may be determined by counting
the winding number of a curve around that region.
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models. In the context of the Lefschetz-thimble approach
(the historical inspiration for both contour deformations
and complex normalizing flows), the role of phase tran-
sitions and their relationship to the thimbles has been well
studied [26,27]. A careful study of the relationship between
phase transitions and optimal contours is desirable.
An intricate set of trade-offs exists between the two

approaches used in this paper. Directly optimizing contour
deformations requires a laborious Monte Carlo to be per-
formed at every step of the gradient descent.Whenoptimizing
a complex normalizing flow, the sampling is made cheap—
after all, the original (real) formulationof normalizing flows is
typically used as a technique for dramatically accelerating
Monte Carlo sampling. However, learning an accurate
normalizing flow takes considerably more effort; as observed
in Sec. IV, linear contour deformations are already quite
effective in treating the complex-coupling sign problem,
whereas an approximate normalizing flow must be strongly
nonlinear even when the coupling is real. Moreover, as
mentioned in [13], a normalizing flow cannot be effectively
trained in regimes where an unresolved severe sign problem
exists. Finally, the procedures for training a contour defor-
mation (and the conditions under which the trained contour

respects the conditions of Cauchy’s integral theorem) arewell
understood; training normalizing flows correctly currently
requires some finesse.
Most immediately, the work done here suggests the

practicality of performing lattice studies of the Lee-Yang or
Fisher zeros of systems with scalar degrees of freedom. The
success of contour deformation methods in treating homo-
geneous complex couplings also bodes well for lattice
studies of real-time dynamics, which (making use of the
lattice Schwinger-Keldysh formalism) may be thought of as
possessing particular inhomogeneous complex couplings.
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