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We construct a primitive gate set for the digital quantum simulation of the binary tetrahedral (BT ) group
on two quantum architectures. This non-Abelian discrete group serves as a crude approximation to SUð2Þ
lattice gauge theory while requiring five qubits or one quicosotetrit per gauge link. The necessary basic
primitives are the inversion gate, the group multiplication gate, the trace gate, and the BT Fourier transform
over BT. We experimentally benchmark the inversion and trace gates on ibm_nairobi, with estimated
fidelities between 14%–55%, depending on the input state.

DOI: 10.1103/PhysRevD.106.114501

I. INTRODUCTION

Simulating the dynamics of lattice field theories offers
a clear potential for quantum advantage [1–6]. Time
evolution on quantum computers requires efficiently imple-
menting the unitary operatorUðtÞ ¼ e−iHt. Various approx-
imations for UðtÞ with different tradeoffs exist [3,7–18],
but all of them require implementing key group theoretic
operations as quantum circuits in the case of lattice gauge
theories [19]. This separation of the problem into group-
dependent primitives [20] and algorithmic design [21] has
proven fruitful in optimizing both.
For efficient digital simulations, many proposals exist on

how the lattice gauge degrees of freedom can be truncated
[7,22–61]. For some regulated theories, the desired theory
may not even be the true continuum limit [50,51,53,62–68].
Furthermore, the relative efficacy of schemes is dimension
dependent [20,45,69].
One promising digitization method is the discrete sub-

group approximation [7,31–35,56,70,71]. This method was
explored early on in Euclidean lattice field theory to reduce
resources. Replacing Uð1Þ by ZN was considered in
[72,73]. Extensions to the crystal-like subgroups of
SUðNÞ were made in Refs. [31,32,56,74–79], including
with fermions [80,81]. Theoretical studies revealed that the
discrete subgroup approximation corresponds to continu-
ous groups broken by a Higgs mechanism [82–86]. On the
lattice, this causes the discrete subgroup to poorly approxi-
mate the continuous group below a freezeout lattice spacing
af (or beyond a coupling βf).

Lattice calculations are performed at fixed lattice spacing
a ¼ aðβÞ which approaches zero as β → ∞ for asymptoti-
cally free theories. Finite a leads to discrepancies from
the continuum results, but provided one simulates in the
scaling regime below asðβsÞ, these errors should be poly-
nomial in a. Any approximation error from using discrete
subgroups should be tolerable provided as ≳ af or equiva-
lently that βs ≲ βf. For the 3þ 1d Wilson action, βf are
known. In the case of Uð1Þ where βs ¼ 1, Zn>5 satisfies
βf > βs. For non-Abelian gauge groups, only a few crystal-
like subgroups exist. SUð2Þ has three; the binary tetrahedral
BT , the binary octahedral BO, and the binary icosahedral BI.
The scaling regime for SUð2Þ occurs around βs ¼ 2.2.
Therefore, a value of βf ¼ 2.24ð8Þ forBT is unlikely to prove
usefulwith just theKogut-SusskindHamiltonianHKS, although
experience with SUð3Þ suggests modified or improved
Hamiltonians HI would prove sufficient [32,56,77,78]. The
other two groups, BO and BI, have values far into the scaling
regime, βf ¼ 3.26ð8Þ and βf ¼ 5.82ð8Þ, respectively [32].
Substantial work has studied the quantum simulation of

Abelian theories, particularly in low dimensions. Despite
this, one must remember that non-Abelian gauge theories
demonstrate many behaviors unseen in Abelian ones; thus,
results for Uð1Þ or ZN may fail to represent the full
complexity of lattice gauge theories. The group of interest
in this paper, the 24-element BT , is the smallest crystal-like
subgroup of a non-Abelian theory and requires 5 qubits per
register. The dihedral groups, DN , while not crystal-like,
have previously been investigated for simulation on quan-
tum computers [7,19,20,87]. Having 2N elements respec-
tively, they require ⌈ log2ð2NÞ⌉ qubits per register. Further
studies have been undertaken to understand the Q8 sub-
group of SUð2Þ [71] which requires only 3 qubits.
In the interest of studying quantum simulations on near-

term devices, we should consider both 3þ 1d and 2þ 1d
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theories. Using classical lattice simulations, we have
determined that in both spacetimes βf ≈ βs for the
Wilson action (See Fig. 1). Thus quantum simulations
with BT require an improved Hamiltonian [21] and will
be the only one considered in this work. Since af ∝ e−βf

within the scaling regime, only a small improvement in the
Hamiltonian is needed.
In this paper, we construct quantum circuits implement-

ing the four primitive gates (inversion, multiplication, trace,
and Fourier) required to simulate the BT theories. We will
consider two possible quantum devices when constructing
our gates. The first is a qubit-based device. The second
device, motivated by the potential for bosonic quantum
comptuer [88], is a d ¼ 24 qudit device where only one
qudit is required per register. We refer to this d ¼ 24 state
qudit as a quicosotetrit. Although time evolution on
quantum processors is infeasible at present due to the
low gate fidelities and coherence time, we benchmark the
process fidelity of the inversion and trace gates for BT on
the ibm_nairobi QPU to evaluate the improvements
needed for simulations on quantum processors.
This paper is organized as follows. In Sec. II, the

necessary group theoretic properties of BT are summarized

and the digitization scheme is presented. A review of the
basic qubit and qudit gates used in this work is found in
Sec. III. Section IV summarized the four primitive gates
required for implementing the group operations. This is
followed by quantum circuit constructions for these gates
for BT gauge theories; the inversion gate in Sec. V, the
multiplication gate in Sec. VI, the trace gate in Sec. VII, and
the Fourier transform gate in Sec. VIII. Benchmark results
for our BT inversion and trace gates are found in Sec. IX.
Using these gates, Sec. X presents a resource estimates for
simulating 3þ 1d SUð2Þ. We conclude and discuss future
work in Sec. XI.

II. PROPERTIES OF BT

The simulation of lattice gauge theories requires the
definition of a register where one can store the state of a
bosonic link variable which we call a G-register. In order to
construct the BT -register in term of integers, it is necessary
to construct a mapping between the 24 elements of the
group and the integers [0, 23]. A clean way to obtain this is
to write every element of BT as an ordered product of four
generators1 with exponents written in terms of the binary
variables m, n, o, p, q,

g ¼ ð−1Þminjolpþ2q; ð1Þ

with

l ¼ −
1

2
ð1þ iþ jþ kÞ ð2Þ

and i, j, k are the unit quaternions which in the 2d
irreducible representation (irrep) correspond to Pauli matri-
ces. With the construction of Eq. (1), the BT -register is
given by a binary encoding of the qubits with the ordering
jqponmi. While there exist 25 possible state in a 5-qubit
register, we only consider the 24 lowest states to represent
the group elements. The states j24i through j31i are
unphysical. This is equivalent to never considering cases
where p ¼ q ¼ 1. In this work we will use a short hand jNi
to correspond to a given bit string jqponmi where the
number N is the integer representation of the binary string
qponm with most significant bit first. This same mapping
can be utilized for quicosotetrits. For example, using η ¼
1þ i one element in the real 2d irrep is

1

2

�
η η�

−η η�

�
¼ ð−1Þ1i1j1l0þ2×1 → j10111i ¼ j23i: ð3Þ

FIG. 1. Euclidean calculations of lattice energy density hE0i of
BT as measured by the expectation value of the plaquette as a
function of Wilson coupling β on 4d lattices for (top) 2þ 1d
(bottom) 3þ 1d. The shaded region indicates β ≤ βs.

1The minimal set of generators for BT is two, but we have been
unable to find an ordered product with less than three. The choice
of three generators is the same as the one with four generators
where ð−1Þmin → i2mþn. Nevertheless, the qubit costs cannot go
below the current formulation’s value of ⌈ log2ð24Þ⌉ ¼ 5.
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The i, j, and k generators anticommute with each other.
Additional useful relations are

i2 ¼ j2 ¼ −1; l3 ¼ 1

ij ¼ k; jk ¼ i;ki ¼ j;

li ¼ jl; lj ¼ kl; lk ¼ il;

l2i ¼ kl2; l2j ¼ kl2; l2k ¼ jl2: ð4Þ
The character table (Table I) lists important group

properties; the different irreps can be identified by the
value of their character acting on each element. An irrep’s
dimension is the value of the character of 1. There are three
1d irreps, three 2d irreps (one real and two complex), and
one 3d irrep. To derive the Fourier transform, it is necessary
to know a matrix presentation of each irrep. Based on our
qubit mapping, given a presentation of −1; i; j, and l we
can construct any element of the group from Eq. (1). With
the third root of unity ω ¼ e2πi=3, the 1d irreps are given,

ρ1∶ − 1 ¼ i ¼ j ¼ l ¼ 1; ð5Þ

ρ2∶ − 1 ¼ i ¼ j ¼ 1; l ¼ ω2; ð6Þ

ρ3∶ − 1 ¼ i ¼ j ¼ 1; l ¼ ω: ð7Þ

Now for the 2d irreps, we can use for all three irreps the
same definitions

ρ4;5;6∶ − 1 ¼ diagð−1;−1Þ; i ¼ diagði;−iÞ;

j ¼
�
0 −1
1 0

�
; l ¼ −

1

2

�
η −η
η� η�

�
; ð8Þ

then we can construct the three 2d irreps by taking

ρ4ðgÞ ¼ ð−1Þminjolpþ2q; ð9Þ

ρ5ðgÞ ¼ ð−1Þminjoðω2lÞpþ2q; ð10Þ

ρ6ðgÞ ¼ ð−1ÞminjoðωlÞpþ2q: ð11Þ

For the 3d irrep we have

ρ7∶ − 1 ¼ diagð1; 1; 1Þ; i ¼ diagð−1; 1;−1Þ;

j ¼ diagð1;−1;−1Þ; l ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA: ð12Þ

III. QUBIT AND QUDIT GATES

In order to implement the group primitive gates on qubit
and qudit hardware we need a set of quantum gate
operations. We begin by first enumerating the qubit gates,
followed by a discussion of the qudit gates.
The first basic qubit gates we need are the Pauli gates

p ¼ X, Y, Z. These can be extended to arbitrary rotations
about their respective axes RpðθÞ ¼ eiθp=2. When decom-
posing onto fault-tolerant devices, the T ¼ diagð1; eiπ=4Þ
gate becomes relevant.
The first multiqubit operation we need is the SWAP

operation, which swaps two qubits,

SWAPjai ⊗ jbi ¼ jbi ⊗ jai:

The controlled not (CNOT) gate applies the X operation on
a target qubit if the control qubit is in the state j1i,

CNOTjai ⊗ jbi ¼ jai ⊗ jb ⊕ ai;

where ⊕ indicates addition modulus 2. We also need the
following multiqubit gates: CnNOT—of which C2NOT is
called the Toffoli gate—and CSWAP (Fredkin) gates. The
CnNOT gate is the further extension to the case of where
the n control qubits must be in the j1i⊗n state. For example,
the Toffoli in terms of modular arithmetic is

C2NOTjai ⊗ jbi ⊗ jci ¼ jai ⊗ jbi ⊗ jc ⊕ abi:

The CSWAP gate swaps two qubit states if the control is in
the j1i state,

CSWAPjai ⊗ jbi ⊗ jci ¼ jai ⊗ jbð1 ⊕ aÞ ⊕ aci
⊗ jcð1 ⊕ aÞ ⊕ abi:

One final qubit operation, the controlled permutation
gate Cχ, will prove useful to define for conciseness later.
Figure 2 constructs it in terms of CnNOT gates.
We also need a set of gates for implementation on

quicosotetrit device. In our case, there are not specialized
quicosotetrit gates but a general set of qudit ones to
consider. The single qudit gates we need are Givens

TABLE I. Character Table of BT including an enumeration of
the elements in the given class.

Size 1 1 6 4 4 4 4
Order 1 2 4 6 6 3 3
ρ1 1 1 1 1 1 1 1
ρ2 1 1 1 ω ω2 ω2 ω
ρ3 1 1 1 ω2 ω ω ω2

ρ4 2 −2 0 1 1 −1 −1
ρ5 2 −2 0 ω2 ω −ω2 −ω
ρ6 2 −2 0 ω2 ω −ω −ω2

ρ7 3 3 −1 0 0 0 0

jgi j0i j1i j2i,j3i j9i,j10i j17i,j19i j8i,j11i j16i,j18i
j4i,j5i j12i,j14i j21i,j23i j13i,j15i j20i,j22i
j6i,j7i
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rotations, the selective number of arbitrary photon
(SNAP) [89,90], displacement [91], and photon blockade
gates [92,93].

Givens rotations Rða;bÞ
p ðθÞ are generalizations of RpðθÞ to

qudits where rotations occur in the subspace of states jai
and jbi while leaving all the other states untouched. We
also use the notation pða;bÞ to indicate special Givens
rotations that correspond to the generalized Pauli gates
[e.g., Xð3;4Þ]. These gates are useful in designing algorithms
for simulating with qudits, but are difficult to natively
implement. Therefore, real simulations will likely require
their decomposition.
One native gate set for single qudits in cavity QED

devices is SNAP and displacement gates [89–91]. SNAP
gates can arbitrarily phase the qudit states,

Sðθ⃗Þ ¼
XN−1

a¼0

jaihajeiθa ; ð13Þ

where the sum is over computational basis states a ¼
½0; N − 1� of an N-state qudit and θ⃗ ¼ fθ0; θ1;…; θN−1g
are a set of tunable parameters analogous to θ in RZðθÞ.
The displacement gate coherently changes the cavity’s

photon number. In terms of Fock operators â; â†, it is

DðαÞ ¼ eαâ
†−α�â: ð14Þ

The photon blockade operation acts as an RXðθÞ or
RYðθÞ rotation between two Fock states in a cavity by
driving the system at an off-resonant frequency while
shifting the desired modes to said frequency [92,93].
In order to obtain a universal set of gates, we require an

entangling gate. One proposal is the controlled SNAP gate
which phases a target qudit based on if a second qudit is in a
state jαi [94],

cSðθ⃗; αÞ ¼
XN−1

a¼0;a≠α
jaihaj ⊗ 1þ jαihαj ⊗

XN−1

b¼0

jbihbjeiθb :

ð15Þ

IV. OVERVIEW OF PRIMITIVE GATES

For general gauge groups, it is possible to define any
quantum circuit with sets of primitive gates. Using this
formulation confers two benefits: first, it is possible to
design algorithms in a theory- and hardware-agnostic way;

second, the circuit optimization is split into smaller, more
manageable pieces. This construction begins with defining
for G aG-register by identifying each group element with a
computational basis state jgi, where g ∈ G. One choice of
primitive gates is: inversion U−1, multiplication U×, trace
UTr, and Fourier transform UF [19].
The inversion gate, U−1, is a single register gate which

takes a group element to its inverse

U−1jgi ¼ jg−1i: ð16Þ

The group multiplication gate acts on two G-registers. It
takes the target G-register and changes the state to the left
product with the control G-register,

U×jgijhi ¼ jgijghi: ð17Þ

Left multiplication is sufficient for a minimal set as right
multiplication can be implemented use two applications of
U−1 and U×, albeit optimal algorithms may take advantage
of an explicit construction [21].
The trace of products of group elements appears in lattice

Hamiltonians. We can implement these terms by combining
U× with a single-register trace gate,

UTrðθÞjgi ¼ eiθReTr gjgi: ð18Þ

The final gate required is the group Fourier transform
UF. The Fourier transform of a finite G is defined as

f̂ðρÞ ¼
ffiffiffiffiffiffiffi
dρ
jGj

s X
g∈G

fðgÞρðgÞ; ð19Þ

where jGj is the size of the group, dρ is the dimensionality
of the representation ρ, and f is a function over G. The
inverse transform is given by

fðgÞ ¼ 1ffiffiffiffiffiffiffijGjp X
ρ∈Ĝ

ffiffiffiffiffi
dρ

q
Trðf̂ðρÞρðg−1ÞÞ; ð20Þ

where the dual Ĝ is the set of all irreducible representations
of G. The gate that performs this acts on a single G-register
with some amplitudes fðgÞ which rotate it into the Fourier
basis,

UF

X
g∈G

fðgÞjgi ¼
X
ρ∈Ĝ

f̂ðρÞijjρ; i; ji: ð21Þ

The second sum is taken over ρ, the irreducible repre-
sentations of G; f̂ denotes the Fourier transform of f.
After application of the gate, the register is denoted as a
Ĝ-register to indicate the change of basis. A schematic
example of this gate is show in Fig. 3.

FIG. 2. The controlled permutation gate, Cχ.
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V. INVERSION GATE

Consider a BT -register storing the group element given
by g ¼ ð−1Þm0in0jo0lp0þ2q0. The effect of the inversion gate
on this register is to transform it to

jgi ¼ jq0p0o0n0m0i → jg−1i ¼ jq1p1o1n1m1i: ð22Þ

Using Eq. (1) and ðABÞ−1 ¼ B−1A−1, the inverse of g is

g−1 ¼ ð−1Þm0þn0þo0l3−p0−2q0jo0in0 :

We can then put this into the normal ordering of Eq. (1)
using the relations in Eq. (4) to find

g−1 ¼ ð−1Þm1in1jo1lp1þ2q1 : ð23Þ

where the relation between the jgi and jg−1i indices are

m1 ¼ m0 þ n0 þ o0 þ n0 × o0

n1 ¼ n0ð1 − q0Þ þ o0ðp0 þ q0Þ
o1 ¼ o0ð1 − p0Þ þ n0ðp0 þ q0Þ
p1 ¼ q0

q1 ¼ p0: ð24Þ

A qubit circuit implementation of U−1 is shown in Fig. 4.
We can map Eq. (24) onto a quantum circuit using modular
arithmetic, finding that transforming m0 to m1 uses two
CNOTs and a Toffoli gate. A circuit with a CSWAP and
two Toffolis is required for n1 and o1, while p1 and q1 need
one SWAP.
The quicosotetrit circuit of U−1 is simpler, needing only

11 Xða;bÞ gates,2 as seen in Fig. 5. 24Sðθ⃗Þ and 25DðαÞ are
sufficient to approximate U−1 to subpercent infidelity.
Inspecting this circuit, the largest separation between
inverses is j10i and j23i. Using only Sðθ⃗Þ and DðαÞ, this
could prove noisy in terms of the necessary θ⃗ and α, and
thus large-separation photon blockade gates are desirable.

VI. MULTIPLICATION GATE

The method to construct the U× for qubits is similar to
that for U−1. Given two BT -registers storing g and h,

g ¼ ð−1Þm0in0jo0lq0þ2p0 ; h ¼ ð−1Þm1in1jo1lq1þ2p1 ;

ð25Þ

we want gh ¼ g × h and permuting jhi to jghi. Defining
gh ¼ ð−1Þm2in2jo2l2p2þq2 , we can derive via Eq. (4),

m2 ¼ o1n0ð1 − p1Þ þ ðn1n0 þ o1o0Þð1 − q1Þ
þ n1o0ðp1 þ q1Þ

n2 ¼ n1 þ n0ð1 − q1Þ þ o0ðp1 þ q1Þ
o2 ¼ o1 þ o0ð1 − p1Þ þ n0ðp1 þ q1Þ
p2 ¼ p0ð1 − q1Þð1 − p1Þ
q2 ¼ q0ð1 − q1Þð1 − p1Þ: ð26Þ

These expressions map into the qubit circuit of Fig. 6.
U× on quicosotetrits is a permutation of jhi controlled by

jgi realized as

U× ¼
X
g∈G

X
h∈G

jgihgj ⊗ jhihg × hj ¼
X
g∈G

jgihgj ⊗ P̂g;

where P̂g is a permutation matrix that depends upon g. This
unitary matrix can be diagonalized by 1-qudit gates Vg. A
quicosotetrit circuit for U× is shown in Fig. 7.

FIG. 3. Example UF from Eq. (19) using column vectors ρ̃i;j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dρ=jGj

p
ρi;j where ρi;j ¼ ρiðgjÞ. This example has three irreps

with dρ ¼ 1; 2; 3. UF is square since
P

ρ d
2
ρ ¼ jGj.

FIG. 4. A qubit implementation of U−1 which uses Toffoli and
CSWAP gates. These multiqubit entangling gates can be decom-
posed into 1- and 2-qubit gates as discussed in the literature.

21 Xða;bÞ of the 12 is unnecessary since j0−1i ¼ j0i and
j1−1i ¼ j1i.
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The structure of Vg depends on the order m of the
element g (Table I) being multiplied onto the element h. For
a given operator g the elements h ∈ G will break down into
24=m sets of m elements. The elements in each set are
determined solely by the operator g itself. The elements in
each set can be generated by taking h and left multiplying it
by g until the element h is reached again. These sets of
elements will provide a presentation of a Zm group. In this
way Vg can be rendered into a set of 24=m blocks of sizem.
These blocked sections with at most an SUð6Þ rotation in
the given subspace. The SUðNÞ Euler angle decomposi-
tions are provided in Appendix along with the group cycles
generated by each g. Table II provides the total number of

Rða;bÞ
p ðθÞ for each QFTZm

on the m-level subspace as well
as Vg.
A directed graph for the group sets for g ¼ −1; l, and −l

(j1i, j8i, j9i respectively) are shown in Fig. 8. In this figure
we show how multiplication of a group element h on the
left by a group element g will cycle through a subset of the
group elements in a directed graph. For example multipli-
cation by −1 (j1i) flip flops elements j2ai and j2aþ 1i. In
this way the neighboring states will have a Z2 Fourier
transform applied on each pair. Multiplication by the
element l (j8i) will cycle the states jai; jaþ 8i, and
jaþ 16i for a ≤ 7. The cycles shown for multiplication by
−l (j9i), are more complicated to write in closed form but
are shown in the right hand side of Fig. 8.

In this way V†
gP̂gVg will be a diagonal matrix whose

nonzero elements are phases corresponding to the eigen-
values of P̂g. As we iterate through gi, neighboring VgiV

†
giþ1

can be combine into a single qudit operation. If we use
Table II as a starting point and recognize that for the order
3, 4, and 6 that Vg’s appear in pairs of states, almost half of

the Rða;bÞ
p ðθÞ are eliminated, leaving 2,244 to implement all

Vg’s. In terms of native gates,U× needs 575 SNAP and 575
DðαÞ gates in addition to the 23 cSNAP gates for P̂g. This
cost could be reduced by pulse engineering, an active
research area in bosonic quantum computers [95–98].

VII. TRACE GATE

For simulating gauge theories,UTr is only needed for the
fundamental representation, ρ4. The character table
(Table I) provides us with the Re TrðgiÞ necessary. UTr
can be obtained by defining a Hamiltonian, and then
exponentiating it. For our qubit-register, Htr for ρ4 is

HTr ¼ Zm0
ðZq0 ½2þ ð1þ Zo0ÞðZn0 þ Zp0

ð1þ Zn0Þ�
þ Zp0

½Zo0 þ Zn0 − 1�Þ; ð27Þ

where Zh acts on the jhi qubit. From this, we can
decomposing eiθHtr into the linear combinations of
RZðθÞ gates. The qubit-based circuit for UTr is shown
in Fig. 9.

Implementing UTr on a quicosotetrit requires 9 Rða;bÞ
Z ðθÞ

gates corresponding to the 9 (gi,−gi) pairs with
Re TrðgiÞ ≠ 0; this gate is shown in Fig. 10. Together,
these gates can be mapped to a single SNAP gate.

VIII. FOURIER TRANSFORM

The standard n-qubit quantum Fourier transform (QFT)
[99] corresponds to the quantum version of the fast Fourier
transform of Z2n . Quantum Fourier transforms over several
non-Abelian groups exist in the literature [20,100–103].
Alas, for all the crystal-like subgroups of interest to high-
energy physics efficient QFT circuits are currently unknown
[104]. For the general case, there isn’t a clear algorithmicway
to construct the QFT. Therefore, we instead construct a

FIG. 5. A quicosotetrit implementation of U−1 using the Xða;bÞ gate. States j0i and j1i are unaffected because they are their own
inverse.

FIG. 6. A qubit implementation of U×. Following convention,
filled (open) circles correspond to control on j1i (j0i). The Cχ
gate is defined in Fig. 2 and Cχ−1 is its inverse.

FIG. 7. A quicosotetrit implementation of U×. The subscript gi indicates the ith element of the group.
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suboptimal UF from Eq. (19) using the irreps of Sec. II to
obtain the matrix in Fig. 11. The structure of the Fourier
transform is ordered as follows. The columns index group
elements jgi from j0i to j24i according to Eq. (1). We then
index the irreducible representation ρi ordered sequentially
from i ¼ 1 to i ¼ 7. For each ρi, we convert the d2ρi matrix
representation of g into a column vector. For example, the
first three rows of Fig. 11 correspond to the 1d irreps ρ1, ρ2,
and ρ3. Then rows 4 through 7 are the matrix elements of the
d4 ¼ 2 ρ4 as a column vector.
Since BT has 24 elements, on a qubit device UF must be

embedded into a larger 2d × 2d matrix. With this matrix, a
transpiler can be used to derive a circuit. Using the QISKIT

transpiler, UF requires 1025 CNOTs, 2139 RZðθÞ, and
1109 RYðθÞ; the Fourier gate is the most expensive qubit

primitive. As will be discussed in Sec. X,UF dominates the
total simulation costs and future work should be devoted to
finding a BT QFT.
A quicosotetrit implementation follows the same gen-

eralized Euler angle decomposition as the Vg used for U×

[105]. This gate can be implemented with 24 SNAP and 25
displacement gates to subpercent infidelity.

IX. EXPERIMENTAL RESULTS

In this section, we discuss experimental results from
running U−1 and UTr on the ibm_nairobi 7 transmon
qubit device (see Fig. 12). Transpiling Figs. 4 and 9 onto
ibm_nairobi, topology constraints require introducing
additional SWAP gates (see Fig. 12). The cost of UTr
increases from 22 CNOTs to 39, and forU−1 the number of
CNOTs goes from 31 to 49. The high qubit cost of U× and
high gate costs of UF suggest they are unlikely to have
reasonable fidelities and they are left for the future.
We define the process fidelity F of U on a state jψi as

F jΨi
U ¼ jh0jΨ†U†UΨj0ij2 ð28Þ

Without noise, the state preparation Ψ and U are
exactly cancelled by their complex conjugations, thus the
measured result should always be j0i⊗5. Determining the
fidelity requires testing all the possible states jΨi, a
prohibitively expensive task [106]. Therefore we consider a
subset of states given by the 24 group element states jgi
which can be obtained by applyingX gates to the appropriate
qubits. For a general state, Ψ†U† could require as many
CNOTs as UΨ. In this case, the total circuit cost is doubled
and fidelities are reduced. In contrast, for jgi, the results of
applying either of our gates is another jgi, which can be
returned to j0i⊗5 using only X gates. With this, we compute
F for each jgi for both UTr and U−1 without doubling the
CNOT count. With these results we calculate a mean
value F̄U.
The dominant coherent CNOT error can be mitigated

through Pauli twirling [107–111]. This method converts
coherent errors into random Pauli channel errors and has

FIG. 8. Left: Pictorial representation of the cycles for jgi being:
j1i with m ¼ 2, (black arrows); j8i with m ¼ 3, (orange dotted
arrows). Right: representation of the cycle for j9i with m ¼ 6,
different cycles are shown in different colors.

FIG. 9. A qubit implementation of UTr.

FIG. 10. A quicosotetrit implementation of UTr using two level Rða;bÞ
Z ðθÞ gates.

TABLE II. Rða;bÞ
p ðθÞ required forQFTZm

and Vg for each order.
Njgi denote the number of elements with that cycle.

Cycle Njgi Rða;bÞ
p ðθÞ in QFTZm

Rða;bÞ
p ðθÞ in Vg

1 1 0 0
2 1 3 36
3 8 8 64
4 6 15 90
6 8 35 140
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found success in lattice applications [21,112]. The circuits
are modified by wrapping each CNOT with a set of Pauli
gates f1; X; Y; Zg sampled from sets which are logical
equivalent to CNOT. We ran 20 unique circuits for each
gate-state pair following prior results findingOð10Þ circuits
to suffice [107]. 2000 shots were taken for the UTr circuits,
while 500 were gotten for U−1. The process fidelity for
each jgi are shown in Fig. 13. Averaging we find that the

F̄ jgi
Tr ¼ 55ð1Þ%, while the higher CNOT count ofU−1 leads

to a lower fidelity of F̄ jgi
−1 ¼ 37.0ð8Þ%.

While jgi are easy to implement, they are less likely to be
encountered during a simulations, since states must be
gauge invariant. In the case of U−1, it is possible to test a
gauge invariant state jGIi ¼ jGj−1=2 Pg jgi because both

jGIi andΨ†U†
−1 can be implemented with only 1 additional

CNOT. For this state, we found a reduced fidelity

F jGIi
−1 ¼ 14.8ð12Þ%.

FIG. 12. An example mapping of jgi ¼ jqponmi onto the 7
transmon qubit ibm_nairobi. jqsi correspond to spectator
qubits that do no play an active role in computations.

FIG. 11. Matrix representation of UF where η ¼ 1þ i and ω ¼ e
2πi
3 . The irreducible representations are ordered ρ1 to ρ7. The 2d and

3d irreps are then indexed by each element in a row of the matrix through all the rows.

FIG. 13. Process Fidelities, F , for the trace and inverse gate on
IBM’s computer. The angle used was θ ¼ 0.7. The averages are
shown as a shaded band.
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X. RESOURCE ESTIMATES

Clearly time evolution for large lattices of BT is beyond
the NISQ era and we should consider fault-tolerant quantum
computers. The Eastin-Knill theorem restricts quantum error
correcting codes by preventing universal sets of gates from
being implemented transversally [113]. Transversality refers
to the property that gates operating on logical qubits
correspond to tensor products on the physical qubits. For
many error correcting codes such asCalderbank-Shor-Steane
(CSS) codes theClifford gates are transversal [106,114–117]
while the T gate is not. Therefore, T gates are an important
metric in fault-tolerant algorithm analysis because they
require entanglement between physical qubits [106,118].
The Toffoli gate is known to require 7 T gates [106] and

the CnNOT gates can be constructed exactly using a ladder
of Toffoli gates and clean ancilla qubits3 which can be
reused later [106,119]. Using this ladder method a CnNOT
gate can be implemented using 4ðn − 1Þ Toffoli gates and
n − 1 clean ancilla qubits. Methods exist using dirty ancilla
at the cost ofmore T gates [119,120].We arrive at the cost for
theRz gates via [121]where these gates can be approximated
to precision ϵ with at worst 1.15 logð1=ϵÞ T gates using the
repeat-until-success method. Using these, we can construct
fault-tolerant gate cost estimates for BT (See Table III).
Primitive gate costs for implementing the improved

Hamiltonian, HI , per link per Trotter step δt are shown
in Table IV. Using these costs we find that a d spatial lattice
simulation of HI for time t ¼ Ntδt would require

NT ¼
�
4312d − 3640þ

�
4581.03þ 18.975dlog2

1

ϵ

��
× dLdNt ð29Þ

Following [122,123], we consider a fiducial simulation of
the shear viscosity η on a d ¼ 3 lattice of L ¼ 10 with
Nt ¼ 50, ϵ ¼ 10−8 and the cost of state preparation
neglected. For an SUð2Þ simulation including fermions,

Kan and Nam [123] estimated 3 × 1034 T gates, while
neglecting fermions allows for a more modest 3 × 1019.
Here, we neglect fermions and using BT to approximate
SUð2Þ requires 2.0 × 1010 T gates for HI. So using BT
reduces the gate costs by 9 orders of magnitude. The T gate
density is 1 T gate per BT-register per clock cycle and is
independent of primitive, although a QFT might increase
this. The large reduction in T gates compared to [123]
comes by avoiding quantum fixed-point arithmetic. For us,
UF dominates the simulations—44% of the total cost.
Compared to qubits, the field of quantum error correction

for qudits is less developed [124–138]. Much, but not all, of
the work has focused on qutrits and relies upon specific
hardware and native gates. While this field will develop
rapidly in the coming years, we will restrict ourselves to
quicosotetrit resources estimates basedon adevicewith native
cSNAP,SNAP, and displacement gates. The costs for eachBT
gate are shown in Table V. In contrast to the qubits, for
quicosotetrit simulations the most costly gate is U× with all
other gates contributing negligible amounts. Thus, determi-
nation of the QFT is less important for quicosotetrit devices.
Summing the gates, we find the fiducial calculation of the
viscosity with 3 × 103 quicosotetrits would require 1.9 × 108

cSNAP and 4.9 × 109 SNAP and displacement gates.

XI. CONCLUSIONS

In this paper, we constructed the necessary primitive
quantum circuits for the simulation of BT—the smallest
crystal-like subgroup of SUð2Þ—gauge theories. These
circuits were constructed for both qubit and quicosotetrit
architectures and quantum resource estimates were made for
the simulation of pure SUð2Þ shear viscosity. Compared to
previous fault-tolerant qubit estimates, we require 109 fewer
T gates by avoiding quantum fixed point arithmetic via the
discrete group approximation. While these simulations are

TABLE III. Number of physical T gates and clean ancilla
required to implement logical gates for (top) basic gates taken
from [106] (bottom) primitive gates for BT.

Gate T gates Clean ancilla

C2NOT 7 0
C3NOT 28 1
CSWAP 7 0
Rz 1.15 log2ð1=ϵÞ 0

U−1 28 0
U× 154 1
UTr 12.65 log2ð1=ϵÞ 0
UFT 1150 log2ð1=ϵÞ 0

TABLE IV. Number of primitive gates per link per δt neglecting
boundary effects as a function of dimension d for HI.

Gate N½HI �
UF 4
UTr

3
2
ðd − 1Þ

U−1 2þ 11ðd − 1Þ
U× 4þ 26ðd − 1Þ

TABLE V. cSðθ⃗Þ, Sðθ⃗Þ, and DðαÞ gates required for BT (top)
primitive gates (bottom) HI simulations per link per δt.

Gate cSðθ⃗Þ Sðθ⃗Þ DðαÞ
U−1 0 24 25
U× 23 575 575
UTr 0 1 0
UFT 0 24 25
e−iHIδt 598d − 506 15215.5d − 12771.5 15225d − 12775

3A clean ancilla is a qubit initialized to j0i. Dirty ancilla
indicate ones in an unknown initial state.
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still far off, we performed quantum fidelity experiments for
two of the gates. Experimentally, we found the fidelity of the
inversion and trace operation to be 37.0(8)% and 55(1)% for
classical bit string states on the ibm_nairobi quantum
processor.
Qudit-based quantum computers, like the quicosotetrit

device considered here, are known to require fewer gates, in
particular entangling ones. Here we have demonstrated an
additional benefit that the construction of non-Abelian
group primitives are dramatically simplified compared to
the qubit case by reducing the complex internal G-register
logic required to preserve group structure.
Looking forward, primitive gates should be con-

structed for larger crystal-like subgroups of SUð2Þ and
to the subgroups of SUð3Þ theories. At the cost of more
qubits and larger lattice errors, a larger SUð2Þ subgroup
should allow the possibility of using the Kogut-Susskind
Hamiltonian. This would reduce gate costs by a factor of 2
on a qubit device and a factor of 4 on a qudit one since
different primitives dominate the cost. Finally, in order to
further reduce the qubit-based simulation gate costs for all
discrete subgroup approximations, the formalism for deriv-
ing the quantum Fourier transform for each crystal-like
subgroup would be of great interest.
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APPENDIX: SU(N) EULER ANGLE
DECOMPOSITIONS

The following operators Uða;bÞ
2 , Uða;b;cÞ

3 , Uða;b;c;dÞ
4 , and

Uða;b;c;d;e;fÞ
6 correspond to specific SUðNÞ rotations that

implement the QFTZm
of Table II. We use the following

Euler angle decompositions where the superscripts indicate
levels that are swapped between. The SUð2Þ Euler angle
decomposition we require is built from the well-known
ZXZ rotation

Uða;bÞ
2 ðθ⃗IIÞ ¼ Rða;bÞ

Z ðθ0ÞRða;bÞ
X ðθ1ÞRða;bÞ

Z ðθ2Þ: ðA1Þ

For the two-state rotation we need, θ⃗II ¼ ½π=2; π=2; π=2�.
An example of the operator Vg with cycle m ¼ 2 would be
for g ¼ −1, which corresponds to j1i, and is given by

V1 ¼
Y11
a¼0

Uð2a;2aþ1Þ
2 ðθ⃗IIÞ: ðA2Þ

The SUð3Þ Euler angle decomposition requires two

Uða;bÞ
2 ðθ⃗Þ and two Givens rotations [105,139–141],

Uða;b;cÞ
3 ðθ⃗IIIÞ ¼ Uða;bÞ

2 ðθ0!ÞRðb;cÞ
X ðθ1ÞUða;bÞ

2 ðθ2!ÞRðb;cÞ
Z ðθ3Þ;

ðA3Þ

where the angles are fixed to: θ⃗0 ¼ ½7π=6; 3π=2; π=2�,
θ1 ¼ 0.608175π, θ⃗4 ¼ ½0;−π=2; π=3�, θ3 ¼ 7π=3. One
element with m ¼ 3 is g ¼ l, corresponding to j8i,

V8 ¼
Y7
a¼0

Uða;aþ8;aþ16Þ
3 ðθ⃗IIIÞ: ðA4Þ

The Euler angle decomposition of an arbitrary SUð4Þ is

given in terms of three Uða;bÞ
2 ðθ⃗Þ and six Givens rotations

Uða;b;c;dÞ
4 ðθ⃗IVÞ ¼ Uða;bÞ

2 ðθ⃗0ÞRðb;cÞ
X ðθ1ÞRða;bÞ

Z ðθ2Þ
× Rðc;dÞ

Z ðθ3ÞUða;bÞ
2 ðθ⃗4ÞRðb;cÞ

X ðθ5Þ
× Uða;bÞ

2 ðθ⃗6ÞRðb;cÞ
Z ðθ7ÞRðc;dÞ

Z ðθ8Þ; ðA5Þ
where the angles required for QFTZ4

are fixed to be:

θ⃗0 ¼ ½2π; π=2; 0�, θ1 ¼ 1.392π, θ2 ¼ 0.4511π, θ3 ¼ 4π=3,
θ⃗4 ¼ ½0.90126π; 0.41956π; 1.852π�, θ5 ¼ 0.60817π, θ⃗6 ¼
½π=2; π=4;−π=4�, θ7 ¼ −π=2, θ8 ¼ −3π=4. If we consider
the example g ¼ i, (j2i) then V2 would be

V2 ¼
Y5
a¼0

Uð4a;4aþ2;4aþ1;4aþ3Þ
4 ðθ⃗IVÞ: ðA6Þ

The final decomposition required for BT is SUð6Þ,
which is given by two Uða;b;cÞ

3 ðθ⃗Þ and three Uða;bÞ
2 ðθ⃗0Þ

Uða;b;c;d;e;fÞ
6 ¼ Uða;b;cÞ

3 ðθ⃗IIIÞUðd;e;fÞ
3 ðθ⃗IIIÞ

× Uða;dÞ
2 ðθ⃗IIÞUðb;eÞ

2 ðθ⃗IIÞUðc;fÞ
2 ðθ⃗IIÞ: ðA7Þ

The group element −l corresponding to j9i has order
m ¼ 6. The corresponding V9 is made with four products

of Uða;b;c;d;e;fÞ
6 , although it lacks the obvious structure of the

other examples shown thus far,

V9 ¼ Uð0;9;16;1;8;17Þ
6 Uð2;14;20;3;15;21Þ

6

× Uð4;11;23;5;10;22Þ
6 Uð6;12;19;7;13;18Þ

6 : ðA8Þ
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