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We carry out an analysis of the multibody decay cascade A, — AjJ/y — pK~J/y with the A}
resonance, including Ajs,, Ajggo. and Ajgg, and J/y reconstructed by the lepton pair final state. Using the
helicity amplitude technique, we derive a compact form for the angular distributions for the decay chain,
from which one can extract various one-dimensional distributions. Using the A, — A} form factors from
lattice QCD and quark model, we calculate the differential and integrated partial widths. Decay branching
fractions are found as B(A, — A5(pK)J/y(£¢7)) = (1.35 £ 0.28) x 107°. In addition, we also explore
forward-backward asymmetry and various polarizations. Results in this work will serve a calibration for the
study of b — s£#T¢~ decays in A, decays in future and provide useful information toward the

understanding of the properties of the A} baryons.
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I. INTRODUCTION

Multibody hadronic decays of heavy mesons and
baryons are of special interest for various reasons.
Compared to two-body hadronic decay, multibody decays
typically have much richer phase spaces and thus can be
used to explore various new phenomena. Since these
decays might receive distinct resonating contributions,
they provide a platform for the study of strong interactions
and the examination of the beneath quantum field theory,
i.e., quantum chromodynamics (QCD), in a versatile
manner. In addition, in the past decades, many traditional
and exotic hadron structures have been discovered in
multibody decays of heavy mesons and baryons at differ-
ent experimental facilities [1-5].

The main focus of this work is the A, — pK~J/y decay,
which has been previously explored on the experimental
side. This process plays a very important role in the search
for exotic hadron states. In 2015, the LHCb Collaboration
reported two exotic structures, P.(4380) and P.(4450),
first observed in the Ag — J/wpK~ process [4]. In
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addition, a new narrow state P.(4312) and a two-peak
structure of P.(4450) have been discovered by analyzing
the Ag — J/wpK~ data from the LHCb Collaboration [6].
While the P, resonances give sizable contributions to the
decay widths, the A, — Aj(pK~)J/y contributions are
also likely significant. Thus, the identification of exotic
hadrons and precise determinations of their properties
strongly depends on the understanding of the dynamics
in this decay process. Actually, the contribution from the P,
pentaquark is small in the low-invariant-mass range
(M, = 1.4-1.8 GeV), while the Ajsyg 1600.1300 T€SONANCES
occupy dominant contributions in this energy range [4].
In this work, we mainly focus on the A} resonance
contributions.

Another salient feature of the A, — A5 (pK)J /w(£¢7)
decay is the wealth of information carried by angular
observables in terms of angular asymmetries that can be
used to probe new physics beyond the standard model.
Our process is the basis for flavor-changing neutral current
(FCNC) processes, which are involved in the Wilson
coefficient Cgff in Ref. [7]. The FCNC process of b —
s£T¢~ is forbidden at the tree level and is thus sensitive to
new physics beyond the standard model. Thus, the B —
K¢t ¢~ and B - K*£"¢~ have received great attention in
the past decades and have provided very stringent con-
straints on new physics beyond the standard model [8—18].
Meanwhile, in these decays, the so-called flavor ano-
malies are also found [19-27]. For instance, LHCb has
presented its latest measurement of the ratio of branching
fractions [21,26],
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R BB~ Ku'y)
K= %/p .+ .-\
B(B — Kete™)
= 0.846 0952 D013 1.1 < ¢* < 6 GeV?,
B — K*ut
R, = BB = Ky’

B(B — K*ete™)
= 0.697001 4+ 0.05, 1.1<¢*><6GeV2, (1)
which has the 3.16 and 2.8¢ tension with the SM
prediction, respectively. To further examine the implication
of these observations, more experimental and theoretical
analyses are called for. The A, is a spin-1/2 hadron and has
more polarization degrees of freedom than the B meson,
and thus it is presumable that the baryonic decay A, —
Aj(=pK~)¢ "¢~ provides complementary information. In
this regard, a detailed analysis of A, — A}J/y(—>¢1¢7)
can provide a valuable benchmark.

The focus of this paper is the angular distributions for
Ay = Ny(=pK™)J/w(=£¢7¢7), where Aj can decay into
the pK~ final state. The angular distributions for A, four-
body decays with resonances depend on the different spin-
parity of the A} resonance and the interference between
them. Based on the relevant experimental data [4], we find
the resonances Aj,gs, Ajsygr Afeoos Algoo> and Algyo give
main contributions compared to other resonances, espe-
cially for Aj4;, with tiny contributions and Ajyy, with small
integrated width. Since the Aj will decay into pK, the Aj
mass should be above mg + m,, and thereby resonances
like the A}, are not allowed. In addition, the Ajg, is very
close to Ajgg and will be treated together in the following.
Therefore, we only consider three resonances Ajsy, Ajgoo
and Ajg, in our work. The spin-parity quantum numbers,
masses, and decay widths of these resonances are shown in
Table L.

The rest of this paper is organized as follows. In Sec. II,
we give the theoretical framework for the A, — AjJ/y
with the A} having different quantum numbers. The
helicity amplitude is adopted to derive the angular distri-
butions. In Sec. III, we make use of A, — A from lattice
QCD calculation and a quark model and calculate the
differential decay widths. Angular distribution variables are
also explored in this section and, in particular, the forward-
backward asymmetry and polarizations are predicted. A
brief summary will be presented in the last section. Some
calculation details are collected in the Appendices.

TABLE 1. The spin-party, masses, and decay width of reso-
nances Ajsy), Ajgoes and Ajgy [28].

Resonance JP Mass (MeV) I' (MeV)
Alsy %— 1519.42 £ 0.19 15.73 £0.26
Neoo %+ ~1600 ~200
Algoo %— ~1800 ~200

II. HELICITY AMPLITUDES

The decay kinematics for A, — A5 (pK)J/w(£1¢7) is
shown in Fig. 1. In the A, baryon rest frame, the A} moves
along the z axis. The (6, ) is defined as the angle between
negative (positive) z axis and the moving direction of
£~ (p) in the J/w (Aj) rest frame. The ¢ is the angle
between the A’ and J/y cascade decay planes.

Decay amplitude for the four-body decays can be divided
into Lorentz-invariant hadronic part and leptonic matrix
elements,

IM(A, = Aj(pK)JI [y (£tE7))

—ZZZMJ/W—)f+f)2 5 i

A SNt Sy U mJ/l// + lmj/'lfrj/ll/

X IM(Ay, = N3 J Jy)

i
X ; iIM(A} — pK), (2)
pi; - mi; + lmA}FA; 4

with the J/y momentum ¢* = p/, + p%- and the A
momentum p’f\; = p), + pk. In the above expression, a

resonance approximation has been adopted for the pro-
duction of pK~ and the lepton pair.

Since the individual parts with a specific polarization are
Lorentz invariant, they can be calculated in different
reference frames. The M(A, — AjJ/y) is induced by
the b — scc transition, whose effective Hamiltonian is

G
Hefi (b — s¢T) = —= (Ve Vi (€01 + C,0,)), (3)

V2
with
O1 = [Ear"(1 = 75)bg][357,(1 = 75)cal,
O, = [Car* (1 = 75)b4][357,(1 = 15)cpl. (4)
—
it / /
FIG. 1. The kinematics for the A, — A}(pK)J/w(£T¢7)

decay. In the A, baryon rest frame, the Aj moves along the z
axis. The 6(0,) is defined as the angle between the negative
(positive) z axis and the moving direction of £~ (p) in the J/y
(A}) rest frame. The ¢ is the angle between the A} and J/y
cascade decay planes.
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The Gg and V;,, V., are the Fermi coupling constant and
the Cabibbo-Kobayashi-Maskawa matrix element, respec-
tively. O; is the low-energy effective operator and C; is the
corresponding Wilson coefficient obtained by integrating
out high-energy contributions. Applying the Fierz trans-
formation and adopting the factorization ansatz, one can
write the A, — AjJ/y amplitude as

G
M(Ab - Aj]/l//) = ﬁvcbvtsaZfl/wml/y/

X (AJ[sP*(1 = ys)b|Ap)es(sy )
a, = Cl + CZ/ch (5)

with my,, = 3.097 GeV, m,, = 5.619 GeV, V., = 0.975,
Ve =0.041, and f;/, = 0.405 GeV. The f,/, and N are
the decay constant of J/y and the color number for quarks,
respectively. The Wilson coefficients at m,, scale are used
as C;(m;) = —0.248 and C,(m,;) = 1.107 [29].

The leptonic decay amplitude of J/y can be calculated
with an effective Hamiltonian,

M)y = €1¢7)
= (" (s )0 ()| = igF*" Fpu|J /w(s;p,))
— 2ieg x a(s_)yv(s, )eu(ssy,)
= 2ieg x L% (0, 9), (6)
where s, and s;/, are the helicity of the ¢+ and J/y,

respectively. The F,, = d,A, — d,A,, is the electromagnetic

field strength tensor and F7, 6"A‘J’ » - 0’A 1, Character-
Sijw

izes the J/y. The explicit results for L"%, (0, ¢) are given
in the Appendix A. The coupling constant g can be
determined from the J/y leptonic decay width as follows:

3r(J/w = £ )m?
4a,,, (mg/v/ +2m2) mj/w 4m2

The hadron decay A} — pK~ is parametrized as

I px
iIM(A; = pK) = Ay X (D5, (¢a.6))".
J = 1520, 1600, 1800, (8)

where J A is the total spin of the A}, and s A and s, are the
helicities, respectively. The Dfi‘;sp(gb,\, 0,) is the Wigner

function [28], whose explicit expression is also given in
Appendix A. It should be noticed that the ¢ is the angle from
the Aj pK~ plane and the x—z plane and can be chosen as zero
in the calculation. Equation (8) applies to the distribution for
any pertinent resonance, and in this analysis we consider the
A5y Nigoo> and Ajggg. Using the two-body decay process
A — pK, one can extract the coupling strength A; as

Ay = \/F(A; — pK)16zm3, /

5ol J=1520,

AJ:\/F(Aja pK)Szm3. /|p,l,  J=1600,1800. (9)

Then the decay amplitude of the A, — Aj(pK)J/
w(£T¢7) process is calculated as

]
- o 5. (0.9
q2 - m%/l// + im-’/'lfrj/l/’ -
1

#J g%
X A,Dy .’ =0,0
M2y —m3, +imy Ty, " swets, (n = 0.6,)
J

X iM(A, = N Jw). (10)

For the sake of simplicity, one can introduce the abbrevia-
tion Ai;‘fsj /W(GA) for the hadronic part,

o (00) =

Sp Sijw

Jpx Jpx
ZHSAZ-SAj X (DSA;‘,]’Sp (O’GA))*’
=E |

HvAh s,\* LA*

1520

(Mil(’ mAj)iM (Ap = Alsyod y),

H‘Ab :LA*

1600 <

M%K, My ) iM (Ab - ATsooJ/W)
(M?ﬂ(’ mA;)iM (Ap = Nigood /v),

1
, . (11)
MﬁK—mij +imp T

‘A*

+ Ly

1800

Ly, (Mpg.my;) = A,

The differential decay width is formulated as

4
ar =ty x 22 (A = A5 PRV ()

% (12)

where the phase space is used as

dH4(Pf+ sPes vaPK)
= (2”)3 (2”)3d‘12dM21< X dlly(ps+.ps) % de(Pp»PK)
xdIl (pf/l/fvp/\;)

\/ﬂ(mAb,mA;,qz)lﬁpl ‘12_4’"%
(27)'0x 128/ q*m3 /M

x dcos0dcos 0 dpdM dq?, (13)

with |p,|= m/(ZmM), Amp, .mg.m,) =

2 2

((mp, +mg)?=mp)((my; —mg)* —m3), and Moy = P/Z\;-
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III. ANGULAR DISTRIBUTION OF A, — A}(pK)J /w(£*¢~)

Combining all the elements, one obtains the differential decay width for the four-body decay process A, —
Nj(pK)J /w(£7¢7)) as

dr (A, — Ay (pK)I [y (¢+£7)) _ \/A0ma, s @)IP| 1 3al(Jfy = 56 myy, L5, (9, 0) A, (04)
d cos 0d cos HAdqﬁdqszf,K 81927°my my: 2,.c u (m3,, +2m3)g* = m3,, +imy, Ty, | '
(14)
Using the narrow-width limit for the J/y,
Ly
: = 18(¢* — m3,, ). (15)
(g* = m3,,) +imyp, Ty, 12 "
one can arrive at the differential decay width as
« - 3 /A(mp, ,mpas,my,)| Pl
dU(A, = N(pK)J Jw(£+¢ \/ Ay g My )IPpl
<db de( e)d dgw ) ~ 16384 Sy D BUMW = LI (9.0) A, (04
cosOd cos O,d¢p oK xt mA N (mJ/.,/ + mf) Sy Sy 8o
(16)

With the explicit expressions for [Ly”% (¢,0).A Sy SW(QA)P given in the Appendix, the angular distribution is
derived as

dI'(Ay, = Aj(pK)J [y (£7¢7))
d cos 0d cos OdpdM

=P(L, 4+ L,cos2¢ + L3 cos20 + L, sin20cos ¢ + Ls cos2¢ cos 26

+ Lgsin20sin ¢ + L, sin2¢p + Lg cos 26 sin 2¢),

3\//1(mAh,mA;,mJ/y/)|I_7)p|
81927 m) my (1 4 2m2)

B(J )y — £7¢7). (17)
The angular coefficients L;(i = 1 — 8) are given as

Li=), <2mf(|"4s " OA)2 2 (00 + A (B4)P) + (3|As (002 204 (00) P + 3A (0 )Iz)),

SA,Sp

—(4inz — 1) ZR 5, —1 -ASA}’ (0r)).

1\[7 p
-1 ~ S s N
Ly= 7<4m§ =) YA (00 = 214 (001 + A (00)).
Sap+Sp
Ly =—V2(402 = 1) Y Ro(A(00) (A (62) = A (64))),
5Ab P
Ls = (42 = 1) Y Ro(AL (00) A (64)),
SApSp
Lo = =242 = 1) 3 T, (AL (0 (A (82) + AL (0,))),
SApSp
Ly = (42 = 1) Zn(A:::f_lwA)A:::ﬁ* (0n)) = —Ls. (18)
SApSp
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Then one can explore the L,;(i = 1 — 8) by expanding .Asp 5, Which contain the resonance of Afs, 1400.1300- 1he specific
expression including 8, can be displayed in Appendix B. Thus, the differential decay width for A, - A} (pK~)J /w(£1¢7)
as a function of 8,, 6, ¢, and ij x 1s given as

dU(Ay — N (pK)J Jw(£7¢7))
d cos 0d cos GAdqﬁdM],K

== P(Lll + cos QALQ + cos 29AL13 + cos 2¢(L21 + cos 29AL22)

+c0820(L3; + cosOpLi, + c0820,L33) + sin 20 cos ¢(sin @, Ly, + sin 20, L)
+ cos 2¢p cos 20(Ls; + cos 20, Ls, ) + sin 20 sin ¢p(sin @, Lg; + sin26,Le, )
+ 8in2¢(Ly; + cos 20, L,) + cos 20 sin 2¢p(Lg; + cos 260, Lg,)). (19)

Here the formulas of L;;(i = 1 -8, j =1 3) are also given in Appendix B.

IV. PHENOMENOLOGICAL APPLICATIONS

A. Transition form factors

The hadron matrix element (A}[5y*(1 —ys)b|A,) in Eq. (5) can be parametrized by form factors. For the A, — Ajs,,
transition, one can define the helicity-based form factors as [30]

my:_(my, — P'q"
<AT520(P', s’)|§}/”b|A,,(p,s)> _ ﬁﬂ(p’,sl)( (3)/2 Alsao ( Ay 2152())
Sp+ q

A2 my _ 2 _ .2

P
Sp— 9 Sp+

2p*(mp, p" + my: p*)

3 2

+ 7 /27 Nisy (p’l}’” _ P 1520 >
Sps

p—

2pipi 2pt(mp, P A mpe p*) s g
+f3/2 ]520 (piyﬂ_ p p + ( 1520 ) 14 g}L ))M(p,S),
LN Sp+ mATszo
) i ) 3 Ma (mp, + mp: )pig”
(Nfsao (P ) 5775b 1A (p. ) = w(pcs’)( s
-
3/2 5 mATszo (mAb B mAT,szo)p/l(qz(p” + plﬂ) B q”(m%b B mIZ\Tszo))
ser qzsp_
A —
3/2 s M AT (I)/l},ﬂ _ 2p (mA p: mATi?op”)>

])—

p—

mp: 2pip 2pH(ma, "+ my P) Spr g
_gi//2y M50 (p’l}’”—l— p'p + 1520 IH—g}L ))u(p’s), (20)

m/\*‘ Sp_ M A+

P+ 1520

with ¢* = p# — p’ being the transferred momentum and s, = (my, + mx;)* = ¢, ¢* = mj,,.
These form factors have been calculated from lattice QCD (LQCD) [30], where multisets of lattice ensembles are used.
To access the M% ¢ distributions, the form factors are parametrized as [30]

—m? —m2
f(Mig) = 1+C7(4 f”)PhyS+D 2/\2} +A{1+C’”(4 f”)PhyS+D’ 2/\2} (0=1), (21)

where the parameters F, A, C, D, C', and D' are fitted from the lattice data and @ = (m3, + Mg —m3,)/2my my.. In the

LQCD calculation, the finite lattice spacing and pion mass effects are also considered. In the physical pion limit m, =
135 MeV and the continuum limit a =0, and using f, = 132, and A =300 MeV, one can simplify the above
parametrization as

114041-5
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f(Mf,,():F—i-A(a)—l). (22)

For the A, — Ajs,, transition, results for the inputs F* and
A are shown in Table II, and in the following we will use
these results as default.

If the final baryon is a spin—% hadron, the weak transition
form factor is parametrized as [31]

(N5(p'. s")[5r"b|Ay(p. 5))
Ph,

N

u
_ Pas

—a(pl.s) <mff Py m—A;fé’)um ).
J

(A5(p', s")|srysb|Ay(p. s))

b

P P
Ay p 7 p 23
i S . gz>75u(p,S)- (23)

Ay A

=u(p',s) (y,,g’l’ +

In Ref. [31], a model with a full quark model wave function
and the full relativistic form of the quark is adopted to
investigate the form factors, and these form factors are
studied in the multicomponent numerical (MCN) model.
The Mf, x dependence is parametrized as

TABLE II. Input parameters in Egs. (22) and (24) for Ajs.

6m§p3\ >
2nip*(ay, + a3

(24)

F(M20) = (ao + asp + asph yexp (—

Here p, represents one of the daughter baryon momenta in
the A, rest frame. The MCN model parameters a, a,, and
ay are given in Tables II and III, respectively. Because of
the lack of results for the A, — Ajgy, transition, we use
the results for the A, — Aj,)s. This may induce sizable
uncertainties, and future detailed analysis can resolve this
approximation.

B. Numerical results

Two-body decays A, — AjJ/y can provide a calibra-
tion for the four-body decay process, and the decay widths
for A, — A}J/y are given as

Pyl 1
5o | MAy = AT fy) .
mmy, 2

LAy = AT fy) = )

S/\b-SA}!SJ/u/
(25)
With the form factors from Ref. [31], one can calculate

branching fractions for the process involving different
*
resonances Ajsyg 1600,1800°

Lattice QCD

MCN quark model

Form factor F A Form factor ag a, ay
3/2 3.54(29) —14.7(3.3) f1 —1.66 —0.295 0.00924
1/2 0.0432(64) 1.63(19) fa 0.544 0.194 —0.00420
. 312 —0.068(18) 2.49(35) f3 0.126 0.00799 —0.000365
i//z 0.0461(18) —-0.161(27) fa —0.0330 —0.00977 0.00211
gf)/z 0.0024(38) 1.58(17) a1 —0.964 —0.100 0.00264
gi/z 2.95(25) -12.2(2.9) 9 0.625 0.219 —0.00508
gi/Z 2.92(24) —11.8(2.8) 9 —0.183 —0.0380 0.00351
gi/,z —0.037(14) 0.09(25) s 0.0530 0.0161 —0.00221
ay, = 0.443 p(1520) = 0.333 iy = 1.1249 m, = 0.2848
TABLE III.  Input parameters in Eqs. (22) and (24) for spin-1/2 resonance Ajq 1300 il MCN quark model.
Algoo Afsoo
Form factor ag a, ay Form factor ag a, ay
T 0.467 0.615 0.0568 f1 0.246 0.238 0.00976
T —0.381 —0.2815 —0.0399 s —0.984 —0.0257 0.0173
1 0.0501 —0.0295 —0.00163 f3 0.118 0.0237 —0.000692
gf 0.114 0.300 0.0206 97 1.15 0.260 —0.00303
gr —0.394 —0.307 —0.0445 9 —0.874 —0.0264 0.0159
g1 —0.0433 0.0478 0.00566 95 0.00871 —0.0196 —0.000997

px(1600) = 0.387

apx(1800) = 0.333

114041-6
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B(Ay, = Ajsy0d /w) = 5.78 x 1074,

B(Ay = Ao /) = 2.44 x 1074,

B(A, = Nigood /) = 4.48 x 1074, (26)
There is no experimental measurement of the above three
processes. However, the available data indicate B(A, —
J/wA) x B(b - A,) = (5.8 4+ 0.8) x 107> [32,33], where
A is the ground state. Using the estimate of the fragmen-
tation fraction B(b — A,) = 0.175 £ 0.106 [34], one can
obtain B(A, = J/wA) = (3.3 +0.5+2.0) x 10~*, which
is on the same order with the results in Eq. (26).

Based on the differential decay width in Eq. (17), one
can obtain the differential decay width as

dr (A, _)Aj(pK>J/W(f+f_))/dM2K

73 (9L11—3L13—3L31+L3%) (27)

Using the inputs from the Particle Data Group [28],

B(J/y — e*e™) = (5.971 +0.032)%,
B(J Jw = pt ) = (5.961 +0.033) %,
B(Atsy— pK™) = (22.5+0.5)%,

B(Ajgoo = PK™) ~(10.5)%,  B(Ajgy = pK™) ~(16)%.
T'y520 = (0.01573 +0.00026),
Tig00 ~Tisoo~0.2GeV,  m, =0.938 GeV,
my = 0.494 GeV, (28)

one can obtain the A,, four-body decay widths with final state
pK produced by a determined resonance Ajsyg 1400.1800 2

B(A, = N (pK)J Jw(utp~)) = (1.35£0.28) x 1075,
B(A, = A (pK)J Jy(ee™)) = (1.35 +0.28) x 1075,
B(Ay = ANisy(pK)J Jw(u™u™)) = (7.22 £2.53) x 107°,
B(Ay = Ajsyo(pK)J Jy(eTe™)) = (7.22 £2.54) x 107°,
B(Ay = Ajgoo(PK)T /w(ptp7)) = 1.11 x 107°,
B(Ap = Ajgoo(PK)J /w(eTe™)) = 1.11 x 1075,
B(Ay = Ajgoo(PK)J /w (™)) = 3.87 x 107,
B(Ay = Ajgoo(pK)J /w(eTe™)) = 3.88 x 107°. (29)

The A, = Ajgno 1300 form factors are used from the MCN
model [31], and no uncertainties are given. It is interesting to
notice that such results are also in agreement with the results
for two-body decays in the narrow-width approximation.
If the MCN model results for the A, — Ajy,, form
factors are used, we can find B(A, = Ajs,o(pK)J/
w(ptu)) = 1.904 x 107, which is reduced by a factor

—_—

[x 10%/GeV?]

2
pK

“u)/AM

0.5

5

dB (A 5,(PK)J/y (n

T O It P ibn
02.25 23 235 24 245 25 255 26 265 27

M2y [GeV?]

FIG. 2. The differential branching fraction dB/ de,K for
the process A, = Ajsyo(pK)J/w(£T¢7),¢ =p (in units of
10~ / GeV?) with lattice QCD [30] and the MCN quark model
[31] form factors.

of 3. In Fig. 2, we show the differential decay branching
fraction dB/dq*(Ay — Nisyo(pK)J/w(£7¢7)) with the
two sets of form factors. It can be seen that a significant
discrepancy appears at the low—Mf,K region for different
forms of parametrized form factors.

The differential decay widths for the processes
Ay = ANy(pK™)J /w(£7¢7) as a function ofMiK are given
in Fig. 3. We also show the normalized ¢ angular
distribution for the A, decay in Fig. 3. Since the lepton
pair arises from the decay of J/y induced by vector current,
angular distributions for the lepton are proportional
to cos26.

1. Distribution of 0,

One can integrate the angle 6, ¢ and explore the
normalized distribution of 6,,

1
£ dU(Ay = Aj(pK)J [w(£17))/dM xd cos O,

= (Lp + Lp.co80, + Lpy.cos26,)/T, (30)
where
A 4z
Ly=P— 3 (3Lyy = Lyy), LAC:P?(3L12_L32)’
4z
Lpre = 7)?(3L13 — L33). (31)

The cos 8, distributions are described in Fig. 3. In the L,
all three resonances contribute, while the cos26, term
receives no contribution from spin—% baryon and the L,

114041-7
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N; 10 7
) E
&) £

5 C

o L
RS 1

o B

T T TTTTT

U I B a2 I B

L1

dB(A, = A, (pK)I/y (' w)/dM

_
S
S

24 26 28 3

M2 [GeV?]

32 34 36 38 4 42

0.6 r——————————

dar
T" dCosO

M|

0
Cos6

FIG. 3.

corresponds to the interference of spin—% and spin-%

resonance.

0.5

Based on this interference, one can construct a normal-

ized forward-backward asymmetry Af

2
AN [f()l —f?l]dCOSGA dM/z):dl;()sBA
FB — 2
[f()l + ffl]dcos 9/\ dM/Z,:dl;OSQA
 3(BLp-Ly)
2(9Lyy —3Ly3 —3L3; + L33)
3L,

B 2(3LA - L/\ZC) .

Results for AR,

of angle 8,,

(32)

are given in Fig. 4. It is interesting to

notice that the forward-backward asymmetry has a crossing

point, which satisfies

4
x —

3

dAY,
M,

(3L, — L3) =0,

or

0.153

0.1525

0.152 =
0

0.75

0.7

0.65

0.45

0.35

-1 -0.8-0.6 -04-02 0

1
S, Spax =15
ApPAy T2

-0.05

= Z (sz + 1)(R ( SA Ay )R (HZA, S/\;)
sAb,sA;::k:Z
T (Hiy 0 ) Tu(HY s,)) = 0. (34
O L B L B B BN B RN IR
1
> i i
[}
O - -
= 005 ]
X
% B i
S o N :
<£ i
< ]
o N

-0.1

02 04 06 08
Cosby

Ju—

The (dB/deK, Fdg rdc’;se, rdggsa,\) of process A, = A*(pK)J /yw(utu).

DR, (H

SaySar

HZ

SAp» SA*)

3

Lo b b b b by By 1y

24 26 28 3 32

M2, [GeV?]

34 36 38

A~

)

FIG. 4. The dAfy/dM; of process A, = Aj(pK)J [y (£7¢7)

for £ = p.
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It can be seen from Fig. 4 that there are two cross points s
2
and sg,
56 =2.307 GeV?,

s2 =3.231 GeV2.  (35)

The two points are very close to the invariant mass square of
_ 2 2 2
Afs20,18000 M, =2.308 GeV*, and my. = 3.240GeV-.

As shown in Fig. 3, the contribution of Ajg is tiny and can
be neglected. Therefore, in this scenario, Eq. (34) becomes

1
H2

SAbaSAj)

(22 + VR, (H:

SN, SSpA*
b0

& Re (LA*

Lp- ).
1520 AISO())

(36)

J

SN, SSA*
b0

The complex phase in H comes from the line shape

Ly:, while the imaginary part is proportional to the I' INUONE
One can ignore the imaginary part, due to the small L.

Thus, the forward-backward asymmetry will mostly be
determined by line shape L A and the equation becomes

Re(LA*1520L7\*|800) ~ (Mf;K — m3. )(Mf;K —mi. ) =0

1520 T&(l{]
(37)

Thus, the s{ and s3 should be close to the mass square of
Als20.1800- It Will be a new method for precisely measuring
resonant mass in experiments. In addition, one can find that
the Afy is positive in the region M = [s), s5] and negative
when M7 is larger than s. Therefore, the two parts will
almost cancel each other when the M f, x 1s integrated out in
Afg. The coefficient L. in Eq. (30) has the same behavior
with Af; and it will also give a small value. This conclusion
is also confirmed by our numerical analysis for integrating
Ly, with M7, as

N% ¥:ann
O] E — Total
b 1 Niszg
X, L A0
~E My A

. 1800
% 10 :
3 C ]
K
\jl_ - .
> AN g
=

S _
g 107F E
S D
1 - -

RS [ R TR BN TR B P P PR T B

% 10 24 26 28 3 32 34 36 38 4 42 44

M2, [GeV?]

FIG. 5.

/de,KLAC =1.95x 1073, (38)

Thus, Fig. 3 shows the nearly symmetric curve in cos 6,
distribution. Additionally, we show the results for
(La, Lao,) distributions in Fig. 5. It can be seen that only
the spin—% resonance contributes to the coefficient L ,,, and
thus this angular coefficient gives a piece of clear informa-
tion on the spin—% resonance.

2. Distribution in the azimuthal angle ¢
The normalized angular distribution in ¢ can be derived
by integrating the angle (0,,6),
1&T(Ay = Aj(pK)T Jw(£*¢7))
r dM’ ddp

= (Ly + Lyp, co82¢p + Ly, sin2¢) /T, (39)
where
4
L, = P§<9L11 — (3L3; +3Ly3) + L33),
4
Ly = P§ (OLyy — (3L, + 3Lsy) + Lsy),
4
Ly = P§ (9L7; — (3L75 + 3Lg;) + Lgy). (40)
For these three coefficients, the numerical results

(Lgs Lyoes Lyos) are given in Fig. 6. One can see that in
Eq. (B2) only the interference of different polarization helicity
amplitudes of Ajs,, can contribute to L 4. Since the complex
phase in the helicity amplitude comes from the Breit-Wigner
line shape, the coefficients L;, L5, Lg;, and Lg, are equal to
zero. Therefore, the coefficient L, is vanishing.

We can see that L, has the same behavior as Eq. (17) and
the numerical results of L, are tiny, as shown in Fig. 6.
Because the Re(HE %Hi*_%) term in the coefficient L,;, L,,,
Ls;, and Ls, are canceled with each other.

|

[x 10%GeV?]

2
Pk

dL, , (A, = A, (PK)Iy(uw)/dM

ol b e b L e L
24 26 28 3 32 34 36 38

M, [GeV?]

The coefficients L, and L,,. in Eq. (30) for A, = A*(pK)J/w(£T¢7),¢ = u.
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g LT N% 0
é) E — Total Q
E e Niszo =
X, - Ass00 oy
(\%ﬁ ey Ars00 ! EQ
2 1z
& ] = 05
2 |z
g 10 1 %
Py . ] <
Do 13
5:10—3”1H‘“"\{n\"‘m"mumumu\ff'r'rv.” S,g, 1
) 24 26 28 3 32 34 36 38 4 42 44 & . . 3
M2 [GeV?] = M2 [GeV?]
FIG. 6. The coefficients L, and L,., in Eq. (6) for A, = Aj(pK)J/y(£T67). € = u, e.
3. Polarization of the A,
The polarized angular distribution of s,, can be described as
dl'(sn,) (sn,) (sn,) (sn,) (sn,) (sn,)
=P(L;" +cosOsL )" +cos20,\L 3" 4+ cos2¢(L,, " + cos20,L,,"
d cos Od cos O dpdM’ (L) AT AT (Lo AL2™)
+ cos 29(L;SlAh> + cos QALgszAb) + cos 29ALg‘;A”)) + sin 26 cos ¢ (sin GALESA”) + sin 29ALZ;Ab>)
+ cos 26 cos 20(LE™ + cos 20, L) + sin 260'sin (sin O, L™ + sin 20, L)

+sin2p(L" 4 cos 20, L5

Using the polarized distribution, the normalized polarized
decay width can be defined as

AN dar (2%) _di(=y
aMm am?
= (42)
deK dr() N dr(-5)
de,K de)K

and it is shown for the LQCD form factor and MCN quark
model in Fig. 7.

The distribution of normalized polarized decay width
shows a discrepancy with different polarized A,. The
distributions of normalized polarized branching fractions
with two sets of form factors are shown in Fig. 7, which
indicates the distribution of the two types of methods are
similar, except in the 10w-M?, x region. After normalizing
the polarized decay width, the difference caused by LQCD
and MCN form factors is less significant. This is because,
in the normalized decay width, many common factors have
been canceled. In addition, one can also find that the
branching fraction with s,, = 1/2 is larger than that with
sp, = —1/2 in the low-M3 region for both of the two
sets of form factor results. One can see that the decay width
in Eq. (19) shows the symmetry of transformation
((sa,»8a5) = (=54,,—54;)). Since the helicity amplitudes
in Appendix A show that for vector current and axis vector

) 4 cos 20sin 2¢(L§;1A"> + cos 29AL§§S2b)))'

(41)

current the transformation brings positive and negative
signs, respectively, the polarized decay width is mainly
contributed to by the interference of vector current and axis
vector current hadron helicity amplitudes. It is noteworthy

0.15

L L I I L B B e e e e e

- — MCN Model

0.1

2
pK

0.05

dN,. /dM

-0.05

24 26 28 3 32 34 36 38
M [GeV’]

b‘l““““"““‘vvvvvvv

FIG. 7. The normalized polarized decay width dNy, / de, x of
Ap(sp,) = Aj(pK)J/yw(u"u™). The black solid line utilizes the
MCN quark model form factors and the red dotted one is drawn
by LQCD form factors for resonance Ajs,, and the MCN quark
model form factors for Ajg 1500-
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that the interference terms between vector current and axis
vector current helicity amplitudes have no contributions to
the nonpolarized decay width. Therefore, the polarized
decay width is a very important and unique observable for
the study of the hadron matrix element structure.

V. CONCLUSIONS

In this work, the differential and integrated decay width
for the process of A, — A5(pK)J/w(£7¢~) through
different resonances A*(3",37.37) are studied. Branching
fractions with the individual resonances and total results are
given in Eq. (29) by taking form factors of A, — Ajs,, in
lattice QCD and form factors of A, — Ajg 1500 10 the
MCN quark model.

For this process, we have derived the angular distribution
with the possible resonance Ajs,g 500.1300 @nd other phe-
nomenological results, such as partial decay width, polari-
zation, and forward-backward asymmetry with final states
as muon and electron, respectively. Our results with
different lepton e and u are highly consistent with the
lepton flavor universality. It has a good reference value for
lepton flavor universal experiments. For the resonance
Ajsy0, we adopt different types of form factors: the lattice
QCD and MCN quark model, which shows a big discrep-
ancy in the low-M f, ¢ region in Fig. 2. Since the lattice QCD

has more reasonable results only in the high—Mf7 x region,
|

we give the branching fraction and differential branching
fractions for both of the two sets of form factors. We have
analyzed the distribution of the angle and show the
dependence of M.

Results in this work will serve as a calibration for the
study of b — suu decays in A, decays in the future and
provide useful information toward the understanding of the
properties of the Aj; baryons. Recently, the LHCb
Collaboration has analyzed the process A, — pK=¢¢~
[24]. Therefore, the analysis of the angular distribution of
Ay = ANj(pK)J/w(£7¢7) in the LHCD is feasible and we
urge our experimental colleagues to analyze this very
interesting process.
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APPENDIX A: HELICITY AMPLITUDE

The hadronic helicity amplitudes we used are defined
with the hadron matrix element as

Hy (1,52, sw) = (Aj(P',52) |57 75b| Ay (P s1))€i(qs sw),

Hy (s, 82, sw) = (A5(p', 52) 57D, (P, 51))€(q, sw)-

(A1)

We give the hadronic helicity amplitudes for the A, — Ajs,, transition,

1 3 1
Hv(ﬁ =5 =55w = 1) :Hv<s1 =TT Tsw = —1) = —f4(Mf,k)\/Sp+v

s S,
Sw = 1 = sy (N
3 \mpmps

1 1

1 1

1 1 1
HV<SI :E’SZZE’SW:0> :HV<S1 :——,82:—5

(A2)

ﬂww<mm@,ma

1520

COR M%) (1 1
= % {sp— p+( = +— +f2(MPk)272
M1y Sp+ MA s Ay Mt A,
2 2 2
1 A _mJ —M k
+ A0, ) pulatgy "R = (Ad)
2mA* 2OmAb M%k sy
13 3 )
HA s1_§7s2:_’SW:1 :_HA 51:__’52—_§vsW:_1 94(Mpk) Sp—? (AS)
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1 1 1 1 /S, Sy
H, <S1 :E’SZZ_E’SWZ_1> =-Hy <S1 :_§’S2:§’SWZ 1) = %(mgl(M%’k)_%(M%k))» (A6)

1520

e[ (a8 (11
V6 m Sp=Spr\ T 7 m
J/w p- A Ay

1520

1 1
- gZ(M%’k) — 5 — 93 (M%’k) >
ZmATszomAh ZmAlmmAb Mék
2 2 2
—-my +my5, + M,
g (M) (A7)

1520

If the spin of the final state is one-half, the helicity amplitude is given as

1 1 1 1
Hv(sl =5 = Sw = 1) :Hv<s1 =55 :—E,SW:—1> =2] l(MﬁK)‘/sp_], (A8)

1 1 1 1
HV S]ZE,SZIE,SWIO :HV S]:—E,SZI—E,SW:O

S,
=L, )1 3) + 5 (03) + =],
Mty 2, /M2 X
p
1 1
H, Sl———,SZ—E,SWZI =-H, 31—5,52:——,SW:—
= /25, :191(M35))], (A9)
1 1 1 1
HA(S1 —E,Sz :E,SW :()) = —HA<S1 = —E,Sz = —E,SW —0)
S S, S,
=Yy, 4 ) 035) 4 5 g2 (M3) 4 v ] (AL0)
mJ/lI/ 2mAb 2 M?)K
The leptonic helicity amplitudes L;”/ %, are
L1,(¢.0)=L', ($.0) = —iv2mpe?sing, L' (¢.0) = —i LY m,e=i%(cos 6 + 1),
22 ) 272 \/E
L' (#.0) = i e 9 (coso— 1), LY(h.0) =L, ,($.60) = —2im, cos,
27 V2 73 772
L:ll_L((ﬁ’ 0) = L 1(¢ 0) = i\/imfei’/’ sin 0, L:111(¢79) - —i%m%id)(congr 1),
202 2 2°2
-1 _ ~mJ/w ip _
L%’_%(d), 0) =i ;) mge'?(cos@ — 1). (A11)
For the J = resonances A}, the Wigner functions are
D%L(¢/\’ 0) = €7 cos <_‘9/\>’ D% _1(@n,04) = —e™2Pnsin <_ 9/\>’
22 202
1 0 yal 1 N 1
D?, (¢, 00) = e~ sin <§ 9/\)’ D, (¢, 0n) = e~ cos (5 9/\)' (A12)
22 2 2

114041-12



ANGULAR DISTRIBUTIONS FOR ... PHYS. REV. D 106, 114041 (2022)

For the J =2 resonances Aj, the Wigner functions are

1 5, 1+ cos@ 1 1 —cosf 1
Dgl(¢A7‘9A) :—\/§e—'%¢ i =0\ D; 1(¢A’9/\) \/_e_ﬁd) ———"cos =0, ),
22 2 2 272 2 2
1 3 0 1 1 1 4, 3 0 1 1
D} (. 05) = e 2EA T cos (—'9/\), D; (¢, 0)) = —e~5 skl Sin<—9/\>,
22 2 2 773 2 2
1 P | 0 1 1 0 1
D, 1(45/\,9/\) 3€I%¢A7+COS A sin S0A s 3_1(45/\,9/\) \/_62¢ — o8 — A cos =0\,
372 2 2 272 2 2
1 3cosf, — 1 1 1 3cosd,+1 . /1
D, ((hr.0)) = e —2—cos( =0, ). D, ($a.0)) = e —P——sin(-6, ).
202 2 2 22 2 2

APPENDIX B: COEFFICIENT FUNCTION IN ANGULAR DISTRIBUTION

The specific expressions of coefficient L; in containing the resonance Ajs,g 400,180 ar€

1 3 3
Dy, (0,0, + |H;\Di | (0.04) +2R (H1 Hi

21— 19l

DI, (0.0,)D

= 1w

1
2

31—

3

1 1 303
+§(4ﬁ1§ +3)(|H; _1D2 (0.64) + IH’ D7y, (0,6, + [H,D3 | (0,64)
2 2 27 22 2°p

2

1 3 Ly 3
AR _H DY, (000D, (0.00))) + ((s,-50) = (=5, =51;).

i)D*Jl ; (O»HA)D;SF (0.64) + ((SA,,vSAj) A CUW —SA;))a

_ 31
5, J:%% 2 2 2°p
Ly =tz - )3 (B DY, (0.00P + H D}, (0,0,)P
3T T A, O b, 0T
P
3, L,

+ 2R (H|_H] )DY, (00D, (0,0,) - 4R, (H

3
2
l
2

\_1|~ ol

D} 7, (0.0,)D

1
2 25

(0, 0r),

wp— =

1
2

3 3 1 3 3
+|HD: (0,0, = |H2 Dfs (0,0,)]? —2|H1LDES (0,04)) + ((SA,,JA*;) = (=sa,—5A7))s
2°2 2°p 20 22 2°p h

11
22

Ly =—V2(4i = )Y 3 (Ru(H]H)DY (0.0,)D%, (0.05)

1
3 272 272
SP ,],,]:7,7

%)D*J (0, QA)Dz (0,65)) = ((sa,585) = (=54, =54;))

Le=—V2(4m2 - 1)) " 3" (Z, (H%J%H;J_/%)D:J (0, HA)D’ ,,(0.04)
3, 3
+Im(H%J Hj %)DT{ (O»HA)D;SF (0,04)) + ((s4,,545) = (=54, =52)),

L, = ZZZ (H{_ H’;‘%)D*J (0,6,)D:

Sp J=53

(07 Op) — ((SA,,7SAj) - (_SA,,v —SA;))’

Nm ol

LS — —L7.

Here both J and J' represent the spin of resonant state Aj.
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The formulas of coefficient function L;;(i = 1—8,j=1—3) are given as

3 1 3 3 1
Ly = rh%(3|Hj§|2 + 16|H11|2 + 10|Hil|2 + 5|Hi_1|2 + 8|Hi_1|2)
272 272 272 272 272

FNI

1 1 3 1
e OHLP + 161 P+ 10[H] P+ 15[H] L + 241 L)+ ((sa,058;) = (=58, =5n;).
1 . Ly
Ly =2(4mg + V)R (Hi H ) + (4 + 3)R(H*, H, 1) + (5,5 585) = (=58, —5x3))s
2 22

3 3 3 3
Ly = < (i + D2+ (42 + 3)(H] P = [HLP) + (5a,05) = (=58, =50,)):

-1, 3 3 1 3 1
Ly = E(‘lm% - 1)(3|H;;|2 - 1O|Hi1|2 - 16|Hil|2 + 5|H;_%|2 + 8|H;_%|2) + ((sa,» SA;) = (=sp,=585));

3 3 1*
L3 = (4mf—1)(Re(H2_%% %%) ZR( ;% ;%))Jr((s/\h,s/\) ( SA,» SA;))v
3 3 3 3
L33—16(4mf—1)(\ H[P +2H P = [H L 1P) + ((sa,058) = (=54, —5a3))s
22 22 22

—/2 31 3
Lay = =2 42— 1)(WAR(H 1Y) + R(H
2 2’ 2’

Lio = o5 (4 = (VR (HLHED) + (51,058 = (=, =5x.).

Lsy = —Ly = —Ls,

Loy = (4 = (T (H] ) + T (B ) = VAT, (HLHED) = (50,0505) = (5,05,
Le, = 2%/5(4’?1?0 - 1)(\/§I’”(H3%Hi) = ((sa,- SA;) = (=5a,: _S/\j))’

Loy =02 (i = (@] HED) + (51,058) = (=505

APPENDIX C: THE J/yw DECAY PROCESS J/yw — €*¢+

The F*F type interaction is parametrized as
Heir = QFWFLw
which gives amplitude for J/y — £¢ as
My = £7¢7) = (&7 ()¢ (s)| = igF Fl () /w (s1p))

= (£ (5)E(50)] - igFWEL (0) (—ie / d4x2yﬂpr<x>) (1))

d'q : -
= _269/(2;;)4 qZ/d“xe”‘(pf*‘”’f_‘I)?x u(s_)y”v(s+)eﬂ(sj/,,,)

= 2ieg x ﬁ(s_)Y””(S+)€u(SJ/V/)'
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The Yu - A# type Hamiltonian is given as
Hetr = g1 27”*1“,2- (C3)
The amplitude for J/y — £ becomes
IM(J )y - ¢£T¢7)
= (" (s )¢ (s2)| = ign ey CAL(0)T /i (s,p)
= —igy X u(s_)r'v(si)e,(syp)- (C4)

Comparing the amplitudes derived by two different types of
Hamiltonian, one can find a relation between the coupling
constant g and g, as

_9
9=>, (C5)

It shows that the two parametrizations are equivalent.
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