
Basis light-front quantization approach to Λ and Λc
and their isospin triplet baryons

Tiancai Peng ,1,2,* Zhimin Zhu ,3,4,† Siqi Xu,3,4,‡ Xiang Liu ,1,2,5,§ Chandan Mondal ,3,4,∥
Xingbo Zhao,3,4,¶ and James P. Vary6,**

(BLFQ Collaboration)

1School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
2Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of CAS,

Lanzhou 730000, China
3Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

4School of Nuclear Science and Technology, University of Chinese Academy of Sciences,
Beijing 100049, China

5Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province
and Frontier Science Center for Rare Isotopes, Lanzhou University,

Lanzhou 730000, China
6Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

(Received 4 August 2022; accepted 8 December 2022; published 30 December 2022)

We obtain the masses, the electromagnetic properties, and the parton distribution functions (PDFs)
of Λ, Λc, and their isospin triplet baryons, i.e., Σ0, Σþ, Σ− and Σ0

c, Σþ
c , Σþþ

c from a light-front effective
Hamiltonian in the leading Fock sector in the basis light-front quantization framework. The light-front
wave functions of these baryons are given by the eigenstates of the effective Hamiltonian consisting of a
three-dimensional confinement potential and a one-gluon exchange interaction with fixed coupling. The
masses of these baryons in our approach are in the experimental range, while isospin-dependent mass
differences are too small. Meanwhile, the electromagnetic properties are in agreement with the available
experimental data, the lattice QCD simulations, and other theoretical calculations. We also present the
gluon and the sea quark PDFs, which we generate dynamically from the QCD evolution of the valence
quark distributions.
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I. INTRODUCTION

Although quantum chromodynamics (QCD) is the well-
established theory for strong interactions [1], where
hadrons are built up from quarks and gluons, due to our
incomplete understanding of the color confinement it is not

yet possible to forecast the experimentally observed hadron
spectroscopy from QCD first principles. Meanwhile, a
successful theoretical framework for achieving valuable
insights into hadron spectra and revealing partonic struc-
tures is provided by the Hamiltonian formulation of QCD
quantized on the light front [2,3]. Complementary insights
into nonperturbative QCD can be accomplished by light-
front holography [4–9]. For a practical approach, basis
light-front quantization (BLFQ), which is based on the
Hamiltonian formalism, provides a computational frame-
work to solve relativistic many-body bound state problems
in quantum field theories [10–27].
Electromagnetic form factors (EMFFs) and parton dis-

tribution functions (PDFs) are two essential probes of the
internal structure of bound states. Both observables deepen
our understanding of nonperturbative and perturbative
QCD effects encoded in hadrons. The Fourier trans-
form of the EMFFs provides information about spatial
distributions, such as the charge and the magnetization
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distributions inside the hadron, whereas the PDFs encode
the nonperturbative structure of the hadron in terms of the
distribution of longitudinal momentum and polarization
carried by the quarks and gluons as its constituents. While
the nucleon’s EMFFs and PDFs have attracted numerous
dedicated experimental and theoretical efforts for several
decades and are becoming better known (see Ref. [18] and
references therein), our information about the partonic
structures of the Λ, Λc, and their isospin triplet baryons
is very limited. This is due to the short lifetimes of these
baryons making them unfeasible as targets. Only the
magnetic moments of some of these baryons have been
experimentally determined. Meanwhile, the timelike
EMFFs of the Λ baryon have been measured with good
precision [28–30]. The EMFFs of the Λ hyperons have
been analyzed by several theoretical studies [31–41].
The first deep inelastic scattering (DIS) experiment at

SLAC [42] showed the partonic substructure of the
nucleon. From DIS processes [43], one can extract the
PDFs, which encode the nonperturbative structure of
the hadrons in terms of the number densities of their
confined constituents. The PDFs are functions of the light-
front longitudinal momentum fraction (x) of the hadron
carried by the constituents. At the leading twist, the
complete spin structure of the spin-1=2 hadrons is
described in terms of three independent PDFs, namely,
the unpolarized f1ðxÞ, the helicity g1ðxÞ, and the trans-
versity h1ðxÞ. The global fitting collaborations such as
HERAPDF [44], NNPDF [45], MMHT [46], CTEQ [47],
and MSTW [48] have made considerable efforts to
determine nucleon PDFs and their uncertainties.
Meanwhile, the nucleon PDFs have also been investigated
using different theoretical approaches (see Ref. [18] and
references therein). On the other hand, much less infor-
mation is available on the PDFs of the Λ, Λc, and their
isospin triplet baryons [49–55], while precise knowledge
of PDFs is required for the analysis and interpretation of
the scattering experiments in the LHC era.
In this paper, with the theoretical framework of BLFQ

[10], we adopt an effective light-front Hamiltonian [17,18]
and solve for the resulting mass eigenstates for the Λ, Λc,
and their isospin triplet baryons at the scales suitable for
low-resolution probes. With quarks as the only explicit
degrees of freedom, our effective Hamiltonian incorporates
a three-dimensional (transverse and longitudinal) confine-
ment potential and the one-gluon exchange (OGE) inter-
action that account for the dynamical spin effects [13].
By solving this Hamiltonian in the leading Fock space,
using the quark masses, the strength of confinement, and
the coupling constant as fitting parameters, we determine
the masses of the baryons as the eigenvalues of the
Hamiltonian. We also obtain the desired light-front wave
functions (LFWFs) of the baryons as the eigenfunctions of
the Hamiltonian. We then employ the LFWFs to study
the electromagnetic properties and the PDFs of those

baryons. We compare our BLFQ computations for the
EMFFs, magnetic moments, and charge radii of the
ΛðΣ0;Σþ;Σ−Þ with available experiments and with other
theoretical approaches [31–35]. The experimental data are
not yet available for the electromagnetic properties of the
ΛcðΣþ

c ;Σþþ
c ;Σ0

cÞ. We compare our results of the magnetic
moments and the charge radii of these baryons with other
theoretical calculations reported in Refs. [35,56–64].
This paper is organized as follows. A brief description

of the BLFQ formalism and the light-front effective
Hamiltonian for the baryons is discussed in Sec. II. We
discuss the electromagnetic properties of the Λ, Λc, and
their isospin triplet baryons in Sec. IV, whereas their PDFs
are presented in Sec. V. We provide a brief summary and
conclusion in Sec. VI.

II. BLFQ FRAMEWORK FOR THE BARYONS

The central task of the BLFQ approach is to solve the
following eigenvalue equation to obtain the mass spectrum
and the LFWFs of hadronic bound states:

P2jΨi ¼ M2jΨi; ð1Þ

where P2 ¼ PþP− − P2⊥ is the effective light-front
Hamiltonian and the operators P−, Pþ, and P⊥ are the
light-front quantized Hamiltonian, longitudinal momen-
tum, and the transverse momentum, respectively, of the
system. Using a suitable matrix representation for the
Hamiltonian, the diagonalization of Eq. (1) generates
the eigenvalues M2, which correspond to the mass squared
spectrum, and the associated eigenstates jΨi that encode
structural information of the bound states.
In this paper, we solve the baryonic bound state problem

in the BLFQ framework using an effective light-front
Hamiltonian defined below. At fixed light-front time, the
baryonic state can be expressed in terms of various quark
(q), antiquark (q̄), and gluon (g) Fock components,

jBi ¼ ψ ð3qÞjqqqi þ ψ ð3qþqq̄Þjqqqqq̄i
þ ψ ð3qþ1gÞjqqqgi þ…; ð2Þ

where the ψ ð…Þ represent the probability amplitudes to
obtain the different parton configurations in the baryon.
Within BLFQ, each Fock sector itself consists of an infinite
number of basis states. For the purpose of numerical
simulations, we employ both a Fock-sector truncation
and limits on the basis states within each Fock sector.
Here, we restrict ourselves only to the valence Fock
component to describe the valence quark contribution to
baryon properties.
We adopt the effective Hamiltonian (Heff ¼ PþP−) that

incorporates the holographic QCD confinement potential
supplemented by the longitudinal confinement, and the
OGE interactions [17,18]
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Heff ¼
X
i

p⃗2⊥i þm2
i

xi

þ 1

2

X
i≠j

κ4
�
xixjðr⃗⊥i − r⃗⊥jÞ2 −

∂xiðxixj∂xjÞ
ðmi þmjÞ2

�

þ 1

2

X
i≠j

CF4παs
Q2

ij
ūs0iðk0iÞγμusiðkiÞūs0jðk0jÞγνusjðkjÞgμν;

ð3Þ

where xi and p⃗⊥i represent the longitudinal momentum
fraction and the relative transverse momentum carried by
quark i. mi is the mass of the quark i, and κ determines the
strength of the confinement. The variable r⃗⊥ ¼ r⃗⊥i − r⃗⊥j

defines the transverse separation between two quarks.
The last term in the effective Hamiltonian represents the
OGE interaction with Q2

ij ¼ −q2 ¼ −ð1=2Þðk0i − kiÞ2 −
ð1=2Þðk0j − kjÞ2 being the average momentum transfer
squared, CF ¼ −2=3 corresponds to the color factor, αs
defines the coupling constant, and gμν is the metric tensor.
uðki; siÞ corresponds to the spinor with momentum ki and
spin si of the parton in the baryon. We have neglected
electromagnetic interactions among the quarks.
We have assumed the same strength for our transverse

and longitudinal confinement based on the fact that this
form reduces to a symmetric three-dimensional harmonic
potential in the nonrelativistic limit [13]. It is possible that
relaxing this assumption to allow for independent longi-
tudinal and transverse confinement strengths (which there-
fore introduces another phenomenological parameter)
could be advantageous [65,66]. We will pursue this addi-
tional freedom in a future work.
The basis states of each Fock particle are represented in

terms of the transverse and longitudinal coordinates along
with the helicity quantum numbers [11]. We exclude the
color degree of freedom in the current formalism since,
for the pure valence sector considered as a color singlet, a
color factor suffices when combined with the strength of
our effective OGE interaction. Following BLFQ [10,11],
we expand jΨi in terms of the two-dimensional harmonic
oscillator (2D-HO) basis state in the transverse direction
and the discretized plane-wave basis in the longitudinal
direction.
The longitudinal momentum of the particle is charac-

terized by the quantum number k. The longitudinal coor-
dinate x− is confined to a box of length 2Lwith antiperiodic
boundary conditions for fermions. The single-quark LFWF
in the longitudinal coordinate space is then given by

ψkðx−Þ ¼
1

2L
ei

π
Lkx

−
; ð4Þ

and the longitudinal momentum pþ ¼ 2πk=L is discre-
tized, where the dimensionless quantity k ¼ 1

2
; 3
2
; 5
2
;….

All many-body basis states are selected to have the
fixed total longitudinal momentum Pþ ¼ P

i p
þ
i , where

the sum is over the three quarks. We rescale Pþ using
K ¼ P

i ki such that Pþ ¼ 2π
L K. For a given quark i, the

longitudinal momentum fraction x is then defined as
xi ¼ pþ

i =P
þ ¼ ki=K.

In the transverse direction, we employ the 2D-HO basis
state, ϕnmðp⃗⊥; bÞ, which is characterized by two quantum
numbers n and m representing the radial excitation and the
angular momentum projection, respectively, of the Fock
particle. In momentum space, the orthonormalized 2D-HO
wave functions read [10,11]

ϕn;mðp⃗⊥; bÞ ¼
ffiffiffi
2

p

bð2πÞ32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!

ðnþ jmjÞ!

s
e−p⃗

2⊥=ð2b2Þ

×

�jp⃗⊥j
b

�jmj
Ljmj
n

�
p⃗2⊥
b2

�
eimθ; ð5Þ

with b being its scale parameter with the dimension of
mass; Lα

nðxÞ represent the generalized Laguerre polyno-
mials and θ ¼ argðp⃗⊥=bÞ. For the spin degrees of freedom,
the quantum number λ is used to define the helicity of the
particle. Thus, each single-particle basis state is associated
with four quantum numbers, fx; n;m; λg. In addition,
we have well-defined values of the total angular momentum
projection MJ ¼

P
i ðmi þ λiÞ for our multibody basis

states.
Beyond the Fock-space truncation, within each Fock

component, further truncation is still required to reduce the
basis to a finite dimension. We reduce the infinite basis by
introducing a truncation parameter K in the longitudinal
direction, and, in the transverse direction, we retain states
with the total transverse quantum number

Nα ¼
X
i

ð2ni þ jmij þ 1Þ; ð6Þ

satisfying Nα ≤ Nmax, where Nmax is the truncation param-
eter. The Nmax controls the transverse momentum covered
by the 2D-HO basis functions, whereas K is the basis
resolution in the longitudinal direction. The Nmax trunca-
tion naturally provides ultraviolet (UV) and infrared (IR)
regulations. In momentum space, the UV regulator
ΛUV ≃ b

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
, while the IR regulator λIR ≃ b=

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
.

The UV (IR) regulator increases (decreases) with increas-
ing the Nmax [11], and both UV and IR increase as the HO
basis scale parameter b increases.
We set up our basis using single-particle coordinates.

The advantage of using these coordinates is that we
can treat each particle in the Fock space on an equal
footing [11]. Meanwhile, Heff includes the transverse
center-of-mass (c.m.) motion, which is mixed with intrinsic
motion. We introduce a constraint term
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H0 ¼ λLðHc:m: − 2b2IÞ ð7Þ

into the effective Hamiltonian in order to factorize out the
transverse c.m. motion from the intrinsic motion. We
subtract the zero-point energy 2b2 and multiply a
Lagrange multiplier λL. I denotes the identity operator.
The c.m. motion is controlled by [12]

Hc:m: ¼
�X

i
p⃗i⊥

�
2 þ b4

�X
i
xir⃗i⊥

�
2
: ð8Þ

When λL is sufficiently large and positive, we are able to
move the excited states of c.m. motion to higher energy
than the low-lying spectrum of interest. Thus, the effective
Hamiltonian we diagonalize is

H0
eff ¼ Heff −

�X
i
p⃗i⊥

�
2 þ λLðHc:m: − 2b2IÞ: ð9Þ

Upon diagonalization of this effective Hamiltonian
matrix H0

eff within the BLFQ bases, we obtain the eigen-
values that represent the mass spectrum. We also obtain
the eigenvectors that correspond to the LFWFs in the
BLFQ basis and provide the structural information of the
systems. The resulting valence LFWF in momentum space
is then expressed as an expansion in the orthonormal
basis set consistent with the symmetries of the effective
Hamiltonian,

ΨΛ
fxi;p⃗i⊥;λig ¼ hP;Λjfxi; p⃗i⊥; λigi

¼
X

fni;mig

�
ψΛ
fxi;ni;mi;λig

Y
i

ϕni;mi
ðp⃗i⊥;bÞ

�
; ð10Þ

with ψΛ
fxi;ni;mi;λig ¼ hP;Λjfxi; ni; mi; λigi as the LFWF in

BLFQ, where P and Λ indicate the momentum and the
light-front helicity of the system. Note that Λ and Σ (or Λc
and Σþ

c ) are represented as the ground and the first excited
states of the effective Hamiltonian and thus the corres-
ponding eigenvectors ψΛ

fxi;ni;mi;λig, appearing in the LFWF

Eq. (10), are also different for Λ and Σ (or Λc and Σþ
c ). We

identify the difference between their wave functions by
comparing the S-wave components with their spin-flavor
structures dictated by the naive quark model. The spin-
flavor structures of Λ and Σ baryons are given in the
Appendix.

III. MASS SPECTRA

There are four parameters in our model: the quark mass
in the kinetic energy (mq=k), the quark mass in the OGE
interaction (mq=g), the strength of confining potential
(κ ¼ κT ¼ κL), and the coupling constant (αs) in the
OGE interaction [17,18]. We now outline our reasoning
for flexibility in the choice of the vertex mass. In particular,
our model features an effective OGE interaction that

reflects short distance physics. It approximately describes
the processes where valence quarks absorb and emit a
gluon during which the system fluctuates between the
jqqqi, jqqqgi, and higher Fock components. According
to the mass evolution in renormalization group theory,
the dynamical OGE would also produce contributions to
the quark mass emerging from higher momentum scales
leading to a decrease in the quark mass from the gluon
dynamics. In turn, this leads to the suggestion that the quark
mass in the OGE interaction would be lighter than the
kinetic mass. The latter is associated with the long-range
physics in our effective Hamiltonian. A similar treatment is
also adopted in the literature [67–69].
We select the truncation parameters Nmax ¼ 8 and

K ¼ 16.5, and the model parameters are summarized in
Table I. Note that the light quark mass (mq) and the strength
of confining potential were fixed by fitting the nucleon
mass and the flavor form factors (FFs) [17,18]. In this work,
we replace one of the light quark masses by the effective
strange (charm) quark mass denoted by msðmcÞ for ΛðΛcÞ
baryon. We adjust these parameters to fit the known masses
of Λ and Λc compiled by the Particle Data Group [70].
Allowing an uncertainty on αs, we assimilate phenomeno-
logically, in part, the effect of truncations on the system
mass (M).
Table II compares the computed masses for

ΛðΣ0;Σþ;Σ−Þ and ΛcðΣþ
c ;Σþþ

c ;Σ0
c) in our BLFQ approach

with the experimental data [70]. The errors appearing in our
results are estimates based on our assigned 10% uncertainty
in the coupling constant αs. Note that we only fit the masses
of Λ and Λc, while the masses of their isospin states are our
predictions. We find that the masses of these baryons are
in the experimental range, while isospin-dependent mass
differences are small as compared to the experimental data.
It should be noted that the current calculations subsume the
gluon dynamics into effective interactions among the three
valence quarks. We cannot directly access the dynamical
role of the gluons due to the Fock-space truncation. Future
developments will focus on adding higher Fock sectors to
include, for example, gluon and sea degrees of freedom,
which will eventually allow us to incorporate the funda-
mental QCD interactions and provide a better prediction for
isospin-dependent mass differences.
Using those model parameters given in Table I, we then

present the EMFFs and the PDFs of those baryons. We also

TABLE I. Model parameters for the basis truncations Nmax ¼ 8
and K ¼ 16.5 for Λ and Λc baryons.

αs

mq=k=mq=g

(GeV)
ms=k=ms=g

(GeV)
mc=k=mc=g

(GeV)
κ

(GeV)

Λ 1.06� 0.1 0.30=0.20 0.39=0.29 � � � 0.337
Λc 0.57� 0.06 0.30=0.20 � � � 1.58=1.48 0.337
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predict the electromagnetic radii and magnetic moments of
those baryons.

IV. ELECTROMAGNETIC FORM FACTORS

For spin-1=2 baryons, there are two independent EMFFs,
namely the Dirac and the Pauli FFs, F1ðQ2Þ and F2ðQ2Þ,
respectively. In the light-front framework, they are identified
with the helicity-conserving and helicity-flip matrix ele-
ments of the vector (Jþ ≡P

q eqψ̄qγ
þψq) current,

	
Pþ q;↑





 J
þð0Þ
2Pþ





P;↑
�

¼ F1ðQ2Þ;
	
Pþ q;↑





 J
þð0Þ
2Pþ





P;↓
�

¼ −
ðq1 − iq2Þ

2M
F2ðQ2Þ; ð11Þ

where Q2 ¼ −q2 is the square of the momentum transfer.
Within the leading Fock sector, the baryon state with
momentum P and the light-front helicity Λ can be expressed
in terms of three-particle LFWFs,

jP;Λi ¼
Z Y3

i¼1

�
dxid2p⃗i⊥ffiffiffiffi
xi

p
16π3

�
16π3δ

�
1−

X3
i¼1

xi

�
δ2
�X3

i¼1

p⃗i⊥
�

×ΨΛ
fxi;p⃗i⊥;λigjfxiPþ; p⃗i⊥þ xiP⃗⊥;λigi; ð12Þ

with xi ¼ pþ
i =P

þ and p⃗i⊥ being the relative transverse
momentum of the ith quark. Substituting the baryonic
states and the quark field operators (ψq and ψ̄q) in
Eq. (11) provides the flavor Dirac and Pauli FFs in terms
of the overlap of the LFWFs [71],

Fq
1ðQ2Þ ¼

X
λi

Z
½dXdP⊥�Ψ↑�

fx0i;p⃗0
i⊥;λigΨ

↑
fxi;p⃗i⊥;λig; ð13Þ

Fq
2ðQ2Þ¼−ðq1− iq2Þ

2M

X
λi

Z
½dXdP⊥�Ψ↑�

fx0i;p⃗0
i⊥;λigΨ

↓
fxi;p⃗i⊥;λig;

ð14Þ

where x01 ¼ x1 and p⃗0
1⊥ ¼ p⃗1⊥ þ ð1 − x1Þq⃗⊥ for the active

quark, while x0i ¼ xi and p⃗0
i⊥ ¼ p⃗i⊥ − xiq⃗⊥ for the specta-

tors (i ¼ 2, 3) and

½dXdP⊥�¼
Y3
i¼1

�
dxid2p⃗i⊥
16π3

�
16π3δ

�
1−

X3
i¼1

xi

�
δ2
�X3

i¼1

p⃗i⊥
�
:

ð15Þ

Here, we consider the frame where the momentum transfer
is purely in the transverse direction, i.e., q ¼ ð0; 0; q⃗⊥Þ,
which implies Q2 ¼ −q2 ¼ q⃗⊥2. The FFs follow the nor-
malizations Fq

1ð0Þ ¼ nq, with nq being the number of
valence quarks of flavor q in the baryon, while the Pauli
FFs at Q2 ¼ 0 provide the anomalous magnetic moments
Fq
2ð0Þ ¼ κq.
We evaluate the Dirac and Pauli FFs for the valence

quarks in the Λ, Λc, and their isospin states using the
LFWFs defined in Eq. (10). The flavor Dirac and Pauli FFs
for Λ and its isospin triplet states ðΣ0;Σþ;Σ−Þ are shown in
Figs. 1 and 2, respectively. The red bands represent the
results for the light quark (u and/or d), while the black
bands correspond to the results for the s quark. The error
bands in our results are due to our adopted 10% uncertainty
in the coupling constant. The slope of the EMFF atQ2 → 0
relates to the electromagnetic radius of the quark. We
observe that at small Q2 the slopes of the light quark FFs
are larger than those of the s quark FFs. This is due to the
lighter mass of the up (down) quark compared to the s
quark, and thus the radius of the light quark is also larger
than the s quark. Although the flavor content is the same in
Λ and Σ0, their flavor FFs are not alike, while the flavor FFs
of Σþ and Σ− are the same. The Pauli FF for the light quark
in Λ is negative but positive for the s quark, whereas they
exhibit opposite behavior in Σ0.
In Fig. 3, we compare our results for the flavor FFs with

the lattice QCD simulations [33] available only for the Σþ
and Σ−. We find that the qualitative behaviors of the flavor
FFs obtained within our BLFQ approach and the lattice
QCD simulations are approximately consistent with each
other. It can be noticed from Figs. 1–3 that our model
preserves the isospin symmetry.
Figures 4 and 5 present the flavor Dirac and Pauli FFs,

respectively, for the Λc baryon and its isospin states
ðΣþ

c ;Σþþ
c ;Σ0

cÞ. Here again, we observe that the light quark
FFs fall much faster than that of the c quark indicating that,
as may be expected, the c quark is more localized near the
center of the baryons than the light quark. The flavor Dirac
FFs of the Λc and Σþ

c are found to be alike, but their flavor
Pauli FFs change sign. Meanwhile, both the flavor FFs of
Σþþ
c are identical to that of Σ0

c.
Under charge and isospin symmetry, the baryon FFs can

be obtained from the flavor FFs,

TABLE II. The masses of Λ, Λc, and their isospin triplet
baryons, i.e., Σ0, Σþ, Σ− and Σ0

c, Σþ
c , Σþþ

c in units of MeV. Our
results are compared with the experimental data [70].

Baryons MBLFQ Mexp

Λ 1116þ32
−48 1115.683� 0.006

Σ0 1121þ37
−46 1192.642� 0.024

Σþ 1120þ37
−46 1189.37� 0.07

Σ− 1121þ37
−46 1197.449� 0.030

Λc 2287þ7
−8 2286.46� 0.14

Σþ
c 2290þ7

−7 2452.9� 0.4

Σþþ
c 2289þ7

−7 2452.397� 0.140

Σ0
c 2291þ7

−8 2452.375� 0.140
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FB
1ð2ÞðQ2Þ ¼

X
q

eqF
q
1ð2Þ; ð16Þ

where the charges of the quarks eu ¼ 2
3
, ed ¼ − 1

3
, es ¼ − 1

3
,

and ec ¼ 2
3
. Meanwhile, the Sachs FFs are expressed in

terms of Dirac and Pauli FFs as

GB
EðQ2Þ ¼ FB

1 ðQ2Þ − Q2

4M2
FB
2 ðQ2Þ;

GB
MðQ2Þ ¼ FB

1 ðQ2Þ þ FB
2 ðQ2Þ: ð17Þ

We show the electric and magnetic Sachs FFs of the Λ
and its isospin triplet states in Figs. 6 and 7, respectively.

FIG. 1. Flavor Dirac FFs of the Λ baryon and its isospin states ðΣ0;Σþ;Σ−Þ. The red lines with red bands represent the light quark
(u and/or d) FFs, whereas the black lines with gray bands correspond to the strange quark (s) FFs. The bands reflect the 10% uncertainty
in the coupling constant αs.

FIG. 2. Flavor Pauli FFs of the Λ baryon and its isospin states ðΣ0;Σþ;Σ−Þ. The red lines with red bands represent the light quark
(u and/or d) FFs, whereas the black lines with gray bands correspond to the strange quark (s) FFs. The bands reflect the 10% uncertainty
in the coupling constant αs.
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We compare our BLFQ results for all states with the results
computed in the constituent quark model (CQM) [34]. The
FFs for Σþ and Σ− are also compared with available lattice
QCD simulations [33]. Qualitatively, our results are con-
sistent with those theoretical calculations [33,34]. The
Sachs FFs for the Λc and its isospin triplet states are
presented in Figs. 8 and 9.

The magnetic moments of the baryons are related to the
baryons’magnetic Sachs FFs atQ2 ¼ 0. In our approach, we
obtain the magnetic moment of the Λ, μΛ ¼ −0.494þ0.028

−0.010 ,
and for the isospin states, μΣ0 ¼ 0.610þ0.032

−0.051 , μΣþ ¼
0.2323þ0.067

−0.112 , and μΣ− ¼ −1.124þ0.011
−0.007 close to the available

measurements [72] for Λ, Σþ, and Σ−. Note that μΣ0 has not
beenmeasured.However, it is given by μΣ0 ¼ ðμΣþ þ μΣ−Þ=2

FIG. 3. Comparison of the flavor FFs in Σþ and Σ− evaluated within BLFQ and the lattice QCD simulations [33]. The red lines with
red bands represent the light quark (u and/or d) FFs, whereas the black lines with gray bands correspond to the strange quark (s) FFs.
The black points are lattice QCD results. The bands reflect the 10% uncertainty in the coupling constant αs.

FIG. 4. Flavor Dirac FFs of the Λc baryon and its isospin states ðΣþ
c ;Σþþ

c ;Σ0
cÞ. The red lines with red bands represent the light quark

(u and/or d) FFs, whereas the black lines with gray bands correspond to the charm quark (c) FFs. The bands reflect the 10% uncertainty
in the coupling constant αs.
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according to the isospin symmetry. Themagneticmoments of
the baryons are compared with experimental data in Table III.
Based on our BLFQ approach, the magnetic moments forΛc
and its isospin triplet states are given in Table IV, where we
compare our results with other theoretical calculations in
Refs. [35,56–64]. We find that our predictions for the
magnetic moments of Λc and Σþ

c are larger than those
in Refs. [35,56–64]. This is attributed to the anomalous

magnetic moment, i.e., F2ð0Þ, contribution from the charm
quark. In our calculations, we find that F2ð0Þ for the
charm quark is negative and significantly smaller than
the light quarks, while in other theoretical approaches, the
magnitude of Fc

2ð0Þ is much larger than our result and
comparable with their F2ð0Þ of light quarks. Consequently,
the anomalous magnetic moments of Λc and Σþ

c ,
FB
2 ð0Þ ¼

P
q eqF

q
2ð0Þ, in our approach are larger than other

FIG. 5. Flavor Pauli FFs of the Λc baryon and its isospin states ðΣþ
c ;Σþþ

c ;Σ0
cÞ. The red lines with red bands represent the light quark

(u and/or d) FFs, whereas the black lines with gray bands correspond to the charm quark (c) FFs. The bands reflect the 10% uncertainty
in the coupling constant αs.

FIG. 6. Electric Sachs FFs GEðQ2Þ as functions of Q2 for ΛðΣ0;Σþ;Σ−Þ. The red bands represent our results obtained within the
BLFQ approach. The BLFQ results are compared with the lattice QCD simulations (black points) [33] and the CQM (dotted blue lines)
[34]. The bands reflect the 10% uncertainty in the coupling constant αs.
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theoretical predictions. On the other hand, our result for the
magnetic moment of Σþþ

c roughly agrees with those in
Refs. [35,57,58,60–63] and is higher than the predictions
reported in Refs. [56,59,64]. Meanwhile, our predicted value
for the magnetic moments of Σ0

c is lower than the values
outlined in Refs. [35,56–64]. Note that nothing is known
about themagnetic moment ofΛc and its isospin triplet states

experimentally at the present time. Our calculation provides a
prediction of the expected data for the magnetic moments of
heavy baryon from the future experiments.
From the Sachs FFs, we can also compute the electro-

magnetic radii of the baryons (when the charge of the
baryon is zero, we need to replace the GB

Eð0Þ with one),
which are defined by

FIG. 7. Magnetic Sachs FFs GMðQ2Þ as functions of Q2 for ΛðΣ0;Σþ;Σ−Þ. The gray bands represent our results obtained within the
BLFQ approach. The BLFQ results are compared with the lattice QCD simulations (black points) [33] and the CQM (dotted blue lines)
[34]. The bands reflect the 10% uncertainty in the coupling constant αs.

FIG. 8. Electric Sachs FFs GEðQ2Þ as functions of Q2 for ΛcðΣ0
c;Σþ

c ;Σ−
c Þ. The bands represent our results obtained within the BLFQ

approach. The bands reflect the 10% uncertainty in the coupling constant αs.

BASIS LIGHT-FRONT QUANTIZATION APPROACH TO … PHYS. REV. D 106, 114040 (2022)

114040-9



hr2EiB ¼ −
6

GB
Eð0Þ

dGB
EðQ2Þ
dQ2






Q2¼0

; ð18Þ

hr2MiB ¼ −
6

GB
Mð0Þ

dGB
MðQ2Þ
dQ2






Q2¼0

: ð19Þ

The radii of ΛðΣ0;Σþ;Σ−Þ are presented in Tables V
and VI. We compare the BLFQ results with the
available theoretical calculations [31,32,35] and the
only available measured data for the charge radius of
Σ− [72]. We find a reasonable agreement with the
experiment within our 10% uncertainties stemming
from our uncertainty in αs. We also find reasonable
consistency between our predictions and the results
evaluated in the framework of heavy baryon chiral
perturbation theory [31].
Our predictions for the electromagnetic radii of

ΛcðΣþ
c ;Σþþ

c ;Σ0
cÞ are given in Tables VII and VIII.

The charge radii are compared with the results
evaluated in relativistic quark models [35]. Here we
observe substantial differences between our BLFQ
predictions and the relativistic quark models [35].
In this connection, we note that there is a rather
large spread in the results of the relativistic quark
models.

FIG. 9. Magnetic Sachs FFsGMðQ2Þ as functions ofQ2 for ΛcðΣ0
c;Σþ

c ;Σ−
c Þ. The bands represent our results obtained within the BLFQ

approach. The bands reflect the 10% uncertainty in the coupling constant αs.

TABLE III. The magnetic moments of ΛðΣ0;Σþ;Σ−Þ. Our
results are compared with the experimental data [70] (in units of
the nuclear magneton μN).

Baryons μBLFQ μexp [70]

Λ −0.494þ0.028
−0.010 −0.613� 0.004

Σ0 0.610þ0.032
−0.051 � � �

Σþ 2.323þ0.067
−0.112 2.458� 0.010

Σ− −1.124þ0.011
−0.007 −1.160� 0.025

TABLE IV. Our predictions for the magnetic moments of ΛcðΣþ
c ;Σþþ

c ;Σ0
cÞ (in units of the nuclear magneton μN). Our results are

compared with other theoretical calculations in Refs. [35,56–64]. In Ref. [64], S-I and S-II represent the results obtained using two
different sets of parameters.

Baryons μBLFQ [35] [56] [57] [58] [59] [60] [61] [62] [63] S-I [64] S-II [64]

Λc 0.99þ0.00
−0.00 0.41 0.42 0.392 0.341 0.411 � � � 0.37 0.385 � � � 0.24 0.24

Σþ
c 1.05þ0.01

−0.01 0.65 0.36 0.30 0.525 0.318 � � � 0.63 0.501 0.46(3) 0.26 0.30

Σþþ
c 2.67þ0.49

−0.08 3.07 1.76 2.20 2.44 1.679 2.1(3) 2.18 2.279 2.15(10) 1.50 1.50

Σ0
c −0.58þ0.06

−0.07 −1.78 −1.04 −1.60 −1.391 −1.043 −1.6ð2Þ −1.17 −1.015 −1.24ð5Þ −0.97 −0.91
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V. PARTON DISTRIBUTION FUNCTIONS
OF THE BARYONS

The PDF, the probability density that a parton carries
a certain fraction of the total light-front longitudinal

momentum of a hadron, provides us with information
about the nonperturbative structure of hadrons. The quark
PDF of the baryon, which encodes the distribution of
longitudinal momentum and polarization carried by the
quark in the baryon, is defined as

ΦΓðqÞðxÞ ¼ 1

2

Z
dz−

4π
eip

þz−=2

× hP;Λjψ̄qð0ÞΓψqðz−ÞjP;Λijzþ¼z⃗⊥¼0: ð20Þ
For different Dirac structures, one obtains different quark
PDFs of the baryon. For example, for Γ ¼ γþ; γþγ5, and
iσjþγ5, one has the unpolarized PDF fðxÞ, helicity distribu-
tion g1ðxÞ, and transversity distribution h1ðxÞ, respectively. It
is worth noting that we work in the light-front gauge Aþ ¼ 0
so that the gauge link appearing in between the quark fields in
Eq. (20) is unity. Here, we compute the quark unpolarized
PDFs from the eigenstates of our light-front effective
Hamiltonian (3) in the constituent valence quarks represen-
tation suitable for low-momentum scale applications.
Following the two-point quark correlation function

defined in Eq. (20), in the LFWFs overlap representation,
the unpolarized PDFs fðxÞ in the valence Fock component
at the initial scale (μ0) reads

fqðxÞ ¼
X
λi

Z
½dXdP⊥�Ψ↑�

fxi;p⃗i⊥;λigΨ
↑
fxi;p⃗i⊥;λigδðx − xqÞ:

ð21Þ
Using the LFWFs within the BLFQ approach given in
Eq. (10), we evaluate the unpolarized PDFs for the valence
quarks in the baryon, which are normalized asZ

1

0

dx fqðxÞ ¼ Fq
1ð0Þ ¼ nq; ð22Þ

with nq being the number of quarks of flavor q in the
baryon. Furthermore, at the model scale, the following
momentum sum rule is satisfied by our PDFs:

X
q

Z
1

0

dx xfqðxÞ ¼ 1: ð23Þ

TABLE V. Our predictions for the charge radius hr2Ei for ΛðΣ0;Σþ;Σ−Þ in the unit of fm2. Our results are compared with the heavy
baryon chiral perturbation theory (HBχPT) [31,32], the relativistic quark models (RQM) [35], and the experimental data [72] available
only for Σ−. In Ref. [31], the results were computed with different regularization procedures: heavy-baryon (HB) approach and infrared
regularization (IR) scheme.

HB [31] IR [31] HBχPT [32] RQM [35]

hr2EiBLFQ Oðq3Þ Oðq4Þ Oðq3Þ Oðq4Þ Oð1=Λ2
χÞ Oð1=Λ2

χMNÞ I II Experimental data [72]

Λ 0.07� 0.01 0.14 0.00 0.05 0.11� 0.02 −0.150 −0.050 −0.01 0.02 � � �
Σ0 0.07þ0.00

−0.01 −0.14 −0.08 −0.05 −0.03� 0.01 � � � � � � 0.02 0.02 � � �
Σþ 0.79� 0.05 0.59 0.72 0.63 0.60� 0.02 1.522 1.366 0.47 0.66 � � �
Σ− 0.65� 0.02 0.87 0.88 0.72 0.67� 0.03 0.977 0.798 0.41 0.64 0.60� 0.08� 0.08

TABLE VI. Our predictions for the magnetic radius hr2Mi for
ΛðΣ0;Σþ;Σ−Þ in the unit of fm2. Our results are compared with
other theoretical calculations in the framework of heavy baryon
chiral perturbation theory in Refs. [31].

Baryons hr2MiBLFQ Oðq4Þ HB [31] Oðq4Þ IR [31]

Λ 0.52� 0.01 0.30� 0.11 0.48� 0.09
Σ0 0.82þ0.00

−0.01 0.20� 0.10 0.45� 0.08
Σþ 0.79� 0.00 0.74� 0.06 0.80� 0.05
Σ− 0.70� 0.02 1.33� 0.16 1.20� 0.13

TABLE VII. Our predictions for the charge radius hr2Ei for
ΛcðΣþ

c ;Σþþ
c ;Σ0

cÞ in the unit of fm2. Our results are compared
with the results in relativistic quark models [35]. The instant,
point, and front are three forms of kinematics, first outlined by
Dirac [73].

Ref. [35]

Baryons hr2EiBLFQ Instant Point Front

Λc 0.73þ0.02
−0.02 0.5 0.2 0.4

Σþ
c 0.74þ0.02

−0.02 0.5 0.2 0.4

Σþþ
c 1.33þ0.03

−0.03 1.7 0.4 1.4

Σ0
c −1.190.039−0.03 −0.7 −0.0 −0.6

TABLE VIII. Our predictions for the magnetic radii hr2Mi for
ΛcðΣþ

c ;Σþþ
c ;Σ0

cÞ in the unit of fm2.

Baryons hr2MiBLFQ
Λc 0.64þ0.03

−0.03

Σþ
c 0.78þ0.01

−0.01

Σþþ
c 1.54þ0.01

−0.01

Σ0
c 3.37þ0.33

−0.27
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By performing the QCD evolution, we obtain the valence
quark PDFs at higher μ2 scales using input PDFs at the
model scale. We interpret the model scale associated with
our LFWFs as the effective scale where the structures of
the baryon are described by the motion of the valence
quarks only. The scale evolution allows the valence quarks
to produce gluons, with the emitted gluons capable of
producing quark-antiquark pairs as well as additional
gluons. In this picture, the gluon and sea quark components
emerge at scales higher than the model scale.
The QCD evolution is described by the well-known

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equa-
tions [74–76]. Here, we utilize the next-to-next-to-leading
order (NNLO) DGLAP equations of QCD to evolve our
valence quark distributions from our model scale μ20 to
higher scale μ2. For this purpose, we employ the Higher
Order Perturbative Parton Evolution toolkit to numerically
solve the NNLO DGLAP equations [77]. We adopt
μ20 ¼ 0.45� 0.04 GeV2 for the initial scale of our PDFs
for ΛðΣ0;Σþ;Σ−Þ, which we determine by matching the
moment of the valence quark PDFs for Λ: hxiq ¼R
1
0 dx xfq1ðxÞ at μ2 ¼ 4 GeV2, with the result from the
lattice QCD simulations hxiu ¼ hxid ¼ 0.20� 0.01 and
hxis ¼ 0.27� 0.01 [49], after performing the QCD evolu-
tion of our initial quark PDFs. Meanwhile, we choose the
initial scale for the PDFs ofΛcðΣþ

c ;Σþþ
c ;Σ0

cÞ as the hadronic
scale μ20 ¼ 1.0� 0.1 GeV2.
Figure 10 shows our results for the valence quark

unpolarized PDFs of the Λ and its isospin triplet states
at the model scale computed using the LFWFs given in

Eq. (10). The red bands correspond to the results for the
light quark (u and/or d), whereas the blue bands represent
the results for the strange quark. The bands shown in
our results arise from the 10% uncertainties in the coupling
constant αs. Since ms > muðdÞ, the peak of the strange
quark distribution in the baryons appears at a higher x
compared to the light quark distribution. Therefore, the
strange quark carries larger longitudinal momentum than
the light quark, reducing the probability of finding a light
quark with high x in the baryons. We notice that the valence
quark distributions in Σþ and Σ− are nearly identical due to
isospin symmetry in the model. However, the magnitude of
light quark PDFs in these baryons is larger than that of the
strange quark PDF. This is because there are two up (down)
quarks in ΣþðΣ−Þ. Meanwhile, the magnitude of the single
light quark distribution is lower compared to that for the
strange quark in Λ and Σ0.
The valence quark PDFs of the ΛcðΣþ

c ;Σþþ
c ;Σ0

cÞ at the
initial scale are shown in Fig. 11. The peaks of the light
quark PDFs again appear at lower x, whereas due to the
heavier mass, the charm quark distributions have peaks at
higher x. The PDFs of the Λc and Σþþ

c are identical to the
distributions of Σþ

c and Σ0
c, respectively. Note that Σþþ

c ðΣ0
cÞ

has two light quarks of the same flavor, which effectively
provides the light quark PDF in Σþþ

c ðΣ0
cÞ twice that of the

light quark PDF in ΛcðΣþ
c Þ. Figures 10 and 11 suggest that

our model maintains the isospin symmetry, which is also
observed from FFs in Figs. 1–3.
We demonstrate the scale evolution of the PDFs of

ΛðΣ0;Σþ;Σ−Þ and ΛcðΣþ
c ;Σþþ

c ;Σ0
cÞ from the initial scales

to 10 GeV2 in Figs. 12 and 13, respectively. We observe

FIG. 10. Valence quarks’ unpolarized PDFs at the model scale multiplied by x as functions of x. Upper left, Λ; upper right, Σ0; lower
left, Σþ; lower right, Σ−. The blue and red bands represent distributions for the strange quark and the light quark (u=d), respectively. The
bands reflect the 10% uncertainty in the coupling constant αs.
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that, for Λ, Λc, and their isospin states, the valence quark
distributions increase slowly at lower x, while they decrease
at higher x with the scale evolution. The gluon and the sea
quark PDFs at low x increase much faster than the valence
quark PDFs. Effectively, in the low-x region, the distribu-
tions are mainly dominated by the gluon PDFs, while at
large x the valence quarks dominate the distributions. We
notice that the qualitative behavior of the gluon and the sea

quarks PDFs obtained by the evolution in both Λ, Λc, and
their isospin states are very similar. Since the masses of the
charm and light quarks in ΛcðΣþ

c ;Σþþ
c ;Σ0

cÞ are very differ-
ent, the peaks of their distributions appear at different x.
The valence quark PDFs in these states exhibit distinctly
different behavior compared to that in ΛðΣ0;Σþ;Σ−Þ,
where the valence quark (light and strange) PDFs are close
to each other after QCD evolution.

FIG. 11. Valence quarks’ unpolarized PDFs at the model scale multiplied by x as functions of x. Upper left, Λc; upper right, Σþ
c ; lower

left, Σþþ
c ; lower right, Σ0

c. The blue and red bands represent distributions for the charm quark and the light quark (u=d), respectively. The
bands reflect the 10% uncertainty in the coupling constant αs.

FIG. 12. Unpolarized PDFs at 10 GeV2 multiplied by x as functions of x. Upper left,Λ; upper right, Σ0; lower left, Σþ; lower right, Σ−.
The red, black, blue, and green bands represent distributions for the valence light quark (u=d), valence strange quark, sea quarks, and
gluon, respectively. The bands reflect the 10% uncertainty in the initial scale μ0.
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The first moments of the corresponding PDFs of Λ, Λc,
and their isospin states as functions of scale μ are shown in
Figs. 14 and 15. We notice that the uncertainty bands in
Fig. 15 are insignificant. This is due to the small αs for Λc
(Σc), and thus our adopted 10% uncertainty in αs is also
small. We find that with increasing scale μ, as for the other
cases described above, momenta carried by the valence
quarks decrease, and the contributions of the sea quarks
and gluon to the total momentum increase. For the light

baryons, the momentum carried by the valence quarks falls
faster with increasing scale than that for the baryons having
a charm quark. However, the qualitative behaviors of the
total moments of valence quarks, sea quarks, and gluons in
all states are alike.
Note that the x PDFs at low x behave like xa, where

a > 0 for the valence quarks, whereas for the gluon and the
sea quarks a > −1 [25]. The value of the exponent a
decreases with increasing scale μ. When μ → ∞, a → 0 for

FIG. 13. Unpolarized PDFs at 10 GeV2 multiplied by x as functions of x. Upper left, Λc; upper right, Σþ
c ; lower left, Σþþ

c ; lower right,
Σ0
c. The red, black, blue, and green bands represent distributions for the valence light quark (u=d), valence charm quark, sea quarks, and

gluon, respectively. The bands reflect the 10% uncertainty in the initial scale μ0.

FIG. 14. The first moment of the PDFs of Λ (upper left), Σ0 (upper right), Σþ (lower left), and Σ− (lower right) as functions of the
scale μ. The red, black, and blue bands represent the first moments of valence quark, sea quark, and gluon, respectively. The bands
reflect the 10% uncertainty in the initial scale μ0.
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the valence quarks, and for the gluon and the sea quarks,
a → −1. This phenomenon does not depend on the PDFs at
the model scale. To illustrate the low-x behavior of the sea
quarks and the gluon PDFs with increasing scales, we
consider x PDFs of the baryons at low x, xfðxÞ ∼ xa, and
present the behavior of a as a function of μ in Fig. 16. We
observe that a falls steadily and faster for the gluon than
that for the sea quarks with increasing μ. This feature again

indicates that at low x the gluon dominates the distribution
as the scale increases.

VI. CONCLUSIONS

Using a recently proposed light-front model for the
baryon based on a Hamiltonian formalism, we presented
a comprehensive study of the masses, electromagnetic

FIG. 15. The first moment of the PDFs of Λc (upper left), Σþ
c (upper right), Σþþ

c (lower left), and Σ0
c (lower right) as functions of the

scale μ. The red, black, and blue bands represent the first moments of valence quark, sea quark, and gluon, respectively. The bands
reflect the 10% uncertainty in the initial scale μ0.

FIG. 16. The exponent a as a function of μ. At a low x (0.001 < x < 0.1), the x PDFs behave as xfðxÞ ∼ xa for Λ (upper left), Σ (upper
right), Λc (lower left), and Σc (lower right). The red, green, blue, black, and orange lines represent valence quark (u=d), sea quark
(u=d=s), sea quark (c=b), sea quark (t), and gluon, respectively. The dark yellow lines in the lower panel represent the valence quark (c).
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properties, and PDFs of Λ, Λc, and their isospin triplet
states. The effective Hamiltonian incorporates confinement
in both the transverse and longitudinal directions and one-
gluon exchange interaction for the constituent valence
quarks suitable for low-resolution properties. We obtained
the masses of baryons and the corresponding LFWFs as the
eigenvalues and the eigenvectors of this Hamiltonian,
respectively, by solving its mass eigenvalue equation
using BLFQ as a relativistic three-quark problem. We then
employed the LFWFs to investigate the baryon electro-
magnetic properties and PDFs. We evaluated the electro-
magnetic form factors for the baryons and their flavor
decompositions, the magnetic moments, electric radii, and
magnetic radii of the baryons. We compared our BLFQ
results with other theoretical calculations [31–35,56–64]
and experimental data [70,72] and found reasonable agree-
ment with available measured data, lattice QCD simulation
[33], constituent quark model [34], and heavy baryon chiral
perturbation theory [31].
We also computed the unpolarized PDFs of these

baryons at a low-resolution scale using our LFWFs. The
PDFs at higher scales relevant to experiment and to global
QCD analyses have been evaluated based on the NNLO
DGLAP equations. The QCD evolution of the PDFs, which
gives us the knowledge of the gluon and the sea quark
distributions, has also been explored. We observed that,
although the valence quark dominates at the large x > 0.1
domain, at the small-x region the distributions are mainly
controlled by the gluon distribution. The momenta carried
by the gluon and sea quark increase with increasing scale μ.
We also noticed that there is an impression of universality
of the gluon PDFs from different baryon states. Overall,
the QCD evolution of the valence quark PDFs provides
predictions for a wealth of information on the gluon and the
sea quarks arising from higher Fock components. For
further improvement, future developments should focus
on the inclusion of higher Fock sectors directly in the
Hamiltonian eigenvalue problem in order to explicitly
incorporate gluon and sea degrees of freedom at appropriate
initial scales. Our work provides predictions for PDFs
of the baryons having one strange or charm quark
ΛðΣ0;Σþ;Σ−Þ and ΛcðΣþ

c ;Σþþ
c ;Σ0

cÞ from future experi-
ments, as well as a guidance for the theoretical studies of
the PDFs with higher Fock sectors.

Since our LFWFs incorporate all three active quarks’
spin, flavor, and three-dimensional spatial information on
the same footing, the effective LFWFs can be employed to
investigate other parton distributions, such as the helicity
and transversity PDFs, generalized parton distributions,
transverse momentum-dependent parton distributions,
Wigner distributions, and double parton distribution func-
tions, as well as mechanical properties of the baryons.
The presented results affirm the utility of our model and
motivate application of analogous effective Hamiltonians to
other heavy baryons.
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APPENDIX: THE SPIN-FLAVOR STRUCTURES OF Λ AND Σ BARYONS

From the naive quark model, the difference between the Λ and Σ (or Λc and Σþ
c ) can be identified from their different

spin-flavor structures, which read as

jΛ;↑iflavor⊗spin ¼
1ffiffiffi
2

p
�
1

2
ðsudþ usd − sdu − dsuÞ ⊗ 1ffiffiffi

6
p ð↑↓↑þ ↓↑↑ − 2↑↑↓Þ

þ 1ffiffiffiffiffi
12

p ðdsu − sduþ sud − usdþ 2uds − 2dusÞ ⊗ 1ffiffiffi
2

p ð↑↓↑ − ↓↑↑Þ
�
; ðA1Þ
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jΣ0;↑iflavor⊗spin ¼
1ffiffiffi
2

p
�

1

2
ffiffiffi
3

p ðsduþ sudþ usdþ dsu − 2uds − 2dusÞ ⊗ 1ffiffiffi
6

p ð↑↓↑þ ↓↑↑ − 2↑↑↓Þ

þ 1

2
ðsud − usd − dsuþ sduÞ ⊗ 1ffiffiffi

2
p ð↑↓↑ − ↓↑↑Þ

�
: ðA2Þ
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