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We evaluate the three-gluon vertex with one vanishing external momentum within the Curci-Ferrari (CF)
model at two-loop order and compare our results to Landau-gauge lattice simulations of the same vertex
function for the SU(2) and SU(3) gauge groups in four dimensions. This extends previous works [J. A.
Gracey et al., Phys. Rev. D 100, 034023 (2019); N. Barrios et al., Phys. Rev. D 102, 114016 (2020)] that
considered similarly the two-loop ghost and gluon two-point functions as well as the two-loop ghost-
antighost-gluon vertex (with vanishing gluon momentum). With the parameters of the model being adjusted
by fitting the two-point functions to available lattice data, our evaluation of the three-gluon vertex arises as a
pure prediction. We find that two-loop corrections systematically improve the agreement between the model
and the lattice data as compared to earlier one-loop calculations, with a better agreement in the SU(3) case as
already seen in previous studies. We also analyze the renormalization scheme dependence of our calculation.
In all cases, this dependence diminishes when two-loop corrections are included, which is consistent with the
perturbative CF paradigm. In addition, we study the low momentum regime of the three-gluon vertex in
relation with the possibility of zero crossing.Within the CFmodel, we show that the leading infrared behavior
of the exact vertex is given by the same linear logarithm that arises at one-loop order, multiplied by the all
orders cubic ghost dressing function at zero momentum (we provide similar exact results for other vertex
functions). We argue that this property remains true within the Faddeev-Popov framework under the
assumption that the resummed gluon propagator features a decoupling behavior. This shows that the zero
crossing is a property of the exact three-gluon vertex function. Within the CFmodel, we find however that the
scale of the zero crossing is considerably reduced when going from one- to two-loop order. This seems
consistent with some recent lattice simulations [G. T. R. Catumba et al., EPJ Web Conf. 258, 02008 (2022)].
Finally, our analysis also allows us to support recent claims about the dominance of the tree-level tensor
component [F. Pinto-Gómez et al., arXiv:2208.01020].
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I. INTRODUCTION

A complete picture of the infrared (IR) regime of quantum
chromodynamics (QCD) remains still elusive, in particular, in
regard to the two phenomena of singular importance for the
strong interaction: the confinement of colored asymptotic
states aswell as thedynamicsdriving the spontaneousbreaking
of chiral symmetry and the associated generation of mass.1

The main difficulty lies in that these phenomena occur
at scales such that the QCD coupling constant is not
small and standard perturbative methods do not apply.
To copewith this, several nonperturbative approaches have
been developed over the last decades. The most prominent
of them is certainly lattice QCD, a fully nonperturbative,
first-principle approach, which has allowed for the calcu-
lation of many hadronic properties [5–8]. However, owing
to both the enormous computational resources that
Monte Carlo simulations require and the intrinsic uncer-
tainty that lattice simulations have in the continuum limit,
various approaches have been devised directly in the
continuum; see below.
As opposed to the lattice setup, however, any continuum

approach requires working within a given gauge and, very
often, the Landau gauge is chosen due to its simplifying
features. The by now standard gauge fixing procedure is
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1A related open question is that of the precise structure of the
QCD phase diagram, with new possible phases being recently
proposed [1–4].
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based on the Faddeev-Popov (FP) construction [9] that
requires introducing auxiliary fields such as the ghost and
antighost fields. This procedure is not exact in the Landau
gauge, however, for it disregards the existence of Gribov
copies [10]. Nevertheless, the FP procedure is expected to
become rigorous in the ultraviolet (UV) regime where
asymptotic freedom [11,12] allows one to test it by means
of a perturbative analysis. In contrast, there is no good reason
to believe that the FP procedure extends without modifica-
tion to the IR regime. As a matter of fact, as one insists in
performing perturbative calculations within the FP frame-
work at lower and lower scales, one eventually hits a Landau
pole. The latter is usually attributed to an abusive use of
perturbative methods beyond their range of validity.
However, it could also very well be that, in the Landau
gauge, theLandau pole signals, instead, an abusive use of the
FP gauge-fixing procedure itself. This dichotomy of inter-
pretation is reflected into the various approaches that are
being currently followed to tackle QCD/YM theories in
the continuum and which can be classified in two main
categories.
The first category is composed of nonperturbative

continuum approaches which are usually gathered
under the name of functional methods and include, for
instance, the Dyson-Schwinger equations (DSE) [13–30],
the functional renormalization group (FRG) [31–37], the
Hamiltonian formalism [38–40], and the N-particle-irre-
ducible effective action frameworks. In general, such
approaches promote the FP action to the nonperturbative
level by reformulating the corresponding theory exactly in
the form of a system of infinite coupled equations, which
must be solved in order to determine the correlation
functions for the primary fields, from which one eventually
aims at reconstructing the relevant observables. In practice,
however, the only way to accomplish this goal is by
truncating the infinite tower of equations. It is thus a
central question which truncations lead to an accurate
description of the correlation functions and thus, to an
accurate description of the observables.
In this respect, an important source of complementary

information comes from (gauge-fixed) lattice simulations
that developed parallel to functional methods both in pure
Yang-Mills (YM) theory [41–47] and in QCD [48–50],
mostly, but not only, in the Landau gauge. In particular, one
of the central results of the lattice simulations in this gauge
is that the gluon two-point function features what is known
as a decoupling behavior, reaching a finite nonzero value at
zero momentum [43–45,51–57]. Although of fundamental
importance because it radically changes our view on the
nature of gluons in the infrared, the origin of this dynami-
cally generated mass is still under debate. It could, for
instance, be related to the Schwinger mechanism [58,59],
or it could stem from dynamically generated condensates
[60–64].
A second category of approaches intend, instead, to

identify the gauge-fixed action beyond the FP prescription

prior to any particular choice of computational scheme.
This can be done either by following a semiconstructive
approach where one tries to incorporate, at least partially,
the effect of the Gribov copies, or, by following a more
phenomenological approach where one proposes new terms
to the gauge-fixed action beyond those of the FP procedure
and tries to constrain them by comparison to experimental
results or lattice data. The main representative of the first
type of strategy is the Gribov-Zwanziger formalism
[10,62,65–67], where one eliminates the infinitesimal
copies. The ultimate goal of this formalism is to reduce
the functional integrals to a region of the gauge field
configuration space, where no Gribov copies are present.
Unfortunately, this objective has turned out to be extremely
difficult to achieve. As for the second type of strategy, the
main representative is the one based on a massive extension
of the FP action in the Landau gauge,2 which corresponds
to a particular case of the Curci-Ferrari (CF) model [73] and
which we address in this work.
The rationale for adding a mass term is the above

mentioned decoupling behavior of the gluon propagator
combined with the idea that this behavior could as well be a
consequence of taking into account the Gribov ambiguity
[74,75]. Although phenomenological in nature,3 the CF
model benefits from very interesting properties which make
its study worthwhile. In particular, some of its renormal-
ization group trajectories are regular at all scales (no
Landau pole). Moreover, among these trajectories, there
is typically one that allows one to reproduce the lattice data
for the YM ghost and gluon propagators to a surprisingly
good accuracy already at one-loop order. Finally, the
corresponding coupling remains relatively small over all
scales,4 which explains a posteriori why the one-loop
calculations provide already a good account of the two-
point functions.
We stress that this last result, although surprising at first

sight is not only a result within the CF model but also a
prediction of lattice YM theory [43,52–57,77] that the CF
model just turns out to reproduce. Also, it is not incom-
patible with the fact that QCD is strongly coupled because,
in the presence of quarks, the quark-gluon interaction is
typically 2 to 3 times larger than the purely gluonic
interaction. What this result tells in essence is that QCD

2It is worth mentioning that a gluonic mass operator has also
been considered in a series of articles [68–72]. In contrast to the
CF approach, the underlying hypothesis in this case is that the FP
action remains unchanged in the IR. The gluonic mass operator
enters into the picture by being formally added and subtracted to
the FP action. This allows for a reorganization of standard
perturbation theory which avoids its bad behavior in the IR.

3Recently, a connection between the CF model and the
dynamical generation of condensates within the FP framework
has been established [76].

4More precisely, the perturbative expansion parameter
g2N=ð16π2Þ is found to lie below 1 both in the SU(2) case
and in the SU(3) case.
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could be more subtly nonperturbative than originally
thought. While remaining nonpertubative, it could possess
a perturbative (pure glue) sector in the infrared, at least with
regard to certain quantities.5 These ideas have been tested
beyond the calculation of vacuum correlators. A recent
review on the CF model and its applications to infrared
YM/QCD can be found in [78]. In particular, it has been
shown that the perturbative CF model gives a good account
of the phase structure of both YM theory [79–84] and QCD
in the limit where all quarks are considered heavy [85,86].
In the case of QCD, it has recently led to the proposal of a
CF-based approach in the form of a double expansion in
terms of the pure gauge vertices as well as the inverse
number of colors [87,88]. The benefit of this expansion
scheme is that the error is in principle controlled by two
small parameters.
With the purpose of further testing the soundness of the

perturbative CF paradigm with regard to the YM sector,
several correlation functions have been evaluated by means
of perturbation theory and the results compared to available
YM Monte Carlo simulations. Beyond the original one-
loop calculations of the ghost and gluon two-point func-
tions [89,90], the ghost-antighost-gluon and three-gluon
vertices have been evaluated for all configuration of
momenta [91], showing a rather good agreement with
the lattice results with a maximal estimated error of around
10%–20%. Recently, the calculation of two-point functions
has been extended to two-loops [92], with a maximal error
of around 5%–10%. These results confirm that the CF
model is able to reproduce two-point functions to a high
level of accuracy, and that the perturbative expansion is
under control.6 Similar results have been obtained for the
ghost-gluon vertex in the limit of vanishing gluon momen-
tum [97] with the added strength that this calculation
appears as a pure prediction of the model because the
parameters were already determined when fitting the lattice
gluon and ghost dressing functions in Ref. [92].
In this article, we pursue this type of analysis by

studying the two-loop CF prediction for the three-gluon
vertex in the limit where one of the external gluon
momenta vanishes. The study of the three-gluon vertex
is of importance in order to clarify whether or not it
displays a zero crossing in the IR. This work comes to
complement several calculations that, on the last years,
have permitted a better understanding of this fundamental
quantity on the lattice [44,98–101] and within functional
methods [32,47,102–108].
The paper is organized as follows. In the next sec-

tion, we briefly introduce the CF model as well as the

renormalization scheme that we use throughout our analy-
sis. Section III is devoted to discussing general properties
of the three-gluon vertex, in particular its asymptotic UV
and IR behaviors. In the IR, we provide an exact formula
for the dominant asymptotic contribution, which is essen-
tially that of the one-loop result decorated by a factor that
takes the form of the cube of the exact ghost dressing
function at zero momentum. This formula unambiguously
shows that zero crossing has to occur within the CF model,
although it does not provide an exact formula for the scale
of the zero crossing. We also argue that the exact formula
for the leading IR behavior extends to the case of the FP
model within the additional assumption that the gluon
propagator resums into a decoupling type propagator. Our
analysis corroborates and complements the results of
Refs. [91,109] from a different perspective. After these
generalities, we provide details on the evaluation of the
three-gluon vertex at two-loop order in Sec. IV, and we
consider a certain number of cross-checks in Sec. V,
including the above mentioned formula for the leading
IR asymptotic behavior. In Sec. VI, we present the
comparison of our results to various lattice data in the
SU(2) and SU(3) cases. After some concluding remarks,
Appendix A lists all the two-loop diagrams that were
evaluated in this work while Appendices B and C present a
detailed analysis of the IR structure of the CF model, based
on the notion of asymptotically irreducible diagrams [110].
This analysis is the one that eventually leads to the exact
formula for the leading IR asymptotic behavior of the three-
gluon vertex. Similar exact formulas apply to the four-
gluon vertex, as well as to the leading irregular (in the sense
of non-Taylor) part of the two-point function.
The article has various entry points depending on the

background/interests of the reader. Readers interested in
the comparison to the lattice data can read Sec. II and the
beginning of Sec. III, where the computed quantities
are defined, and then jump directly to Sec. VI. Readers
interested in the details of the two-loop calculation can read
Secs. II and III up to and including III A and then dive into
Secs. IV and V, together with Appendix A. Finally, readers
whose interest is in the structural aspects of the CF model in
the infrared can read Secs. III B and V B, supplemented
with Appendices B and C.

II. THE CURCI-FERRARI MODEL

The Euclidean Curci-Ferrari model is defined in terms of
the following Lagrangian density:

L ¼ 1

4
ðFa

μνÞ2 þ ∂μc̄aðDμcÞa þ iha∂μAa
μ þ

m2
B

2
ðAa

μÞ2; ð1Þ

where latin indices denote the generators of the SU(N)
color group. The covariant derivative in the adjoint repre-
sentation reads

5As a model beyond the FP gauge fixing, the CF model has so
far essentially been introduced and tested in the Euclidean. This is
because the lattice results it relies upon are Euclidean results. It is
not clear, to date, whether the CF model relates, through a Wick
rotation, to its Minkowskian counterpart.

6For similar calculations including quarks, see Refs. [87,93–96].
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ðDμcÞa ≡ ∂μca þ gBfabcAb
μcc; ð2Þ

where fabc are the structure constants of the gauge group
and gB the bare gauge coupling constant. The field-strength
tensor is defined as

Fa
μν ≡ ∂μAa

ν − ∂νAa
μ þ gBfabcAb

μAc
ν: ð3Þ

The model is regularized by means of dimensional regu-
larization in d ¼ 4 − 2ϵ dimensions in which case gB
acquires dimension ϵ. As usual, bare and renormalized
fields relate through the renormalization factors Z,

Aa;μ
B ¼

ffiffiffiffiffiffi
ZA

p
Aa;μ; caB ¼

ffiffiffiffiffi
Zc

p
ca; c̄aB

ffiffiffiffiffi
Zc

p
c̄a; ð4Þ

in the same manner as the bare parameters,

μ−ϵgB ¼ Zgg; m2
B ¼ Zm2m2; ð5Þ

where the subscript “B” refers to bare quantities and g is the
(dimensionless) renormalized coupling. For convenience,
we introduce λ≡ g2N=ð16π2Þ.
The CF model benefits from certain renormalization

schemes, which are Landau pole free [111]. One such
scheme is known as the infrared safe renormalization
scheme (IRS) [90], defined by the following renormaliza-
tion conditions7:

Zg

ffiffiffiffiffiffi
ZA

p
Zc ¼ 1; Zm2ZAZc ¼ 1 ð6Þ

and8

G−1ðp ¼ μÞ ¼ μ2 þm2ðμÞ; D−1ðp ¼ μÞ ¼ μ2; ð7Þ

where G and D refer to the gluon and ghost propagators,
respectively, and Eq. (6) is an extension of two non-
renormalization theorems [111] in which the finite parts
are included.
At one- and two-loop order within the IRS scheme, the

CF model features two classes of renormalization group
trajectories in the space of dimensionless parameters
ðm2=μ2; g2Þ [82,92]. For trajectories in the first class,
the flow becomes singular at a finite scale or Landau pole.

As for the other trajectories, they are well defined for the
entirety of the renormalization scale range and are char-
acterized by a bounded coupling which approaches zero
both in the UV limit and in the IR limit. In principle, in
order to work within the perturbative approach, only the
latter class of trajectories is rigorously valid. Interestingly
enough, these are the flows that best describe YM corre-
lation functions on the lattice [82,90].

III. THE THREE-GLUON VERTEX

The color structure of the bare three-gluon vertex is given
by [113]

Γð3ÞB
Aa
μAb

νAc
ρ
ðp; k; rÞ ¼ −igBfabcΓB

μνρðp; k; rÞ: ð8Þ

We shall consider the particular kinematical configuration
where the momentum of one of the external gluons
vanishes, also known as asymmetric configuration,

ΓB
μνρðp;−p; 0Þ≡ ΓB

μνρðpÞ: ð9Þ

Its corresponding renormalized expression,

Γμνρðp; μÞ≡ Z3=2
A ZgΓB

μνρðpÞ; ð10Þ

admits the following tensorial decomposition:

Γμνρðp; μÞ ¼ 2Γaðp2; μÞδμνpρ þ Γbðp2; μÞðδμρpν þ δνρpμÞ
þ Γcðp2; μÞpμpνpρ: ð11Þ

We are interested in comparing our results with lattice data
from Refs. [41,47] in the SU(3) case and from Ref. [46] in
the SU(2) case. In all these studies, the renormalized
quantity the authors compute is, up to a constant factor
(see Sec. VI),

Γðp2; μÞ ¼ Γtree
μ0ν0ρðpÞP⊥

μ0μðpÞP⊥
ν0νðpÞΓμνρðp; μÞ

Γtree
μ0ν0ρðpÞP⊥

μ0μðpÞP⊥
ν0νðpÞΓtree

μνρðpÞ
; ð12Þ

where Γtree
μνρðpÞ is obtained from Eq. (9) by switching off the

interactions, i.e.,

Γtree
μνρ ¼ −pμδνρ − pνδμρ þ 2pρδμν; ð13Þ

and P⊥
μνðpÞ is the standard transverse projector,

P⊥
μνðpÞ ¼ δμν −

pμpν

p2
: ð14Þ

By inserting Eq. (11) into Eq. (12), it is straightforward to
see that

Γðp2; μÞ ¼ Γaðp2; μÞ: ð15Þ

7See Ref. [112] for other Landau pole free schemes within the
CF model.

8For convenience, we have chosen the scale that enters the
renormalization conditions equal to the scale that allows one to
make the renormalized coupling dimensionless; see Eq. (5). This
is not mandatory, however, for these two scales are different in
nature, the second one being a regulating scale rather than a
renormalization scale. In some instances, it can be useful to take
these two scales different of each other [95].

BARRIOS, PELÁEZ, and REINOSA PHYS. REV. D 106, 114039 (2022)

114039-4



In what follows, for simplicity, we shall refer to this
function as the three-gluon dressing function.
To gain further insight on Γðp2; μÞ, we now discuss its

UV and IR asymptotic behaviors. First, there are some
general expectations on these behaviors that will later serve
as tests for the two-loop calculation to be presented below.
Second, the asymptotic expansions reveal the appearance
of logarithms. Some of them are symptomatic of the failure
of the perturbative expansion at a fixed renormalization
scale and need to be taken care of through renormalization
group techniques. Some other logarithms are of physical
origin and should therefore be retained in our final result. In
particular, they relate to the zero crossing of the dressing
function in the IR.
Readers more interested in the details of the two-loop

calculation can jump directly to Sec. IV, while readers
interested in the comparison to the lattice result can jump
to Sec. VI.

A. UV and renormalization group

Let us start by discussing the UV asymptotic behavior.
The superficial degree of divergence of the three-
gluon vertex is δ ¼ 1. Owing to the presence of an
extra factor of p between this vertex and the three-gluon
dressing function, see Eq. (11), we deduce from Weinberg
theorem [114] that Γðp2; μÞ behaves logarithmically at
large momentum.
In general, and as our two-loop calculation will later

illustrate, the n-loop, order λðμÞn contribution contains
powers of logarithms of p2=μ2 up to and including
ðln p2=μ2Þn. This means that, for a fixed renormalization
scale μ, and for large enough p such that ln p2=μ2

becomes of the order of 1=λðμÞ, all loop orders become
of the same order, thus invalidating the use of perturbation
theory with a fixed renormalization scale in this range of
momenta. To cope with this issue, it is mandatory to work,
instead, with a running scale μðpÞ chosen such that μðpÞ ∼
p in the UV.
For comparison with the lattice data, however, we need

to evaluate the three-gluon dressing function Γðp2; μ0Þ at a
fixed renormalization scale μ0. The latter can be obtained
from the running three-gluon dressing function Γðp2; μðpÞÞ
by means of the Callan-Symanzik equation [115,116].
In the case of a purely gluonic vertex function, this equation
reads

�
μ∂μ −

1

2
nAγA þ βλ∂λ þ βm2∂m2

�
ΓðnAÞ ¼ 0; ð16Þ

where we have defined the β functions,

βXðλ; m2Þ ¼ μ
dX
dμ

����
λB;m2

B

; ð17Þ

for X ∈ fλ; m2g, and the anomalous dimensions γ,

γYðλ; m2Þ ¼ μ
d ln ZY

dμ

����
λB;m2

B

; ð18Þ

for Y ∈ fA; cg. The solution of the Callan-Symanzik
equation can be written formally as

ΓðnAÞðp; μ0; λ0; m2
0Þ

¼ zAðμ; μ0Þ−nA=2ΓðnAÞðp; μ; λðμÞ; m2ðμÞÞ; ð19Þ

which relates the vertex functions at two different renorm-
alization scales, with

ln zAðμ; μ0Þ ¼
Z

μ

μ0

dμ0

μ0
γAðλðμ0Þ; m2ðμ0ÞÞ: ð20Þ

The benefit of the rewriting (19) is that the beta functions
and the anomalous dimensions can also be safely computed
within a perturbative expansion, thus giving access to
Γðp2; μ0Þ from perturbative methods, even in the regime
p ≫ μ0.
By applying the Callan-Symanzik equation to the three-

gluon dressing function we find

Γðp2; μ0Þ ¼
λðμÞ
λðμ0Þ

Γðp2; μÞ
zAðμ; μ0Þ3=2

; ð21Þ

where μwill be chosen as μðpÞ with μðpÞ ∼ p in the UV. In
the IRS scheme, by using the conditions (6) and the fact
that the bare parameters do not depend on μ, it is easy to
show that

γAðλ; m2Þ ¼ 2
βm2

m2
−
βλ
λ
; ð22Þ

which leads to

zAðμ; μ0Þ ¼
m4ðμÞ
m4ðμ0Þ

λðμ0Þ
λðμÞ : ð23Þ

By inserting Eq. (23) into Eq. (21), we arrive finally at

Γðp2; μ0Þ ¼
λ5=2ðμÞ
λ5=2ðμ0Þ

m6ðμ0Þ
m6ðμÞ Γðp2; μÞ: ð24Þ

B. IR and zero crossing

In the opposite momentum range, we cannot rely on
Weinberg theorem. However, the IR structure of the
CF model can be analyzed using the notion of asymptoti-
cally irreducible subgraphs [110]. This general analysis is
presented in Appendices B and C.
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In particular, we find that the leading infrared contribu-
tion to the bare three-gluon dressing function is associated,
at all orders, to an effective ghost loop connecting tree-level
ghost-antighost-gluon vertices and bare ghost self-energies
ΣBðkÞ; see Fig. 11. More precisely, one should retain in the
ghost self-energies the leading term in a Taylor expansion
of the self-energy at small momentum, ΣBðkÞ ∼ σBk2.
By resumming all these contributions, one obtains an
expression similar to the genuine one-loop ghost contri-
bution to the three-gluon dressing function with however
the difference that each tree-level ghost propagator 1=k2

has been replaced by 1=ðk2ð1þ σBÞÞ.
Now, 1=ð1þ σBÞ is nothing but the bare ghost dressing

function FBðpÞ≡ p2DBðpÞ at zero momentum. We have
thus arrived at the conclusion that the dominating infrared
behavior of the bare three-gluon dressing function is
generated by the bare one-loop ghost contribution multi-
plied by the cube of the exact bare ghost dressing function
at zero momentum. Upon renormalization, the bare three-
gluon dressing function is multiplied by Z3=2

A Zg which we
rewrite conveniently as

ðZ1=2
A ZcZgÞ3Z−3

c Z−2
g : ð25Þ

The first factor is finite owing to Taylor’s nonrenormaliza-
tion theorem and even equals 1 in any scheme that involves
the first of the two conditions in (6). The second factor turns
the cube of the exact bare ghost dressing function at zero
momentum into the cube of the exact renormalized ghost
dressing function at zero momentum. Finally, the third
factor turns the factor λB that appears in the evaluation of
the one-loop ghost contribution into λðμÞ. We have thus
arrived at the exact result,

Γðp2; μÞ ∼ λðμÞ
24

ln
p2

μ2
× Fð0Þ3 × ðZ1=2

A ZcZgÞ3; ð26Þ

where the last factor would be 1 in the present scheme
and FðpÞ denotes the exact ghost dressing function
p2DðpÞ. Finally, the factor 1=24 is the one that arises
from the strict one loop calculation [91]. Below, we
will explicitly check the validity of this exact formula at
two-loop order.
The previous result is important in many respects. First,

it shows that zero crossing is an exact property of the CF
model. This conclusion extends to the Faddeev-Popov
Landau gauge-fixed theory if we make the additional
assumption that the resummed gluon propagator features
a decoupling behavior similar to the one observed on the
lattice. The previous argument, however, does not provide
an exact formula for the scale of the zero crossing since
the latter depends not only on the prefactor of the logarithm
but also on the scale under the logarithm (which is
not determined exactly here) and possibly of higher
terms in the infrared expansion. Below, we shall analyze

numerically how this scale changes when including the
two-loop corrections.9

The second consequence of the previous result is that it
shows that the status of the lnp2=μ2 in the IR is rather
different from that of similar logarithms in the UV. Indeed,
it is well captured by perturbation theory since higher
loop order calculations do not increase its power. In
contrast, the powers of the logarithms lnm2=μ2 that appear
in particular inside Fð0Þ are not constrained and increase
with the loop order. Then, choosing the running scale
μðpÞ such that μðpÞ ∼ p in the IR invalidates the use
of perturbation theory as p → 0. In what follows, we
shall, consider instead the choice μðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

0

p
,

with m0 ¼ mð1 GeVÞ.
Before closing this section, let us mention that

similar exact results hold for the two- and four-point gluon
vertex functions. For the gluon two-point function, one
finds

Γð2Þðp2;μÞ− Γð2Þð0;μÞ
p2

∼
λðμÞ
12

ln
p2

μ2
×Fð0Þ2 × ðZ1=2

A ZcZgÞ2:

ð27Þ

As for the four-point function, for those tensor components
that are singular in the IR, we obtain a formula similar to
(26) with Fð0Þ4ðZ1=2

A ZcZgÞ4 rather than Fð0Þ3ðZ1=2
A ZcZgÞ3

and a different numerical prefactor stemming from the
corresponding ghost box diagram.
It is also interesting to consider the ghost propagator in

similar terms. We have seen in Appendix C that the leading
asymptotic behavior stems from the Taylor expansion of
the associated vertex, so it is regular. The next term in the
expansion involves the structure in Fig. 13. The gluon line
needs to be interpreted as a chain of gluon self-energy
insertions (more precisely their leading IR piece) connected
by massive or massless components of the gluon propa-
gator; see Eq. (C1). In the case, where the connecting lines
are all massive, the contribution is regular so it cannot
contain any logarithms. On the other hand, when one of the
connecting lines is massless and thus of the form PkðqÞ=m2

with Pk
μνðqÞ≡ qμqν=q2, it couples to the longitudinal part

of the gluon self-energy insertions and thus all other
connecting lines are also massless. These chains of mass-
less gluon lines coupled to longitudinal self energy inser-
tions resum as

X∞
n¼0

PkðqÞ
m2

B

�
−
Πk;Bð0ÞPkðqÞ

m2
B

�
n

¼ PkðqÞ
m2

B þ Πk;Bð0Þ
: ð28Þ

9We mention that, even though this scale is scheme indepen-
dent and, thus, may look as a characteristic feature of Landau
gauge YM theory, it could be sensitive to details of the gauge
fixing in the infrared.
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Similarly, as we have seen above, the ghost self-energy
insertions in Fig. 13 resum into an effective tree-level ghost
propagator,

FBð0Þ
p2

: ð29Þ

From this, we conclude that potential logarithms at next-to-

leading order in Γð2Þ
cc̄ arise, to all orders, from the one-loop

contribution multiplied by

m2
BFBð0Þ

m2
B þ Πk;Bð0Þ

: ð30Þ

Now, using the nonrenormalization theorem for the mass
[90,111], we find that this ratio is 1 and then, the
logarithm at next-to-leading order in the IR expansion

has a pure one-loop origin. When renormalizing, Γð2Þ
cc̄ ðpÞ

gets multiplied by Zc, which combines with a factor
Zg2=Zm2 arising from the factor λB of the one-loop
contribution and the factor 1=m2

B of the next-to-leading
order IR expansion, to give

Zg2Zc

Zm2

¼ ðZgZcZ
1=2
A Þ2

Zm2ZcZA
; ð31Þ

which is fortunately finite and equal to 1 in the scheme
considered here. All in all, we arrive at the exact
prediction for the logarithmic part of the next-to-leading
order IR behavior,

Γð2Þ
cc̄ ðpÞ¼p2ð…Þþp4

m2

ðZgZcZ
1=2
A Þ2

Zm2ZcZA

�
−
λ

4
ln
p2

μ2
þ���

�
þ���

One can treat the ghost-antighost-gluon vertex in a
similar way; with the difference that there is an extra ghost
propagator at one-loop order which brings an extra factor of
FBð0Þ and thus an extra Zc, there is an extra factor of gB
which brings an extra Zg, and there is an extra factor of Z

1=2
A

from the external gluon leg. Altogether this implies that,
if within a considered tensor component of the vertex
there is a logarithm at next-to-leading order of the IR
expansion, higher loop corrections do not add new loga-
rithms but modify the prefactor of the one-loop logarithm
by the finite factor,

Fð0Þ × ðZgZcZ
1=2
A Þ3

Zm2ZcZA
: ð32Þ

Finally, let us note that our analysis also allows us to
support recent claims on the dominance of the tree-level
tensor component for the three-gluon vertex [117]. First of
all, tree-level dominance is expected within the perturbative

CF paradigm (and also within the FP paradigm combined
with the assumption of a decoupling type gluon propagator)
since corrections to vertex functions beyond their tree-level
contribution (when any) are expected to be tiny. This
argument is of course too naïve in the presence of IR
singularities such as the ones in the three-gluon vertex.
Interestingly enough, however, we can provide an exact
formula for these singularities which enables us to inves-
tigate their exact tensor structure. In particular, if we
consider the unprojected three-gluon vertex for momentum
configurations depending on one scale p > 0, that is
pi ¼ paiui, with ai > 0 and ui a unit vector, it is again
possible to argue that the exact leading (logarithmic)
contribution in this regime is entirely given by that in
the one-ghost-loop diagram multiplied by the cube of the
exact ghost dressing function at zero momentum. Now, it is
an easy exercise; see Appendix D to show that the
logarithm in p in the one-loop diagram has precisely
the structure of the tree-level tensor, thus supporting the
observation made in [117].

IV. EVALUATION AT TWO-LOOP ORDER

We now proceed to the evaluation of the three-gluon
dressing function at two-loop order. We first evaluate
its bare counterpart ΓBðp2Þ and then proceed with its
renormalization.

A. Notation

At two-loop order, ΓBðp2Þ reads

ΓBðp2Þ ¼ 1þ λBΓ1ðp2; m2
BÞ þ λ2BΓ2ðp2; m2

BÞ; ð33Þ

where Γ1ðp2; m2
BÞ and Γ2ðp2; m2

BÞ represent the sum of
one- and two-loop diagrams, respectively, after projection
along the component 2δμνpρ, and

λB ≡ g2BN
16π2

: ð34Þ

By factoring out λnB, we make explicit the appropriate
power of g2B as well as the color factor of each loop
contribution. As usual, we have also absorbed a factor
ð16π2Þn in Γnðp2; m2

BÞ. Since we work in d ¼ 4 − 2ϵ
dimensions, the actual dimension of the coupling, μϵ, is
also absorbed into Γnðp2; m2

BÞ. As a consequence, it is
convenient to introduce the following notation in relation to
the d-dimensional Feynman integrals:

Z
ddq
ð2πÞd →

Z
q
≡16π2μ2ϵ

Z
ddq
ð2πÞd : ð35Þ
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B. Feynman diagrams

The one-loop diagrams contributing to Γ1ðp2; m2
BÞ can

be handled essentially by hand, from the writing of the
corresponding Feynman integrals, to the evaluation of the
latter [91]. As for the two-loop diagrams contributing to
Γ2ðp2; m2

BÞ, the writing of the Feynman integrals can still
be done by hand although we cross-checked the expres-
sions using an automatized routine in Mathematica
together with QGRAF [118]. For the purpose of organizing
the diagrams, it is useful to take into account that the
various elements of a Feynman graph in pure YM theory
satisfy the relations,

L ¼ I − ðV1 þ V3 þ V4 − 1Þ; ð36Þ

2Ig þ Eg ¼ 3V3 þ 4V4 þ V1; ð37Þ

2Igh þ Egh ¼ 2V1; ð38Þ

where L is the total number of loops of the graph, while I
and E denote the total number of internal and external lines,
respectively. The variables V1, V3, and V4 refer to the
number of ghost-antighost-gluon, three-gluon, and four-
gluon vertices, respectively. Finally, the quantities Ig and
Igh correspond to the gluon and ghost internal lines of the
graph, respectively. From these equations, it is easy to show
that

2Lþ E ¼ V1 þ V3 þ 2V4 þ 2: ð39Þ

In the case of the three-gluon vertex, we have E ¼ 3.
Moreover, since we are interested in two-loop diagrams, we
set L ¼ 2, which yields

5 ¼ V1 þ V3 þ 2V4: ð40Þ

Since the diagrams involving ghosts can easily be deduced
from (some of) the diagrams involving only gluons,
it is sufficient to list the latter. According to Eq. (40),
with V1 ¼ 0, we thus need to consider the three cases
ðV3; V4Þ ¼ ð3; 1Þ, (5,0) and (1,2); see Fig. 1 for a few
examples.
Nonplanar diagrams are only of the type ðV3; V4Þ ¼

ð5; 0Þ and all of them vanish due to their color factor. As
shown in Fig. 2 nonplanar topologies are proportional to

TrðTaThTcTiÞfibh, where the Ti are the generators of the
SU(N) gauge group in the adjoint representation. This
factor vanishes as it contracts a symmetric tensor with an
antisymmetric tensor.
In total, we evaluated 6 one-loop diagrams and 72 two-

loop diagrams (excluding nonplanar diagrams which van-
ish anyway). Up to permutations of their external legs, they
are drawn in Appendix A.

C. Reduction to master integrals

After each diagram contributing to ΓBðp2Þ has been
written in terms of Feynman integrals, we proceed to
rewrite the latter in terms of master integrals. As the
Feynman diagrams depend on one external momentum
only, such reduction leads to self-energy type master
integrals. These are

Am ≡
Z
q
GmðqÞ; ð41Þ

Bm1m2
ðp2Þ≡

Z
q
Gm1

ðqÞGm2
ðpþ qÞ; ð42Þ

at one-loop level, and

Sm1m2m3
ðp2Þ≡

Z
q
Gm1

ðqÞBm2m3
ððpþ qÞ2Þ; ð43Þ

Um1m2m3m4
ðp2Þ≡

Z
q
Gm2

ðqÞGm1
ðpþ qÞBm3m4

ðq2Þ; ð44Þ

Mm1m2m3m4m5
ðp2Þ≡

Z
q
Gm1

ðqÞGm3
ðpþ qÞ

×
Z
l
Gm2

ðlÞGm4
ðpþ lÞGm5

ðl − qÞ;

ð45Þ

at two-loop level, with

GmðqÞ≡ 1

q2 þm2
: ð46Þ

In addition, our results depend on another well-known
integral,

FIG. 1. Examples of topologies of the type ðV3; V4Þ ¼ ð3; 1Þ
(left); ðV3; V4Þ ¼ ð5; 0Þ (middle), and ðV3; V4Þ ¼ ð1; 2Þ (right).

FIG. 2. The only type of nonplanar topology involved in the
two-loop evaluation of Γðp2Þ.
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Tm1m2m3
ðp2Þ ¼ −

∂Sm1m2m3

∂m2
1

ðp2Þ: ð47Þ

The reduction to master integrals was carried out in
Mathematica, via the FIRE package [121], which makes
an extensive use of Laporta’s algorithm [122]. In the case
of Γ1ðp2; m2

BÞ, the output of this procedure is a sum of
integrals of the type A and B. In a similar manner,
Γ2ðp2; m2

BÞ is expressed as a sum of integrals of the type
S,U,M, T and products of integrals A and B. In both cases,
the coefficients of the master integrals are given by rational
fractions involving p2,m2

B and the space-time dimension d.
In the reduction of Γ2ðp2; m2

BÞ, we found some integrals
of the type M but with one of the propagators to the power
−1. Thankfully, these terms can be rewritten in terms of
master integrals. For instance, we found

Z
l
G−1

0 ðlÞGmðpþ lÞBmmðl2Þ ¼
p2 − 3m2

3
Smmmðp2Þ þ A2

m:

ð48Þ

The procedure we followed in order to obtain this type of
reduction is the one described in the Appendix A of
Ref. [97]. It can also be cross-checked using FIRE.

D. Renormalization

Up to this point, we have been working with the bare
three-gluon dressing function. This quantity is UV diver-
gent both at one- and two-loop order, and, with the goal of
producing meaningful results, it is necessary to proceed
with its renormalization. In the present case, this is easily
done because the divergent structure of the master integrals
(more precisely the coefficients of the corresponding poles
in ϵ−2 and ϵ−1) is known analytically [123]. These
divergences are of course absorbed in the renormalization
factors that enter the expression of the renormalized three-
gluon dressing function,

Γðp2Þ¼
ffiffiffiffiffi
Zλ

p
Z3=2
A ð1þλZλΓ1ðp2;Zm2m2Þþλ2Γ2ðp2;m2ÞÞ;

ð49Þ

with Zλ ¼ Zg2 . In the last term, bare quantities can be
automatically replaced by renormalized ones, since cor-
rections coming from the renormalization factors contribute
to higher orders in the perturbative series.
In order to arrive at the final renormalized expression at

two-loop order, we expand (49) to order λ2, neglecting
terms of order λ3 or higher. To do so, it is important to
consider up to two-loop contributions to the renormaliza-
tion factors,

ZX ¼ 1þ λZX;1 þ λ2ZX;2 þOðλ3Þ; ð50Þ

where

ZX;1 ¼
ZX;11

ϵ
þ ZX;10 þ ϵZX;1−1 þOðϵ2Þ; ð51Þ

ZX;2 ¼
ZX;22

ϵ2
þ ZX;21

ϵ
þ ZX;20 þOðϵÞ; ð52Þ

with X ∈ fA; λ; m2g. We then find

Γðp2Þ ¼ 1þ λ

�
3

2
ZA;1 þ

1

2
Zλ;1 þ Γ1ðp2; m2Þ

�

þ λ2
�
3

8
Z2
A;1 þ

3

2
ZA;2 þ

3

4
ZA;1Zλ;1 −

Z2
λ;1

8

þ Zλ;2

2
þ 3

2
ZA;1Γ1ðp2; m2Þ þ 3

2
Zλ;1Γ1ðp2; m2Þ

þm2Zm2;1
∂Γ1

∂m2
ðp2; m2Þ þ Γ2ðp2; m2Þ

�
þOðλ3Þ:

ð53Þ

The derivative ∂Γ1=∂m2 generates integrals of the type
∂Am=∂m2, ∂Bm0ðp2Þ=∂m2, and ∂Bmmðp2Þ=∂m2. All of
them can be expressed in terms of one-loop master integrals
by using integration by parts techniques,

∂Am

∂m2
¼

�
d
2
− 1

�
Am

m2
; ð54Þ

∂Bm0ðp2Þ
∂m2

¼ 1

p2 þm2

�
ðd − 3ÞBm0ðp2Þ þ ∂Am

∂m2

�
; ð55Þ

∂Bmm

∂m2
ðp2Þ ¼ d − 2

2m2ðp2 þ 4m2ÞAm þ d − 3

p2 þ 4m2
Bmmðp2Þ:

ð56Þ

The IRS renormalization factors were already deter-
mined in Ref. [92] from the renormalization of the ghost
and gluon two-point functions as well as from the two
nonrenormalization theorems. Consequently, a first check
on the calculation of Γðp2Þ consists in verifying that the
various divergent terms from Eq. (53) cancel with each
other, leading to a finite expression. This is a nontrivial
check since our expression for Γ2ðp2; m2

BÞ has terms of
order ϵ−1, ϵ−2 and even ϵ−3. These triple poles are a result of
the reduction from Feynman to master integrals, which
can generate spurious poles ð4 − dÞ−1. More precisely,
these are
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ð4 − dÞ−1
96

��
4

m2
−

2

3p2
þ 7p2

3m4
−

p4

3m6

�
AmB00 þ

�
1 −

p2

m2

�
B00Bm0 þ

�
−

13

3m2
þ 2m2

3p4
−

2

p2
þ p2

3m4

�
Im00

þ
�

11

3m2
−
2p2

3m4
−

p4

3m6

�
S000 þ

�
1

3m2
−
2m2

3p4
þ 8

3p2
−
8p2

3m4
þ p4

3m6

�
Sm00

þ
�
3 −

2m2

3p2
þ 10p2

3m2
−

p4

3m4

�
U00m0 þ

�
p2

m2
− 1

�
U0m00

�
; ð57Þ

where Im1m2m3
stands for Sm1m2m3

ðp2 ¼ 0Þ. We have
checked that the triple poles cancel among the various
terms in this formula. Indeed, this should be the case since
there is no other term in Eq. (53) capable of canceling such
terms. We then checked that the terms proportional to ϵ−2

and ϵ−1 in Γðp2Þ cancel as well, as it should.

E. Finite parts

After verifying that our expression is UV finite, we must
carefully look up to which order in ϵ we should expand the
various terms appearing in Eq. (53) so as not to miss any
finite contribution. It is clear that the terms Γ1ðp2; m2Þ and
ZX;1 should be expanded to order ϵ1. This is because in the
products Z2

A;1, ZA;1Zλ;1, ZA;1Γ1, Zλ;1Γ1, and Zm2;1
∂Γ1

∂m2, all of
which contribute to the term proportional to λ2, the two
terms involved in each product have poles of the form 1=ϵ.
Hence, terms of order ϵ1 yield finite quantities. In contrast,
Γ2ðp2; m2Þ and ZX;2 should be regarded only up to order ϵ0,
since no product involving such quantities intervene at
order λ2. As a result, one could argue that one-loop master
integrals, A and B, should be expanded to order ϵ1, which
are known analytically, and two-loop master integrals, S, T,
U, and M up to order ϵ0, which can all be evaluated using
the TSIL package [124].
However, since the term (57) introduces an additional

1=ϵ coming from the reduction to master integrals, we find
that it is necessary to expand Am, B00, and Bm0 to order ϵ2

and Im00, S000, Sm00, U00m0, and U0m00 to order ϵ1 in order
to keep all the finite contributions. This is in general not
covered by the TSIL package. Fortunately, all these expan-
sions were already considered in Ref. [97].

V. CROSS-CHECKS

The calculation of Γðp2Þ involves many diagrams,
which, after the reduction to master integrals, generate a
significant amount of terms. Consequently, the result for
Γðp2Þ needs to be tested as much as possible. This section
briefly describes some of these tests. All of them obey the
same logic: some specific feature is satisfied by Γðp2Þ but
not by the individual terms that make up Γ1ðp2; m2Þ and
Γ2ðp2; m2Þ. As a consequence, very specific cancellations
among the terms in Eq. (53) must hold so as to produce a
Γðp2Þ with the right characteristics.

A. UV asymptotic behavior

We have already seen that the three-gluon dressing
function should behave logarithmically at large momenta.
In contrast, the individual terms that compose Γðp2; μÞ after
the FIRE reduction can grow much faster. In order to check
that these larger contributions cancel among each other, we
used UV expansions for all the master integrals involved
in Γðp2; μÞ. We determined these expansions by using
our own implementation of the algorithm described in
Ref. [125]. Furthermore, a numerical test is not possible in
the UV region, since our implementation of TSIL does not
have a good behavior in that range of momenta.
At leading order of the p → ∞ expansion, we find10

Γðp2; μÞ ¼ 1þ λðμÞ
�
37

24
þ 17

12
ln

�
p2

μ2

��

þ λ2ðμÞ
�
143

96
ln

�
p2

μ2

�
−
51

32
ln

�
p2

μ2

�
2

þ 153

32
þ 5

16
ζð3Þ

�
þO

�
m2

p2

�
: ð58Þ

As anticipated, the three-gluon dressing function grows
logarithmically in the UV, and we observe that the power of
the logarithms increases with the loop order thus requiring
the use of the renormalization group as discussed in
Sec. III A.

B. IR asymptotic behavior

As we have already argued, the exact leading asymptotic
infrared behavior of the three-gluon dressing function is
given by a linear logarithm, which has essentially a one-
loop origin, dressed by the cube of the ghost dressing
function at zero momentum. Expanding the exact for-
mula (26) at two-loop order, we find (we also use the first
condition in (6))

Γðp2; μÞ ∼ λðμÞ
24

ln
p2

μ2
× ð1 − 3σ1Þ; ð59Þ

10In the UV, since the perturbative expansion at large p makes
sense only in the presence of a running scale μðpÞ such that
μðpÞ ∼ p, we can also expand with respect to μ.
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where σ1 denotes the k2 coefficient of the one-loop ghost
self-energy ΣðkÞ in the k → 0 limit.
Similarly to the UV case, this particular IR behavior is

not necessarily observed in each of the master integrals that
make Γðp2; μÞ. With the purpose of obtaining the IR
expansion of the three-gluon dressing function, we deter-
mined the IR expansions for the various master integrals
which compose Γðp2; μÞ. We achieved this by implement-
ing the algorithm described in Ref. [126], see also
Appendix E from Ref. [95]. This algorithm cannot be
applied in some cases and a more sophisticated strategy,
described in Ref. [127] was needed.
At the first nontrivial order of the p → 0 expansion, we

find

Γðp2; μÞ ¼ 1þ λðμÞ
24

�
ln

�
p2

μ2

�
ð1 − 3τ1Þ þ C1ðm2=μ2Þ

�

þ λ2ðμÞ
24

C2ðm2=μ2Þ þO
�
p2

m2

�
; ð60Þ

with

τ1 ¼
λðμÞ
4

μ2

m2

�
m4

μ4
þ 5

2

m2

μ2
þ ln

μ2

m2

−
�
1þm2

μ2

�
3

ln

�
1þ μ2

m2

��
; ð61Þ

which can be checked to equal σ1 in the present scheme.
Here, we omit writing the lengthy expressions of the
regular functions C1ðxÞ and C2ðxÞ (for x > 0) since they
are not particularly illuminating. Our two-loop results are
thus compatible with the exact formula (26). We have
performed a similar two-loop check of (27) and (32), as
well as the corresponding prediction for the ghost-anti-
ghost-gluon vertex using the two-loop results of Ref. [97].

C. Regularity at p2 =m2

Our result for Γðp2Þ is not regular at p ¼ 0. This is a
genuine singularity associated with the zero crossing. In
addition, some of the individual contributions to our result
presented a singularity at p2 ¼ m2. There is nothing special
about this specific (Euclidean) configuration. As a conse-
quence, another test on the calculation of Γðp2Þ consists in
verifying that this divergence is spurious, emerging as a
result of the particular reduction from Feynman to master
integrals. When adding all the contributions, the corre-
sponding residue reads

λ2

64

�
2−d
d−1

AmB00ðm2Þ−m2ðd−3Þ
d−1

B00ðm2Þ

þ2−d
d−1

Im00−
ð4−dÞm4

2ðd−1Þ M0000mðm2Þ3d−8

d−1
Sm00ðm2Þ

�
:

ð62Þ

The one- and two-loop master integrals in the above
equation are known analytically in d ¼ 4 − 2ϵ dimensions
to order ϵ1 and ϵ0, respectively. This allows one to show
that Eq. (62) vanishes, at least to order ϵ0. Of course, higher
orders in ϵ are not relevant in our analysis.

D. Zero mass limit

We can also consider the zero mass limit of our result.
This limit is regular for any p2 > 0 and has already been
calculated in Ref. [128]. This is here a double check since
individual terms in the expression of Γðp2Þ are not
necessarily regular and cancellations must occur in order
to produce the right limit.
For the purpose of computing this limit, we exploited

the fact that, on dimensional grounds, any of the master
integrals involved in the reduction of Γðp2Þ can be
written as

ðμ2ϵÞLFðp2; m2Þ ¼ ðμ2ϵÞLðm2ÞD=2Fðp2=m2; 1Þ; ð63Þ

where L is the number of loops and D denotes the mass
dimension of the integral. From this way of writing the
integrals, it is clear that the low mass expansion of any
master integral is equivalent to the large momentum
expansion. As a consequence, Γðp2; m2 → 0Þ is simply
the leading term in the UV expansion given in Sec. VA
below. Since a different renormalization scheme was used
in Ref. [128], we resorted to a comparison of the bare
results, which do indeed coincide in the Landau gauge.

VI. RESULTS

We finally present our results for the two-loop three-
gluon dressing function in the CF model and the compari-
son to SU(2) and SU(3) lattice data. As already mentioned
above, the parameters of the model, m0 and λ0, are
determined by fitting the CF expressions for the gluon
and ghost two-point functions to the lattice data. This
adjustment of the parameters has already been done in
earlier works in the IRS scheme with the choice of running
scale μðpÞ ¼ p.
As we have argued, however, a more sensible choice is

μðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

0

p
. Thus, for consistency and before

investigating the three-gluon dressing function, we redo
the fits of the two-point functions with this new choice of
running scale. To this purpose, we minimize a joint error
χDF, defined as

χ2DF ¼ 1

2
ðχ2D þ χ2FÞ; ð64Þ

where χ2X is given by
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XN
i¼1

X−2
lattðμ0Þ þ X−2

lattðpiÞ
2N

ðXlattðpiÞ −N XXCFðpiÞÞ2; ð65Þ

with X ∈ fD;Fg, and XlattðpiÞ and XCFðpiÞ refer to the
value of XðpiÞ obtained from the lattice and from the Curci-
Ferrari model evaluated at pi, respectively. The normal-
izations N X are also chosen to minimize the joint error
(they can be determined analytically in terms of the lattice
and model values) and are needed in order to connect the
two-point functions in the IRS scheme and the two-point
functions in the scheme used on the lattice (only ratios of a
two-point function at two different momentum scales are
scheme independent). We mention that the quality of the
obtained fits is very similar to that obtained with the
choice μðpÞ ¼ p.
Once the parameters of the model have been fixed, our

calculation predicts the renormalized three-gluon dressing
function Γðp2; μ0Þ in the IRS scheme which we rewrite as
Γðp2Þ for simplicity. Since the scheme used in the lattice is
different, we must allow for an overall normalization
N .11 The latter is determined so as to minimize the
absolute error between the CF prediction Eq. (24) and
the lattice data,

χ2Γ ¼ 1

N

XN
i¼1

�
Γlattðp2

i Þ −NΓðp2
i Þ

Γlattðp2
NÞ

�
2

; ð66Þ

where the sum runs over the lattice points. We have here
opted for a normalized absolute error rather than a relative
error. The reason for this choice is that the relative error
does not grasp correctly the difference between the CF
predictions and the lattice data in the IR region, where
lattice data are close to zero. As a result of minimizing
with respect to N , we get

N ¼
P

N
i¼1 Γlattðp2

i ÞΓðp2
i ÞP

N
i¼1 Γðp2

i Þ2
: ð67Þ

A. SU(3)

In the SU(3) case, we compared our results with two
lattice datasets [41,47] while the fits of the ghost and gluon
two-point functions were done using the lattice data of
Refs. [119,120]. The fits of the two-point functions are
shown in Fig. 3. We find no significant difference as

compared to the results of Ref. [92] which used the
prescription μ ¼ p. As for the three-gluon dressing func-
tion, the comparison between our prediction and the results
of Ref. [47] is displayed in Fig. 4.

FIG. 3. Fits of the one- and two-loop SU(3) gluon (top) and
ghost (bottom) CF dressing functions to the lattice data of
Refs. [119] and [120]. The horizontal axis displays momenta
in GeV.

FIG. 4. One- and two-loop three-gluon dressing function as
predicted within the CF model, compared with the SU(3) lattice
results of Ref. [47] (top) and Ref. [41] (bottom). The horizontal
axis displays momenta in GeV.

11At an exact level of treatment, it is possible to relate N , N A,
andN c, provided one works within a scheme where Z1=2

A ZcZg ¼
1 holds. However, this relation does not hold exactly at a finite
loop order. Moreover, this requires that the lattice simulations for
the vertex and the two-point functions to be exactly consistent.
For these reasons, we allowed for a normalizationN independent
from N A and N c.
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As can be seen from the figure, the one- and two-loop
predictions are rather consistent with the data. We note that,
even though our results feature a zero crossing, as is evident
from Sec. V B, the two-loop corrections move the latter
deep in the infrared, where no lattice data are available.
Two-loop corrections also introduce qualitative differences
in the IR (as compared to the one-loop results), around
0.5 GeV, where Γðp2Þ bends upwards to go downwards
again in the deep IR. This is precisely the range in which
the coupling is the largest and also the range over which the
two-loop corrections are dominant since the one-loop result
crosses zero. Of particular interest is the comparison with
the data of Ref. [41] where no zero crossing is observed, at
least not within the simulated range of momenta. Although
one-loop results do display a zero crossing at a scale of
around p ¼ 313 MeV, thus contradicting the data, once
two-loop corrections are included, the scale of the zero
crossing is pushed deep in the infrared, at a scale of p ¼
1.96 MeV approximately, and the two-loop prediction
agrees pretty nicely with the data.
Table I collects the values of the errors χDF and χΓ, at

one- and two-loop order and for both datasets. We observe
a decrease of all errors when two-loop corrections are
included. As already mentioned, when comparing to the
data of Ref. [41], we find a much smaller error at two-loop
order. This could be attributed to a smaller uncertainty of
the data in comparison to the lattice results of Ref. [47],
particularly in the deep IR, where the data display larger
errors. In any case, both the one- and two-loop calculations
of Γðp2Þ are totally compatible with lattice data from [47].
We emphasize, again, that these results emerge as a pure
prediction of the CF model.
We conclude that, in line with previous results, the

perturbative CF model can describe the results of lattice
YM theory both at a qualitative and at a quantitative level.
In addition, successive perturbative orders tend to be more
accurate, which is consistent with a controlled perturbative
approach.
For completeness, we mention that we have redone the

analysis with the choice μðpÞ ¼ p and the differences with
the choice μðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

0

p
are numerically small (of

around 0.4%). The latter choice tends to slightly improve

the one-loop fits, while it worsens the two-loop fits by the
same amount.

B. SU(2)

In the SU(2) case, the fits of the gluon and ghost dressing
functions were carried out using the lattice data of
Ref. [44]. For completeness, we show the corresponding
plots in Fig. 5. The plot of the one- and two-loop CF
predictions for the three-gluon dressing function in com-
parison to the lattice data of Ref. [46] is shown in Fig. 6.
The two-loop corrections display a very similar behavior

than those in the SU(3) case. More precisely, the two-loop
corrections move the zero crossing deep in the IR. At
one-loop order, the scale of the zero crossing is located at

FIG. 5. Fits of one- and two-loop gluon (top) and ghost
(bottom) dressing functions from the CF model, for the SU(2)
group, to lattice results of Ref. [44].

TABLE I. This table shows, depending on the loop order, the
values of the parameters which best fit the lattice data of
Refs. [119,120] for the ghost and gluon two-point functions,
the corresponding joint error for the gluon and ghost dressing
functions, and the individual errors for the predicted three-gluon
dressing function in comparison to the data of Refs. [41,47],
denoted, respectively, χΓ;A and χΓ;C.

Order λ0 m0 (MeV) χDFð%Þ χΓ;Að%Þ χΓ;Cð%Þ
One loop 0.30 350 4.6 13.0 11.6
Two loop 0.27 320 3.2 10.6 5.5

FIG. 6. One- and two-loop three-gluon dressing function as
predicted within the CF model, compared with the SU(2) lattice
results of Ref. [46].
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p ¼ 395 MeV whereas at two-loop order it moves down to
at p ¼ 6.1 MeV approximately. The absolute error
between the CF predicted three-gluon dressing function
and lattice simulations is shown in Table II.
We find again that the error diminishes from one- to two-

loop order. As expected, the quantitative results are not as
good as for the SU(3) case. This result is consistent with
previous works [92,97] in which two-loop results system-
atically showed a better agreement for the SU(3) gauge
group. This can be attributed to the fact that the expansion
parameter is larger for SU(2) in the whole range of
momenta. In this case, we can also argue that because
the uncertainty of lattice data is not small, a much smaller
error between lattice data and the CF prediction would not
make much sense.

C. Scheme dependence

A complementary way of testing the validity of the
perturbative analysis within the CF model consists in
checking the scheme dependence of the three-gluon
dressing function and how it depends on the loop order.
This type of analysis was performed for the two-
point functions in Ref. [92] by comparing the IRS
to the vanishing momentum scheme (VM). Here, we extend
this analysis to the case of the three-gluon dressing
function.
The VM renormalization conditions differ from the IRS

ones in that the condition Zm2ZAZc ¼ 1 is replaced by

G−1ðp ¼ 0Þ ¼ 1

m2
: ð68Þ

Even though this scheme features a Landau pole in the IR in
the case where μ is set equal to μðpÞ ¼ p [89,90], we have
seen that a more sensible choice is μðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

0

p
,

which stops the flow at m0, and (depending on the value of
m0) can avoid the Landau pole. Here, we shall more
generally consider the choice μðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ αm2

0

p
, with

α ¼ 1 or α ¼ 2, which stops the flow at
ffiffiffi
α

p
m0. With the

goal of measuring the difference between the predicted VM
and IRS three-gluon dressing functions, we introduce the
following quantity:

Hα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

�
ΓVM;αðpiÞ − ΓIRSðpiÞ

ΓIRSðpNÞ
�

2

vuut ; ð69Þ

where the sum runs over the lattice points.
The Tables III and IV show that, in all cases, the scheme

dependence diminishes from one- to two-loop order, which
is consistent with the perturbative paradigm within the CF
model. Moreover, we observe that the scheme dependence
is stronger in the SU(2) case, which is in line with previous
observations.

VII. CONCLUSIONS

Using the Curci-Ferrari model, we have evaluated one of
the dressing functions that occur in the three-gluon vertex
function as one of the external momenta is taken to zero.
Our two-loop calculation extends earlier one-loop results
[91] in that particular configuration of momenta. Since the
parameters of the model were fixed from a similar analysis
of the two-loop two-point functions [92], our results appear
as a pure prediction of the model which can be compared
to lattice data both in the SU(2) case and in the SU(3)
case. We find that the two-loop corrections systematically
improve the comparison to the data. This is particularly true
in the SU(3) case which we interpret as originating in the
fact that the coupling constant is smaller in this case than
in the SU(2) case. We also find that scheme dependences
get reduced at two-loop order, specially in the SU(3) case.
All these results reinforce the idea that certain quantities in
YM theory are akin to perturbative methods, through the
CF model.

TABLE II. This table shows, depending on the loop order, the
values of the parameters which best fit the lattice data of Ref. [44]
for the ghost and gluon two-point functions, the corresponding
joint error for the gluon and ghost dressing functions, and the
individual errors for the predicted three-gluon dressing function
in comparison to the data of Ref. [46], denoted χΓ.

Order λ0 m0 (MeV) χDFð%Þ χΓð%Þ
One loop 0.42 450 7.5 15.5
Two loop 0.38 400 4.9 12.2

TABLE III. Scheme dependence in the SU(3) case. The
normalization of the three-gluon dressing function was chosen
so as to minimize the disagreement with lattice simulations from
Ref. [47], in the case ofHα;A, and with lattice data from Ref. [41],
in the case of Hα;C.

Order Hα¼1;Að%Þ Hα¼2;Að%Þ Hα¼1;Cð%Þ Hα¼2;Cð%Þ
One loop 5.1 5.3 2.4 2.5
Two loop 3.1 2.9 1.6 1.5

TABLE IV. Scheme dependence in the SU(2) case. The
normalization of the three-gluon dressing function was chosen
so as to minimize the disagreement with lattice simulations from
Ref. [46].

Order Hα¼1ð%Þ Hα¼2ð%Þ
One loop 11.6 11.3
Two loop 5.1 5.7
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We have also provided a detailed analysis of the IR
structure of the CF model, which allows one to unveil the
dominant contributions to each vertex function and their
diagrammatic origin. Thanks to this analysis, we could
derive an exact formula for the leading order IR asymptotic
behavior of the three-gluon dressing in the form of the one-
loop result multiplied by the cube of the ghost dressing
function at zero momentum. Similar formulas apply to the
two- and four-point functions. In the case, of the three-
gluon dressing, it shows that zero crossing does occur in the
CF model. However, our fit to the data shows that the scale
of the zero crossing is considerably reduced when going
from one- to two-loop order. This result seems compatible
with certain recent lattice simulations.
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APPENDIX A: DIAGRAMS

All Feynman diagrams in this section and in the rest of
the article have been drawn with JAXODRAW [129]. The
one-loop diagrams contributing to Γðp2Þ are shown in
Fig. 7 while the two-loop diagrams are shown in Fig. 8. We
do not draw diagrams which are permutations of the ones
below. Also, as already noticed in the main text, we do not
draw the nonplanar diagrams, which are zero due to a
vanishing color factor.

APPENDIX B: IR EXPANSION
OF FEYNMAN GRAPHS

In the next section, we provide a detailed study of the IR
structure of the CF model. The analysis is based on the
large mass expansion of Feynman graphs in terms of

asymptotically irreducible subgraphs [110], as well as on
the notions of Taylor and asymptotic mass powers. In the
present section, preparing the ground for this analysis, we
introduce these notions in the case of a scalar theory
involving one massive field of mass m and one mass-
less field.

1. Asymptotically irreducible subgraphs

Consider a graph G and denote Gðpi;mÞ the associated
Feynman integral. We are interested in the regime where all
the external momenta pi are much smaller than m. One
could first start by considering a naive infrared expansion
of Gðpi;mÞ obtained by Taylor expanding the correspond-
ing integrand in powers of the external momenta pi. Except
for very specific cases, however, this Taylor expansion,
denoted T pi

Gðpi;mÞ, is not the actual asymptotic expan-
sion of the graph, denotedApi

Gðpi;mÞ. The reason is that,
in the case where there is no way of routing the externalFIG. 7. One-loop diagrams contributing to Γðp2Þ.

FIG. 8. Two-loop diagrams contributing to Γðp2Þ.
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momenta such that they avoid the massless lines of G,
the Taylor expansion of these external momenta even-
tually produces infrared divergences. Although the latter
are regularized within dimensional regularization, their
appearance is symptomatic of the invalidity of the
Taylor expansion beyond a certain order.
The correct asymptotic expansion is obtained from the

following Eq. [110]:

Api
Gðpi;mÞ ¼

X
ḠðAIÞ⊂G

Z
qj

Rðqj; piÞT qj;pi
Ḡðqj; pi; mÞ;

ðB1Þ

where the sum is to be taken over the asymptotically
irreducible (AI) subgraphs Ḡ of the original graph with
associated Feynman integral Ḡðqj; pi; mÞ. An asymptoti-
cally irreducible subgraph is defined as any subgraph that
contains all the massive lines of the original graph and that
is one-particle-irreducible (1PI) with respect to the massless
lines. Basically, it represents one possible way to route
large momenta through some of the massless lines of the
original graph. This allows one to safely Taylor expand
Ḡðqj; pi; mÞ with respect to all the external momenta of the
subgraph.12 The reason why all the massive lines are
included within the AI subgraphs is that they can always
be safely Taylor expanded. It is also important to note that,
in the case where the diagram involves only massless
propagators, there is only one term in the asymptotic
expansion (B1) corresponding to the diagram itself.
One could interpret this by saying that there is only one
AI subgraph to be considered in this case, the empty
subgraph.13

We stress that a given AI subgraph is not necessarily
connected. However, its connected components appear as
trees of (connected) 1PI subgraphs with respect to all types
of lines, linked to each other by massive lines. In what
follows, we refer to the 1PI subgraphs and the massive lines
as the nodes and the branches of the tree (and, by extension,
of the AI subgraph), respectively.

2. Taylor and asymptotic mass powers

The Eq. (B1) needs to be seen as a large mass expansion,
valid insofar all external momenta pi are small with respect
to m, irrespectively of how these momenta are related to
each other. In order to organize the various terms of the
large mass expansion while unveiling their diagrammatic
origin, it is convenient to introduce the notion of Taylor and
asymptotic mass powers.
First, the Taylor expansion of an AI subgraph Ḡ leads to a

sequence of terms of the form mωPn, with n a positive
integer and where Pn is a shorthand notation for a degree n
monomial in the components of the external momenta of
the subgraph (which include the pi and qj above). The
exponent ω will be referred to as the Taylor mass power of
the corresponding term of the expansion. It is such that
ωþ n ¼ δḠ, where δḠ denotes the mass dimension of the
subgraph. Since n ≥ 0, we haveω ≤ δḠ. Moreover, increas-
ing orders of the Taylor expansion appear according to
decreasing Taylor mass powers. The leading term of the
expansion corresponds then to the term with highest Taylor
mass power ωḠ, referred to as the Taylor mass power of the
subgraph. If no symmetries are present, we will typically
find ωḠ ¼ δḠ. In contrast, symmetries may decrease the
value of ωḠ strictly below δḠ, as we will see explicitly in the
next section.
Second, from the above considerations as well as from

Eq. (B1), it is pretty clear that the asymptotic expansion of
the original graph also leads to a sequence of terms of the
form mνHαðpiÞ, with HαðpiÞ an homogeneous function of
the external momenta of degree α, with νþ α ¼ δG. As
opposed to n above, α is not restricted to positive values,
and so ν can be strictly larger than δG. The exponent ν will
be referred to as the asymptotic mass power of the
corresponding term in the expansion. As before, increasing
orders of the asymptotic expansion appear according to
decreasing asymptotic mass powers. The leading term of
the expansion corresponds to the term with highest asymp-
totic mass power νG, referred to as the asymptotic mass
power of the graph.14

The notions of asymptotic and Taylor mass powers are
very useful for unveiling the origin of the various terms in
the large mass asymptotic expansion of a given graph G.
Indeed, the Taylor mass power ωḠ of an AI subgraph Ḡ
gives the highest asymptotic mass power it contributes
to in the asymptotic expansion of the original graph. In
particular, the leading terms in the asymptotic expansion
are those corresponding to AI subgraphs with highest
Taylor mass power, Taylor expanded to leading order.

12We should stress here that the Taylor expansion of a given AI
subgraph is not, in general, its actual asymptotic expansion. It
should be considered more as a bookkeeping device that helps
organizing the asymptotic expansion of the original graph and
that makes sense only after the contributions from all the AI
subgraphs have been added. Similarly, the contribution associated
to an AI subgraph needs to be considered as one in which the
momenta flowing through the massless lines of the AI subgraph
are considered large. Although this would require, in principle, to
split the loop momenta into large and small, it can be argued that
this is not necessary in dimensional regularization and that a
formula such as (B1) does not overcount contributions.

13In fact, other AI subgraphs would contribute to 0 in this case
since their Taylor expansion vanishes in dimensional regulari-
zation. Also, in the case of diagrams containing some massive
lines, the empty AI subgraph does not enter (B1) since the
massive lines need always to be included within any AI subgraph.

14Taylor and asymptotic mass powers (as well as δḠ, δG or α)
are integers modulo terms proportional to ϵ. In most of the
subsequent discussion, the ϵ-dependent part will not play any
role, and we shall treat mass powers as integers, neglecting their
ϵ-dependent part. The latter will play a role when investigating
the origin of the logarithms in Sec. C 4.
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The next-to-leading terms come either from the AI sub-
graphs with highest Taylor mass power, Taylor expanded to
next-to-leading order, or from the AI subgraphs with next-
to-highest Taylor mass power Taylor expanded to leading
order, and so on and so forth.

APPENDIX C: IR STRUCTURE
OF THE CF MODEL

We now extend and apply the previous considerations to
the case of the CF model.

1. AI subgraphs in the CF model

The CF model features massless ghosts and massive
gluons. We note, however, that the CF gluon propagator
writes as

P⊥
μνðqÞ

q2 þm2
¼ 1

q2 þm2

�
δμν þ

qμqν
m2

�
−

1

m2

qμqν
q2

; ðC1Þ

so it contains both a massive and a “massless” component.
A priori, one should take this fact into account when
identifying the AI subgraphs. To do so, one should first
imagine replicating the graph by deciding which gluon
lines carry massive components of the gluon propagator
and which ones carry massless components. For any such
choice, the AI subgraphs should contain all gluon lines
except some of those corresponding to massless compo-
nents, and form trees whose branches are some of the gluon
lines corresponding to massive components. Now, for a
given choice of gluon lines that are left out of the AI
subgraph (because they correspond to massless compo-
nents) and a given choice of gluon lines that form the
branches of the tree (because they correspond to massive
components), one finds all possible choices of gluon
components inside the nodes of the tree and these gluon
components reconstruct the fully transverse propaga-
tor (C1).
Beyond its relevance in the argumentation below, this

remark leads to a simple procedure to obtain all AI
subgraphs of a given graph in the CF model. One first
leaves out certain gluon lines. Then one looks for all the
graphs that contain the other gluon lines and whose
connected components form trees whose branches are
some of these gluon lines. The gluon lines inside the nodes
of these trees correspond to the fully transverse propagator
(C1), while the branches of the tree correspond to massive
components, and finally, the gluon lines that were left out
correspond to massless components. We note that the latter
contribute with a factor 1=m2 each. Even though this factor
should be considered as part of Rðqj; piÞ in Eq. (B1), we
shall conveniently absorb it within the other factor, so
that Rðqj; piÞ remains independent of the mass. We stress
once more that, in the case where all gluon lines have
been interpreted as the massless component, the diagram

contains only massless propagator (including possible
ghost propagators) and the only relevant AI subgraph is
the empty one, meaning that the integral should be
considered unexpanded in Eq. (B1).

2. Taylor mass power of an AI subgraph

We now would like to evaluate the Taylor mass power of
an AI subgraph occurring in the CF model. To this purpose,
we denote by Ḡi, the various nodes of Ḡ and by IA, the total
number of gluon lines letting aside those that are hidden
in the nodes. Because each of these gluon lines contributes
a term −2 to the Taylor mass power of the AI subgraph,
we find

ωḠ ¼ −2IA þ
X
i

ωḠi
: ðC2Þ

Recall that we have decided to define Rðqj; piÞ such that it
does not depend on m, so even though some of the gluon
lines corresponding to massless components are not
included in the AI subgraphs, the associated factors
1=m2 contribute to the evaluation of the Taylor mass
power. In particular, the formula includes the case where
all the gluon lines are attributed the massless component. In
this case, the AI subgraph is empty but because each gluon
lines contributes a trivial factor 1=m2, we have ωḠ ¼ −2IA.
From Eq. (C2), we are led to the determination of the

Taylor mass powers of the nodes, that is of the 1PI vertices.
Consider then a generic vertex function,

Γðrþ2sÞ
Arðcc̄Þs ;

with rþ 2s ≥ 2,15 and let us denote its Taylor mass power
by ωrs. If no symmetries were present, the Taylor mass
power would equal the mass dimension of the vertex, that is
4 − r − 2s. The derivative nature of the ghost-antighost-
gluon vertex, which is directly related to the anti-ghost shift
symmetry of the model (1), adds a factor P for each
antighost leg. The same derivative nature of the vertex
combined with the transverse nature of the gluon propa-
gator (C1) adds also a factor P for each ghost leg. This is
because this ghost leg of momentum k connects to an
internal propagator GμνðqÞ of the node, thus producing a
factor ðkþ qÞμP⊥

μνðqÞ ¼ kμP⊥
μνðqÞ which vanishes as

k → 0.16 Finally, in the case where r is odd, Lorentz
symmetry adds an extra factor of P. We then arrive at

ωrs ¼ 4 − r − 4s; ðC3Þ

15We assume that the original graph is connected and 1PI. The
nodes have then at least two legs.

16Here, it is crucial that the gluon propagators inside the nodes
of an AI subgraph reconstruct the full transverse propagator (C1),
as we have explained above.
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for r even, and

ωrs ¼ 3 − r − 4s; ðC4Þ

for r odd.
We note that, for s ≥ 1, the previous counting applies

only to loop corrections a priori since it requires the
presence of internal gluon propagators attached to the ghost
external legs. This is fine, however, because most of the
vertex functions with external ghost legs do not have a tree-
level counterpart. The only two exceptions are ðr; sÞ ¼
ð0; 1Þ and ðr; sÞ ¼ ð1; 1Þ. In the first case, the formula
ω01 ¼ 0 is also valid for the tree-level term p2 which
anyway does not appear as a node to an AI subgraph. On
the contrary, in the second case, the formula ω11 ¼ −2 does
not apply to the tree-level term since the latter as a Taylor
mass power equal to 0. We note, however, that a tree-level
ghost-antighost-gluon vertex can only appear as a node at
the edge of a tree, and we can thus decide not to include it in
the AI subgraph. This means that, without loss of general-
ity, we can assume ω11 ¼ −2.
From the above formulas, and for later purpose, it is

convenient to classify the various vertex functions accord-
ing to their decreasing Taylor mass power. As already
mentioned, we restrict to original graphs that are connected
and 1PI and then the nodes that can appear in the AI
subgraphs are such that rþ 2s ≥ 2. Combining this con-
straint with (C3) or (C4), it is easily seen that the highest

Taylor mass power is 2 corresponding to Γð2Þ
AA. The next

possible Taylor mass power is 0, corresponding either to

Γð4Þ
AAAA, Γ

ð3Þ
AAA, Γ

ð2Þ
cc̄ , and Γð3Þtree

Acc̄ .17 We then have the Taylor

mass power −2 corresponding to Γð6Þ
A6 , Γð5Þ

A5 , Γð4Þ
A2cc̄

,

and Γð3Þloops
Acc̄ .

The generic structure is quite simple. Corresponding to
the Taylor mass power ω ¼ −2k, with k ≥ 1, we will have

Γð4þ2kÞ
A4þ2k and Γð3þ2kÞ

A3þ2k . We will also have all other vertex
functions obtained from these two by replacing tetrads of
gluon legs by two pairs of ghost-antighost legs. In the case
where k is odd, there is the same number of functions

derived from Γð4þ2kÞ
A4þ2k and Γð3þ2kÞ

A3þ2k , whereas in the case where
k is even (and thus 4þ 2k a multiple of 4), there will be one

extra function generated from Γð4þ2kÞ
A4þ2k , namely Γð2þkÞ

ðcc̄Þ1þk=2. The

classification of the various vertex functions according to
their Taylor mass power is represented in Fig. 9.

3. Asymptotic mass powers in the CF model

We are finally ready for elucidating the origin of the
various asymptotic mass powers of a given vertex function.
We could analyze each vertex function one after the other.

However, we shall proceed in a more efficient way. First,
we will show that there is a maximal asymptotic mass
power that can be reached among all vertex functions. We
will also show that it can only occur in one particular vertex
function and that it has a very specific origin. We shall next
consider the next-to-maximal asymptotic mass power,
show that it occurs only in a restricted class of vertex
functions and than it involves again very specific structures.
We will do the same for the next-to-next-to-maximal
asymptotic mass power before unveiling the all-order
structure.

a. Highest asymptotic mass power

Let us first show that the asymptotic mass power of any
term in any vertex function is at most 2 and that such an
asymptotic mass power occurs in only one very specific
case. According to Eq. (C2) and because the nodes have at
most a Taylor mass power equal to 2, with 2 corresponding
to Γð2Þ

AA, the only way to create a positive mass power is that
some of the nodes are gluon self-energy insertions.
However, except in the case where the original graph is
a contribution to the gluon two-point function, any gluon
self-energy insertion will come with two gluon lines. These
could be branches of the tree forming the AI subgraph
(corresponding to massive components of the gluon propa-
gator) or gluon lines left out of the AI subgraph (because
they correspond to massless components of the gluon
propagator).

FIG. 9. Classification of the vertex functions according to
their Taylor mass power. The ghost-antighost-gluon vertex with
ω ¼ −2 refers to the loop corrections only.

17As already mentioned, the latter does enter as a node to the
AI subgraphs, by definition.
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In any case, each of these gluon lines contributes as−2 to
the Taylor mass power, thus decreasing effectively the
Taylor mass power of the gluon self-energy insertion from
2 to −2. The same is true for chains of gluon self-energy
insertions: when including the propagators that connect
them, they contribute effectively as −2. It follows that
the only case where a strictly positive asymptotic mass
power appears, ν ¼ 2, is that of the gluon two-point
function, more precisely, in the case where the considered
AI subgraph is the two-point function itself, Taylor
expanded to leading order. This is illustrated in Fig. 10.
This asymptotic mass power is necessarily the largest one
present in the two-point function and thus, corresponds to
the (leading) asymptotic mass power of the two-point
function.

b. Next-to-highest asymptotic mass power

Let us next investigate how a vanishing asymptotic mass
power can occur. Obviously, it could occur in the same case
that produces the asymptotic mass power equal to 2, that is
the gluon two-point function with an AI subgraph equal to
the graph itself, in the case where the AI subgraph is Taylor
expanded to next-to-leading order.
If we leave this trivial case aside, it is interesting to

remark that the gluon self-energy nodes of the AI subgraph
always appear in chains that correspond to dressed gluon
lines contributing as −2 to the Taylor mass power. We can
thus eliminate from Eq. (C2) the gluon self-energy nodes
and redefine IA as counting the gluon chains connecting
these nodes. It is important to stress that there could remain
self-energy insertions in the rest of the graph, made of
gluon lines corresponding to massless components. For this
reason, we should also count in IA the trivial chains made of
one line not connected to any gluon self-energy node. With
Eq. (C2) modified in this way, all terms are ≤0 and it
becomes clear that the only possibility for creating a
vanishing asymptotic mass power is, without making use
of any of these gluon chains, to combine the various vertex
functions with a vanishing Taylor mass power, namely18

Γð4Þ
AAAA, Γ

ð3Þ
AAA, Γ

ð2Þ
cc̄ .

There are again some trivial cases that can be considered,
those where the original graph is one of the above functions
and the AI subgraph coincides with the graph itself, Taylor-
expanded to leading order. If we want nontrivial AI sub-
graphs that combine various of these functions, we are very
limited since no gluon chain is allowed. This means that the
trees of the AI subgraph are single nodes, and moreover,
these cannot be purely gluonic nodes. We are then left with
ghost self-energy nodes Γð2Þ

cc̄ that need to be connected to
each other using ghost lines or tree-level ghost-antighost-
gluon vertices (that do not belong to the AI subgraph) in
order to reconstruct the original graph. Since the latter is
assumed to be connected and 1PI, it is clear that the only
possibility is to forma singleghost loop connecting the ghost
self-energies and as many tree-level ghost-antighost-gluon
vertices as wanted. We have then found that, aside from the
trivial cases, the only structure generating a vanishing
asymptotic mass power is an effective one ghost loop

contributing to Γðr≥2Þ
Ar . This structure is shown in Fig. 11.

In summary, the only vertex functions with a vanishing

(leading) asymptotic mass power are Γð3Þtree
Acc̄ , Γð2Þ

cc̄ , Γ
ðr≥3Þ
Ar .

The origin of the vanishing asymptotic mass power is either
the AI subgraph coinciding with the graph itself, in the case

of Γð3Þtree
Acc̄ , Γð2Þ

cc̄ , Γ
ð3Þ
A3 and Γð4Þ

A4 , or, in the case of Γðr≥3Þ
Ar , an

effective loop connecting tree-level ghost-antighost-gluon
vertices via chains of ghost self-energy insertions, Taylor
expanded to leading order. We stress that this structure also

contributes a vanishing asymptotic mass power to Γð2Þ
A2 but it

is not the leading asymptotic mass power of that vertex, as
we saw in the previous section.

c. Next-to-next-to-highest asymptotic mass power

To start unveiling the general structure, let us now
consider the case ν ¼ −2. Again, one source for such

FIG. 10. Origin of the asymptotic mass power ν ¼ 2. The box
surrounding the AI subgraph represents the leading order (LO)
Taylor expansion of the subgraph with respect to its external
momenta.

FIG. 11. Origin of the asymptotic mass power ν ¼ 0. The boxes
surrounding subgraphs represent the leading order (LO) Taylor
expansion of the corresponding subgraph with respect to its
external momenta. We have not represented the trivial cases
leading to ν ¼ 0; see the main text.

18Recall that we excluded Γð3Þtree
Acc̄ from the possible nodes, see

above.
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asymptotic mass power is the gluon two-point function, in
the case where the AI subgraph is the graph itself, Taylor
expanded to next-to-next-to-leading order. Leaving this
case aside, we can again use Eq. (C2) not counting the
gluon self-energy nodes while counting in IA only the
gluon chains that connect these nodes (and including
the trivial chains). In this case, all the nodes contribute
negatively to the mass power, which implies that IA ¼ 0
or IA ¼ 1.
If we take IA ¼ 0, we have of course all the previous

structures with AI subgraphs expanded to next order. In
particular, we have the structure of Fig. 11 with one of the
ghost self-energies Taylor expanded to next-to-leading
order. But we can also include new vertices as nodes of
the AI subgraph, with Taylor mass power equal to −2.
There can be only one such vertex. Basically, it dresses one
of the ghost-antighost-gluon vertices in the previously

obtained effective one ghost loop contributions to ΓðmÞ
Am .

But we can also form a similar loop where one of the

vertices is Γð4Þ
A2cc̄

; see Fig. 12 (top). There is also the trivial
case where the graph is one of the vertices with ω ¼ −2;
see Fig. 9 and the considered AI subgraph is the graph
itself, Taylor expanded to leading order.
In the case IA ¼ 1, one can form either an effective two

ghost loop contribution to ΓðrÞ
Ar , or an effective one ghost

loop closed by this gluon chain contributing to ΓðrÞ
Arcc̄. There

is also a tree-level contribution, but it should not be
considered for it is 1PR. These different possibilities are

shown in Fig. 12 (bottom). In particular, since ΓðrÞ
Arcc̄ is the

only new class of vertex functions that has appeared, and

with the exception of Γð3Þtree
Acc̄ and Γð2Þ

cc̄ which already
appeared in the analysis of ν ¼ 0, these are the only vertex
functions whose (leading) asymptotic mass power equals
−2. This leading mass power comes again from an effective
one-loop contribution, and also, in the particular case of

Γð3Þloops
Acc̄ and Γð4Þ

A2cc̄
, from an AI subgraph that coincides with

the graph itself.
Let us finally mention that the two last structures of

Fig. 12 involve one gluon line which represents in fact
a chain of self-energy insertions. While the latter are
necessarily part of the AI subgraph, the lines connecting
them should be included in the AI subgraph if they are
massive and left out if they are massless. This needs to be
taken into account in practice when evaluating the various
contributions to ν ¼ −2.

d. All-order asymptotic mass powers

Consider an AI subgraph Ḡ of a graph G. Suppose that
we shrink any node of the subgraph to a tree-level vertex.

FIG. 12. Some of the structures contributing to the asymptotic mass power ν ¼ −2 (the whole list is discussed in the main text). The
boxes surrounding subgraphs represent the leading order (LO) Taylor expansion of the corresponding subgraph with respect to its
external momenta. The gluon lines represent chains of gluon self-energy insertions.
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The graph G is transformed into an effective graph
involving effective tree-level vertices with r gluon legs
and s pairs of ghost-antighost legs. Those effective tree-
level vertices that have no counterpart in (1) originate
necessarily from the shrinking of the nodes of the AI
subgraph (we include here two-point vertices) while those
which have a counterpart in (1) can also be present outside
of the AI subgraph. We recall, however, that in the case of
ghost-antighost-gluon tree-level effective vertices, those
that originate from the shrinking of the nodes of the AI
subgraph are necessarily associated to loop corrections of
ghost-antighost-gluon vertex. The number of loops of the
effective graph is

L ¼ IA þ Ic −
X

rþ2s≥2
Vrs þ 1; ðC5Þ

where IA and Ic are, respectively, the number of gluon and
ghost lines letting aside those hidden in the nodes, and Vrs
the total number of effective tree-level vertices with r gluon
legs and s pairs of ghost-antighost legs. Denoting by EA
and Ec, the number of external gluon and ghost legs, we
have as usual

EA ¼ −2IA þ
X

rþ2s≥2
rVrs; ðC6Þ

Ec ¼ −2Ic þ
X

rþ2s≥2
2sVrs: ðC7Þ

Finally, the asymptotic mass power the AI subgraph
contributes to is

ν ¼ −2IA þ
X

rþ2s≥2
ωrsV�

rs; ðC8Þ

where V�
rs counts only the effective vertices that originate in

the shrinking of the AI subgraph.19

If we leave the case ν ¼ 2 aside (since we have already
treated it above) and because ω01 ¼ 0, we can assume
rþ 2s ≥ 3 in Eq. (C8) and count in IA only the gluon
chains connecting gluon self-energy nodes (see the dis-
cussion above). We can also see this by noting that the
formula rewrites

ν ¼ −2ðIA − V�
20Þ þ

X
rþ2s≥3

ωrsV�
rs; ðC9Þ

with IA − V�
20 counting the number of gluon chains, which

will be redefined as IA in what follows. A similar remark
applies to Eq. (C6) upon using V�

20 ¼ V20.
Similarly, the ghost self-energy nodes can be ignored,

provided one uses Ic to count the ghost chains that connect
these nodes. Again this can be seen from the fact that
the terms with rþ 2s ¼ 2 in Eqs. (C5) and (C7) can
be absorbed into the redefinitions IA − V20 → IA and
Ic − V01 → Ic. In what follows, we shall thus work with
the set of equations,

L ¼ IA þ Ic −
X

rþ2s≥3
Vrs þ 1; ðC10Þ

EA ¼ −2IA þ
X

rþ2s≥3
rVrs; ðC11Þ

Ec ¼ −2Ic þ
X

rþ2s≥3
2sVrs ðC12Þ

ν ¼ −2IA þ
X

rþ2s≥3
ωrsV�

rs: ðC13Þ

If we multiply the last equation by −1, we obtain a very
interesting result,

−ν ¼ 2IA þ
X

rþ2s≥3
ð−ωrsÞV�

rs; ðC14Þ

Since we excluded the case ν ¼ 2, both the lhs and each of
the terms in the rhs are positive. It follows in particular that
IA is bounded,

IA ≤ −ν=2: ðC15Þ

which we have verified in the examples above.20

Another interesting equation can be obtained by multi-
plying Eq. (C10) by 2 and adding both Eqs. (C12) and
(C13). We find

2Lþ Ec þ ν ¼
X

rþ2s≥3
ð2s − 2ÞVrs þ

X
rþ2s≥3

ωrsV�
rs þ 2:

ðC16Þ

It is now interesting to note that for those effective tree-level
vertices that have no counterpart in the original model,
V�
rs ¼ Vrs. For the others, corresponding to ðr; sÞ ¼ ð3; 0Þ,

(4,0) and (1,1), in general we have V�
rs ≠ Vrs but we note

that ωrs ¼ 0 and 2s − 2 ¼ −2 for the first two, and
reversely, ωrs ¼ −2 and 2s − 2 ¼ 0 for the last one. We
can thus rewrite the previous equation as

19Since none of the original tree-level vertices of the model
contribute to the Taylor mass power, and because V�

20 ¼ V20 and
V�
01 ¼ V01, it could seem that it is possible to replace V�

rs by Vrs
in the previous formula. However, one should pay attention to the
fact that the nodes with r ¼ s ¼ 1 count as ω11 ¼ −2 rather than
0 as does the tree-level ghost-antighost-gluon vertex outside the
AI subgraph.

20Similarly for those rs such that V�
rs ≠ 0, we deduce that

ωrs ≥ ν, while for those rs such that ωrs ≠ 0, we find
V�
rs ≤ ν=ωrs.
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2 − ν ¼ 2Lþ Ec þ 2ðV3 þ V4 þ V�
11Þ

þ
X

rþ2s≥3
ð2 − ωrs − 2sÞVrs; ðC17Þ

where the � on the summation symbol means that we
consider only the effective tree-level vertices that have no
counterpart in the original model and V�

11 counts only the
effective tree-level ghost-antighost-gluon vertices that origi-
nate fromnodes of theAI subgraph.Weobserve that the tree-
level ghost-antighost-gluon vertices that are left outside the
AI subgraphs are not at all constrained by this formula.
The coefficients in front ofL,Ec,V3,V4,V�

11 in Eq. (C17)
are all strictly positive. The same is true for the prefactor
2 − ωrs − 2s as it can be easily checked. This implies that,
for a given ν, the number of effective loops as well as the
number of ghost-antighost leg pairs are bounded from
above. The same is true for the number of effective tree-
level vertices of each type, with the important exception of
the number of tree-level ghost-antighost-gluon vertices that
can appear outside the AI subgraphs.
We can now use these ideas to identify the vertex

functions whose (leading) asymptotic mass power is
ν ≤ 0 while unveiling the particular structures that con-
tribute to it. To see how this works, let us first see how the
results of Sec. C 3 c are retrieved. We saw before that the
vertex functions whose (leading) asymptotic mass power is
ν ≥ 0 are all the vertex functions including only gluons and
also the ghost two-point vertex. This means that, if we want
to find vertex functions with ν ¼ −2, we need to add one
pair of ghost-antighost legs, that is Ec ≥ 2. On the other
hand, from (C17), we have Ec ≤ 4. Still from (C17), we see
that choosing Ec ¼ 4 saturates the bound and imposes L ¼
0 as well as V3 ¼ V4 ¼ V�

11 ¼ 0, and similarly, Vrs ¼ 0 for
all effective tree-level vertices without a counterpart in the
original model. This case is clearly inconsistent. We are
then left with the choice Ec ¼ 2, which from (C17) leaves
open the two possibilities L ¼ 0 or L ¼ 1. In the first case,
the AI subgraph should coincide with the graph itself and,
therefore, the vertex functions should be chosen among
those with ωrs ¼ −2 and s ¼ 1 (since Ec ¼ 2); see Fig. 9.

We are then left with Γð3Þloops
Acc̄ and Γð4Þ

A2cc̄
, as we already saw

in (C 3 c). In the second case, L ¼ 1, the bound is saturated
already with 2Lþ Ec, the only possible vertices available
are the tree-level ghost-antighost-gluon vertices and the
structure is the one corresponding to the last diagram
of Fig. 12.
To continue the recursion, the key point is that all vertex

functions with at most one pair of ghost-antighost legs and
an arbitrary number of gluons legs have been attributed a
(leading) asympotic mass power ν ≥ −2. This means that, if
one now looks for vertex functions with ν ¼ −4, one needs
to consider 4 ≤ Ec ≤ 6, with only the case Ec ¼ 4 leading
to sensible results. Because of the bound, we have again
L ¼ 0 or L ¼ 1. The first case, requires us to choose the

vertex functions among those with ωrs ¼ −4 and s ¼ 2,

which leaves only the possibility Γð4Þ
ðcc̄Þ2. In the second case,

the only possible vertices available are again the tree-level
ghost-antighost-gluon vertices, and the structure is the one
corresponding to Fig. 13 with s ¼ 2. After this, all vertex
functions with at most two pair of ghost-antighost legs and
an arbitrary number of gluons legs have been attributed a
(leading) asympotic mass power ν ≥ −4, and the recursion
can start over again.
At the end of the day, we obtain that the vertex functions

with (leading) asymptotic mass power ν ≤ 0 are21

Γr−ν
Arðcc̄Þ−ν=2 , and the structure leading to this behavior is that

of Fig. 13 with s ¼ −ν=2 or the AI subgraph coinciding
with the graph itself. In this later case, since ν ¼ ωr;−ν=2,
one finds that r ¼ 4þ ν or r ¼ 3þ ν depending of whether
r is even or odd. In particular, this structure does not
contribute to ν as soon as ν ≤ −6, and only the one in
Fig. 13 matters in this case.

4. Structure of leading logarithms

In this section, we restrict to particular configurations of
the external momenta, such as the one studied in the main
text, that depend on one scale only. By this, we mean that
pi ¼ paiui, with ui unit vectors, ai ≥ 0 and p > 0. We
want to discuss the presence of logarithms in the leading
asymptotic expansion as p → 0.22

FIG. 13. Dominant infrared contribution to Γðrþ2sÞ
Arðcc̄Þs . The gluon

lines need to be interpreted as gluon chains, see the main text,
connecting gluon self-energy nodes. The connecting gluon lines
can correspond either to massive components or massless
components of the gluon propagator but the latter should not
be included in the AI subgraph (for this type of topology).

21The only exception to this rule is Γð2Þ
cc̄ whose leading

asymptotic mass power is ν ¼ 0.
22We are implicitly assuming that these configurations do not

lead to IR divergences in the loops for p ≠ 0 even though
divergences could appear in the limit p → 0.
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We have seen above that for each vertex function Γðrþ2sÞ
Arðcc̄Þs ,

with rþ 2s ≥ 3, the leading asymptotic mass power in a
large mass expansion is ν ¼ −2s and arises from the one-
loop effective structure represented in Fig. 13, and, in some
cases, also from AI subgraphs that coincide with the graph
itself. Since the latter have a regular dependence on p as
p → 0, and since we are after logarithms here, we focus on
the diagrams of Fig. 13.
These diagrams contribute asm−2sþcϵprþ2sþdϵ, for some c

and d, times various integrals, one being the explicit loop in
the diagram and the others being associated with the leading
coefficient of the Taylor-expanded ghost self-energy inser-
tions. Since we have factored out the whole m and p
dependences, the integrals that arise from the self-energies
depend only on ϵ, while the explicit one-loop integral may
depend on the aiui.When expanded in ϵ, these integralsmay
contain poles in 1=ϵ. However, after renormalization of the
self-energy insertions, these poles can only originate in the
explicit one-loop integral, in the case of primitively diver-
gent vertices, which produce a simple pole in 1=ϵ.
From this, we conclude that the leading behavior of any

primitively divergent vertex function with rþ 2s ≥ 3 has at
most linear logarithms in p,23 to all orders of perturbation
theory, and that no such logarithms are present in the other
functions.24 A similar linear logarithm can be identified to
all orders at next-to-leading order in the mass expansion of

Γð2Þ
A2 or Γð2Þ

cc̄ since the structure contributing to the next-to-
leading asymptotic mass power is again that of Fig. 13. On
the other hand, nothing prevents the powers of the
logarithms in m to grow with the number of loops. For
instance, the renormalized self-energy insertions may
contain any power of those. This means that in order to
ensure perturbative control in the IR, one should choose a
scale μðpÞ such that μðpÞ → m as p → 0, rather than
μðpÞ ∼ p as we should do in the UV. This motivates our
choice of scale in the main text.

APPENDIX D: ONE-LOOP GHOST DIAGRAM

Let us consider the one-loop ghost diagram in the case
where the external momenta depend only on one scale
p > 0, that is pi ¼ paiui with ai > 0 and ui a unit vector.
There are two such diagrams (depending on the orientation
of the ghost loop) which, up to trivial factors and a color
structure fabc, lead to the contribution,

Z
q

qρðqþ p1Þμðq − p3Þν
q2ðqþ p1Þ2ðq − p3Þ2

−
Z
q

qρðqþ p2Þνðq − p3Þμ
q2ðqþ p2Þ2ðq − p3Þ2

:

ðD1Þ

Rescaling q as pq and renaming pi as pi ¼ aiui, we can
factor out the complete p dependence as

p1−2ϵ
�Z

q

qρðqþp1Þμðq−p3Þν
q2ðqþp1Þ2ðq−p3Þ2

−
Z
q

qρðqþp2Þνðq−p3Þμ
q2ðqþp2Þ2ðq−p3Þ2

�
;

ðD2Þ

where both q and the pi are dimensionless in this last
formula. The origin of the logarithm in p is then pretty
clear. Upon expansion in ϵ, there will be a term ϵ lnp
multiplying the pole in 1=ϵ stemming from the integrals.
The latter can be obtained by expanding the integrand at
large q and can be seen to correspond to the 1=ϵ pole of the
integral A≡ R

q 1=ðq2 þm2Þ2 times the tensor,

1

d
½ðp1μ þ p3μÞδνρ − ðp2ν þ p3νÞδμρ�

−
2

dðdþ 2Þ ðp1 − p2Þσ½δμνδρσ þ δμρδνσ þ δμσδνρ�; ðD3Þ

where we have used

Z
q
qμqνfðq2Þ ¼

δμν
d

Z
q
q2fðq2Þ;

Z
q
qμqνqρqσfðq2Þ ¼

δμνδρσ þ δμρδνσ þ δμσδνρ
dðdþ 2Þ

Z
q
q4fðq2Þ:

Since the pole is already contained in the integral A,
we can set d ¼ 4 in Eq. (D3). Moreover, using that
p1 þ p2 þ p3 ¼ 0, the latter becomes

−
1

12
½ðp1 − p2Þρδμν þ ðp2 − p3Þμδνρ þ ðp3 − p1Þνδρμ�:

ðD4Þ

We conclude that the leading (logarithmic) IR behavior
of the one-loop ghost diagram in the considered regime
has the same structure than the tree-level tensor compo-
nent. This extends to the exact three-gluon vertex since
the dominant contribution in this regime is that of the one-
loop ghost diagram times the cube of the exact ghost
dressing function at zero momentum; see the main text for
details.

24We put here no prejudice on whether the coefficient of
the logarithm depends on the aiui. This can be very simply
investigated.

23The IR expansion (60) is compatible with these expectations.
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