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We present the next-to-next-to-leading order (NNLO) quantum chromodynamics (QCD) corrections to
the decay constants for both the pseudoscalar Bc meson and the vector B�

c meson in the nonrelativistic QCD
(NRQCD) effective theory. The explicit NNLO calculations prove that the Bc decay constant from the
pseudoscalar current is identical with the Bc decay constant from the axial-vector current. The NNLO result
for the vector decay constant of B�

c meson is novel. Combining this result with the latest extraction of the
NRQCD long-distance matrix elements of Bc and B�

c meson, we calculate and show the theoretical
predictions for the branching ratios of the leptonic decays Bþ

c =B�þ
c → lþνl with lþ ¼ ðeþ; μþ; τþÞ. In

addition, the novel anomalous dimension for the flavor-changing heavy quark vector current in the
NRQCD effective theory is helpful to investigate the threshold behaviors of the two different heavy quarks.

DOI: 10.1103/PhysRevD.106.114037

I. INTRODUCTION

The beauty-charmed meson Bcð1SÞ was first discovered
in proton antiproton colliders by the CDF Collaboration
[1]. The second new member in beauty-charmed meson
family, i.e., Bcð2SÞ, was discovered in the LHC experi-
ment by ATLAS Collaboration [2]. Five years later, the
Bcð2SÞ state was confirmed by both CMS and LHCb
Collaborations, the new vector member B�

cð2SÞ was first
reported by these two collaborations [3,4]. Up to now, no
other member in the beauty-charmed meson family have
been observed in particle physics experiments although
more beauty-charmed mesons have been predicted in many
theoretical models.
Unlike the heavy quarkonium, the experimental mea-

surements of the Bc meson family are not easy since they
are composed of two different heavy-flavor quarks, and
the ground state Bcð1SÞ only decays weakly into other
lighter particles. Although there are 48 possible decay
channels (as listed in the latest review of particle physics)
which have been reported in experiments, no one has an

experimental measurement of the absolute branching
ratios [5].1

To promote the determination of the absolute branching
ratios of the Bc mesons, a careful investigate the funda-
mental properties of the decay behaviors is required. In
other words, we need first to have a good knowledge of the
decay constants for the Bc meson family. In principle, the
decay constants for the Bc mesons are nonperturbative yet
universal physical quantities. Lattice QCD should be a
good method to determine the relevant decay constants
from the first principles of QCD, however the lattice QCD
studies on the Bc mesons are lesser because the Bc mesons
include two different kinds of the heavy quarks and the
doubly heavy quark systems are not easy to be simulated in
current lattice studies.2

The nonrelativistic QCD (NRQCD) effective theory
provides a systematical and accurate framework to study
the doubly heavy quark systems [9]. In this effective theory,
the heavy quark mass provides a natural factorization scale.
The short-distance physics above the heavy quark mass can
be perturbatively calculated and factorized into the Wilson
coefficients while the long-distance physics below the
heavy quark mass goes into the long-distance matrix*Corresponding author.
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1An exception is the absolute branching ratio of Bþ
c → χc0π

þ,
which is extracted by particle data group after inputting the
bottom quark fragmentation probability into B meson and the
LHCb data.

2There is a 2σ tension for the Bc decay constant between the
ETM lattice result and the HPQCD lattice result [6,7]. Based on
the heavy highly improved staggered quark approach, HPQCD
has also performed lattice QCD simulations on the vector and
axial-vector form factors of Bc → J=ψ [8].
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elements (LDMEs). Within the NRQCD effective theory,
the decay constants for the Bc mesons can be further
factorized as the short-distance matching coefficients and
the corresponding NRQCD LDMEs.
Using the NRQCD effective theory, the next-to-leading

order (NLO) corrections including both the strong coupling
constant correction at the order αs and the relative velocity
correction at the order v2 to the axial-vector decay constant
of the Bc meson which were first calculated by Braaten and
Fleming [10], after a systematical study of the Bc meson at
the leading order (LO) by Chang and Chen [11]. Using the
resummation technique, the NLO correction including all
order relative velocity corrections to the axial-vector decay
constant of the Bc meson and the vector decay constant of
B�
c was estimated by Lee et al. [12]. The next-to-next-to-

leading order (NNLO) correction at order α2s to the axial-
vector decay constant of Bc meson was first investigated by
Onishchenko and Veretin [13]. However, the full analytical
expression of the axial-vector decay constant of Bc meson
at the NNLO accuracy was accomplished by Chen and
Qiao [14]. Very recently, the numerical calculation of the
axial-vector decay constant of Bc meson at the NNNLO
accuracy was done by Feng et al. [15]. Other higher-order
calculations on doubly heavy quark system and phenom-
enological studies on Bc system can be found, for example,
in the literature [16–36].
In this paper, we will calculate the pseudoscalar (P) decay

constant fpBc
of Bc meson and the vector (V) decay constant

fvB�
c
of B�

c meson at the NNLO accuracy within the NRQCD
effective theory. By an explicit calculation, we can inves-
tigate the relation among various decay constants defined by
the different flavor-changing heavy quark currents. It is easy
to prove that fpBc

is identical to the axial-vector (A) decay
constant faBc

of Bc meson. The NNLO results of the vector
decay constant fvB�

c
are novel. Combining with the latest

extraction of theNRQCDLDMEs,wepresent our theoretical
predictions for the branching ratios of the leptonic decays
Bþ
c =B�þ

c → lþνl with lþ ¼ ðeþ; μþ; τþÞ. The analytical and
numerical results of the short-distance matching coefficients
Cp;v are also useful to analyze the threshold behaviors when
two different heavy quarks are close to each other.
In addition, we obtain a novel anomalous dimension for

the flavor-changing heavy quark vector current at the
NNLO accuracy in the NRQCD effective theory. This
anomalous dimension is related to the renormalization
behaviors of the vector current with two different heavy
quarks in NRQCD.
The paper is arranged as follows. In Sec. II, we give the

definitions of the decay constants of the P, A, and V currents
for themesonsBc andB�

c in both the full QCD theory and the
NRQCD effective theory. We then present the matching
formulas for the decay constants in the NRQCD effective
theory. In Sec. III, we present the calculationmethods and the
calculation procedures for the short-distance matching

coefficientsCp;v. In Sec. IV, we give the final NNLO results
of Cp;v and the decay constants of theBc andB�

c mesons.We
also perform a phenomenological analysis of the leptonic
decays of Bc and B�

c mesons. We conclude at the end of
the paper.

II. MATCHING FORMULAS

Though the Bc meson leptonic decay is dominated by the
virtual W boson with a V − A weak interaction in the
Standard Model (SM), one can freely define the Bc meson
decay constants by different flavor-changing currents. Thus
one can define the pseudoscalar and vector Bc meson decay
constants by the full QCD matrix elements

h0jb̄γμγ5cjBcðPÞi ¼ ifaBc
Pμ; ð1Þ

h0jb̄γ5cjBcðPÞi ¼ ifpBc
mBc

; ð2Þ
h0jb̄γμcjB�

cðP; εÞi ¼ fvB�
c
mB�

c
εμ; ð3Þ

where jBcðPÞi and jB�
cðP; εÞi are respectively the states of

the pseudoscalar and vector Bc mesons with the four-
momentum P, while εμ is the polarization vector of the B�

c
meson. In full QCD, the standard covariant normalization of
the hadron state is hBcðP0ÞjBcðPÞi ¼ ð2πÞ32P0δ3ðP0 − PÞ.
The imaginary unit in the right hand of Eqs. (1) and (2) is
added to make sure the decay constant fBc

is real and
positive. Note that other decay constants for Bc family with
scalar and tensor currents are not considered in this paper.
Using the heavy quark equation ofmotion, one can easily get
the identity faBc

¼ fpBc
. Thus, we only need to calculate two

decay constants, fpBc
and fvB�

c
, here.

The above decay constants of Bc mesons are non-
perturbative observables in full QCD and rely on a non-
perturbative calculation; however, the two heavy quark
system Bc is not well-simulated at current lattice QCD and
these physical quantities are rarely investigated in first
principals theory of QCD.
In the NRQCD effective theory, the decay constants of

Bc mesons can be further factorized into perturbatively
calculable short-distance coefficients with the correspond-
ing nonperturbative LDMEs. Thus, one can write the
following matching formula at leading order in the relative
velocity expansion

fpBc
¼

ffiffiffiffiffiffiffiffi
2

mBc

s
Cpðmb;mc; μfÞh0jχ†bψcjBcðPÞiðμfÞ þOðv2Þ;

ð4Þ

fvB�
c
¼

ffiffiffiffiffiffiffiffi
2

mB�
c

s
Cvðmb;mc; μfÞh0jχ†bσ · εψcjB�

cðPÞiðμfÞ

þOðv2Þ; ð5Þ
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where μf is the NRQCD factorization scale which appears
in the short-distance coefficients at two-loop calculation
and will be canceled between the short-distance coefficients
and the NRQCD LDMEs. In QCD perturbative calcula-
tions, the decay constants will depend on the renormaliza-
tion scale μ in fixed-order accuracy and will become
renormalization-scale independent after summing up all-
order contributions.

III. CALCULATION OF THE MATCHING
COEFFICIENTS

In this section, we present our calculation procedures for
the decay constants of pseudoscalar and vector Bc mesons
within the NRQCD approach. According to the above
matching formulas, the matching coefficients Cp and Cv can
be obtained by the calculations of both the full QCD matrix
elements and the NRQCD matrix elements. At the leading
order, the matching coefficients Cp and Cv are set as
Cp ¼ Cv ¼ 1, which can also be done after the nonrela-
tivistic expansion of heavy quark current. The Feynman

diagrams for Bc and B�
c decay constants up to two-loop

order are plotted in Fig. 1.
Our higher-order calculation of the matching coefficients

consists of the following steps. First, we use FeynCalc [37] to
obtain the Feynman diagrams and the corresponding
Feynman amplitudes. By $Apart [38], we decompose every
Feyman amplitude into several Feynman integral families.
Second, we use KIRA [39]/FIRE [40]/FiniteFlow [41] based on
integration by parts (IBP) [42] to reduce every Feynman
integral family to master integral family. Third, based on
symmetry among different integral families and using KIRA

+FIRE+Mathematica code, we can realize integral reduction
among different integral families, and further on, the
reduction from all of master integral families to the minimal
master integral families. Last, we use AMFlow [43], which is
a proof-of-concept implementation of the auxiliary mass
flow method [44], equipped with KIRA/FiniteFlow to calculate
the minimal master integral families one by one.
In order to obtain the high-order coefficient CJ with

J ¼ ðp; vÞ, one has to perform the conventional renorm-
alization procedure, which is similar to what is shown in

FIG. 1. The Feynman diagrams labeled with corresponding color factor for Bc and B�
c decay constants up to two-loop order. The cross

“⊕” implies the insertion of certain heavy flavor-changing current. The thinnest, thick, thickest solid circles represent nl massless quark
loop, nc quark loop with mass mc, nb quark-loop with mass mb, respectively. In this paper, we set nb ¼ nc ¼ 1.
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Refs. [14,45–47], i.e., ZJZ
1
2

2;bZ
1
2

2;cΓJ ¼ CJZ̃−1
J Z̃

1
2

2;bZ̃
1
2

2;cΓ̃J,
where the left part in the equation represents the renorm-
alization of the full QCD current while the right part
represents the renormalization of the NRQCD current. ZJ

and Z̃−1
J are the renormalization constants for the full QCD

and NRQCD flavor-changing currents, respectively. Here,
Za ¼ Zv ¼ 1, Zp ¼ ðmbZm;b þmcZm;cÞ=ðmb þmcÞ, and
Z̃2;b ¼ Z̃2;c ¼ 1. Equivalently, we can also use the dia-
grammatic renormalization method [48], which contains
two-loop diagrams and three kinds of counterterm dia-
grams, i.e., the tree diagram inserted with one α2s-order
counterterm vertex, the tree diagram inserted with two αs-
order counterterm vertexes (vanishing), and a one-loop
diagram inserted with one αs-order counterterm vertex.
We want to mention that all contributions have been

evaluated for the general gauge parameter ξ, and the final
results for the matching coefficients are all independent of
ξ, which constitutes an important check on our calculation.
In the calculation of two-loop diagrams, we allow for one b
quark, one c quark, and nl massless quarks in the quark
loop. Up to two-loop order, the most complicated renorm-
alization constants are the on shell mass and wave function
renormalization constants allowing for two different non-
zero quark masses [49,50], and the analytical expressions
of these constants ðZ2;b; Z2;cÞ and ðZm;b; Zm;cÞ are pre-
sented in the Appendix.
After renormalization, the results of the short-distance

matching coefficients CJ can be written as [15]

CJðμf; μ; mb; xÞ

¼ 1þ α
ðnfÞ
s ðμÞ
π

Cð1ÞJ ðxÞ

þ
�
α
ðnfÞ
s ðμÞ
π

�2�
Cð1ÞJ ðxÞ β

ðnfÞ
0

4
ln

μ2

m2
b

þ γð2ÞJ ðxÞ
2

ln
μ2f
m2

b

þ C2
FC

FF
J ðxÞ þ CFCACFAJ ðxÞ þ CFTFnlCFLJ ðxÞ

þ CFTFCFHJ ðxÞ
�
þOðα3sÞ; ð6Þ

where CF ¼ 4=3; CA ¼ 3 and TF ¼ 1=2 are QCD con-
stants, and the dimensionless parameter x representing the
ratio of two heavy quark masses is

x ¼ mc

mb
; ð7Þ

and the first two coefficients in β functions for αs are

β
ðnfÞ
0 ¼ ð11=3ÞCA − ð4=3ÞTFnf; ð8Þ

β
ðnfÞ
1 ¼ð34=3ÞC2

A−ð20=3ÞCATFnf−4CFTFnf: ð9Þ

We have considered the contributions from heavy charm
and bottom quark loops in the gluon self-energy Feynman

diagrams, which however are decoupled in the NRQCD
effective theory. Thus we apply the following decoupling

relation as given in Refs. [51–55] to translate α
ðnfÞ
s ðμÞ

involving massive flavors to αðnlÞs ðμÞ involving nl massless
flavors only,

α
ðnfÞ
s ðμÞ ¼ αðnlÞs ðμÞ

�
1þ αðnlÞs ðμÞ

π
TF

�
nb
3
ln

μ2

m2
b

þ nc
3
ln

μ2

m2
c
þOðϵÞ

�
þOðα2sÞ

�
; ð10Þ

where nf ¼ nl þ nb þ nc. In our numerical calculation,
nb ¼ nc ¼ 1, nl ¼ 3 are fixed through the decoupling
region from μ ¼ 1 GeV to μ ¼ 6.25 GeV and the follow-
ing results for strong coupling constant running [56–60] are
used, i.e.,

αðnlÞs ðμfÞ ¼
�
μ

μf

�
2ϵ

αðnlÞs ðμÞ þOðα2sÞ;

αðnlÞs ðμÞ ¼ 4π

βðnlÞ0 ln μ2

ΛðnlÞ
QCD

2

0
BB@1 −

βðnlÞ1 ln ln μ2

ΛðnlÞ
QCD

2

βðnlÞ0

2 ln μ2

ΛðnlÞ
QCD

2

1
CCA

þO

0
B@ 1

ln3 μ2

ΛðnlÞ
QCD

2

1
CA; ð11Þ

where the typical QCD scale Λðnl¼3Þ
QCD ¼ 336 MeV

can be iteratively determined from an initial input of

α
ðnf¼5Þ
s ðmZÞ ¼ 0.1179.
The explicit analytical calculations of the NLO

Feynman diagrams give the NLO short-distance matching
coefficients

Cð1Þp ðxÞ ¼ 3

4
CF

�
x − 1

xþ 1
ln x − 2

�
; ð12Þ

Cð1Þv ðxÞ ¼ 3

4
CF

�
x − 1

xþ 1
ln x −

8

3

�
: ð13Þ

Note that the analytical expressions of Cð1Þp ðxÞ and Cð1Þv ðxÞ
are consistent with those given in Refs. [10,12].
At NNLO, the direct results of the short-distance

matching coefficients are still IR divergent after performing
the UV renormalization for the QCD current. This is due to
the UV divergence in the NRQCD LDMEs at NNLO. The
NRQCD factorization theory makes sure the two kinds of
divergences are canceled order by order.
By matching, we obtain the renormalization constants

for different NRQCD currents as follows [15]:
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Z̃J ¼ 1 −
�
αðnlÞs ðμfÞ

π

�2
γð2ÞJ ðxÞ
4ϵ

þOðα3sÞ; ð14Þ

where μf is the NRQCD factorization scale, and the

coefficients γð2ÞJ ðxÞ with J ¼ ðp; vÞ are of the following
form

γð2Þp ðxÞ ¼ −π2
�
CFCA

2
þ ð1þ 6xþ x2ÞC2

F

2ð1þ xÞ2
�
; ð15Þ

γð2Þv ðxÞ ¼ −π2
�
CFCA

2
þ ð3þ 2xþ 3x2ÞC2

F

6ð1þ xÞ2
�
: ð16Þ

The corresponding anomalous dimension γJ is related to Z̃J
by [13,61]

γJ ¼
d ln Z̃J

d ln μf
¼

�
αðnlÞs ðμfÞ

π

�2

γð2ÞJ ðxÞ þOðα3sÞ; ð17Þ

where αðnlÞs ðμfÞ can be related to αðnlÞs ðμÞ by the running
equation in order to performing the matching between
QCD and NRQCD currents [60], as described in Eq. (11).

Note that the anomalous dimension γð2Þv ðxÞ is a novel
result for the two different heavy quarks meson. In the case
of x ¼ 1, the result is consistent with the previous calcu-
lation, for example in Ref. [45]. By the renormalization of
the UV divergence in the NRQCD LDMEs at NNLO, the
extra IR-divergences in short-distance coefficients can be
exactly canceled. Thus, we finally get the finite results for
the matching coefficients.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we will give the numerical results for the
matching coefficients CJðμf; μ; mb; xÞ with J ¼ p, v at the
NNLO accuracy. The subcoefficients CFFJ , CFAJ , CFLJ , and
CFHJ classified by different color/flavor structures in Eq. (6)
are functions which only depend on the heavy quark mass
ratio x ¼ mc=mb. At the physical heavy quark mass ratio
x0 ¼ 1.5=4.75 [62–64], we obtained the following highly
accurate numerical results with about 30-digit precision for
the all four kinds of subcoefficients.

CFFp ðx0Þ ¼ −18.1856109097151570253549607713; ð18Þ

CFAp ðx0Þ ¼ −11.9709902751165587736864132992; ð19Þ

CFLp ðx0Þ ¼ 0.461971258745060837844427133019; ð20Þ

CFHp ðx0Þ ¼ 1.64553283592627680478382129760: ð21Þ

CFFv ðx0Þ ¼ −15.8653228579431784031838005865; ð22Þ

CFAv ðx0Þ ¼ −11.0678680506800630685188604612; ð23Þ

CFLv ðx0Þ ¼ 1.08196339731790945235792891668; ð24Þ

CFHv ðx0Þ ¼ 1.87201601140852309779426933441: ð25Þ

In order to investigate the heavy quark mass dependence
of the matching coefficients, we vary the heavy quark mass
ratio x from xmin ¼ 0.05 to xmax ¼ 1.2. And we plotted the
heavy quark mass ratio x dependence for the subcoeffi-
cients CFFJ , CFAJ , CFLJ , and CFHJ in Figs. 2–5, respectively.
In these diagrams, J ¼ p represents the sub-coefficient

for the pseudoscalar current while J ¼ v represents the
subcoefficient for the vector current. From the curves in
Figs. 2–5, one can see that the subcoefficients are close to
each other for both P and V currents, except CFLJ . The
subcoefficients CFFJ and CFAJ increase gradually with the
increase of the heavy quark mass ratio x ¼ mc=mb, while

J=p

J=v

0.2 0.4 0.6 0.8 1.0 1.2
�24

�22

�20

�18

�16

�14

�12

x

C
JF
F

FIG. 2. The profile of subcoefficient CFFJ ðxÞ dependence on
heavy quark mass ratio x ¼ mc

mb
with x ∈ ½0.05; 1.2�. J ¼ p

represents the subcoefficient for the pseudoscalar current while
J ¼ v represents the subcoefficient for the vector current.
According to color/flavor structure, this subcoefficient has a
prefactor C2

F for both the pseudoscalar current and the vector
current. The green and blue dots correspond to the results at
physical heavy quark mass ratio with x0 ¼ 1.5

4.75.

J=p

J=v

0.2 0.4 0.6 0.8 1.0 1.2
�18

�16

�14

�12

�10

�8

�6

�4

x

C
JF
A

FIG. 3. The same as Fig. 2, but for the profile of subcoefficient
CFAJ ðxÞ which has a prefactor CFCA.
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CFLJ and CFHJ first increase and then reduce with the increase
of x.
By fixing the renormalization scale μ ¼ mb ¼

4.75 GeV, mc ¼ 1.5 GeV, x0 ¼ mc=mb ¼ 1.5=4.75, and
setting the factorization scale μf ¼ 1.2 GeV, the matching
coefficients Cp and Cv as defined in Eq. (6) will reduce to

Cpðx0Þ ¼ 1 − 1.40061
αðnl¼3Þ
s ðmbÞ

π

− 30.69707

�
αðnl¼3Þ
s ðmbÞ

π

�2

þOðα3sÞ; ð26Þ

Cvðx0Þ ¼ 1 − 2.06727
αðnl¼3Þ
s ðmbÞ

π

− 33.56657

�
αðnl¼3Þ
s ðmbÞ

π

�2

þOðα3sÞ: ð27Þ

By using the definitions in Eq. (6), we calculate the
matching coefficients CpðμÞ and CvðμÞ and present our
theoretical predictions in the Figs. 6 and 7. In these two
figures, we show the μ-dependence of both CpðμÞ and CvðμÞ

at the LO (the dot-dashed line), NLO (the dashed curve)
and NNLO (the solid curve) accuracy by varying μ in the
range 1.5 ≤ μ ≤ 6.2 GeV. The uncertainties of the theo-
retical predictions at the NLO and NNLO level come from
the errors of the input parameters μf ¼ 1.2þ0.3

−0.2 GeV, mb ¼
4.75� 0.5 GeV and mc ¼ 1.5� 0.5 GeV, while the indi-
vidual errors are combined in addition.
From Figs. 6 and 7 one can see the following points:
(1) At the LO, we set Cp ¼ Cv ¼ 1, and both of them are

μ-independent.
(2) At the NLO, the QCD corrections bring relatively

weak μ-dependence of these two matching coeffi-
cients. Because of the absence of explicit μ-depend-

ence in Cð1ÞJ ðxÞ, the μ-dependence of the NLO results

is only from α
ðnfÞ
s ðμÞ. According to the renormali-

zation group equation of the strong coupling con-
stant, the μ-dependence at the NLO is then at the
order of Oðα2sÞ.

(3) At the NNLO, the μ-dependence includes two
aspects. On the one hand, the μ-dependence of

J=p

J=v

0.2 0.4 0.6 0.8 1.0 1.2

�0.5

0.0

0.5

1.0

x

C
JF
L

FIG. 4. The same as Fig. 2, but for the profile of subcoefficient
CFLJ ðxÞ which has a prefactor CFTFnl.

J=p

J=v

0.2 0.4 0.6 0.8 1.0 1.2

0.5

1.0

1.5

2.0

x

C
JF
H

FIG. 5. The same as Fig. 2, but for the profile of subcoefficient
CFHJ ðxÞ which has a prefactor CFTF.

LO

NLO

NNLO

2 3 4 5 6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(GeV)

C
p

FIG. 6. The μ-dependence of the matching coefficient CpðμÞ at
the LO, NLO and NNLO accuracy. The error bands show the total
theoretical uncertainty. For details see the text.

LO

NLO

NNLO

2 3 4 5 6

0.5

1.0

1.5

(GeV)

C
v

FIG. 7. The same as Fig. 6, but for the matching coefficient
CvðμÞ.
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the NLO results at the order of Oðα2sÞ can be
completely canceled by those from the NNLO
corrections, then the left μ-dependence of the NNLO
results is at the Oðα3sÞ order. On the other hand, the
renormalization scale-independent coefficients such
as CFA

J ðxÞ and lnðμ2f=m2
bÞ in front of the strong

coupling constant squared α2s in Eq. (6) are not small
in these kinds of process, which will lead to a large
μ-dependence at the Oðα3sÞ order, especially in the
low μ region, as can be seen easily in Figs. 6 and 7.

(4) The μ-dependence of the matching coefficients
CpðμÞ and CvðμÞ at the NNLO level is therefore
not reduced compared with those at the NLO level.
We will leave the further investigation of this
problem for future work.

In Table I, we list the explicit numerical predictions of
the matching coefficients Cp;v at the LO, NLO, and NNLO
accuracy, where the uncertainties from the four input
parameters also be listed separately. The central values
of Cp;v are calculated by using the physical values of
μf ¼ 1.2 GeV, μ ¼ 4.75 GeV, mb ¼ 4.75 GeV, and mc ¼
1.5 GeV. The four errors are estimated by varying μf from
1.5 GeV to 1 GeV, μ from 6.25 GeV to 3 GeV, mb from
5.25 GeV to 4.25 GeV, and mc from 2 GeV to 1 GeV,
respectively. From Table I, one can see that the two major
uncertainties come from the error of μf and μ at the
NNLO level.
Note that the matching coefficients are from short-

distance effects and only rely on the QCD currents.
These matching coefficients do not depend on the meson
states. In fact, the matching coefficient Ca depends on the
components (μ ¼ 0; i) of the axial-vector current b̄γμγ5c.
At the leading order, in powers of the relative velocity, the
nontrival contribution is from the time-component, i.e.,
Ca ¼ Cða;μ¼0Þ ¼ Cða;0Þ. The explicit analytical expression
for Cða;0Þ is given in Ref. [14] at the NNLO accuracy and
the numerical results for Cða;0Þ are given in Ref. [15] at the
NNNLO accuracy. Our results are consistent with the
previous results as given in Refs. [13–15]. Even though
the QCD theory makes the two decay constants from

pseudoscalar current and axial current (timelike compo-
nent) identical, i.e., Cp ¼ Ca;0. Here we have examined
this point by the independent calculation of the pseudo-
scalar decay constants. On the other hand, the results for
vector Bc meson decay constant and its matching coef-
ficient are novel. In the limit of mb ¼ mc ¼ mQ, our result
for the vector current agrees with the previous results in
literature [22,45].
For the pseudoscalar meson Bc and vector meson B�

c, the
leptonic decay widths can be written as

ΓðBþ
c → lþνlÞ ¼

jVbcj2
8π

G2
FmBc

m2
l

�
1 −

m2
l

m2
Bc

�
2

fpBc

2; ð28Þ

ΓðB�þ
c → lþνlÞ ¼

jVbcj2
12π

G2
Fm

3
B�
c

�
1 −

m2
l

m2
B�
c

�
2

·

�
1þ m2

l

2m2
B�
c

�
fvB�

c

2: ð29Þ

Note that, we will evaluate fpBc
and fvB�

c
up to a fixed order,

i.e., NNLO accuracy, but when we square them, we no
longer truncate the perturbative series of αs literally up to a
fixed order. To evaluate the two decay constants fpBc

and
fvB�

c
, we substitute the LDMEs in Eq. (4) with

h0jχ†bσ · εψcjB�
cðPÞi ≈ h0jχ†bψcjBcðPÞi

≈
ffiffiffiffiffiffiffiffi
2Nc

p
ψBc

ð0Þ; ð30Þ
where ψBc

ð0Þ is the Schrödinger wave function at the origin
for the Bc system and is predicted in potential models
[15,65–68] as

jψBc
ð0Þj2 ≃ ½0.10; 0.13� GeV3: ð31Þ

In Tables II–VI, we present our theoretical predictions
for the decay constants fpBc

and fvB�
c
, the leptonic decay

width ΓðBþ
c → lþνlÞ and ΓðB�þ

c → lþνlÞ, as well as the
branching ratios BðBþ

c → lþνlÞ and BðB�þ
c → lþνlÞ with

l ¼ ðe; μ; τÞ. In the numerical calculations, the values of the
following input parameters will be used implicitly unless
otherwise stated [5]:

TABLE I. The theoretical predictions for the matching coef-
ficients Cp;v at the NLO and NNLO level. For details of the choice
of the input parameters see the text.

NLO

Cp ¼ 0.9117� 0ðμfÞþ0.0072
−0.0160 ðμÞþ0.0061

−0.0064 ðmbÞ−0.0156þ0.0263ðmcÞ
Cv ¼ 0.8697� 0ðμfÞþ0.0107

−0.0236 ðμÞþ0.0061
−0.0064 ðmbÞ−0.0156þ0.0263ðmcÞ

NNLO

Cp ¼ 0.7897−0.0310þ0.0253ðμfÞþ0.0206
−0.0482 ðμÞþ0.0119

−0.0133 ðmbÞþ0.0149
−0.0141 ðmcÞ

Cv ¼ 0.7363−0.0234þ0.0191ðμfÞþ0.0230
−0.0526 ðμÞþ0.0106

−0.0526 ðmbÞþ0.0117
þ0.0121ðmcÞ

TABLE II. The theoretical predictions of the decay constants
fpBc

and fvB�
c
at the LO, NLO, and NNLO level. The five input

parameters are ψBc
ð0Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.12þ0.1

−0.2

q
GeV

3
2, μf ¼1.2þ0.3

−0.2 GeV, μ¼
4.75þ1.50

−1.75 GeV, mb¼4.75�0.50GeV, and mc¼1.5�0.5GeV.

fpBc
ð10−1 GeVÞ fvB�

c
ð10−1 GeVÞ

LO 4.79þ0.20
−0.42 ðψBc

ð0ÞÞ 4.78þ0.20
−0.42 ðψBc

ð0ÞÞ
NLO 4.37þ0.18þ0þ0.03þ0.03−0.07

−0.38−0−0.08−0.03þ0.13 4.15þ0.17þ0þ0.05þ0.03−0.07
−0.36−0−0.11−0.03þ0.13

NNLO 3.78þ0.15−0.15þ0.10þ0.06þ0.07
−0.33þ0.12−0.23−0.06−0.07 3.52þ0.14−0.11þ0.11þ0.05þ0.06

−0.31þ0.09−0.25−0.06−0.06
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Vcb ¼ 0.0408; GF ¼ 1.16638×10−5 GeV−2;

me ¼ 0.511MeV; mμ ¼ 0.10566 GeV;

mτ ¼ 1.777 GeV; mBc
¼ 6.274 GeV; τBc

¼ 0.51 ps:

ð32Þ
For the vector B�

c meson, there are many theoretical
predictions for its mass and decay widths [33,69,70]. We
here use the following values as given in Refs. [69,71]

mB�
c
¼ 6.314 GeV; ΓtotðB�

cÞ ¼ 0.08 × 10−6 GeV: ð33Þ

From the numerical results as listed in Tables III–VI, one
see the following points:
(1) For the three Bþ

c → lþνl decay modes, the elec-
tronic, muonic, and tauonic decay widths are
around the order of 10−21 GeV, 10−16 GeV, and
10−14 GeV, respectively, due to the strong m2

l
suppression as can be seen from Eq. (28).

(2) For each kind of the leptonic decay mode, the decay
width ΓðBþ

c → lþνlÞ will become smaller moder-
ately when higher-order corrections are taken into
account,

ΓLOjBþ
c →lþνl∶Γ

NLO∶ΓNNLO ≈ 1∶0.83∶0.62; ð34Þ

for lþ ¼ ðeþ; μþ; τþÞ, respectively.
(3) For similar B�

c leptonic decays, the decay width
ΓðB�þ

c → lþνlÞ with lþ ¼ ðeþ; μþ; τþÞ are always
around 10−13 GeV. Numerically, ΓðB�þ

c → eþνeÞ ¼
ΓðB�þ

c → μþνμÞ up to the NNLO level and

ΓðB�þ
c → τþντÞ

ΓðB�þ
c → μþνμÞ

≈ 0.88; ð35Þ

ΓLOjB�þ
c →lþνl∶Γ

NLO∶ΓNNLO ≈ 1∶0.76∶0.54: ð36Þ

(4) The leptonic branching ratios for B�þ
c → lþνl decays

at the NNLO level are around 2.1 × 10−6 for all three
kinds of leptonic decay channels. For Bþ

c → lþνl
decays, however, there is a very large difference
between the branching ratios for the different decay
modes; from the order of 10−9 for BðBþ

c → eþνeÞ
decay to 10−5 and 10−2 for the muonic and tauonic
decay mode, respectively.

TABLE III. The same as Table II, but for ΓðBþ
c =B�þ

c → eþνeÞ.
ΓðBþ

c → eþνeÞð10−21 GeVÞ ΓðB�þ
c → eþνeÞð10−13 GeVÞ

LO 3.39þ0.28
−0.56 ðψBc

ð0ÞÞ 3.45þ0.29
−0.57 ðψBc

ð0ÞÞ
NLO 2.82þ0.23þ0þ0.04þ0.04−0.10

−0.47−0−0.10−0.04þ0.16 2.61þ0.22þ0þ0.06þ0.04−0.09
−0.43−0−0.14−0.04þ0.16

NNLO 2.11þ0.18−0.16þ0.11þ0.06þ0.08
−0.35þ0.14−0.25−0.07−0.07 1.87þ0.16−0.12þ0.12þ0.05þ0.06

−0.31þ0.10−0.26−0.06−0.06

TABLE IV. The same as Table II, but for ΓðBþ
c =B�þ

c → μþνμÞ.

ΓðBþ
c → μþνμÞð10−16 GeVÞ ΓðB�þ

c → μþνμÞð10−13 GeVÞ
LO 1.45þ0.12

−0.24 ðψBc
ð0ÞÞ 3.45þ0.29

−0.57 ðψBc
ð0ÞÞ

NLO 1.20þ0.10þ0þ0.02þ0.02−0.04
−0.20−0−0.04−0.02þ0.07 2.61þ0.22þ0þ0.06þ0.04−0.09

−0.43−0−0.14−0.04þ0.16

NNLO 0.90þ0.08−0.07þ0.05þ0.03þ0.03
−0.15þ0.06−0.11−0.03−0.03 1.87þ0.16−0.12þ0.12þ0.05þ0.06

−0.31þ0.10−0.26−0.06−0.06

TABLE V. The same as Table II, but for ΓðBþ
c =B�þ

c → τþντÞ.
ΓðBþ

c → τþντÞð10−14 GeVÞ ΓðB�þ
c → τþντÞð10−13 GeVÞ

LO 3.47þ0.29
−0.58 ðψBc

ð0ÞÞ 3.04þ0.25
−0.51 ðψBc

ð0ÞÞ
NLO 2.88þ0.24þ0þ0.05þ0.04−0.10

−0.48−0−0.10−0.04þ0.17 2.30þ0.19þ0þ0.06þ0.03−0.08
−0.38−0−0.12−0.03þ0.14

NNLO 2.16þ0.18−0.17þ0.11þ0.07þ0.08
−0.36þ0.14−0.26−0.07−0.08 1.65þ0.14−0.10þ0.10þ0.05þ0.05

−0.27þ0.09−0.23−0.05−0.05

TABLE VI. The same as Table II, but for the branching ratios of
Bþ
c =B�þ

c → lþνl with lþ ¼ ðeþ; μþ; τþÞ at the NNLO level.

eþνe μþνμ τþντ
Bc ð1.64þ0.44

−0.71 Þ × 10−9 ð7.00þ1.89
−3.01 Þ × 10−5 ð1.68þ0.45

−0.72 Þ × 10−2

B�
c ð2.34þ0.61

−1.01 Þ × 10−6 ð2.34þ0.61
−1.01 Þ × 10−6 ð2.06þ0.54

−0.89 Þ × 10−6
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Considering the hadronic production of Bc and B�
c has a

large uncertainty and their cross sections at the LHC are
from tens to hundreds of nanobarn [72–74], there are tens
to hundreds B�þ

c → lþ þ νl events, while hundreds to
thousands Bþ

c → μþ þ νμ events at the LHC for 1 fb−1

proton-proton collision data at a center-of-mass energy of
14 TeV. Of course, the branching ratio of Bþ

c → τþ þ ντ is
around three orders larger than the branching ratio of
Bþ
c → μþ þ νμ; thus this channel shall also be a good

channel to detect Bc meson if the reconstruction of the
final state tau lepton is well-controlled. In total, we expect
these leptonic decay channels for both Bc and B�

c can be
accessible at the LHC precision experiments.

V. CONCLUSION

In this paper, we have performed a NNLO calculation of
the decay constants of the beauty-charmed meson Bc and
B�
c. The NNLO result for vector current decay constant is

novel. The updated leptonic decay branching ratios com-
bined with the latest extraction of the NRQCD LDMEs of
the Bc meson will be tested in future experiments. Through
the careful studies of the decay constants of Bc meson, one
can expect that more and more decay channels of beauty-
charmed mesons are accessible and their absolute branch-
ing ratios can also be measured. The novel results of the
anomalous dimension for the vector current in the NRQCD
shall provide more information on the renormalization

properties of the NRQCD LDMEs. The carefully studied
NNLO matching coefficients are also helpful to investigate
the behaviors of the Bc meson decays when the doubly
heavy quarks are in their threshold region.
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APPENDIX: THE WAVE FUNCTION AND MASS
RENORMALIZATION CONSTANTS

Allowing for nb quarks with mass mb, nc quarks with
mass mc and nl massless quarks appearing in the quark
loop, the analytic expression of bottom quark on shell wave
function renormalization constant Z2;b up to NNLO is of
the following form

Z2;b ¼ 1þ αs
π
CF

�
−

3

4ϵ
−
3

4
ln

μ2

m2
b

− 1 −
ϵ

16

�
6ln2

μ2

m2
b

þ 16 ln
μ2

m2
b

þ π2 þ 32

�
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�
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ln3

μ2

m2
b
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ln2

μ2
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�
2þ π2

16

�
ln
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�
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�
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�
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�
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ln
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�
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�
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ln

μ2

m2
b

−
1

2
π2 ln 2þ 3ζ3

4
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�
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�
1
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�
4 ln
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þ 1

�
þ 3

8
ln2

μ2
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b

þ 11

24
ln

μ2

m2
b

−
5π2
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þ 947

288

�

þ TFnc

�
1

16ϵ

�
4 ln

μ2

m2
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− 8 ln xþ 1

�
þ π2x4
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5π2x3
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Similarly, the charm quark on shell wave function renormalization constant Z2;c up to NNLO can be obtained by the direct
replacement of some relevant parameters in Z2;b

Z2;c ¼ Z2;bjmb→mc;x→
1
x;nb↔nc : ðA2Þ

The bottom and charm quark on shell mass renormalization constant Zm;b and Zm;c up to NNLO can be written in the
following form

Zm;b ¼ 1þ αs
π
CF

�
−

3

4ϵ
−
3

4
ln
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− 1 −
ϵ

16
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Zm;c ¼ Zm;bjmb→mc;x→
1
x;nb↔nc : ðA4Þ
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