PHYSICAL REVIEW D 106, 114036 (2022)

Renormalization group improved m, and |V | determination
from hadronic 7 decays

B. Ananthanarayan,"” Diganta Das,>" and M. S. A. Alam Khan®"*

'Centre for High Energy Physics, Indian Institute of Science, Bangalore 560 012, India
*Center for Computational Natural Sciences and Bioinformatics,
International Institute of Information Technology,

Hyderabad 500 032, India

® (Received 7 July 2022; accepted 9 December 2022; published 30 December 2022)

We determine the strange quark mass (/) and quark mixing element |V |, and their joint determination
from the Cabibbo suppressed hadronic 7 decays in various perturbative schemes. We improve this analysis
compared to the previous analysis based on the optimal renormalization or the renormalization group
summed perturbation theory (RGSPT) scheme by replacing the theoretical longitudinal contributions
with phenomenological parametrization; the RGSPT coefficients are used for the dimension-4 Adler
functions. The improved analysis results in the extraction of m (2 GeV) =98 £ 19MeV and |V,| =

0.2191 4+ 0.0043 from the RGSPT scheme.
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I. INTRODUCTION

The hadronic decays of the z leptons have been of
constant interest for determining various parameters of the
Standard Model (SM) of particle physics. The availability
of experimental data on the strange and nonstrange decay
modes for the hadronic 7 decays has opened the window for
the determination of various parameters relevant for quan-
tum chromodynamics (QCD), namely, the strong coupling
constant «,, the strange quark mass myg, the vacuum
condensates, the low-energy chiral couplings, and the
quark mixing element |V, | of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix (see Refs. [1,2] for details).

On the theoretical side, the QCD contributions to the
hadronic 7 decays are studied by evaluating the current
correlator using operator product expansion (OPE) [3]. The
OPE factorizes the long- and short-distance contributions.
The long-distance information is encoded into the vacuum
condensates. The short-distance part is written as the
perturbative series in the strong coupling constant and
quark masses. The vacuum condensates can also be
evaluated using chiral perturbation theory (ChPT) [4],
lattice QCD [5], and renormalization group (RG) optimized
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perturbation theory [6,7]. The short-distance contributions
require evaluation of the Feynman diagrams. It is also
known that some of the contributions to the hadronic
vacuum polarization function are not captured by the
OPE, which is a quark-hadron duality violation. These
duality violating terms are parametrized in a model-
dependent way and fitted to experimental data and should
also be added to the OPE contributions [8].

The longitudinal component of the QCD Adler function,
corresponding to the zero angular momentum state, has
been calculated to O(af) [9-14]. It has poor convergence
behavior and raises the question of the method’s appli-
cability in the extraction of strange quark mass. This
problem can be solved by replacing these contributions
with their phenomenological input, and it has been used in
Refs. [15-19] for m, and |V, extractions from the
experimental moment data. These improvements have
resulted in much better control over the theoretical uncer-
tainties in the m and |V | determinations.

The hadronic 7 decays have been extensively studied
using various perturbative schemes. These schemes differ
in how the strong coupling constant and quark masses are
evaluated along the contour in the complex plane using
their RG properties. The most commonly used schemes in
the extraction of the strange quark mass and CKM matrix
element from the Cabibbo suppressed hadronic 7 decay are
fixed-order perturbation theory (FOPT) and contour
improved perturbation theory (CIPT). For the hadronic 7
decays, the FOPT suffers from the problem of large
logarithms along the contour in the complex energy plane,
and the higher-order spectral moments are very sensitive
to scale variations. In the CIPT scheme, direct numerical

Published by the American Physical Society


https://orcid.org/0000-0003-2385-8504
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.114036&domain=pdf&date_stamp=2022-12-30
https://doi.org/10.1103/PhysRevD.106.114036
https://doi.org/10.1103/PhysRevD.106.114036
https://doi.org/10.1103/PhysRevD.106.114036
https://doi.org/10.1103/PhysRevD.106.114036
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ANANTHANARAYAN, DAS, and KHAN

PHYS. REV. D 106, 114036 (2022)

evaluation of coupling constants and masses along the
complex contour using their RGE does not suffer from the
problem of large logarithms. However, scale dependence is
still the major source of theoretical uncertainties for higher
moments.

Recently, the optimal renormalization or RG summed
perturbation theory (RGSPT) has been used by two of us in
Ref. [20] in the strange quark mass determination. The
behavior of polarization and Alder functions in the complex
contour was also studied for RGSPT, CIPT, FOPT, and the
method of effective charges (MEC) in great detail.
However, the numerical impact of theoretical uncertainties
from perturbation series truncation and scale dependence
was excluded. We improve the previous analysis in the
following ways:

(i) We include the RGSPT coefficients for dimension-4

Adler functions.

(ii) We replace the divergent longitudinal perturbative
QCD expressions for the Adler function with
the phenomenological parametrization used in
Refs. [15,17]. This replacement significantly reduces
the theoretical uncertainties.

(iii) We perform |V | as well as the joint m and |V |
determinations for the first time using RGSPT.

(iv) The effects of the variation of m and |V | with the
variation of the moments calculated at different
energies (s, < M?2) are also included and found to
constitute an important source of uncertainty.

(v) We use the five-loop QCD f function and anomalous
dimensions for the running of the strong coupling
constant and quark masses.

The article is organized as follows: Sec. II provides a
brief overview of the various quantities that are needed for
the extraction of m, and |V,|. A short introduction to
RGSPT is given in Sec. III. Section IV explains the OPE
contributions to the Adler function. The behavior of
leading-order mass corrections to the Adler functions in
different schemes used in this article is studied in Sec. V.
The higher-order term of the perturbation series becomes
very important for the higher moments, and two prescrip-
tions for the truncation of the perturbation series are also
defined in this section. In Sec. VI, the phenomenological
parametrization of longitudinal contributions is briefly
discussed. Then, we move to Sec. VII, where strange
quark mass is extracted using only the perturbative QCD
(pQCD) contributions calculated from OPE. The weighted
average results for the m,(M?) extraction using this method
in the CIPT, FOPT, and RGSPT schemes are presented in
Table IV. The details of uncertainties can be found in
Appendix E 1. In Sec. VIII, the m (M?) determination
using the phenomenological parametrization for the longi-
tudinal component is performed, and results are presented
in Table V. Details of the strange quark mass determina-
tions from the moments are presented in Appendix E 2.
The determination of |V | using external input for m, is

performed in Sec. IX. The weighted average results using
the OPAL and ALEPH data are presented in Tables VIII
and VI, respectively. The details of determinations from the
moments, as well as the uncertainties coming from various
sources, are presented in Appendix E3. In Sec. X, the
joint extraction of m, and |V | is performed. We provide a
summary and conclusion in Sec. XI. We also pro-
vide supplementary input needed for this article in
Appendixes A-D. The details of the m, and |V | deter-
minations from the moments can be found in Appendix E.

II. FORMALISM

An important quantity for the study of hadronic z decay
widths [21-23] is the two-point current correlator:

I/ (p) =i / dye? (QIT{J) A (»)I)/20)HR) (1)

T ) =
(@ju/(rurs)a;)(x) is the hadronic vector/axial current,
and the indices i and j denote the flavors of light quarks.
The current correlator can be calculated perturbatively
using OPE [3] as a power expansion in 1/p, and the
corresponding coefficients are the operators of that dimen-
sion. Purely perturbative corrections appear up to dimen-
sion 2 in the OPE expansion, and the long-distance
corrections corresponding to the vacuum condensates start
from dimension 4.

Using Lorentz decomposition, the current correlator in
Eq. (1) can be decomposed into the longitudinal and
transverse components with angular momentum J =0
and J =1 as

where |Q) denotes the physical vacuum,

V74 V/AT

V/A,L
/w.ij(pz) = (pﬂpl/ - g}l,U)Hij (pZ) + pypunij/ (pZ)

(2)

The L/T correlators are related to the experimentally
measurable semihadronic z decay rate (R,), defined by

['(z~ - hadronsv,(y))
R, = =R R R
T F(T_ N 6_1/7(}/)) 7.V + 7,A + 7,85 (3)

and they are related to the imaginary part of the current
correlators in Eq. (2) by

so d. 2
Ru(so)=12z [ " Z(1-2
oo 0 S0 S0

(142 ) mams) + immy )] @)

S0

It should be noted that these current correlators also carry
information about mixing among the quark flavors and can
be written as
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)+ 11,7 (5)]. (5)

= > [Vl s

i=d,s

and |V;| are the elements of the CKM matrix.
To study the invariant mass distribution of final-state

hadrons, we need moments from the hadronic z decay rate,
defined by [24]

st [l ()% o

Using integration by parts, we can convert Eq. (6) into the
following form:

dx,

R (sq) = —m?{
(s0) i
+ 4FE(x.)D

x {37 (x) D (sox)

" (s0xe) } (7)

where x, = s/so and DX*7(s) are the Adler functions.

In the literature, the experimental values of the moments
defined above are usually provided for s, = M?2. However,
their values at different energies can be calculated using the
experimental data on the spectral functions provided in
Refs. [25-28].

The Adler function satisfies the homogeneous renorm-
alization group equation (RGE) and is related to the current
correlators by the relation

DT () = s (47 s)), (8)

DL(S)—Wd—( ST (). ©)

The resulting quantity in Eq. (7) is an expansion in the
strong coupling constant, quark masses, and condensates of
higher dimension operators. It explicitly depends on the
CKM matrix element and the electroweak corrections.
These terms are not shown in Eq. (7) but are factored
out in Eqs. (12) and (13). The kinematic kernels F¥ +T( Xc)
and FX(x,) appearing in the Eq. (7) are given by

20— Y Tk

(6+k+n)+23+k+n)x,
B+k+n)d+k+n) °

JTHT( Q)=

(10)

Fillx) =3 (l—xc)3+kZ(l_lr!l) =1 )
n=0

'n! (34 k+n)

and their explicit form used in this article is presented in
Table I.

TABLE I. Kinematic kernels used in this article.

(k. 1) Fi'r(x) Fi(x)

©, 0) (1-x)3(1+x) (1-x)3
(1, 0) ll—o(l—x)4(7+8x) %(1—x)4
(2, 0) #(1—x)3(445x) 2(1-x)°
(3, 0) 1(1=x)5(3 + 4x) 1(1-x)
4, 0) 51 =x)7(547x) 2(1-x)

Performing the contour integral defined in Eq. (7), we
can write R¥ [21] as

Rl‘rd(SO) = 3(|Vud|2 + |Vm|2)SEW{1 +5;§W +5(0>7k1

+ Z cos?(0c)8")* +sin2(0c)su )}, (12)
n=24..

(IVusl /(1 V s+ [V a|?)) is the Cabibbo

angle, 6ud 4 [21] carry information about the contour
integrals evaluated in Eq. (7), and &y = 0.0010 and
Sgw = 1.0201 £0.0003 are one-loop RG improved
electroweak corrections [29,30].

The most important quantity of interest in the determi-
nation of the strange quark mass is the SU(3) breaking term
SR¥!(s4) [31] defined as

where 9(? =sin~!(

Ry a(s0)  Rls(so)
SR (s9) = i“//+z|2 - |VS|2 (13)
= 3Spw Y _ (60" = o), (14)
n>2

which is free from instanton and renormalon contributions
and vanishes in the chiral limit. It is an experimentally
measurable quantity with input taken from Table II along
with the theoretical quantities appearing in Eq. (13) in the
strange quark mass determination.

The value of the strong coupling constant a,(M%) =
0.1179 +0.0010 has been taken from Ref. [33] and
evolved to the 7z lepton mass scale using a five-loop f
function from the package REvolver [34]. Its value at the 7

TABLE II. Spectral moments from ALEPH [31,32] and
OPAL [27]. OPAL moments are calculated using the current
value of |V, | = 0.2243 4 0.0008 quoted in the PDG [33].

SRM
Moments (k, ) ALEPH OPAL
(0, 0) 0.374 £0.133 0.332 £0.10
(1, 0) 0.398 + 0.077 0.326 + 0.078
2,0 0.399 £+ 0.053 0.340 £+ 0.058
(3,0 0.396 £+ 0.042 0.353 £ 0.046
4, 0) 0.395 +£0.034 0.367 £ 0.037
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lepton mass is a;(M?) = 0.3187 + 0.0083, which has been
used in this article.

III. REVIEW OF OPTIMAL RENORMALIZATION

The optimal renormalization technique is used to resum
the running logarithms present in the perturbation series
using RGE [35-37]. The resulting summed series shows
reduced scale dependence and hence a reduction in the
theoretical uncertainty in the extraction of a quantity of
interest. In the case of hadronic = decays, where weighted
integrals along the complex contour are involved, these
running logarithms become very important. Their summa-
tion is necessary to perform the perturbative analysis
properly. RGSPT resums these logarithms, and the result-
ing fixed-order truncated series has less sensitivity to scale
variations even for higher moments than FOPT and CIPT.

The perturbative series describing a QCD process is
given by

W(x,m) = x”'m”ZinLjTi,j, (15)
i=0
where x = x(4?), L = log(u*/q*) and m = m(u?). We can

rewrite the series as follows:

WRGE — xnlmnzzxisi[XL]’ (16)

where the S;[xL] coefficients are given by

SiL] =) Ty pei(xL)". (17)
The RGE for Eq. (15) is given by
, d
[z dleW(X» m) = 7a(x)W(x,m) =0, (18)
(Bx¥)0x + 1m(x)0 + 0 —va(x))W(x,m) =0, (19)
where y,(x) = >,y x'ly v is the anomalous dimension

associated with W(x, m) The RGSPT version of the
coefficients (§;, h;,Jy,.j, and k,) relevant for Egs. (33)
and (34) are presented in Appendix C. Using the numerical
values from Refs. [59,33,60]. We can collect the terms
corresponding to summed coefficients defined in Eq. (17).
This process results in a set of coupled differential
equations for S;[w], which can be summarized as

iw

+ Su—i(w)(nay; + Bi(

io T w=1)8,_;(w)

n—i+n) 47N =0 (20

Here we have substituted w = 1 — ffpxL, which simplifies
the solutions of differential equations. For further details on
RG summation, we refer to Refs. [20,35-40].

The solution to the first three summed coefficients—
relevant for dimension-0 and dimension-2 Adler functions—
appearing in Eq. (20) can be found in Appendix B. It should
be noted that the RGEs for dimension-4 operators mix
perturbative coefficients with condensates; hence, they do
not obey Eq. (16).

IV. OPE CONTRIBUTIONS TO THE
QCD ADLER FUNCTION

A. Leading-order contribution

Dimension zero is the leading perturbative contribution
to the current correlator in the massless limit, and it has
been calculated to O(af) [41-50]. It receives a contribution
only from the transverse piece of the current correlator,
which is identical for both vector and axial-vector channels
and thus cancels in Eq. (13). The Adler functions obtained
using the OPE can be organized as follows:

1
D (s) = 5Dt (s), (1)
2

n=024,

1 1
M2

DH(s) = 1 Dx(s), (22)

n=24.- 5%
where ij are the flavor indices and the Adler functions in
the rhs of the above equations are expansions in ay, m,, and
the quark and gluon condensate terms. Their definition gets
clearer if we take a contour integration along s = M2e'®,
and the coefficients of (M2)™ are called operators of
dimension 2n. The massless Adler functions are given by

rDé-‘rTvV/A ZX KL+T (23)

Dy (s) =0, (24)

where x(—s) = x(¢*) = a,(¢?)/x and K~ are the coef-
ficients of the Adler function at the ith loop, which can be
found in Appendix D. The RG running of the dimension-
zero “L + T” component of the Adler function is given by

2 LDL+T,V/A(S)

K d/ﬂ 0
= (A4 o)D) =0, (29)
ox oL) ° ’
where L = log(f—i), and the QCD beta function [f(x)] is
defined as

2 x(u) = a(p)) = =3 ) (26)

114036-4



RENORMALIZATION GROUP IMPROVED m; AND ...

PHYS. REV. D 106, 114036 (2022)

The coefficients of the beta function f;’s are known up to
five loops and are presented in Appendix A.

B. Dimension-2 contributions to the Adler function

The leading-order mass corrections to the hadronic 7
decay rate come from the dimension-2 Adler function. The
DEFT(s) Adler function is known to O(a?) [51-56] while
DE is known to O(a}) [9-14], and their analytic expression
can be found in Appendix D2. The RG running of
dimension-2 operators is given by

d
2P0 = {5+

+ 27, (x(p

(50 510
0 Ve
) g | PAO =0, @)

where the QCD beta function and the quark mass anoma-
lous dimension (y,,) are known to five loops and can be
found in Appendix A.

The SU(3) breaking contributions from the Adler func-
tion in the determination of quark masses is the difference

Dy (s) = Dyug(5) = Dy (). (28)

\us

where J = (L + T)/L and the analytic expressions can be
found in Appendix D 2. These contributions are used in
Eq. (13) to evaluate the leading-order mass correction
term 5(2) M _ 5@k

The absence of a coefficient O(a?) for the “L + T”
Adler function induces an additional theoretical uncertainty
in the predictions from perturbation theory. This missing
piece can be estimated by @7 ~ (a51)? /a5t ~ 4067,
which is used in the strange quark mass determinations in
this article.

The renormalization group running of different coeffi-
cients for CIPT and FOPT coefficients can be found in
Refs. [22,57]. The RG summed coefficients can be
obtained from Appendix B by setting {n;,n,} = {0,2}.

C. Dimension-4 contributions to the Adler function

The OPE expansion at dimension 4 involves contribu-
tions from perturbative, quark, and gluon condensates
[22,58]. However, these contributions are suppressed by
a factor of (Miz)z, and they have the following form:

1 -
Dy () = 5 D kT (s)x(—s)", (29)

1 3 =
D) = 32y { e SRHOI()

—((m; F m;)(q:9; F 51ij)>}’ (30)

where the upper/lower sign corresponds to the V/A
component. The QF+7/L coefficients are given by

QLT (5) = —(G*) + 2(m;q;:q; + m;q;q,)35 "

H- cxl»—‘

W oo

(m;giq; + m;q;q;) i+’ + Z<mkflk(]k>
x

3

- + hL+T 2 ,2~L+T
2ot

mmgn

5
+ gmim](m + m; VREFT 4 Zm4 LT

2N i), (1)

k#l

~ ~ 3 - ~
QL (s) = (m? +m3)hk & 5m,'mjkL +Y mijk. (32)
k

where  (m;q;q;) = <0|miéjqj|0>(—§25), m; = m;(=&s),
(G*) = (0|G?|0)(—¢2s), and £ is the scale parameter used
to keep track of the dependence of the renormalization
scale. The RG evolution of the perturbative coefficients and
the condensates can be found in Ref. [22].

The relevant OPE corrections to the strange quark mass
determination are as follows:

5D4T (5) = DLV (5) = DLV (s)

—460 . 6
= g 42‘15”)6(—3)"4‘@’".;(—3)4(1—efz)

Y A +e)hy T —egi T hx(=s)",  (33)
n=0
8D (s) = Diug ™ (5) = Dl ™ (5)
:255—1\/?%4_7IS3M2 A(1-€g)
x> {(1+€2)(hh + J5) + €2 (2 — 3Kk +7,)}
n=0
x x(—s)", (34)

where 80, = (0|m,5s — mydd|)(—&*s) with €, = m,/m;
and €, = m,/m,. Using the numerical values

v, =0.738£0.029 [59],
fr=92.1£0.8 MeV,
e, =0.053£0.002,

m, =139.6 MeV [33]
€, =0.029+0.003 [60], (35)
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00, can be estimated similarly to Ref. [22] as

504 = (vsms - md) <0|6_id|0>
mg
3 (v, —€q) famz

= —(1.54 £ .08) x 10° GeV~. (36)

IZ

V. BEHAVIOR OF LEADING-ORDER
PERTURBATIVE MASS CORRECTIONS IN
DIFFERENT RENORMALIZATION SCHEMES

FOPT and CIPT are the versions of perturbative theory
for the QCD analysis of the 7 decay frequently used in the
literature, and they have been further extended by including
a RGSPT version of perturbation theory [20,38]. It has been
shown in Ref. [38] that the 8 contributions from the
RGSPT scheme approach CIPT at higher orders of pertur-
bation theory, and the corresponding numerical value of the
strong coupling constant lies closer to the CIPT value.
Similar behavior is also observed in this article for the
higher dimensional operators, but with the advantage that
the scale dependence for higher moments is under control
in the case of RGSPT compared to FOPT and CIPT. Before
moving on to the strange quark mass determination, the
convergence behavior of the leading-order mass corrections
must be analyzed carefully for different schemes. This
exercise is performed in the rest of the section.

The leading-order mass corrections to moment SR? in
Eq. (13) are given by

s(ézMz)

T

SRM-P=> =24 Sew(1 =€) Au(x,8).  (37)

where

3 1
autr6) = (570 + 1 85n0) ). (9

and A, (x, £) are the contributions from the Adler functions
5D’ involving Egs. (D5), (D8), and (D11) evaluated along a
contour in the complex plane with the kernels presented in
Table I. These functions are calculated differently in various
schemes as explained in the later subsections.

It should be noted that the leading-order mass corrections
are presented to remember where the perturbative series is
truncated in prescription I.

A. CIPT scheme

In CIPT, the masses and the strong coupling evolve along
the contour in the complex plane by solving the RGE
numerically. By construction, it does not suffer from the
problem of a large logarithm along the contour. Following
Refs. [22,57,61], the dimension-2 contribution to the

L + T-component moments can be organized in terms of
contour integrals:

AT AT

—0 x.|=1 Xe
(&M
m; (M?)

Aéz” (x,8) =

X (=EMzx,), (39)
and for the longitudinal component,

Af(x. &) =
Loemx). @)

The dimension-2 contributions to AL for x(M2) =
0.3187/x contributions of different orders are given by

AST ={0.7717,0.2198,0.0777, —0.0326, —0.135},
ATST ={0.9247,0.3324,0.1951,0.0866, —0.0375},
AT = {1.0605,0.4410,0.3202, 0.2302,0.1019},
ALET = {1.1883,0.5504,0.4567,0.4021,0.2897},
ALET = {1.3130,0.6634,0.6073,0.6065,0.5337},  (41)

which shows good convergence up to the (2, 0) moment.
The longitudinal contributions are

A(%,o = {1.6031, 1.1990, 1.1583, 1.3023, 1.6245},
Afo = {1.3832,1.1358,1.1970, 1.4642, 1.9856 },
A%,o = {1.2563, 1.1158, 1.2635, 1.6553,2.4004},
A%, = {1.1783,1.1204, 1.3494, 1.8740,2.8757},
Ao ={1.1301,1.1418, 1.4517,2.1216,3.4196}, (42)

and we can see that longitudinal contributions show
divergent behavior. The total perturbative contributions
of dimension 2 obtained using Eq. (38) are

Ao = {0.9795,0.4646,0.3478,0.3011, 0.3050},
Ao ={1.0393,0.5333,0.4456,0.4310,0.4682},
A, = {1.1094,0.6097,0.5560, 0.5865,0.6765},
Az = {1.1858,0.6929,0.6799,0.7701,0.9362},
Ay = {1.2673,0.7830,0.8184,0.9853, 1.2552}. (43)

It is clear from Eq. (43) that the pathological longitudinal
contributions are a restricting factor in getting any reliable
determination from CIPT unless we truncate the perturba-
tive series to the minimum term.
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B. FOPT scheme

In FOPT, the perturbative series for the Adler function is
truncated to a given order in a,(u), and running logarithms
are integrated analytically along the contour in the complex
energy plane [57,62]. The Ail for FOPT is evaluated by
inserting Eqgs. (D6) and (D9) into Eq. (37) and can be
written as

4 i

A (x, &) = Z

i=0 j=

x’ (EM2)al H Y (x.8),  (44)

where HY'(£) are evaluated analytically:

=i f S (). @9

HYY (x, 8) = L?{ dxc L (x,) log" (;—52) (46)

27 Jix =1 Xc c

Hﬁl,LJrT(

Evaluating the above integrals, the AI,;,” contribution,
using FOPT, at different orders of perturbative series is

given by

A§$T = {1.0000,0.4058, 0.2575,0.1544, 0.0163},
ATET = {1.0000,0.5072,0.4168,0.3679,0.2971},
AL$T = {1.0000,0.5782, 0.5366,0.5414, 0.5429},
ALET = {1.0000,0.6323,0.6330, 0.6892,0.7636},
AL$T = {1.0000,0.6758,0.7140,0.8189,0.9654}.  (47)

The AL are given by

ALy = {1.0000,0.9468, 1.1319, 1.3807, 1.7855},
ALy = {0.7500,0.7482,0.9442, 1.2183, 16559},
Ak = {0.6000,0.6229,0.8184, 1.1006, 1.5520},
Ak = {0.5000,0.5360,0.7271, 1.0098, 1.4662},
Ak, = {0.4286,0.4718,0.6570,0.9371,1.3937}.  (48)

We can see that the longitudinal piece has a bad convergence
in the FOPT scheme. The total contribution of Ay, is

Agp = {1.0000,0.5410,0.4761,0.4610,0.4586},

Ao ={0.9375,0.5675,0.5486,0.5805, 0.6368},

A, = {0.9000,0.5894,0.6071,0.6812,0.7952},

Az = {0.8750,0.6082,0.6565,0.7694,0.9393},

Ay = {0.8571,0.6248,0.6997,0.8484, 1.0725}. (49)

We can see that the convergence behavior of the dimension-
2 contribution in Eq. (49) is not very different from the
CIPT scheme in Eq. (43).

C. RGSPT scheme

In optimal renormalization, masses and coupling are
fixed at some renormalization scale, but the RG summed
running logarithms are evolved around the contour.
Interestingly, contour integration can be done analytically,
similarly to FOPT. However, due to the summation of the
running logarithms, the resulting perturbative contributions
are much closer to the CIPT numbers as can be seen later in
this subsection.

The perturbative series in the RGSPT scheme for
dimension-2 Adler functions has the form

4

ZZZX §2M2 zanﬁlriOC 5) (50)

i=0 n=0 m=

kle

which is obtained by inserting Eq. (D11) into Eq. (37), and
the corresponding contour integrals K’,ﬁ{;ﬁ(x, &) have the
following form:

-1 dx
= C]:L+T
élzrz%v _x2 T M (xc)

log"(1 - Box(§2M3)log(—&*/x,))

KELEFT (x,€)

(1= por(@MDlog(-&/xy" OV
kL 1 dx,
Knm( ,f)zz_mﬁl | X, f%l(xL)
log"(1 = (&M log(-£/x) o,

(1= Box(&2M3) log(=&*/x.))"

The Afj" contributions for different moments are
given by

Af$T = {0.8878,0.2307,0.0799, —0.0328, —0.1561},
ATT ={0.9990,0.3690,0.2263, 0.1220, —0.0176},
A5$T = {1.0885,0.4931,0.3736,0.2980,0.1691},
AT = {1.1652,0.6095,0.5246, 0.4957, 0.4043},
AL§T = {1.2336,0.7212,0.6806,0.7153,0.6891}.  (53)

The A%, have the form

Al = {1.4048,1.2210, 1.2280, 1.3899, 1.7560},
Af,o = {1.1360, 1.1034, 1.2194, 1.5005, 2.0514},
A%,o = {0.9687,1.0302, 1.2287, 1.6169, 2.3536},
A%,o = {0.8538,0.9808, 1.2477, 1.7375, 2.6655},
A%, ={0.7697,0.9459, 1.2727,1.8617,2.9888}, (54)
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and the A(x) behave as

Ago = {1.0171,0.4783,0.3669, 0.3229,0.3219},
A = {1.0332,0.5526,0.4746,0.4666, 0.4996}
A,y = {1.0585,0.6274,0.5874,0.6277.0.7153},
Ay = {1.0874,0.7023,0.7054,0.8061,0.9696 },
Ago = {1.1176,0.7774,0.8286,1.0019, 1.2640}.  (55)

We can see from the numerical values provided in Eq. (42),
(48), and (54) that the longitudinal contributions have a
convergence issue, and it is difficult to get reliable
determinations using them as input. However, the important
ingredient in the mass determination is A, ;, defined in
Eq. (38). We can see from the numerical values presented
in Eqgs. (43), (49), and (55) that these inputs can be taken in
the mass determination if we truncate the perturbation
series to the term which gives the minimum contribution to
it. This minimum term of the perturbative series is taken as
the truncation uncertainty. This prescription has already
been advocated in Ref. [32], and we have termed this
procedure of truncation prescription I. Another choice is to
use all available terms of the perturbation series coefficients
of the Adler function, including the estimate for the
unknown O(a?) term of the L + T component of the
dimension-2 Adler function, termed prescription II. These
prescriptions have some advantages and disadvantages,
which will be discussed later.

VI. PHENOMENOLOGICAL CONTRIBUTION
TO THE LONGITUDINAL SECTOR

We can see from the Sec. V that although the contribu-
tions from the L + T part of dimension 2 have better
convergence for CIPT and RGSPT relative to the FOPT, the
longitudinal contributions force us to truncate the higher-
order terms. These pathological contributions get enhanced
for higher moments and restrict one to use only the leading-
order term of the perturbation series. This problem is solved
by replacing the longitudinal perturbative series contribu-
tions with the phenomenological contributions from chiral
perturbation theory [15-19]. These contributions carry
significantly less theoretical uncertainty and agree well
with the corresponding pQCD results, as shown in
Ref. [15]. With these advantages at hand, the strange quark
mass determination using the pQCD contribution from the
L + T component of the Adler function, combined with
phenomenological longitudinal contributions in Sec. VIII,
can be performed.

The relevant quantities of interest for phenomenological
contributions to Rf]l‘L, ,a—the longitudinal component of
Eq. (7)—are vector/axial-vector spectral functions p}/j/ 4 (s).
They are related by

Rf.‘;jé/A = —ZZLJZZA1 dx.(1 —xc)z’“kxé“pl‘-/j/A’L (M2x.). (56)
The pseudoscalar spectral function receives contributions
from pion and kaon mass poles and higher resonances in
the strange and nonstrange channels. We use the Maltman
and Kambor [16] parametrization of the pseudoscalar
spectral function for the us and ud channels in our analysis,
which is given by

2Pt (s) = 2f3mikd(s —my) + > _2fIM?By(s).  (57)
i=1,2

Here f; and M; are the decay constants and masses of
resonances, and B;(s) is the Breit-Wigner resonance
function taking the form

1 M,
Bils) =7 (s —M?)? + M3’ (58)

where I'; is the decay width of the resonances. The spectral
function for the ud channel is obtained by replacing the
kaon terms with the pion in Eq. (57). For the resonance
contributions to pseudoscalar ud and us channels appearing
in Eq. (57), we use the data in Table III.

The vector component of the spectral function receives
dominant contributions from the scalar channels Kz, K7,
and Krn/, and the spectral function has the following
form [19]:

383,

V.L

Z okilFri(s)]%, (59)

i={mnn'}

where Ay, = M% — M2. The phase space factor og;(s) is
given by

oki(s) = 0(s — (Mg + M,)?)

y \/ (1 (Mgt M»Z) (1 L (Mg - M,->2>'

(60)

The strangeness-changing scalar form factors F;(s) are
defined by

TABLE III. Masses and decay width taken from PDG [33] and
decay constants from Ref. [17].

7(1300) 7(1800) K(1460)  K(1800)
M; MeV) 1300 1810 1482 1830
I'; MeV) 400 215 335 250
fi MeV) 224046 0.19+0.19 2144+28 45+45
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TABLE IV. Weighted average of the strange quark mass in different perturbative schemes.

my(M?) using prescription I (in MeV)

my(M?) using prescription II (in MeV)

Perturbative scheme ALEPH OPAL ALEPH OPAL

CIPT 117.7 + 28.5 105.9 £27.5 93.2 +£24.1 84.1 £22.7
FOPT 129.3 +33.5 116.2 +£29.2 9424+ 254 852 4+23.9
RGSPT 120.2 +23.4 107.7 £25.1 89.4+16.4 80.1 =15.8

Q) = -l ()

and can be found in Ref. [18]. A detailed discussion on the
application of these form factors in the extraction of strange
quark mass can be found in Refs. [15,19].

VII. STRANGE QUARK MASS
DETERMINATION FROM pQCD

The strange quark mass determination in this section is
based on the method used in Refs. [20,22,32]. In addition,
we employ different schemes to perform the comparative
study. The strange quark mass determination from hadronic
7 decays using RGSPT has been performed in Ref. [20].
However, the uncertainties coming from the truncation of
perturbative series and the scale dependence of strange
quark masses are neglected. We improve the previous
determination using pQCD inputs by including these
uncertainties and the determinations made in the two
prescriptions mentioned in Sec. V.

It should be noted that the higher-dimensional OPE
contributions (d > 4) to the Adler functions are numeri-
cally small [22] and not considered in this analysis. The
strange quark mass is determined by supplying experimen-
tal and theoretical inputs to Eq. (13). The rhs of the
equation is provided with theory inputs from dimension-
2 contributions in Egs. (D5) and (D8) and dimension-4
contributions in Eqgs. (33) and (34). These quantities are
evaluated along the complex contour in different schemes,
as explained in Sec. V. We present our weighted average
determinations for my(M?) from different moments in
Table IV for different schemes. The details of various

Strange quark mass from 6R% Strange quark mass from 6R!®

sources of uncertainty in the two prescriptions are pre-
sented in Appendix E 1.

We can see from Table IV that the strange quark mass
determinations from different schemes agree with each
other within uncertainties. It is also evident from the tables
presented in Appendix E 1 that the uncertainties in the
final strange quark mass are higher in prescription I than
in prescription II, mainly due to the truncation of the
perturbative series. We also emphasize that the systematic
comparison of the behavior of the perturbative series in
different schemes can only be made in prescription II,
where the same order information is used. RGSPT
provides better control over the theoretical uncertainty
by minimizing the renormalization scale dependence. The
scale dependence of the strange quark mass for various
moments is shown in Fig. 1, plotted using prescription II.
These plots indicate that the strange mass from the
RGSPT scheme is stable for a wider range of scale
variations for the moments under consideration. It should
be noted that the uncertainties associated with renormal-
ization scale dependence are included only in the range
£€]0.75,2.0] in the strange mass determination in
Table IV.

It should be noted that the poor convergence of the
longitudinal contributions restricts this method to be
applicable in the lower energies s, < M2. Additional
uncertainties in the determination of m arise due to the
variations of the upper limit of the moment in the integral s,
defined in Eq. (4). These are estimated using the phenom-
enological determination, discussed in the next section, and
are also included in Table IV. Further details on the
numerical uncertainties using pQCD inputs can be found
in Appendix E 1.

Strange quark mass from 6R2 Strange quark mass from SR

e

my(M?) (in MeV)
(M) (in MeV)

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIG. 1.

Scale variation of the strange quark mass in different perturbative schemes using pQCD inputs.
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Strange quark mass from 6R’® Strange quark mass from 6R!”

Strange quark mass from 6R2”

Strange quark mass from 6R

my(M?) (in MeV)

FIG. 2. Scale variation of the strange quark mass obtained from phenomenological inputs in different perturbative schemes.

VIII. STRANGE QUARK MASS DETERMINATION
USING PHENOMENOLOGICAL INPUT

The determination of the strange quark mass in this
section is similar to the one used in Sec. VII, but now the
longitudinal Adler function is replaced with the phenom-
enologically parametrized contributions, as discussed in
Sec. VL. It should be noted that the L + 7 component of the
Adler function at dimension 2 is known to O(c3), and we
do not use its estimate for the O(a?) coefficient in the
determination of m,(M?) using phenomenological inputs.
Contributions from the last known term of the perturbation
series of the Adler function are taken as the total truncation
uncertainty, similar to that of the previous section.

Following the discussion of Sec. VI, we now have all the
necessary ingredients for the strange quark mass determi-
nation. Using the transverse contributions from Sec. VII
and combining them with the input from Sec. VI, we
determine the strange quark in different schemes. We
present our result for the weighted average in Table V,
and further details of the determinations from the moments
can be found in Appendix E 2. The scale dependence in
my(M?) is presented in Fig. 2 using prescription II. As
observed in the previous section, the strange quark mass
determinations from the RGSPT scheme are stable over the
wider range of scale variation for the moments under
consideration. The determination of m, from the traditional
spectral moments is sensitive to the variation of sy. A
typical 5% variation of s, from M? in the range s, €
[3, M2] induces variations of about 6%—13% in the m;
determinations from the moments using the OPAL data.
Unfortunately, such variations cannot be calculated for the
ALEPH moments as the strange spectral function is not
publicly available. These uncertainties are estimated from
the determinations using the OPAL data.

IX. DETERMINATION OF |V,

The data on strange and nonstrange spectral moments for
the hadronic 7z decay provided by ALEPH [26,63,64],
HFLAYV [65], and OPAL [27] collaborations can be used to
determine the CKM matrix element |V ,|. These exper-
imental moments, along with the theoretical moments
calculated with strange quark mass as input from other
sources, can be used to determine |V, | applying the
following relation:

Rle
|Vus| = = ) (62)
Rle+A/|Vud|2 - 5R]r(,lth

T,

where R and RY,, , are experimental inputs and 6RY,, is
the theory input, in which m (2 GeV) is taken as an
external input. This method has already been used pre-
viously in Refs. [15,66—70], and it has been observed that
the uncertainties are dominated by the experimental data
available for the strange component. An additional source
of uncertainties is pointed out in Ref. [66] due to s
variations, which can be solved using a different analysis
based on the nonspectral weight functions. However, we
restrict this analysis to only the traditional weight functions.

Using m (2 GeV) = 93 + 11 MeV [33] as an external
input and ALEPH data [26,63,64], we present our deter-
mination for |V | in Table VL

The latest branching fraction of hadronic 7 decays into
nonstrange and slightly more precise strange components
from HFLAV [65] can also be used to get a more precise
determination of |V | from this method. The results for
different schemes are presented in Table VIIL.

The uncertainties shown in these tables are dominated
by those coming from the variation of s, € [2.5, M2] and

TABLE V. Weighted average of strange quark mass in the different perturbative schemes. Phenomenological

inputs for the longitudinal contributions are used.

my(M?) using prescription I (in MeV)

my(M?) using prescription II (in MeV)

Perturbative scheme ALEPH OPAL ALEPH OPAL

CIPT 123.3 +£22.3 106.3 £ 21.5 125.1 £ 25.1 107.5 £23.9
FOPT 136.6 + 35.0 1195+ 354 115.8 £+ 30.1 101.6 + 28.3
RGSPT 123.1 = 21.1 107.0 £21.2 117.7 +20.1 102.0 +=19.5
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TABLE VL. |V,| from ALEPH data in different perturbative
schemes using 6RY,, from Secs. VII and VIIL

TABLE IX. Joint determination of m(2 GeV) and |V | from
OPAL data with moment (k, 0) with k = 0, 1, 2, 3, 4 in different
perturbative schemes using pQCD inputs as well as phenom-

Vs enological inputs.
Scheme pQCD inputs Phenomenological inputs Phenomenological inputs
CIPT 0.2174 4+ 0.0045 0.2168 + 0.0044 Prescription 1 Prescription 11
FOPT 0.2183 + 0.0055 0.2179 + 0.0055
RGSPT 0.2178 + 0.0046 0.2170 4 0.0045 Scheme  m (2 MeV) A my(2 MeV) \
CIPT 75 0.2199 75 0.2199
FOPT 46 0.2227 46 0.2227
RGSPT 73 0.2199 73 0.2199
TABLE VII. |V,,| from HFLAV data in different perturbative

schemes using SR¥!, from Secs. VII and VIIL.

‘VMS|
Scheme pQCD inputs Phenomenological inputs
CIPT 0.2195 £ 0.0047 0.2189 £ 0.0044
FOPT 0.2205 £ 0.0043 0.2200 £ 0.0037
RGSPT 0.2199 £ 0.0046 0.2191 £ 0.0043

experimental uncertainties in strange R, g contributions. It
should be noted that uncertainties coming from the varia-
tion of s, in Tables VI and VII are calculated using
the experimental data on the spectral function from
Refs. [26,27].

The |V,,| determinations from ALEPH [26,63,64] and
HFLAV [65] are based on the (0, 0) moment. A detailed
analysis for higher moments can be performed using the
OPAL [27] data, where (k,0) moments for k = 0, ..., 4 are
also available. These moments are correlated, and their
correlation should also be considered in the full analysis.
Given the large uncertainties in their strange components
and unknown precise higher-dimensional OPE corrections,
we neglect these correlations among various moments in
our determinations from these data.

Using the strange and nonstrange moments from OPAL
and the theoretical inputs for SRY, from Sec. VII, we
present the weighted average of the determination |V/|
from prescriptions I and II in Table VIII. Details of the |V |
from the moments along with the sources of uncertainties
can be found in Tables XX and XXI, respectively. We can
observe from these tables that the RGSPT is slightly more
sensitive to the strange quark mass taken as input, but the
overall theory uncertainty coming into this scheme is less

TABLE VIII.
schemes.

than CIPT and FOPT in prescription II. We can also see that
the divergent nature of the longitudinal component is still
an issue, causing a large theoretical uncertainty dominating
in the higher moments in prescription II in Table XXI.

These shortcomings are slightly improved in the
phenomenological determination and can be seen in
Tables XXII and XXIII. Again, these determinations suffer
from large s, and theoretical uncertainties, especially
those coming from the strange quark mass in the higher
moments. It is worth emphasizing that prescription I
reduces the dependence on the spectral moments in the
|V s| determination. The weighted averages of these results
for |V | are presented in Table VIIL. The RGSPT scheme is
slightly more sensitive to the variation of sy, which,
compared to CIPT, dominates in the final average presented
in Table XXII and can be seen in the table presented in
Appendix E 3.

X. JOINT m; AND |V,,| DETERMINATION

The experimental moments provided by the OPAL
Collaboration in Ref. [27] can be used for the joint
extraction of m, and |V,|. It should be noted that the
moments provided in Ref. [27] are correlated, and a proper
analysis will require their correlations to be taken into
account. Given the uncertainties present in the data, we
disregard these correlations and restrict ourselves to a
simplified analysis.

Using the phenomenological parametrization for the
longitudinal contributions and the perturbative L 4 T com-
ponent from Secs. VI and IV, we fit the m (2 GeV) and
|Vl to Eq. (62) for moments (k,0) with k =0,1,...,4.

Weighted average of the determination of |V,,| from the OPAL data in different perturbative

|Vus‘ from prescription I

|V | from prescription II

Perturbative scheme ~ pQCD inputs

Phenomenological inputs

pQCD inputs  Phenomenological inputs

CIPT 0.2220 £ 0.0050 0.2212 £ 0.0047 0.2232 £ 0.0048 0.2212 £ 0.0045
FOPT 0.2212 £ 0.0059 0.2220 £ 0.0054 0.2240 £ 0.0059 0.2224 £ 0.0054
RGSPT 0.2222 £ 0.0051 0.2215 £ 0.0048 0.2238 £ 0.0049 0.2215 £ 0.0047

114036-11



ANANTHANARAYAN, DAS, and KHAN

PHYS. REV. D 106, 114036 (2022)

The central values of the joint fit are presented in Table IX.
These joint fits give smaller values for m (2 GeV) and |V |
compared to the PDG average [33], but they are very close to
the findings of Gamiz et al. [67] for CIPT and RGSPT.

XI. SUMMARY AND CONCLUSION

The hadronic 7 decays are important ingredients for
extracting various QCD parameters. We have used pertur-
bative schemes CIPT, FOPT, and RGSPT in the extraction
of my, |V,|, and their joint determinations from the
experimental inputs available from ALEPH [26,63,64],
HFLAV [65], and OPAL [27] moments of hadronic 7
decays. To reach the goal, we first calculate the RGSPT
coefficients for the dimension-4 operator and use them for
the determination of m, and |V,|. Dimension-6 OPE
corrections are known to NLO, and their RG improvement
is discussed in Refs. [71-73]. Four quark condensates
present in these contributions are estimated using the
vacuum saturation approximation [74]; they are found to
be numerically very small and are not considered in this
article. Higher-dimensional OPE corrections are not fully
known and are neglected in this article.

The moments calculated using perturbation theory suffer
from convergence issues, so we have employed two
prescriptions. The central values of the strange quark mass
determinations from prescription I are less spread out for
different moments than in prescription II. The theoretical
uncertainties arising from truncation and scale dependence
dominate for higher moments in prescription I for CIPT and
FOPT. However, RGSPT has better control over the scale
dependence for a wider range of scale variation, even for
higher moments as shown in Figs. 1 and 2. This improve-
ment results in a more precise determination in RGSPT
compared to FOPT and CIPT schemes.

The important results of this article for the m,(M?)
determination are presented in Tables IV and V and for
|V.s| determinations in Tables VI-VIIIL. The joint m, and
|V,s| determination results are presented in Table IX. It
should be noted that the ALEPH moments used in the
determinations in this article are based on the old |V ]|
calculated in Ref. [32]. The strange quark mass determi-
nations from the moments are very sensitive to the
value of |V,|, and hence we do not consider them in
the final average. However, the experimental data for the
strange and nonstrange moments provided by the OPAL
Collaboration in Ref. [27], with the current value of
[V.s| =0.2245 +0.0008 [33] as an input, can be used
to provide the most updated determination of the strange
quark mass.

We give our final determination for my(M?), which
comes from the weighted average of strange quark mass
determinations using the RGSPT scheme from Table V:

my(M?)=102.0+£19.5MeV  (OPAL,RGSPT),  (63)

which corresponds to the strange quark mass at 2 GeV:
mg(2 GeV) = 98 + 19 MeV. (64)

Using ALEPH [26,64] moments, the |V,| deter-
minations along with their deviation from PDG [33]
(|V.us| = 0.2243 £ 0.0008) and the CKM unitarity fit value
(V| = 0.2277 £ 0.0013) are

|V.s| =0.2168 +£0.0044 (1.76,2.60) (for CIPT),
(65)

|V.s| =0.2170 £0.0045 (1.60,2.30) (forRGSPT),
(66)

and from HFLAV [65],

|Vl =0.2189 +0.0044 (1.20,1.90) (for CIPT),
(67)

|V.s] =0.2191 £0.0043 (1.26,1.90) (forRGSPT).
(68)

The weighted average of the |V,,| determinations from
OPAL [27] using phenomenological inputs is presented in
Table VIII. The most precise determinations for |V | from
this table come from CIPT and RGSPT:

|V.s| =0.22124+0.0047, 0.2212+0.0045 (for CIPT),
(69)
|V.s|=0.2215+0.0048, 0.2215+0.0047 (forRGSPT).
(70)

The mean values of the determinations in these schemes are

Vsl = 0.2212 4 0.0045 (0.7, 1.40) (for CIPT),
(71)
V.| =0.2215+£0.0047 (0.60,1.30) (forRGSPT).
(72)

We give our final determinations by the weighted
average of these results as

V.| = 02189 £ 0.0044  (1.26,1.90) (for CIPT),
(73)
V.| =0.2191 £0.0043 (1.26,1.95) (forRGSPT).
(74)
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The values obtained for |V | using OPAL data agree with
the PDG average within uncertainties. However, the |V|
determination from ALEPH [26,63,64] and HFLAV [65]
are more than 1.2¢ and 1.9¢ away from the PDG [33]
average and CKM unitarity fit value. It should be noted that
the PDG average is already in tension with 2.2¢ with the
CKM unitarity.

The dependence of our determinations on the choice of
the moments and their correlation is not considered in this
article, and we expect that these can be further improved
using nonspectral weights employed by Maltman et al. in
Refs. [75-77].

ACKNOWLEDGMENTS

We thank Professor Diogo Boito for providing help with
the experimental data on the spectral functions. D.D.

d
Mz_zx(ﬂz) le+2

Wio W mmi () = m (P )y, = —mi(ﬂz)zyixi“ (1)

du

would like to thank the Department of Science and
Technology, Government of India for the INSPIRE
Faculty Award (Grant No. IFA16-PH170). D.D. also
thanks the Institute for Theoretical Physics III,
University of Stuttgart for kind hospitality during various
stages of the work. A. K. thanks Shiuli Chatterjee, Rhitaja
Sengupta, and Prasad Hegde for their valuable discussions.
A. K. is supported by a fellowship from the Ministry of
Human Resources Development, Government of India.

APPENDIX A: RUNNING OF THE STRONG
COUPLING AND QUARK MASSES IN pQCD

The running of strong coupling and the quark masses
is computed by solving the following differential
equations:

d (Al)

The series solutions for the running of strong coupling and the quark masses relevant for contour integration in the

complex plane using FOPT are

x(q?) = x{l + xpoL + x*(B1L + FFL*) + x° <ﬂ2L + %ﬁlﬁoLz +ﬂ(3)L3)

>
+ x* (ﬂ3L + <3—§1 + 3ﬁoﬁ2> L? + Eﬂlﬂ(z)L3 + ﬂ3L4>

+x5 <ﬁ4L <7ﬂ1ﬂ2 7ﬂ0ﬁ3>

77
<6ﬁzﬂo ﬂ%ﬁo) L+ S ABL + RL > } +0(a).  (A2)

1
= moi{l + xyoL + x* (71L + EVOLQ(,BO + 70))

1
+ 13 <7/2L +L? <ﬂ'y° +71(Bo + 7’0)) +=
Baro

6
3Por2
4 L L2
+X<]/3+ <ﬂ11+2+2 5

1
+ + 7/072) + —7oL*

roL? (Bo + 70) (2P0 + }’o)>

1 (Bo +70)(2B0 + 70) (3B + 7o)

(é Biro(5Po + 3v0) + 3r1(Bo + 7o) (260 + 70))))

<74L + = L2(B3y0 + 3172 + 2r1(B2 + 72) + 273 (260 + 70))

+z L3(3ﬁ Yo + Brir1(148y + 970) +3(2B0 + 70) (Baro + 72(260 + 70) +77))

6

1

oL (B + 70) (2 + 70) (3 + 10) (4f0 + m) } T o),

120

where x = x(u?), L
dimension of the quark mass.

1
+ 2L4(ﬂ1?o(13ﬁ01’0 + 1383 + 313) + 2r1(Bo + 70) (280 + 70) 3Bo + 70))

(A3)

= log(u?/q?*), p; are the QCD beta function coefficients, and y; are the coefficients of the anomalous
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The QCD beta function coefficients are known to five loops [78—-86], and their analytic expressions for the active flavor
nyg =3 are

By =9/4, p =4, P = 3863/384, Pz = 140599/4608 + (445¢(3))/32,
11059213¢(3)  534385¢(5) 801z* n 139857733

= — - . A4
4 55296 3072 2048 1327104 (Ad)
The known five-loop quark mass anomalous dimension coefficients [87-94] for ny = 3 are
) _ m_ 91 () _ 8885 5¢(3) G) _92955:(3) 3 125¢(5) 3_71'4 2977517
= m T TS T T 0 T T T a3 2 32 41472
@4) 156509815 23663747((3) ,  4753z% 118405((7) 22625465((5) = 1257°
o= - 85¢(3 - . AS
/ 497664 124416 +85C03)+ 4608 * 576 62208 2016 (A3)

We also need the vacuum anomalous dimension for dimension-4 operators, which has recently been computed to five
loops [95]. Their analytic expression of the diagonal component relevant for this article is given by

i3
70 =g

3 4x 2£(3) 223
167:2{ 3+x< 3 72>+x

346£(3) _1975¢(5) | 137* _ 3305
9 54 540 1296

. (6121£(3)? 3 11881x* n 1680599¢(3)  36001¢(7) 9392578 3 59711¢(5) 16141627 (A6)
864 8640 2592 96 326592 48 248832
APPENDIX B: RGSPT COEFFICIENTS RELEVANT FOR THE
DIMENSION-0 AND DIMENSION-2 ADLER FUNCTIONS
The first three summed series coefficients are presented as
So [W] = wfom (Bl)
Si[w] = w0 =N (T o — myBiL,, + ny X (=Prijo + 71 + whifo — BifoLw — W), (B2)
Sy[w] = werem= {Tzo + T10(na(71 = Bi7o) + naw(Bi7o — 1) + L(—nafiio — mipy — Br))
- . 1., 1. _ 1. _ 7 = =
+ {nl (B> = P1) + m <—§/)'%}’0 LAV §2> +wln (B1 = B2) + na(Bi70 — Pa70)
+n3(=F75 + 2,3171770 - NZ) + L, (m3(B17o71 = Pi75) + mima(Br7: —ﬁ%%))]
[ - pi 555 T
+ L, —nzﬁﬁ’o + nipr + 5 ”2ﬂ1)’0 +ny | mpive + 5 > +w?|n3 ﬁﬂ’o Pii7o JFE
1- 72
+ny ﬁ170 +5 /3171 + 2ﬁ270 ) ; (B3)
where X; = X,/f,, and the rest can be found by solving Eq. (20) with the boundary condition S; i[1] =T, and for

simplification of the expressions, we have taken Ty, = 1.

APPENDIX C: PERTURBATIVE COEFFICIENTS RELEVANT FOR THE
DIMENSION-4 CORRECTIONS AND THEIR RGSPT COEFFICIENTS

The RG-inaccessible coefficients needed for the dimension-4 operators are calculated in Refs. [10,52,58,96-103], and
their values are
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p0,=0, p0, =1, p0,=7/6, qOy=1, q0,=-1, ¢0,=-131/24, hi0y=1, ki0y=1
0,=0, 10,=1, 10,=17/2, h0y=1, g¢0p=1, ¢0,=94/9—-4/3(;, k0,=0, Kk0,=1. (Cl)

Perturbative coefficients involving the condensate terms described in Sec. IV C are

ﬂlﬂol
pip0, PO —
petTw) =0, pitT(w)=p0i,  pitT(w) ="+ ,
Po w
BirorOi _ rop0y
L+T L+T roP0;1  7or0, L4T 6p; 660
= 0, = — s =
) ) =BT =
$140; log(w)
q0 q0, — ===
a0 = g0 gt =T gl T = =
110, log(w)
10, 10
W) =0 AT ="t T = (C2)
The RGSPT coefficients for the coefficients of m* to O(a,) are
{10, (2(1 = wwH — 27 +2)
7610 (2(1 —w)w %o =2w % +2 4 . )
kgt (w) = 20— gt w) = 0w R, jEw) =0, jE(w) =0, (C3)

10w (247, — 2) ' 0

4r0

- " w
kit (w) = 10’37/00(;0—/}_4},(02 (ﬂllol <WW(ﬂ0(log(w) + 1) — 4y log(w)) —ﬁ0W> — Bot0>(Bo — 470) (W”“ - W))

) i
ii 40) .. _Yo_
w_, Yi l_yzlztolw o !

o w 4
+ k0w 0+ 1047 : (C4)

q0, (— -w ”") 610071W_%(ﬁ0<w%? — 1) —dr(w 1))
2(By — 4y0) 2Pov0(Bo = 470)

y qoow_%(ﬂ%(—“ﬂo +3p6 + 1670)(W4”L‘? — 1) + 128,yo(4yo(—=w + log(w) + 1) — By log(w)))

Rt (w) = hOOW To +

, C5
24,5%}’0 (ﬂo - 470) ( )
hL+T(W) _ W—;—O—l (h00<4ﬂ0}’1 —4p1yo(log(w) + 1)) +hO, + $1400log(w) (3B170(log(w) + 2) = 2By (Bo + 371)))
: 55 363
_4ro_
+ 400 (B (=48 + 167, + 67) + 2B3(3(Baro +413) = B1(870 + 971)) + 681 Boro(Br — 8y1))w ™~
655 (Bo + 470)
. O (il — 82178y ]
| 400(3haro +11(40 = 31 = 1670 +121)) ~ 127270) | yiq0y (2 BT
670(B5 — 1615) 2(Bo — 470) 2(Bo + 4r0)
V()
n 1 {qoo(ﬁg}’z — B5(Baro +11(B1 +471)) + BiBoro(Br + 871) — 4ﬁ170> K3
(Bo —4r0) i
. . i _ o i
N 404 ( 4/30+32/2;16m 127) 4 T (40, (6/1700 _/flgyiyl _ m 4 2/3170(1ﬂ%< w)+1) %) _ %>
w
g0, _ f190, log(w) )
= PIRED 040, (B — ;
n 2 22/30 + q0,(Bor: 2ﬂ170)W 0 } (C6)
w B
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G (w) = _ P14r09% 10%(W)W_4ﬁ%]_1 N o (4390, + 4Bor1900(1 — w) — 4B1470900(1 — w))
b 455

hE (w) = _ng_%](/}(z)(ﬁl - }’1)(W4’}L‘? —1) = BoAro(Bilog(w) = yi(w = 1)) + Bidrs(=w + log(w) + 1))
o 83470 (Bo — 470)

A =wTR) (- w' T

+ hl0gw /’0 + - ,
84y, 8x(fo — 470)
, 2 2 2 4 1
hE(w) = W <_ 2/}1470 +4ﬁ1371 " ﬁ1271 _2n 2n +% &+ hi0, <4ﬂ1270 _ﬁ) L 2
b Vo 2B5v0 - 3Poro ﬂoi’o 365 26 Po Po (Bo + 470)
4ro
<2ﬂm B Zﬂ%m) log(w)> L Bora = BBaro + 11 (B +47)) + Prbore(Br +8r1) - 4p3r3)w'
B B Bo(Bo = 4r0)
_nBi-4n) —4 y 2 2
TR Y (_ Wiro A 4o 1;g(w>> + hio, 1 Pirolog’(w)
2(p5 — 161;5) Bo Po b bo

2ﬂ17o 2811 2P 1
+< 7 _—8_3—53) 10g(W)+m{2ﬂ3(3(ﬂ2}’o+4ﬁ)—ﬂ1(87o+971))

+ (4P, + 16y, + 6y5) + 681 or0(B1 — 871) + 24B7r5 — 365r5 .

WER-L 1 pi-dn 4 =B R
B 1~ 1 0/1 — F1/0
) = oL

300 —4r0x 970 1270(Bo—470) | 3B2Po — 4r0)
=3B0(B1 — 4y1) + 4B — 12,7, (log(w) + 1))
366370 ’

_%ro
+w % <k100 +

4o
K- (w) = klOlw_%?_l n 2p, log(w)w 7 1(2ﬁ07/1W + Brro(log(w) —2w)) n ri(4yy = B1) +ro(Br — 4r2)

365 305 = 1675)
. _dro_ o
Srord +4n__ 41 1ogw) (o = 3pire + BOroki0 + DT wRT
9%0(Bo + 470) 9%s 965 (Bo + 470)

X (B1 = 8y1) = 26581 (971 + 8y0(970klOg + 1)) = 3(Bayo + 4r1)) + B (36y1kI0g — 37%) + 24175
aw !
+263(3r2 — 2(B1 — 4r1) (90kl0y + 1))} — Wgﬂ/ B11og(w)(3por1 — 3P1ro + (970ki0y + 1))
0

2! W
+m(ﬁ872 = B5(Bavo + 71 (B + 4r1)) + BiBoro(Br + 811) = 4B7r5) + 9ﬁ4 {248, Povor:

— 128375 — 483y, (970kl0g + 1) + B3 (81 (31 + 470 (970kl0y + 1)) = 3(Baro + 471))}.

where w = (1 — fyxL).

APPENDIX D: CONTRIBUTIONS TO THE ADLER FUNCTION

1. Dimension-zero contributions

(€7)

(C8)

(C9)

(C10)

(C11)

In the massless case, the Adler function is known to O(a}) [41-50], and the contribution from the longitudinal part is

zero (D" = 0) while X7 is given by
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it 299 A (_T19(3)  T5¢(5) , 58057
Dy =14x+x° <24 9%(3 )) ( 4 + > + 288

o (H185C(3)? | 7297%¢(3)  17042474(3) | 34165L(5) 1995((7) 133652 78631453 1)
8 16 432 96 16 256 20736 )

2. Dimension-2 corrections

The dimension-2 correction to the Adler function for the quark flavors i and j is known to O(«a ) [51-56], and the
analytic expression reads

Dy s) = 4%25 {(m%, +m3+m?) (x2 (%(3) - %) L <4§(3)2 N 15922;“(3) B 8057(5) B 2532»

Br <179c(3) _520(5) 23077>

+ (m%—l—mf-)(l +

3 54 27 a3
(TGP 1S41L(3) | T983SL(T)  54265L(5) 3909929
2 648 648 108 36 5184
2x L[ 55C(3) S(5) 769
im"mf<3+x< 27 27 54

108 324 54 864 0 3888

5 4
3 (_ 11677¢(3) i 70427£(3) n 82765¢(5) 3 555233¢(7) =« 7429573)) } (D2)

where upper and lower signs correspond to vector and axial-vector components, respectively, and this convention is
used for the Alder functions in this appendix. It should be noted that the O(a}) correction to the m;m ; term has been
obtained from Eq. (15) of Ref. [51]. The longitudinal component of the dimension-2 operator is known to O(a}) [9-14] and
has the form

~3 (m; F m;)? 17x 9631 35((3) 91519¢(3)  715((5) x* 4748953
pVv/A _ 2T ) )y 2 e 222 2R 3( = TN A
2 T2 M2 Pyt T )t 216 12 36 sisa

\ (1921554“(3)2 46217501g(3)+4557255(5) 12575 52255¢(7) 3491x* 7055935615)} (D3)

216 5184 432 9072 256 10368 497664

From the above dimension-2 Alder functions, the important pieces relevant for Cabibbo suppressed strange quark mass
determination [22] using Eq. (13) are

Dy (s) = (Déﬂ T (s) = Dy )

—3m? 13 1792(3)  520¢(5) 23077
=S (1= )<1+Tx+ < 54()_ 27()+ 432>
J(S3C(3)? 1541¢(3) | 79835((7) 54265{(5) a* 3909929
e < 2 648 | 648 108 36 5184 (b4
-3
7”;52;5 ! (1-€) de x(=&%s)! (D5)

1

—3m2(EM?2) 4
:% (1-€2) Z

2
27 paryfer

LT (EM2) log! <§2 ) (D6)
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and the corresponding contribution from the longitudinal component is

LVEA, N _ LV+EA L.V+A
6D; (s)= Dy " =Dy

2 4
3m? (1—631){1+ﬂ+x2(96i—35§(3)>+x3<—915195(3) 715¢(5) = 4748953)

T4 M 3 144 2 26 12 36 5184
((192155C(3)* _46217501(3) | 455725((5) 52255((7) 1252° 3491z | 7055935615 )
216 5184 432 256 9072 10368 ' 497664
3m (=&
B 4;;2M2 — € Zd (=€)’ (D8)
3mi(EM7) ~\ £m
=4 Z dtix(EM?) log/ < - > (D9)

i=0 j=

The RGSPT coefficients for the dimension-2 operators can be written in the following form:

3mg 1 df 1.79012  1.79012 1.580251
5D{,’J2FA(S) — norm x 2% (1- €‘21){w8/9 +x< 10 + _ 0g(w)>

272 wl7/9 wd/9 wl7/9 wl7/9

e 1.79012d{, ~ dj,  1.79012d{,  (-3.35802d{, - 8.82061)log(w) 0.339459
Ww26/9 Ww26/9 wl7/9 W26/9 wd/9

436949 4.70895 2.65325log?(w)  2.82884log(w)

- wl7/9 + W26/9 W26/9 wl7/9

L 6.01952d{, 1.79012d5, =~ di, 0.339459di, 5.68006d{, 1.79012d3,
W33/9 w33/9 w3/9 wi7/9 W26/9 W26/9

. (8.623084] , + 27.3673)log?(w) . (6.011284 o + 19.7019) log(w) | 0.593473

W3s/9 W26/9 W8/9
3.28306 (—15.163521{.0 — 5.135821&0 —39.8653)log(w) 14.9321 17.6217
e + W35/9 T 26/9 + W35/9
4.5422log3(w)  4.74965log?(w)  0.53643 log(w)
- Ww33/9 - W26/9 + wi7/9

,(0.593473d{, 27.6536d{, 7.3301d}, 1790124}, dj, 6.29286d7,
+x wl7/9 wH/9 WH/9 wH/9 W44/9_ W26/9

0.339459d5, 21.9542d{, 6.99064d%, 1.79012d%, 12.673 11.6487
- W26/9 IR0 B L T T8/9 + wl7/9

w

(1.13991dY , + 11.9782) log(w) ~ (—19.8721d{, — 71.1438)log?(w) 15.09
+ 126/9 + WwH/9 T p26/9

(—15.4364d] , — 59.0364)log>(w) 60.9336 77.0479 8.13109log>(w)
+ W3s/9 ERE + WH4/9 W35/9
(68.5739d{ , + 21.5065d3 , + 6.913584% , + 192.701) log(w)  0.937834 log(w)
- W/ - wl7/9
(39.8584dY , +9.19372d3 , + 111.714) log(w) ~ 7.85071log*(w)  0.900672log?(w)
+ Ww3s/9 WH4/9 - W26/9

(67.7471d{ o + 17.7534d} , + 186.459)log?(w)
+ W9 :

(D10)
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A more compact form for the above equation is

5D€3A(S)
> 4 ik J
_ ms 2 iTJ log (W)
=n0rmxﬁ(1—€d)z ZXTi,j,kW’
i—0 k=0 j=0
(D11)
where
g =0+1
norm = { , (D12)
wr =0

and Zz’{ can be obtained from Egs. (D5) and (D8).

APPENDIX E: DETAILS OF m; AND |V |
DETERMINATIONS IN DIFFERENT SCHEMES
AND THE DETAILS OF SOURCES
OF UNCERTAINTY

1. Strange quark mass determinations
using pQCD inputs

In this section, the strange quark mass is calculated using
the longitudinal component with the OPE as described in
Sec. V. As mentioned before, these contributions are poorly
convergent, and the strange quark mass determinations will
suffer from the large truncation uncertainties, in addition to
significant dependence on the moments used. The depend-
ence on the moment can be slightly reduced by using
prescription I at the cost of enhanced truncation uncertainty.

This behavior in the different perturbative schemes and the
details of various sources of uncertainties are discussed in
the later subsections.

a. Strange quark mass determination
using CIPT scheme

Determination of mg (M?2) using CIPT is based on
dimension-2 contributions described in Sec. VA. Using
prescription I, we can see that dimension-2 contributions
are truncated at O(a}), O(a?), O(a?), and O(a) for k = 0,
1, 2, 3, and 4, respectively. This truncation results in the
enhancement in the total uncertainty in the m,(M?)
determination and can be seen in Tables X and XI.
However, the main advantage of using prescription I is
that the masses from various moments, using different
experimental inputs, agree within the uncertainty, which is
not the case in using prescription 2. For this reason, we
present m,(M?) from both prescriptions for different
schemes in other cases, too.

b. Strange quark mass determination
using FOPT scheme

The effect of different prescriptions used is very signifi-
cant in the FOPT where perturbative contributions from
dimension-2 Alder functions are truncated at O(af) and
O(a?) for the moment k = 0 and 1 while the rest of them
are truncated at O(a,). The final results for my(M?)
determination using FOPT in prescriptions I and II are
presented in Tables XII and XIII, respectively.

TABLE X. Strange quark mass using CIPT in prescription I. Other sources of uncertainties are not shown in the table, but they are

added in quadrature for m (M?) in the second row.

Moments ALEPH [32]

Moment OPAL [27]

Parameter 0,0 (LO (2,00 @G0 @0 (0.0 (L0 (2,00 G0 (40
my(M?) 135537 122138 120037 10503 10815 124730 10673 105130 9472 100739
5Rkl(Exp ) +27.4 +15.4 +11.7 +9.4 +9.0 +23.2 +17.8 +14.4 +11.2 +10.6
075 et S e e S A A B
= [0'745’ 2.0] _ 65 -80 —10.4 -109 —134 -58 -71 -92 -9.9 -125
Truncation uncertainty 357, T3, 355 Ty T3y Gi00  ddos s jis» oS
so € [3, M?](GeV?) 8.3 11.1 12.7 12.5 6.4 7.7 9.6 11.2 11.2 5.9

TABLE XI.

separately, while the rest are added in quadrature and appear in m;

CIPT determination of strange quark mass using prescription II. Only significant sources of uncertainty are shown

(M3).

Moments ALEPH [32]

Moment OPAL [27]

Parameter 0, 0) (1, 0) 2, 0) (3, 0) 4, 0) 0, 0) (1, 0) (2,0 (3,0 4, 0)
my(M?) 126530 1123 96t &2tk 69TH 11673 9773 84y 73t 64T
5Rkl(EXp ) +25.7 +14.1 +9.5 +7.4 +5.9 +21.7 +16.4 +11.6 +8.8 +6.9
s S 163 T80 ey I 53 RV S v R s R
¢e [0'75 .2.0] . f@.ﬁ% 83 9.4 ~10.0 ~10.1 60 72 83 9.0 93
Truncation uncertainty Y T Ti0s Tlos Tioa ey iy Y 5% 5%
s € [3, M2)(GeV?) 78 10.2 10.2 9.7 9.1 72 8.8 9.0 8.7 8.5
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TABLE XII.
in quadrature and appear for m (M?) in the second row.

Strange quark mass using FOPT in prescription I. Other sources of uncertainties are not shown in the table but are added

Moments ALEPH [32]

Moment OPAL [27]

Parameter 0, 0) (1, 0) 2,0 (3,0 “, 0 0, 0) (1, 0) 2, 0) 3,0 “, 0
my(M?) 11453 134538 14718 1377 12773 10673 116%F 13078 1247 11875
SR (Exp.) 4232 +165 +137 115 499 +19.6 +19.1 +17.0 +139 +118
S 075, oo Tme  amy o my o TS e ks Tan ISy T
¢€ [0'7.5’ 2.0] . Sito ~12.8 ~135 -123 —121{‘(1) -102 —112 —1gfg —11.1 ~102
Truncation uncertainty 77, s 367 345 L 63 150 333 353 307
Sg € [3,M%](Ge\/2) 8.7 13.2 15.7 15.3 154 8.0 11.5 13.9 13.8 14.3

TABLE XIII.
in quadrature and appear for m,(M?) in the second row.

Strange quark mass using FOPT in prescription II. Other sources of uncertainties are not shown in the table but are added

Moments ALEPH [32]

Moment OPAL [27]

Parameter 0, 0) (1, 0) (2,0 (3,0 4, 0) 0, 0) (1, 0) (2,0 (3, 0) 4, 0)
my(M?) 11453 107439 97138 872 78123 10673 93+38 85720 783 72
5Rk1 (EX ) +23.2 +13.3 +9.3 +7.6 +6.5 +19.6 +15.3 +11.4 +9.1 +7.6
Tl 1300 1508 1508 Tiog Tiea % T8 T L Tieo
ot TP [ - S O (- B O B S B (R |
Truncation uncertainty 101 1120 127 Y128 1125 193 1105 112 1115 116
5o € [3. M?](GeV?) 8.7 10.5 10.6 10.3 10.1 8.0 9.1 93 9.3 9.4

¢. Strange quark mass determination using
the RGSPT scheme

The RGSPT determination of strange quark mass is
presented in Tables XIV and XV, and the most crucial feature

of this scheme is that it provides minimum scale uncertainty
compared to the CIPT and FOPT. Another important
advantage we can infer from prescription II is that it gives
the lowest uncertainty among other perturbative schemes.

TABLE XIV. Strange quark mass using RGSPT in prescription 1. Other sources of uncertainties are not shown in the table but are

added in quadrature and appear for m,(M?) in the second row.

Moments ALEPH [32]

Moment OPAL [27]

Parameter ©0 @o#O 20 G0 &0 OO 16O 20 G0 40
my(M?) 123538 12153 12002 125037 11373 114% 1041 10573 11353 104753
5Rkl (Exp) +252 +15.2 +11.6 +10.9 +9.1 +21.3 +17.5 +14.3 +13.1 +10.8
g A < S S N
= [0'75 2] . 53 -23 —34 —42 -40 -20 24 -30 -338 -37
Truncation uncertainty 337 T8 S i3 e el EA TS T S 5 SRS 1
so € [3, M2](GeV?) 8.1 11.4 13.1 15.1 14.6 7.5 9.9 11.5 13.6 13.5

TABLE XV. RGSPT determination of strange quark mass using prescription II.

Only the main sources of uncertainty are shown

separately, while the rest are added directly in quadrature of m,(M?2).

Moments ALEPH [32]

Moment OPAL [27]

Parameter 0, 0) (1, 0) 2,0 (3,0 “, 0) 0, 0) (1, 0) 2,0 (3,0 4, 0)
mg(M?) 1237538 103 9sHy 82t 704 11413 95T 84rly 74t 651Y]
SRM (Exp.) 1252 +139 +9.4 +73 +5.9 1213 +16.1 115 188 +7.0
oy oW m o3 & B W oW T %
¢€ [0'7.5 .2.0] ' fzfé —82.'6 —8228 —2&')9 29 -20 _2"?) —i.g 26 —622‘)7
Truncation uncertainty N 203 1109 e 1109 ey Yy iy T100 101
5o € [3, M2)(GeV?) 8.1 10.4 10.4 9.9 9.3 75 9.0 9.1 8.9 8.6
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2. Strange quark mass determinations using
phenomenological inputs

In this section, the strange quark mass is calculated
using the phenomenological parametrization along
with the perturbative L + T contributions described
in Secs. VI and IV. The quark mass is calculated in
the two prescriptions for various moments, and the
details of sources of uncertainty are presented in the
tables.

a. Strange quark mass determination
using CIPT scheme

The CIPT determination of m,(M?) in this section makes
use of the full dimension-2 results of O(a}) as the series
presented in Eq. (41) is convergent for all moments, and

TABLE XVIL

prescriptions I and II yield the same determinations. The
results are shown in Table X VL.

b. Strange quark mass determination using
the FOPT scheme

The FOPT determination of m,(M?) in this section
involves determination in both prescriptions I and II as
the perturbation series is not well convergent for different
moments, as shown in Eq. (47). The results are presented in
Tables XVII and XVIII.

c. Strange quark mass determination using
the RGSPT scheme

The RGSPT determination in prescriptions I and II is
shown in Table XIX as the (4, 0) moment is not convergent
term by term until O(a?).

Strange quark mass using CIPT with phenomenological inputs for the longitudinal component. Only the main sources of

uncertainty are shown separately, while the rest are already added in quadrature and appear in the total uncertainty in m,(M?2).

Moments ALEPH [32]

Moment OPAL [27]

Parameter 0.00 (1L0) (2,00 (3.0 4.0 “0' 0.0 (@1 20 @G0 &0 0"
mg(M3) 18740 16215, 136137 115735 98172 987%  166fy 134730 116139 102770 91if 911
5Rk](EXp ) +57.2 +25.5 +15.5 +11.4 +8.8 +8.8 +49.0 +30.2 +19.4 +13.8 +10.5 +10.5
1075, L | e e O O R
€ [0'7.5 . 2.0] . %229 +9.1 -0.1 -1 .Z —3.8" —32.8; +1§)85 +37'.1 —gf(z) —1.% 35 35
Truncation uncertainty 33 i) Iy Yoo Tlos 57 53 50 +7.1 B Y R
5o € [3. M2](GeV?) 116 147 145 137 58 130 102 129 128 122 52 117

*Prescription II is used for these moments.

TABLE XVII. FOPT determination of m,(M?) using prescription I. Only major sources of uncertainty are shown separately, while the
rest are added in quadrature and appear in the total uncertainty in m,(M2).

Moments ALEPH [32] Moment OPAL [27]

Parameter 0, 0) 1, 0) 2,0) (3, 0) 4, 0) 0, 0) (1, 0) 2,0 (3, 0) 4, 0)
my(M?) 1417586 13378 135538 14570 13503 12578 1113 11613 13073 12515
SR (M?)(Exp.) Sy La o Sy fsd Doy fEe S e e e
5 c [O 75 2] +16.5 +21.7 +24.5 +25.5 +23.0 +14.8 +18.1 +21.0 +22.7 +21.1
: ) ’ ) —6.4 :1045 :12.0 :12.6 :11.4 -5.8 :848 i10.3 :1142 :10.4
Truncation uncertainty 55 P 3 S 5 s v S 1 S 1S 6 SR ¢ B
so € [3, M?](GeV?) 10.7 13.1 14.4 16.2 163 9.5 11.6 12.8 14.6 14.9

TABLE XVIII. FOPT determination of m,(M?) in prescription II. Only major sources of uncertainty are shown separately, while the
rest are added in quadrature and appear in the total uncertainty in m,(M?).

Moments ALEPH [32] Moment OPAL [27]

Parameter (0, 0) 1, 0) 2, 0) (3, 0) 4, 0) (0, 0) (1, 0) 2, 0) (3,00 (4, 0)
my(M?) 141755 13357 121935 10937 99539 1258 1117 1043 9773 91f%
SR (M?)(Exp.) 5 e 1169 B S S BETE B £
£€(0.75,2] 855 13 e BT T S e s Ha 0 Ha
Truncation uncertainty 735 T 145 i 1183 ey T102 s T%s i
5o € [3. M?](GeV?) 10.7 13.1 13.3 13.0 12.8 9.5 11.6 11.7 11.6 11.7
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TABLE XIX. Strange quark mass using RGSPT. Other sources of uncertainty are not shown in the table but are added in quadrature

and appear for m (M?) in the second row.

Moments ALEPH [32]

Moment OPAL [27]

Parameter 0,0 (1,00 20 @G0 @0 “0* (0,0 (1,0 20 G0 40 o0
my(M?)(in MeV) 178537 154723 13013 1117530 10873 96779 15778 127455 11273 99731 10073 891¢
SR¥ (Exp.) 45538 245 4149 110 496 486 4474 12838 41185 4133 4114 410l
T . 135 1587 Zl638 122 Jios Zo4 Z646 2370 23 Zi54 Zpo o lis
£e[0.75,2] 55 i1 429 37 4.6 40 oY) ISH 25 133 a3 37
e . ] 'y A ) ik iy ey Y v e o7 iy
Truncation uncertainty ~ *77 161 197 113 169 4121 5% 149 183 F101 4156 4111
Sg € [3, M%](GGVZ) 11.7 14.5 14.2 13.4 12.8 10.3 12.8 12.5 12.5 12.0 12.8 11.6

*Prescription II is used for these moments.

3. Details of the |V, | determinations
from OPAL data

The CKM matrix element |V,,| is calculated using
Eq. (62) from the available data on moments for strange
and nonstrange components. Details of extraction from
these moments and associated uncertainties from the input
parameters are presented in this section. Purely pQCD

TABLE XX. Determination of |V | in various schemes from the
calculated using the pQCD Adler function.

inputs for the longitudinal component are used to extract
|V .| in Tables XX and XXI. Large theoretical uncertainties
in prescription II come from the truncation of the pertur-
bative series. Determination of |V| from the phenomeno-
logical inputs for the longitudinal contribution is presented
in Tables XXII and XXIII for prescriptions I and II,
respectively.

OPAL data using prescription I. The longitudinal component is

| Vus ‘CIPT

|V us|Fopr |V us [Rspr

Parameters

0,0 1,00 2,00 3,0 &0 0,0 (1,0O) 2,00 3,00 40 (0,0 (1,00 2,00 (3,0 4,0

|V (central) 0.2217 0.2224 0.2219 0.2241

0.2220 0.2227 0.2208 0.2183 0.2181

0.2182 0.2221 0.2229 0.2223 0.2204 0.2217

m +0.0014  +0.0021 +0.0025 +0.0038 +0.0037 +0.0017 +0.0017 +0.0016 +0.0021 +0.0027 +0.0015 +0.0022 +0.0027 +0.0027 +0.0037
s -0.0012 —0.0018 —0.0022 —-0.0032 —0.0031 —0.0015 —0.0014 —0.0014 —0.0018 —0.0022 —0.0013 —0.0019 —0.0023 —0.0023 —0.0031
Experimental ~ +0-0033 +0.0037 +0.0036 +0.0037 +0.0038 -+0.0033 -+0.0036 +0.0036 -+0.0036 -+0.0037 -+0.0033 -+0.0037 +0.0037 -+0.0037 -+0.0038
p -0.0034 —0.0037 —0.0037 —0.0038 —0.0038 —0.0034 —0.0037 —0.0036 —0.0037 —0.0038 —0.0034 —0.0037 —0.0037 —0.0037 —0.0038
Total theor +0.0017  40.0028 +0.0040 +0.0065 +0.0078 +0.0024 +0.0027 +0.0032 +0.0042 +0.0053 +0.0017 +0.0028 +0.0039 +0.0050 +0.0070
y -0.0017 —0.0029 —0.0042 —0.0065 —0.0074 -0.0024 —0.0028 —0.0032 -0.0041 —0.0051 —-0.0015 —0.0026 —0.0036 —0.0047 —0.0064
50 € [2.50, M2] 0.0032 0.0070 0.0117 0.0188 0.0229 0.0042 0.0089 0.0122 0.0146 0.0200 0.0034 0.0074 0.0126 0.0204 0.0272
Total +0.0049  +0.0084 +0.0129 +0.0203 +0.0245 +0.0058 +0.0100 +0.0131 +0.0156 +0.0210 +0.0051 +0.0088 +0.0137 +0.0213 +0.0283
—0.0050 —0.0085 —0.0129 -0.0203 —0.0244 —0.0059 -0.0100 —0.0131 —0.0156 —0.0210 —0.0050 —0.0087 —0.0136 —0.0213 —0.0282
TABLE XXI. Determination of |V | in different schemes from the OPAL data using prescription II. The longitudinal component is
calculated using the pQCD Adler function.
| Vus ‘CIPT | Vus ‘FOPT ‘ Vus |RGSPT
Parameters 0,00 (1,0) 2,00 3,00 40 (0,00 (1,0) 2,00 3,00 (4,0 (0,0) (1,00 (2,00 (3,0 (4,0
|Vs| (central) 0.2217 0.2239 0.2275 0.2341 0.2452 0.2227 0.2246 0.2271 0.2310 0.2365 0.2221 0.2246 0.2286 0.2358 0.2477
m +0.0014  4+0.0025 +0.0043 +0.0072 +0.0126 +0.0017 +0.0028 +0.0042 +0.0062 +0.0090 +0.0015 +0.0027 +0.0047 +0.0079 +0.0138
s -0.0012  —0.0021 —0.0036 —0.0059 —0.0097 —0.0015 -0.0024 —-0.0035 —0.0051 -0.0072 —-0.0013 —0.0023 —0.0039 —-0.0064 —0.0105
Experimental ~ +0-0033 +0.0037 +0.0037 +0.0039 +0.0042 +0.0033 +0.0037 +0.0037 +0.0039 -+0.0041 +0.0033 -+0.0037 -+0.0038 -+0.0039 -+0.0043
p —0.0034 —0.0038 —0.0038 —0.0040 —0.0043 —0.0034 —0.0038 —0.0038 —0.0039 —0.0041 —0.0034 —0.0038 —0.0038 —0.0040 —0.0043
Total theo +0.0017  40.0033 +0.0063 +0.0121 +0.0237 +0.0024 +0.0043 +0.0071 +0.0110 +0.0165 +0.0017 +0.0033 +0.0061 +0.0109 +0.0200
ry -0.0017 —0.0035 —0.0065 —0.0116 —0.0206 —0.0024 -0.0043 —0.0068 —0.0102 —0.0147 —0.0015 —0.0030 —0.0055 —0.0096 —0.0168
50 € [2.50, M2] 0.0030 0.0070 0.0117 0.0188 0.0313 0.0042 0.0089 0.0143 0.0216 0.0325 0.0032 0.0074 0.0126 0.0204 0.0338
Total +0.0048  +0.0086 +0.0138 +0.0227 +0.0395 +0.0058 +0.0106 +0.0164 +0.0245 +0.0368 +0.0049 +0.0089 +0.0145 +0.0235 +0.0395
-0.0048 —0.0087 —0.0139 —-0.0225 —0.0377 —0.0059 -0.0162 —0.0163 —0.0242 —0.0359 —0.0049 —0.0089 —0.0145 —0.0229 —0.0380
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TABLE XXII.

contributions are used for longitudinal components.

Determination of |V,,| in different schemes from the OPAL data using

prescription I. The phenomenological

| Vus |CIPT

| Vus |FOPT

| Vus ‘RGSPT

Parameters

0,0 (1,00 2,00 3,00 40 (©,0 (1,00 2,00 3,0 40

0,0 (1,0O) 2,00 3,0 &0

|Vl (central) 0.2211

0.2210 0.2212 0.2228 0.2226 0.2222 0.2224 0.2225 0.2208 0.2177 0.2213 0.2213 0.2219 0.2238 0.2233

+0.0022
-0.0019
+0.0037
—-0.0037
-+0.0033
—-0.0033

+0.0024
-0.0021
+0.0037
—0.0037
+0.0039
—-0.0039

+0.0022
—-0.0019
+0.0037
—0.0038
+0.0043
—0.0041

-+0.0005
—0.0004
-+0.0033
—0.0034
-+0.0005
—0.0004

-+0.0011
-0.0009
+0.0036
—0.0037
+0.0011
—-0.0010

-+0.0019
-0.0017
+0.0036
—0.0037
-+0.0022
—-0.0020

+0.0032
—-0.0028
+0.0037
—0.0038
+0.0040
—0.0036

+0.0038
—-0.0032
+0.0038
—0.0039
+0.0055
—0.0050

0.0229 0.0042 0.0089 0.0122 0.0146 0.0200 0.0034 0.0074 0.0126 0.0204 0.0272

m £0.0005 +0.0010 +0.0018 +0.0029 +0.0036 +0.0008 +0.0014
. 00035 700036 100036 100037 100038 100035 100057
1 +0.! +0.! +0. +0.003 +0.! +0.! +0.!
Experimental 50050 00037 00037 00038 ~00038 ~0.0034 ~0.0037
Total theory ~ 00005 +0.0010 +0.0020 +0.0036 +0.0053 +0.0009 +0.0019

Y 00005 -0.0010 —0.0020 —-0.0037 -00054 -0.0009 —0.0019

s € [2.5.M2] 0.0032 0.0070 0.0117 0.0188
Total 100047 +0.0080 +0.0124 +0.0195 +0.0238 +0.0054 +0.0098
-0.0047 —0.0080 —0.0124 —0.0195 —0.0239 —0.0054 —0.0099

+0.0131
—0.0132

+0.0155
—0.0155

+0.0208
—0.0207

+0.0048
—0.0048

+0.0084
—0.0084

+0.0133
—0.0133

+0.0211
—0.0211

+0.0280
—0.0279

TABLE XXIIL

longitudinal components.

Determination of |V | from OPAL

data using prescription II. The phenomenological contributions are used for

IV uslcrer [V s lropr [V us|rGspT

Parameters ©,0 (1,O) 2,00 3,00 4 0) 0,00 (1,0) (2,0) 3,00 &4,0) 0,00 (1,0) (2,00 (3,0) (4 0)
|V.s| (central) 0.2211 0.2210 0.2212 0.2228 0.2260 0.2222 0.2224 0.2225 0.2236 0.2253 0.2213 0.2213 0.2219 0.2238 0.2274
m +0.0005 +0.0010 +0.0018 +0.0029 +0.0039 +0.0008 +0.0014 +0.0022 +0.0032 +0.0045 +0.0005 +0.0011 +0.0019 +0.0032 -+0.0051
s —0.0004 —0.0009 —0.0015 —0.0025 —0.0046 —0.0007 —0.0012 —0.0019 —0.0027 —0.0038 —0.0004 —0.0009 —0.0017 -0.0028 —0.0043
Experimental 100033 +00036 100036 +0.0037 +0.0038 +0.0033 +0.0037 +0.0037 +0.0037 +0.0038 +0.0033 +0.0036 +0.0036 +0.0037 +0.0039
—0.0034 —0.0037 —0.0037 —0.0038 —0.0039 —0.0034 —0.0037 —0.0037 —0.0038 =0.0039 —0.0034 —0.0037 —0.0037 —0.0038 —0.0039

Total theory ~ 00005 +0.0010 400020 +0.0036 +0.0062 +0.0009 +0.0019 +0.0033 +0.0051 +0.0074 +0.0005 +00011 +0.0022 +0.0040 -+0.0068
—0.0005 —=0.0010 —0.0020 —0.0037 —0.0065 —0.0009 —0.0019 —0.0033 —0.0050 —0.0071 —0.0004 —0.0010 —0.0020 —0.0036 —0.0061

sy € [2.5,M§] 0.0030 0.0070 0.0117 0.0188 0.0313 0.0042 0.0089 0.0143 0.0216 0.0325 0.0032 0.0074 0.0126 0.0204 0.0338
Total +0.0045 +0.0080 +0.0124 +0.0195 40.0321 +0.0054 +0.0098 +0.0151 +0.0225 +0.0336 +0.0046 +0.0084 +0.0133 +0.0211 +0.0347
—0.0045 _—0.0080 —0.0124 —0.0196 —0.0322  —0.0054 _—0.0099 —0.0151 —0.0225 —0.0335 _—0.0047 —0.0084 —0.0133 —0.0211 —0.0346
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