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We analyze the generalized quasi, Ioffe-time, and pseudodistributions of the valence quarks in the pion at
the quark model scale. We use the framework of the Nambu-Jona-Lasinio model and investigate the basic
question of how fast the pion has to move to effectively reach the infinite momentum limit, where the
approach can provide the information on the generalized parton distribution functions. We consider both
the vector distributions and the transversity distributions, related to the spin densities. With the developed
analytic expressions, we conclude that to effectively approach the infinite momentum limit in the Ioffe-time
distributions for values of the Ioffe-time accessible in lattice QCD, one roughly needs the pion momenta of
the order of ∼3 GeV. We explore polynomiality of the quasidistributions and study the generalized quasi
form factors. The issue of separability of the transverse and longitudinal dynamics in the model is studied
with the help of the generalized Ioffe-time distributions, with the conclusion that the breaking is not
substantial, unless the momentum transfer t is large. We also provide an estimate of the range of the Ioffe-
time values needed to obtain the generalized parton distributions with a reasonable accuracy. Our model
results, which are analytic or semianalytic, provide a valuable insight into the theoretical formalism and
illustrate the intricate features of the investigated distributions.
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I. INTRODUCTION

In recent years a significant progress has been made to
directly access partonic distribution functions (PDFs) of
hadrons on the Euclidean lattices. The novel techniques
involve the quasidistributions proposed by Ji [1–10]
amended with the large mass effective theory (LaMET)
[11–14], the pseudodistributions [15–27], the “good lattice
cross sections” method [28,29], or the Compton Feynman-
Hellman approach [30]. These methods have an ambition to
reach way further than the lattice QCD determinations
of the lowest Bjorken x-moments of the hadronic PDFs
[31–34] and obtain the distributions as functions of the
parton momentum fraction x (x is the momentum fraction
of the hadron carried by the parton). The quasidistribution
amplitude (qDA) of the pion on the lattice has recently been

analyzed in [35]. For detailed reviews of the progress and
the challenges, both for the nucleon and for mesons, see
[36–40]. One should remark here that apart from the above
listed methods, the valence PDF and the distribution
amplitude (DA) of the pion have also been determined
directly within the Hamiltonian transverse lattice approach
which faces the problem in the Minkowski space [41–43].
Model determinations of the parton quasi distributions of

the pion have been made in the framework of the Nambu–
Jona-Lasinio (NJL) model (for a review of NJL in the
context of high-energy processes see [44]) in [45,46], with
an extension to the Ioffe-time distributions (ITDs) [16,47]
provided in [48]. An analysis within a QCD instanton
vacuum model has been carried out in [49].
For the nucleon, a study in a diquark spectator model

was carried out in [50], a factorization ansatz was used
in [46], a large-Nc model was explored in [51,52], and the
quark quasi Sivers and quasi Boer-Mulders functions were
considered in [53].
On the experimental side, the current and indirect

knowledge of the pion’s valence PDF originates from
scattering of secondary pion beams on nuclear targets at
the CERN NA3 experiment [54] and the Fermilab E615
experiment [55], as well as from the electroproduction
HERA data [56,57]. A recent global analysis has been
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presented in [58]. The future COMPASS++/AMBER
facility at CERN, with direct pion beams, will provide
separate information on the valence and sea pion PDFs, as
well as on the gluon distribution, using the J=ψ and ψ 0
production [59]. Hence, there emerges a renewed demand
for theoretical and model predictions.
An evaluation of the pion PDFs in NJL, keeping track of

relativity, gauge invariance, a proper support in the Bjorken
variable x, induced normalization constraints, and supple-
mented with the QCD evolution, was first made in [60,61]
thanks to a scrupulous implementation of a suitable
regularization method. Analyses in nonlocal chiral quark
models were provided in [62–64]. For the results of the
Dyson-Schwinger approach with the rainbow ladder trun-
cation, see [65,66].
Extensions of PDFs to nonforward processes [67–69] are

provided by the generalized parton distribution functions
(GPDs) [70,71], where the momenta of the initial and final
hadron can be different. Naturally, this enriches the insight
into the hadron structure, leading to partonic tomography
revealing the spatial distribution of partons in the plane
transverse to the direction of motion of the hadron [72–75].
For extensive reviews of GPDs see, e.g., [76–87], where
also the significance of GPDs to physical processes, such as
deeply virtual Compton scattering (DVCS) or the hard
meson production (HMP) is reported.
The pion GPDs in a nonlocal chiral quark model were

presented in [88], whereas the NJL results can be found
in [89–93]. In particular, analytic expressions at the quark
model scale were presented in [90]. For an evaluation of the
GPDs of light mesons in the light-front Hamiltonian
approach see [94]. The ρ meson GPD in the NJL model
was shown in [95]. Transverse lattice calculations were
given in [96], with the results reproduced by an NJL
calculation [97].
Recently, the accessibility of the pion GPD through the

Sullivan process [98] has been brought up in the context of
the future Electron-Ion Collider experiments [99,100].
A path to obtain GPDs on the Euclidean lattice from the

quasi GPDs (qGPDs) has been proposed in [101,102],
and an alternative approach based on the pseudo GPDs
(pGPDs) has been advocated in [103]. In a quark spectator
model, qGPDs were addressed in [104–106], whereas the
first lattice-QCD results for zero-skewness GPDs were
reported in [107,108]. The limit of large-Nc in ITDs of the
pion was studied in [109].
The role of model studies of quasidistributions is based

not only on the fact that they are the core of lattice studies
of partonic distribution. These quantities are interesting
per se as properties of hadrons related to matrix elements of
bilocal operators. They also shed light on the rather
intricate formalism of partonic distributions, providing
nontrivial examples. This is very much so in the case of
the pion which arises as the would-be Goldstone boson of
the spontaneously broken chiral symmetry.

In this work we study the qGPDs and pGPDs, as well as
the generalized Ioffe-time distributions of the pion in the
framework of the NJL model at the low quark model scale,
where the chiral symmetry features of QCD are properly
implemented and expected to largely dominate the results.
We also consider the transversity distributions, related to
the spin distributions. With the obtained analytic or semi-
analytic expressions we study the limit of the large
momentum Pz of the pion, i.e., we investigate the approach
of the quasidistributions to the standard GPD case. The
question is of practical importance for the scheme to work,
as on the lattice the upper value of Pz is naturally limited
with the inverse lattice spacing, a ∼ 1=Pz, which presently
reaches (in physical units) up to about a ∼ 0.05–0.10 fm
and, consequently, Pz ∼ 2–4 GeV only. We stress that our
model approach satisfies all the general field-theoretic
requirements, such as the Lorentz covariance, the gauge
invariance, or crossing symmetry.
In this paper we restrict to the model results at the quark

model scale [90], and do not carry out the QCD evolution to
higher scales. We are interested in exploring the Pz → ∞
limit, which is generally not affected by the evolution in the
sense that the discrepancy between a finite Pz and the
infinite limit at the quark model scale would be carried over
with the evolution to higher scales. We note that a working
scheme for the evolution of qGPD, proceeding via evolu-
tion of the kT-unintegrated distributions [110–113], has
been used in [46]. Such studies for the present case, needed
to compare the model results to the lattice data obtained at
much higher scales, are left for a future work.
We find that to obtain reasonable GPDs, in particular the

nonforward ones, requires large values of Pz, at least of
the order of ∼3 GeV. We also explore polynomiality of the
quasidistributions and study in some detail the generalized
quasi form factors. The issue of separability of the trans-
verse and longitudinal dynamics in the model is studied
with the help of the generalized Ioffe-time distributions.
The paper is organized as follows: In Sec. II we review

and extend the general formalism of quasi GPDs of the
pion, discussing in particular the feature of polynomiality
and the generalized quasi form factors, the generalized
Ioffe-time distributions, and the generalized pseudodistri-
butions, with their relation to the kT-unintegrated GPDs.
Section III is devoted to our model results. We first briefly
review the NJL model and then present its numerous
analytic or semianalytic results for the quasi distributions
and related quantities introduced earlier. The proximity of
the results obtained at a large but finite Pz to the Pz → ∞
limit is assessed. We present the generalized Ioffe-time
distributions and the generalized pseudodistributions and
discuss the issue of the separability of the longitudinal and
transverse dynamics. We also elucidate the range in the
Ioffe time needed to reliably pass to the x space. The
Appendices contain some more technical but nevertheless
useful and relevant results, such as explicit realizations of
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various possible kinematics for the quasidistributions, the
derivation and explicit forms of the one-loop expressions
for the NJL model, or an explicit check of polynomiality for
the quasi distributions.

II. BASICS

Given the large number of variables and their Fourier
conjugates involved in the GPDs and related objects, there
is some inherent degree of complexity which cannot be
avoided. In this section we provide a concise glossary of the
necessary definitions and establish the notation of our
paper. The mentioned results are general, independent of
the model used later on.

A. Definitions

The valence quark GPDs and qGPDs of the pion can be
defined via the same universal formula involving bilocal
quark operators [70,71,114–116] (in Appendix A we
discuss possible more general definitions related to the
Lorentz decomposition of the amplitude [17]), namely

Z
∞

−∞

dλ
4π

eiλyp·n
�
πbðpþ qÞjψ̄α

�
−
λ

2
n

�
=nψβ

�
λ

2
n

�
jπaðpÞ

�
¼ δabδαβHI¼0ðy; ζ; t; n2Þ þ iϵabcτcαβH

I¼1ðy; ζ; t; n2Þ;
ð1Þ

where a, b, and c are the isospin indices, α and β are the
quark flavors (summation over color is implicit), and the
subscripts I ¼ 0, 1 denote the isospin. As is routinely being
done in low-energy chiral quark models, the gauge link
operators are omitted, as one does not consider gluons at
the quark model scale. Furthermore, the ingoing and
outgoing pions are on the mass shell, t is the momentum
transfer, and ζ is the skewness parameter:

p2¼m2
π; p ·n¼1; q ·n¼−ζ; q2¼−2p ·q¼ t: ð2Þ

The momentum fraction carried by the quark is denoted as

y ¼ k · n
p · n

: ð3Þ

For the GPDs, the quarks are separated by a light-like (null)
vector λn, i.e., n2 ¼ 0 (then y is traditionally written as the
Bjorken x), whereas for qGPDs we have a spacelike
separation, with n2 < 0, in certain harmony with the
Euclidean nature of these objects on the lattice.
For the valence transversity case, tGPD and qtGPD are

defined via an analogous formula to Eq. (1), with an
additional tensorial structure pulled out:

Z
dλeiλyp·n

4π
hπbðpþqÞjψ̄α

�
−
λ

2
n

�
nμσμνγ5ψβ

�
λ

2
n

�
jπaðpÞi

¼ ϵnpqν½δabδαβEI¼0ðy;ζ;t;n2Þ
þ iϵabcτcαβE

I¼1ðy;ζ;t;n2Þ�; ð4Þ

where ϵnpqν ¼ ϵρσλνnρpσqλ involves the Levi-Civita tensor
with the convention ϵ0123 ¼ −1. Note that this definition
leads to EI¼0;1 of dimension of inverse mass,1 while HI¼0;1

are dimensionless. For the GPD or tGPD case, Eqs. (1), (4)
define the leading twist-2 distributions in the pion.
The definitions (1) and (4) are fully relativistically covar-

iant, and so is our evaluation. However, in Appendix B we
provide some possible explicit kinematic assignments to the
vectors p, q, and n, defining various reference frames. In
particular, for the kinematics used by Ji [1], where the pion
moveswithmomentumPz andn ¼ ð0; 0; 0;−1=PzÞ, one has

n2 ¼ −
1

P2
z
: ð5Þ

With the skewness 1 ≥ ζ ≥ 0, and when n2 ¼ 0 (the GPD
and tGPD cases), the momentum fraction is bounded x ∈
½−1þ ζ; 1� and has three distinct subdomains: ½−1þ ζ; 0�,
½0; ζ�, and ½ζ; 1�, corresponding to three distinct virtual
processes: excitement and de-excitement of the antiquark,
excitement of a quark-antiquark pair, and excitement and
de-excitement of a quark, respectively. On the contrary, for
n2 < 0 (the qGPD and qtGPD cases), the momentum
fraction y is unbounded, y ∈ ð−∞;∞Þ, and the above-
mentioned kinematic regions are not sharply separated.

B. Asymmetric and symmetric conventions

Two conventions are used in the literature for the
momentum fractions (y, Y) and the skewness (ζ, ξ), which
can be determined relative to the incident pion momentum,
or to the average momentum of the incident and outgoing
pions. These two sets are related by

Y ¼ 2y − ζ

2 − ζ
; ξ ¼ ζ

2 − ζ
: ð6Þ

The variables Y and ξ correspond the so-called symmetric
convention, because of the symmetry or antisymmetry of
the qGPDs about Y ¼ 0, whereas y and ζ relate to the
asymmetric convention. In this paper we use the symbolsH
and E to represent qGPDs and tqGPDs in the symmetric
convention, while H and E are used for the asymmetric
convention. Switching between the two conventions
amounts to the replacement

1This can be compensated by multiplying with the mass of the
hadron, but we chose not to do it, as it is not usable for the pion in
the chiral limit. Also, physical observables involve the whole
matrix element, where the issue does not arise.
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HI¼0;1ðY; ξ; t; n2Þ ¼ HI¼0;1ðy; ζ; t; n2Þ; ð7Þ

EI¼0;1ðY; ξ; t; n2Þ ¼ 1

1þ ξ
EI¼0;1ðy; ζ; t; n2Þ: ð8Þ

We note that according to definition (1) the normalization isR
dyHI¼1ðy; ζ; t ¼ 0; n2Þ ¼ 1þ ζ=2, hence HI¼1 is not

normalized to 1 (the conserved charge of the pion).
That feature could be enforced by altering Eq. (1),
putting instead of 1=ð4πÞ the factor 1=½2πð2 − ζÞ�.
Then that factor would be canceled in Eq. (7) by the
Jacobian of the transformation from y to Y, which is
dy=dY ¼ 2 − ζ ¼ 1=ð1þ ξÞ. The traditional convention,
however, uses Eqs. (1), (7) as written, withR
dYHI¼0;1ðY; ξ; t ¼ 0; n2Þ ¼ 1. For EI¼0;1 there is no

conservation law enforcing normalization. Nevertheless,
with definition (4) and the Jacobian kept in Eq. (8) the
normalization of EI¼0;1ðY; ξ; t ¼ 0; n2Þ is independent of ξ.
Further discussion of related issues is given in Sec. III D.
We will occasionally use a shorthand notation, where F

stands for HI¼0;1 or EI¼0;1, and similarly F stands for
HI¼0;1 or EI¼0;1. The basic symmetry features of qGPDs in
the symmetric notation are

FI¼0ðY; ξ; t; n2Þ ¼ −FI¼0ð−Y; ξ; t; n2Þ;
FI¼1ðY; ξ; t; n2Þ ¼ FI¼1ð−Y; ξ; t; n2Þ: ð9Þ

The corresponding quark and antiquark qGPDs and
qtGPDs are constructed with the relations

F qðy; ζ; t; n2Þ ¼
1

2
ðF I¼0ðy; ζ; t; n2Þ þ F I¼1ðy; ζ; t; n2ÞÞ;

F q̄ðy; ζ; t; n2Þ ¼
1

2
ðF I¼0ðy; ζ; t; n2Þ − F I¼1ðy; ζ; t; n2ÞÞ;

ð10Þ

and analogously for the symmetric notation.
For GPDs and tGPDs, x ∈ ½−1þ ζ; 0� ∪ ½ζ; 1�, or

X ∈ ½−1;−ξ� ∪ ½ξ; 1�, is referred to as the DGLAP region,
whereas x ∈ ½0; ζ�, or X ∈ ½−ξ; ξ�, as the ERBL region,
with the names borrowed from the corresponding
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi QCD evolution
equations for the PDFs and the Efremov-Radyshkin-
Brodsky-Lepage evolution for the DAs [117,118].

C. Polynomiality

An important formal property of qGPDs is the poly-
nomiality feature, whereby the Y-moments of F are even

polynomials in the ξ variable, with the coefficients AðkÞ
m and

BðkÞ
m , depending on t and n2, interpreted as the generalized

quasi form factors:

Z
∞

−∞
dYY2kHI¼1ðY; ξ; t; n2Þ ¼

Xk
m¼0

AðkÞ
m ðt; n2Þξ2m;

Z
∞

−∞
dYY2kþ1HI¼0ðY; ξ; t; n2Þ ¼

Xkþ1

m¼0

BðkÞ
m ðt; n2Þξ2m:

Z
∞

−∞
dYY2kEI¼1ðY; ξ; t; n2Þ ¼

Xk
m¼0

AðkÞ
Tmðt; n2Þξ2m;

Z
∞

−∞
dYY2kþ1EI¼0ðY; ξ; t; n2Þ ¼

Xkþ1

m¼0

BðkÞ
Tmðt; n2Þξ2m: ð11Þ

Polynomiality follows from the basic field theoretic fea-
tures of the theory, such as the Lorentz covariance, time
reversal, and Hermiticity, in a full analogy to the GPD case
(n2 ¼ 0). The simple derivation proceeds via the double
distributions [119], which now are additionally functions of
n2. This n2 dependence is carried over to the form factors.
In Appendix E we explicitly check polynomiality for the

basic one-loop functions entering the NJL evaluation.
Clearly, in the limit of n2 → 0 the generalized quasi form

factors AðkÞ
m ðt; n2Þ and BðkÞ

m ðt; n2Þ tend to the generalized
form factors related to the GPDs (for a detailed discussion
of these quantities and their QCD evolution see [120]).
The zeroth moment of HI¼1 is independent of n2,Z

∞

−∞
dYHI¼1ðY; ξ; t; n2Þ ¼ Að0Þ

0 ðtÞ ¼ 2FVðtÞ; ð12Þ

where FVðtÞ is the pion’s charge form factor. Similarly,Z
∞

−∞
dYEI¼1ðY; ξ; t; n2Þ ¼ Að0Þ

T0 ðtÞ; ð13Þ
Z

∞

−∞
dYEI¼0ðY; ξ; t; n2Þ ¼ Bð0Þ

T0 ðtÞ; ð14Þ

are independent of n2. The higher moments do depend
explicitly on n2.2

The first moment ofHI¼0 involves the gravitational form
factors θ1;2 [46]:

Z
∞

−∞
dYYHI¼0ðY; ξ; t; n2Þ ¼ θ2ðt; n2Þ − ξ2θ1ðt; n2Þ: ð15Þ

At the quark model scale, where the quarks are the only
degrees of freedom, one has θ2ðt ¼ 0; n2 ¼ 0Þ ¼ 1, which
reflects the fact that the trace of the energy-momentum
tensor in the pion state is m2

π [46] (the energy-momentum

2We note, however, that the higher moments in Y may not exist
due to the long-range tails in Y of the FðY; ξ; t; n2Þ distributions.
As a mater of fact, in the employed NJL model with two Pauli-
Villars subtractions we may compute, depending on the type of
distribution, the first few Y-moments according to Eq. (36).
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sum rule). In the chiral limit, a low-energy theorem [121]
yields a general relation θ2ðt; n2 ¼ 0Þ − θ1ðt; n2 ¼ 0Þ ¼
Oðm2

πÞ. We note that in the mechanistic interpretation θ1ðtÞ
is the D-term [122].

D. Generalized Ioffe-time distributions

The generalized ITDs are obtained from qGPDs or
qtGPDs via the Fourier transform from the momentum-
fraction variables to the Ioffe time ν:

F Ið−ν; ζ; t;−z2Þ ¼
Z

dyeiνyF ðy; ζ; t; z2=ν2Þ;

FIð−ν; ξ; t;−z2Þ ¼
Z

dYeiνYFðY; ξ; t; z2=ν2Þ; ð16Þ

where the subscript I stands for “Ioffe” and, as already
mentioned, F stands either for HI¼0;1 or EI¼0;1, while F
either for HI¼0;1 or EI¼0;1. The Ioffe time is defined as

ν ¼ p · z; ð17Þ

which in the employed kinematics is ν ¼ −Pzz3, hence
ν2 ¼ P2

zz23 ¼ z2=n2. The variables ν and z2 ≤ 0 are the
arguments of ITDs. An obvious relation between between
the asymmetric and symmetric notation follows from
Eq. (6), namely

FIð−ν; ξ; t;−z2Þ ¼ e−iνξF I

�
−ð1þ ξÞν; 2ξ

1þ ξ
; t;−z2

�
;

ð18Þ

hence for nonzero ξ the real and imaginary parts of the two
conventions mix, while ν gets rescaled.
Another simple fact is that the subsequent derivatives of

FIð−ν; ξ; t;−z2Þ with respect to ν at ν → 0 (with
z2 ¼ ν2n2) provide the moments of Eqs. (11). We wish
to underline here that although higher moments of qGPDs
and tqGPD may not and, in general, do not exist, as
remarked in footnote2 and elaborated in Appendix E, the
corresponding ITDs are nevertheless well defined, as a
Fourier transform of a regular function that asymptotically
goes to zero always exists. The point is, however, that one
cannot use it to obtain the higher (nonexisting) moments, as
one cannot interchange the limit of taking the derivatives
and the improper integration. The problem disappears for
the GPD limit, as the finite support in x make all
moments exist.
With the notation (5) we have (interpreting Pz as fixed)

FIð−ν; ξ; t; ν2=P2
zÞ ¼

Z
dYeiνYFðY; ξ; t;−1=P2

zÞ: ð19Þ

Taking z ¼ ð0; 0; 0; z3Þ, whereby ν ¼ −z3Pz, one can also
write

FIðz3Pz; ξ; t; z23Þ ¼
Z

dYe−iz3PzYFðY; ξ; t;−1=P2
zÞ ð20Þ

and treat the ITDs as functions of z3 at fixed Pz. Due to the
rotational invariance, z23 should be viewed as the modulus
squared of the space part of z, namely jzj2. In particular, one
can choose z in the transverse direction, where it is related
to the kT-unintegrated distributions via Fourier transform.
The generalized reduced Ioffe-time distributions [17] are

defined as

Fð−ν; ξ; t;−z2Þ ¼ FIð−ν; ξ; t;−z2Þ
FIð0; ξ; t;−z2Þ

¼
R
dYeiνYFðY; ξ; t; z2=ν2ÞR
dYFðY; ξ; t; z2=ν2Þ ; ð21Þ

or

Fðz3Pz; ξ; t; z23Þ ¼
R
dYe−iz3PzYFðY; ξ; t;−1=P2

zÞR
dYFðY; ξ; t;−1=P2

zÞ
: ð22Þ

These quantities can be efficiently used to probe
the transverse-longitudinal factorization [17,46]. Their
Y-moments are independent of Pz up to the rank 1 (see
the discussion in subsection III D). Moreover, the reduced
distributions are advantageous for the lattice QCD simu-
lations [17].

E. Generalized pseudodistributions

Radyushkin’s pseudo-distributions [15,16,123,124] are
in turn defined as Fourier transforms of the ITDs from ν to
the momentum fraction x, namely

FPðx; ξ; t;−z2Þ ¼
Z

dν
2π

e−iνxFIð−ν; ξ; t;−z2Þ ð23Þ

(and similarly for the asymmetric convention), where the
superscript P stand for “pseudo”. An advantage of these
distributions is that the momentum fraction has the support
x ∈ ½−1; 1� (cf. Appendix G). Moreover, the x ∈ ½0; 1�
range corresponding to the quarks is strictly separated
from the x ∈ ½−1; 0� region corresponding to the anti-
quarks. The functional dependence on x and z2 in the
generalized pseudodistributions can be used to probe the
correlation between the longitudinal and transverse dynam-
ics, since in the case of no correlations the x and z2

dependence factorizes. Clearly, from the definitions it
follows that FPðx; ξ; t;−z2 ¼ 0Þ ¼ Fðx; ξ; t; n2 ¼ 0Þ.

F. Relation to kT-unintegrated GPDs

Another property of pGPDs is their simple relation to
the kT-unintegrated GPDs (or the transverse-momentum
distributions (TMDs), up to the intricacies of the
Wilson link operators [125]). This feature, derived by
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Radyushkin [15,16,123,124] and following solely from the
Lorentz covariance, naturally generalizes to the pGPD case.
The kT-unintegrated GPDs can be defined as a Fourier
transform of the generalized pseudodistributions as follows:

FTðx; ξ; t; k21 þ k22Þ

¼
Z

dz1dz2
ð2πÞ2 eik1z1þik2z2FPðx; ξ; t; z21 þ z22Þ; ð24Þ

where indices 1,2 relate to the transverse space. The
generalization of the Radyushkin relation, written invari-
antly, reads

FðY; ξ; t; n2Þ

¼ 1ffiffiffiffiffiffiffiffi
−n2

p
Z

dk1

Z
dxFT

�
x; ξ; t; k21 −

ðx − YÞ2
n2

�
: ð25Þ

An explicit check for the one-loop calculation is provided
in Appendix F.
The relation of the generalized pseudo or quasidistribu-

tions to the kT-unintegrated generalized distributions opens
the possibility of carrying out the QCD evolution with the
approach suggested by Kwieciński [110–113], as already
done for the qGPDs of both the pion and the nucleon
in [46]. This interesting problem is left for a future study.

III. VALENCE GPDs AND tGPDs OF THE PION
IN THE NJL MODEL

This section presents novel analytic and semianalytic
results, specific to the NJL model in the large-Nc limit, i.e.,
obtained at the one-quark-loop level. All the discussion
concerns the valence distributions at the quark model scale.

A. Lagrangian

In this subsection we describe the calculation and present
the results for the valence qGPDs and qtGPDs of the pion in
the NJL model. We apply the nonlinear version of the
model with the Lagrangian of the form

L ¼ ψ̄ði=∂ −MU5 −mÞψ ; ð26Þ

with

U5 ¼ exp ðiγ5τ · ϕ=fÞ; ð27Þ

where M is the constituent quarks mass from the sponta-
neous chiral symmetry breaking, m is the current quark
mass explicitly breaking the chiral symmetry, f is the pion
weak decay constant, τ are the Pauli matrices, and ϕ is the
pion field. When departing from the strict chiral limit,
the canonical pion field becomes π ¼ Zϕ, such that the
canonical pion-quark coupling constant obtained from the
residue at the pole of the pion propagator is gπq ¼ ZM=f
(see [44] for details).

B. Methodology

Our methodology follows the numerous earlier works
on the properties of the pion: PDF [60,61,126], the
distribution amplitude [127], the generalized distribution
functions [90], the generalized form factors [120], the
quasidistribution amplitude [45], the quasi or pseudo
PDFs [46], as well as the double distribution functions
[128]. The calculation at the large-Nc level amounts to the
evaluation of one-loop diagrams displayed in the Fig. 1. We
note that diagram (c), appearing in the nonlinear model (26)
for nonzero q, makes the result covariant and contributes to
the D-term [116].3

(a)

(b)

p p+q

p
p+q

q

q

k
k+q

k−p

k k+q

k+p+q

k.n=y p.n

k.n=y p.n

q

k
k+q

p p+q

k.n=y p.n

(c)

FIG. 1. One-loop diagrams for the evaluation of qGPDs and
qtGPDs in the NJL model. Solid lines indicate the quark
propagator and dashed lines the external on-shell pions. The
wavy line denotes the probing operator =n or nμσμνγ5 for qGPDs or
qtGPDs, respectively. The loop momentum integration is over
three dimensions only, with the constraint k · n ¼ yp · n elimi-
nating the fourth.

3In the linear σ-like model following from the bosonization of
the NJL model, the diagram equivalent to Fig. 1(c) involves
a σ-meson propagator in the t-channel. The results at nonzero t
are somewhat more complicated from the present ones, but the
essentials are the same.
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The results are interpreted as pertaining to the quark-
model scale, where the quarks are the only dynamical
degrees of freedom. This scale is very low, ∼320 MeV, as
can be assessed from the momentum fraction carried by the
valence quarks [90], as well as independently from the
value of the quark condensate [129]. There is a demand for
the QCD evolution whenever one wishes to compare the
model results to the experimental or lattice data at much
higher scales. The results at the quark model scale,
as those presented in this work, are treated as initial
conditions for the QCD evolution, with only valence quarks
present. One carries out the evolution to a higher scale, say
2 GeV, whereby sea quarks and gluons are radiatively
generated. The program has been carried out for the
PDFs [60,61], GPDs [90], tGPDs [92], and qPDFs [46].
For the present case of qGPDs and tqGPDs, it is left for a
future study.

The NJL model is a nonrenormalizable effective field-
theoretical Lagrangian, hence a high-energy cutoff must be
introduced. A way to do it consistently, with the Lorentz
and gauge symmetries preserved, is to use a twice-sub-
tracted Pauli-Villars (PV) regularization [44]. In this set up,
the basic scalar loop integrals LðM2Þ are regularized in the
following way:

LðM2Þreg ¼ LðM2Þ − LðM2 þ Λ2Þ þ Λ2
dLðM2 þ Λ2Þ

dΛ2
:

ð28Þ
In deriving the one-loop NJL expressions for the qGPDs

and tqGPDs we follow exactly the same steps as given in
Ref. [90]. Some details are provided in Appendix C. The
amplitudes obtained from the subsequent diagrams of
Fig. 1 are

Haðy; ζ; t; n2Þ ¼ iNcg2πq
4π4

Z
d4k

δðk · n − yÞ
DkDkþqDk−p

�
ðk2 −M2Þðζ − y − 1Þ þ k · pð2y − ζÞ − k · q −

1

2
yt

�
;

Hbðy; ζ; t; n2Þ ¼ iNcg2πq
4π4

Z
d4k

δðk · n − yÞ
DkDkþqDkþpþq

�
ðk2 −M2Þð1 − yÞ − k · pð2y − ζÞ þ k · qð1 − 2y −

1

2
yt

�
;

Hcðy; ζ; t; n2Þ ¼ iNcg2πq
4π4

Z
d4k

δðk · n − yÞ
DkDkþq

ð2y − ζÞ; ð29Þ

where, Dl ¼ l2 −M2 þ i0, and the superscripts correspond to the labels in Fig. 1. For the proper isospin combinations
one has

HI¼0 ¼ Ha þHb þHc;

HI¼1 ¼ Ha −Hb; ð30Þ

and explicitly

HI¼0;1ðy; ζ; t; n2Þ ¼ −iNcg2πq
8π4

Z
d4kδðk · n − yÞ

�
1

DkDk−p
þ 1 − ζ

DkþqDk−p
∓ 1

DkþqDkþqþp
∓ 1 − ζ

DkDkþpþq

þðζ − 2yÞm2
π þ tðy − 1Þ

DkDkþqDk−p
∓ ðζ − 2yÞm2

π þ tðy − ζ þ 1Þ
DkDkþqDkþpþq

�
: ð31Þ

Analogously, the amplitudes corresponding to the tGPDs are

Eaðy; ζ; t; n2Þ ¼ −iNcMg2πq
4π4

Z
d4k

δðk · n − yÞ
DkDkþqDk−p

;

Ebðy; ζ; t; n2Þ ¼ iNcMg2πq
4π4

Z
d4k

δðk · n − yÞ
DkDkþqDkþpþq

;

Ecðy; ζ; t; n2Þ ¼ 0; ð32Þ
Thus, tGPDs get contributions only from the triangle
diagrams of Fig. 1. For the isospin combinations one has,
in analogy to Eq. (30),

TABLE I. The values of the parameters used in the present
work and the resulting values of the pion mass, pion weak decay
constant, and the pion-quark coupling constant.

M m Λ mπ fπ
gπq(MeV) (MeV) (MeV) (MeV) (MeV)

Chiral 300 0 731 0 86 3.49
Physical 300 7.5 830 139.6 93 3.14
Lattice 300 41.5 1115 400 110 2.29
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EI¼0;1ðy; ζ; t; n2Þ ¼ −iNcMg2πq
4π4

Z
d4kδðk · n − yÞ

×

�
1

DkDkþqDk−p
∓ 1

DkDkþqDkþpþq

�
:

ð33Þ

From the form of Eqs. (31) and (33) it is clear that we
need to evaluate two types of integrals: the scalar two-point
function (bubble) I and the three-point function (triangle) J
(see the Appendix C for the definitions and evaluation).
Substituting these in Eqs. (31) and (33) yields our final
expressions used for computations:

HI¼0;1ðy; ζ; t; n2Þ ¼ 1

2
½Iðy; 1; m2

πÞ þ ð1 − ζÞIðy − ζ; 1 − ζ; m2
π; n2Þ ∓ Iðy − ζ;−1; m2

πÞ ∓ ð1 − ζÞIðy; ζ − 1; m2
π; n2Þ

− ½ðζ − 2yÞm2
π þ tðy − 1Þ�J

�
y; ζ; 1; t; m2

π;−
t
2
; n2
�

∓ ½ðζ − 2yÞm2
π þ tðyþ 1 − ζÞ�J

�
ζ − y; ζ; 1; t; m2

π;−
t
2
; n2
��

EI¼0;1ðy; ζ; t; n2Þ ¼ M
2

�
J
�
y; ζ; 1; t; m2

π;−
t
2
; n2
�

∓ J
�
ζ − y; ζ; 1; t; m2

π;−
t
2
; n2
��

: ð34Þ

FIG. 2. qGPDs HI¼0;1 (panels a, b) and qtGPDs EI¼0;1 (panels c, d), plotted as functions of Y for several values of Pz (physical pion
mass, ξ ¼ 1=2, and t ¼ 0).
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The above formulas are generic for the evaluation based
on the diagrams of Fig. 1, with the model details (such as
the choice of regularization in the NJL model or the
selection of parameters) contained in the basic one-loop
functions I and J. We note the Lorentz invariance and
proper crossing symmetry properties.
In the GPD or tGPD case (n2 ¼ 0), the above distribu-

tions for I ¼ 0 and I ¼ 1 differ by functions whose support
vanishes in the positive DGLAP region (cf. Appendix C.
Therefore, in the NJL model at the quark-model scale the
I ¼ 0, 1 GPDs or tGPDs are equal in the positive DGLAP
region, and equal and opposite in the negative DGLAP
region. In the symmetric notation

FI¼0ðX; ξ; t; n2 ¼ 0Þ ¼ sgnðXÞFI¼1ðX; ξ; t; n2 ¼ 0Þ;
for jXj > ξ: ð35Þ

For n2 < 0 the formula does not hold, as the supports of the
one-loop functions are not separated. Also, the QCD
evolution, working differently in the singlet and nonsinglet
cases, breaks it, so Eq. (35) holds specifically at the quark-
model scale.
In the spontaneously broken phase, the model has three

parameters: the constituent quark mass M, the current

quark mass m, and the cut-off parameter Λ used in the PV
regularization of the scalar loop diagrams. Following the
standard procedure, two of these (m and Λ) are fixed by
demanding particular values ofmπ and fπ , whereasM is set
to 300 MeV. The values of the parameters used in the
present work are listed in Table I. “Chiral” corresponds to
the chiral limit, “physical” to the charged pion mass, and
“lattice” to a large pion mass, of the order of the values used
in some less expensive lattice QCD simulations.

C. Quasi GPDs and tGPDs

In this subsection we present qGPDs and qtGPD obtained
in theNJLmodel. Since the prime objective of the paper is an
investigation of the dependence of the results onPz, with the
lattice feasibility in mind, we begin by showing in Fig. 2
HI¼0;1 andEI¼0;1 as functions of Y. We use here the physical
pion mass, fixed sample values of ξ ¼ 1=2 and t ¼ 0,
and several representative values ofPz. We remark thatPz ∼
3 GeV is about the upper limit accessible in the present-day
lattice studies. Clearly, the limit Pz → ∞ corresponds to
GPDs or tGPDs. In the model, the GPDs and tGPD have
sharp edges at x ¼ ξ and at the end-points x ¼ �1 [90,92]
(see Appendix D). Finite value of Pz washes out these

FIG. 3. Same as in Fig. 2, but for a varying pion mass and fixed Pz ¼ 3 GeV, ξ ¼ 1=2, and t ¼ 0.
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discontinuities, thus covering up the finer details of the
distributions.Wenote that atPz ¼ 1 GeVwe are far from the
Pz→∞ limit, whereasPz ¼ 3 GeV gets significantly closer.
The discrepancy is larger for the case of HI¼0;1 rather than
for EI¼0;1.
For finite Pz, at asymptotic Y we find for the NJL model

with two PV subtractions the behavior

HI¼1 ∼ jYj−5; HI¼0 ∼ Y−6;

EI¼1 ∼ jYj−7; EI¼0 ∼ Y−8: ð36Þ

According to the discussion in Sec. II C, this limits the
ranks of the nonzero Y-moments up to 2, 3, 4 and 5 for
HI¼1, HI¼0, EI¼1, and EI¼0, respectively.
In Fig. 3we show an analogous study of the dependence on

the pion mass, with fixedPz ∼ 3 GeV, andwith ξ ¼ 1=2 and
t ¼ 0. In some lattice QCD simulations one uses a large
pion mass, ∼300–400 MeV, which requires less statistics.
Thus we present as well the case of a large pion mass,
mπ ¼ 400 MeV. The effect of large mπ is particularly
significant forEI¼1, but noticeable also for all the other cases.
The effect of changing ξ is not shown separately to not

proliferate the number of figures. It just moves the
discontinuities of the GPDs or tGPDs at the value
X ¼ ξ, with the quasi distribution following them, similarly
as in Fig. 2. Naturally, it affects the slopes. The dependence
on the momentum transfer t is discussed in detail on the
case of the generalized quasi form factors in Sec. III D.

D. Generalized quasi form factors

According to Eqs. (11), qGPDs and qtGPDs may be
thought of as infinite collections of the generalized quasi
form factors. In this subsection we analyze the lowest
generalized quasi form factors, as they should possibly be
accessible to lattice determinations. The properties of the
generalized form factors related to GPDs, in particular
their QCD evolution, were discussed in detail in [130],
whereas the chiral quark model predictions were reported
in [120].
We start with the form factors which are independent of

n2, namely Að0Þ
0 ðtÞ ¼ 2FVðtÞ, Að0Þ

T0 ðtÞ, and Bð0Þ
T0 ðtÞ. They are

shown in Fig. 4 for three values of mπ . The mean squared
radii are defined generically as

hr2i ¼ 6

Fð0Þ
dFðtÞ
dt

				
t¼0

; ð37Þ

and the corresponding root mean squared (rms) radii are
collected for several form factors in Table II.
For the vector form factor of Fig. 4(a) we note a

mild decrement of the rms radius with mπ . The lower
number compared to the experiment, ð0.659ð4Þ fmÞ2 [131],
is attributed to the missing chiral loops in our leading 1=Nc
treatment.

The lowest order form factors of qtGPDs are shown in
Figs. 4(b) and 4(c). In our model, the values at the origin are

N for Að0Þ
T0 ðtÞ and N =3 for Bð0Þ

T0 ðtÞ, where N is given in

FIG. 4. Form factors independent of n2, plotted at space-like
momentum transfer t for several values of the pion mass. Panel
(a) corresponds to the vector form factor, and panels (b, c) to the
two lowest transversity form factors.
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Eq. (D3). The corresponding rms radii for the I ¼ 1 form

factor, Að0Þ
T0 , are similar to the vector case.

The two gravitational quasi form factors are presented in
Fig. 5. Unlike the above-discussed cases, these form factors
do depend on Pz. What is independent of Pz, however, is
the value of θ2 at the origin, θ2ð0; n2Þ ¼ 1. This model
result is more general than the energy momentum sum-rule
mentioned in Sec. II C, holding for the n2 ¼ 0 case. Also,
in our model in the chiral limit θ1ðt; n2Þ − θ2ðt; n2Þ ¼
Oðm2

πÞ for any n2, extending the similar low energy
theorem for lightlike vectors, n2 ¼ 0.
The values of the rms radii of the gravitational quasi form

factors given in Table II exhibit a strong dependence on Pz,
which is complementary to the behavior in Fig. 5. We note
that the model relation showing a more compact distribu-
tion of matter than charge in the pion [120],

2hr2iθ1;2 ¼ hr2iV; ð38Þ

holds for n2 ¼ 0 and in the chiral limit.

There is yet another relevant feature pertaining to the
form factors discussed up to now. The vector form factor,
corresponding to a conserved current, does not evolve
with the QCD scale. The QCD evolution of the general-
ized form factors (for n2 ¼ 0) is multiplicative for the
gravitational form factors (albeit the quark pieces mix
with the gluon distributions), hence the valence form

FIG. 5. Gravitational quasi form factors θ1 (thin lines) and θ2
(thick lines) for (a) various values of Pz at the physical pion mass,
and (b) for various pion masses at Pz ¼ 3 GeV.

TABLE II. Values of the rms radii of various form factors for
the three considered values of mπ .

mπ (MeV) 0 139.6 400

hr2i1=2V [fm] 0.54 0.52 0.50

hr2i1=2
Að0Þ
T0

[fm] 0.53 0.53 0.58

hr2i1=2
Bð0Þ
T0

[fm] 0.41 0.41 0.49

hr2i1=2θ1
[fm] ðPz ¼ 1Þ 0.57 0.56 0.62

hr2i1=2θ1
[fm] ðPz → ∞Þ 0.38 0.36 0.32

hr2i1=2θ2
[fm] ðPz ¼ 1Þ 0.30 0.28 0.32

hr2i1=2θ2
[fm] ðPz → ∞Þ 0.38 0.37 0.39

FIG. 6. Sample higher-order generalized vector (a) and trans-
versity (b) quasi form factors.
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factors change only by an overall factor, whereas their
shape in t is preserved. Analogously, for the rank-0 form
factors of EI¼0;1 the renormalization is multiplicative,
hence their shape in t is preserved. This feature is
generally not preserved for the higher rank generalized
form factors, such as those displayed in Fig. 6, whose
LO QCD evolution mixes them [130]. Therefore we
encounter a situation where the higher rank generalized
quasi form factors not only strongly depend on n, but also
are largely affected by the QCD evolution. For their
assessment at higher scales, carrying out the evolution
is necessary.

E. Generalized Ioffe-time distributions

In this subsection we show our model results for the
reduced generalized ITDs defined in Eq. (21) for each of
the functions HI¼1;0 and EI¼1;0. We discuss them in detail,
as they have become basic objects of the lattice QCD
studies. From symmetry properties in ν, the I ¼ 1 parts are
purely real, and the I ¼ 0 parts purely imaginary, so we
do not have to carry the isospin labels in the notation.

The (reduced) ITD of Eq. (21) are in general functions of,
independently, −ν and −z2, but following [17] we take the
sections defined by −z2 ¼ ν2=P2

z. First, we investigate the
dependence of the reduced ITDs on Pz.
In the NJL model, the one-loop expressions for the

generalized ITDs follow from the simple formulas
of Appendix G. It is clear that in the chiral limit and for
t ¼ 0 the dependence on z3 ¼

ffiffiffiffiffiffiffiffi
−z2

p
and ν is separated, as

z3 appears only in the argument of the Bessel functions
K0;1ðz3MÞ. Therefore the dependence on z3 ¼ ν=Pz can-
cels out from the ratio in Eq. (21) and the results for H and
E do not depend on Pz. On the contrary, the ITDs (not
reduced) would display a strong nonseparability of ν and
z3, obscuring the picture [17].
In the chiral limit and for t ¼ 0, the following formulas

are derived in Appendix D:

H ¼ sin ν
ν

þ i
cos νξ − cos ν

ν
;

E ¼ 2
cos νξ − cos ν
ν2ð1 − ξ2Þ þ 2i

ξ sin ν − sin νξ
ν2ξð1 − ξ2Þ ; ð39Þ

FIG. 7. Real (panels a, c) and imaginary (panels b, d) parts of the reduced generalized ITDs of the pion, plotted as functions of ν at
z3 ¼ ν=Pz for various values Pz. Physical pion mass, t ¼ −0.5 GeV2, and ξ ¼ 1=2.

SHASTRY, BRONIOWSKI, and ARRIOLA PHYS. REV. D 106, 114035 (2022)

114035-12



where the real and imaginary parts correspond to the I ¼ 1
and I ¼ 0 pieces, respectively. Of course, the independence
of Pz here is manifest.
Nonzero values of mπ or t cause a due breaking of the

ν–z3 separability, as can be clearly seen from Fig. 7 made
for the physical pion mass, a moderate t ¼ −0.5 GeV2, and
ξ ¼ 1=2. The breaking is more prominent at larger values
of ν, as expected from the fact that the second argument is
ν2=P2

z . While for the displayed range of ν the difference
between Pz ¼ 1 GeV and Pz → ∞ is substantial, the
results for Pz ¼ 3 GeV essentially coincide with the
GPD limit of Pz → ∞.
Next, we pass to studying the dependence of the

generalized ITDs on ξ. The expansion of formulas (39)
at ν ¼ 0 yields (at mπ ¼ 0 and t ¼ 0)

H ¼
X∞
k¼0

ν2k

ð2kþ 1Þ!þ i
X∞
k¼0

ð−1Þk ν
2kþ1ð1 − ξ2kþ2Þ
ð2kþ 2Þ! ;

E ¼
X∞
k¼0

ð−1Þk 2ν
2kpkðξ2Þ

ð2kþ 2Þ! þ i
X∞
k¼0

ð−1Þk 2ν
2kþ1pkðξ2Þ
ð2kþ 3Þ! ;

ð40Þ

where pkðξ2Þ ¼ 1þ ξ2 þ � � � þ ξ2k, and explicitly

H ¼ 1 −
1

6
ν2 þ i

�
1

2
ð1 − ξ2Þν − 1

24
ð1 − ξ4Þν3

�
þ � � � ;

E ¼ 1 −
1

12
ð1þ ξ2Þν2 þ i

�
1

3
ν −

1

60
ð1þ ξ2Þν3

�
þ � � � :

ð41Þ

We note the manifestation of polynomiality in the above
expressions in their dependence on ξ. In the case of general
mπ and t, in the limit of Pz → ∞ the coefficients of the
expansion of the generalized ITDs relate to the X-moments
of the corresponding GPDs, hence provide the information
on the generalized form factors.
For the case shown in Fig. 8, prepared with the physical

pion mass, t ¼ −0.5, and Pz ¼ 3 GeV, the results are not
too far away from the case of Eqs. (39), hence we note the
characteristic approximate features, such as the weak
dependence of ReðHÞ on ξ, the nearly zero ImðHÞ,
the proportionality of the slope of ImðHÞ to ð1 − ξ2Þ,
the increase of the curvature of ReðEÞ as ð1þ ξ2Þ, and the
independence of the slope of ImðEÞ of ξ. In general, we
note that, as expected from the framework, the dependence

FIG. 8. Same as in Fig. 7 but for different values of the skewness parameter ξ. Physical pion mass, t ¼ −0.5 GeV2, and Pz ¼ 3 GeV.
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on ξ is certainly a relevant feature. Methodologically, this
can be used as an alternative way to obtain the generalized
form factors.
In Figs. 9 and 10 we examine the dependence

of the generalized ITDs on the value of mπ and t for the
fixed value of Pz ¼ 3 GeV. The features directly reflect
the appearance of mπ and t in Eqs. (34). We find that
the dependence on mπ is very moderate, even with the
large value of mπ ¼ 400 MeV. The differences are a bit
larger for H than for E. On the other hand, the dependence
on t is somewhat more substantial, partly because we
have taken as moderate the value of −t ¼ 0.5 GeV2, which,
however, is significantly larger than the used values of m2

π .

F. Generalized pseudodistributions

First, we notice that equalities analogous to Eq. (35) hold
for the generalized pseudodistributions in the DGLAP
region for any value of z3:

FI¼0
P ðX; ξ; t;−z23Þ ¼ sgnðXÞFI¼1

P ðX; ξ; t;−z23Þ;
for jXj > ξ: ð42Þ

The reason is a proper separation of the supports of the loop
functions provided in Appendix G.
In Fig. 11 we show the generalized pseudodistributions

of Eq. (23) obtained in our model for the physical mπ ,
t ¼ 0, and skewness ξ ¼ 1=2, plotted as functions of x for
three sample values of z3. We can vividly see that in the
DGLAP region the generalized pseudodistributions
coincide, according to Eq. (42). The case of z3 → 0
corresponds, naturally, to the GPDs or tGPDs. We note
that with increasing z3, the distributions decrease, which is
naturally attributed to the pseudo form factor in z3, defined
as FPðx; ξ; t; z23Þ=FPðx; ξ; t; 0Þ.
From the form of Eqs. (G2) and (G4) it is clear that in our

model, for mπ ¼ 0 and t ¼ 0, the dependence on x and
z2 ¼ −z23 factorizes. Then the shape of the generalized
pseudodistributions is given by Eqs. (D1), (D2), supplied
with a universal (x-independent) pseudo form factor in z23.
For the case of a general kinematics the factorization no
longer holds exactly, but it still nearly holds for the physical
value ofmπ and small values of −t. At larger values of −t it
becomes visibly broken. This is manifest in Fig. 12, where
the form factor is plotted for the physical pion mass,

FIG. 9. Same as in Fig. 7 but for different values of the pion mass at ξ ¼ 0.5, t ¼ −0.5 GeV2, and Pz ¼ 3 GeV.
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ξ ¼ 0.5, and t ¼ −0.5 GeV2, for several values of x, both
in the DGLAP and ERBL region. In the DGLAP region
(here we take x ¼ 2=3), the form factors for the I ¼ 0 and
I ¼ 1 cases are identical, as follows directly from Eq. (42).
In the ERBL region we notice the breaking, which
essentially is due to the taken value of −t (whereas
m2

π ≃ 0.02 GeV2, a very small number).
We also note from Fig. 12 that the breaking is stronger

for the H pseudo form factors than for the E case. This
feature reflects the structure of Eq. (34), where t multiplies
the J functions in the definition of H, but not for E, thus
contributing to stronger breaking of the factorization.
As the Fourier transform from z to kT converts the

generalized pseudodistributions into the generalized
kT-unintegrated distributions [cf. Eq. (24)], the plots of
Fig. 12 provide also complementary information on the
kT-unintegrated GPDs and tGPDs. In particular, the cur-
vature of the pseudo form factors at the origin yields the
average transverse momentum squared, hk2Tiðx; ξ; tÞ, in the
kT-unintegrated GPDs and tGPDs.

Finally, we wish to discuss the range of jνj, denoted as
νmax, needed to carry out the inverse Fourier transform in
definition (23). This is of practical importance, as in
numerical evaluation such as in the lattice QCD simu-
lations, unlike our analytic case, we always have an upper
bound for jνj. From Fig. 11 we can see that the rate of
variation of the pseudo-distributions is about Δ ¼
minðξ; 1 − ξÞ for 0 < ξ < 1, and Δ ¼ 1 for ξ ¼ 0 or ξ ¼
1 (the pseudo-PDF or the pseudo-DA limit). For the
Fourier transform to be able to reproduce it, we need
νmax ≫ 2π=Δ. Thus, for a fixed νmax more accurate results
would follow for ξ ¼ 1=2 than for ξ close (but not equal)
to 0 or 1. For ξ ¼ 1=2we need νmax ≫ 4π, so at least of the
order of 30, depending on the demanded accuracy. Such
large values are presently prohibitive for the lattice QCD
simulations.
We remark that a similar problem occurs in the “good

lattice cross section” method [28,29], where also large
values of the Ioffe-time are necessary [132] to provide a
reliable information on the higher x-moments.

FIG. 10. Same as in Fig. 7 but for different momentum transfer t at the physical pion mass, ξ ¼ 0.5, and Pz ¼ 3 GeV.
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IV. CONCLUSIONS

We have carried out an extensive analysis of the
quasi GPDs and tGPDs, related generalized Ioffe-time
distributions, and generalized pseudodistributions of the
pion in the framework of the NJL model. Even in this very
simple model, treated at the one-quark-loop (large-Nc)
level, the results are nontrivial and reveal the rich structure
of the examined objects.
Of particular interest is the dependence of the results on

the momentum of the pion,Pz. Referring to the ITDs, which
are the quantities directly accessible in the lattice QCD
simulations, we find that Pz ¼ 3 GeV is sufficiently close
(within a few percent) to the desired limit of Pz → ∞ for
low-enough values of the Ioffe time ν < 15, while the case
Pz ¼ 1 GeV is still significantly away (cf. Fig. 7). This is
especially so for the case of nonzero skewness, where more
variation is present in the distributions, in particular the
isoscalar GPDs. We stress that the conclusion that Pz ≃
3 GeV is large enough for ITDs does not carry over to the
qGPDs themseves (cf. Fig. 2), where much larger values

would be necessary, say, Pz > 10 GeV, depending on how
closely one wishes to approximate the Pz → ∞ limit near
the endpoints and near Y ¼ �ξ. The issue is related to the
general difficulties in accurately Fourier transforming
the ITDs into qGPDs with a limited accessible range in
the Ioffe time, as discussed at the end of Sec. III F.
Our estimates may be useful for implementations of the

skewed quasidistributions on the lattice, which are yet to
come. We have also studied the dependence on the pion
mass, including a large value of 400 MeV, which is in the
range of values used some lattice QCD studies.
We have computed quasi generalized form factors,

related to moments of the qGPDs and qtGPDs, and
investigated their dependence on Pz. Only the lowest rank
form factors are independent of Pz, and the higher ones do,
in particular, the gravitational form factors, whose shape
changes strongly between Pz ¼ 1 GeV and 3 GeV. They
are also sensitive to mπ .
The generalized (reduced) Ioffe-time distributions, basic

objects for the lattice investigations, encode the information

FIG. 11. Generalized vector (a) and transversity (b) pseudo-
distributions for the physical pion mass, t ¼ 0, and ξ ¼ 0.5,
plotted as functions of the momentum fraction x for three sample
values of z3.

FIG. 12. Vector (a) and transversity (b) pseudo form factors
FPðx; ξ; t; z23Þ=FPðx; ξ; t; 0Þ for the physical pion mass, t ¼ 0,
and ξ ¼ 0.5, plotted as functions of z3 for two sample values of x:
one in the DGLAP and one in the ERBL region.
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on the quasidistributions as their Fourier transforms. We
have discussed in detail the dependence on the skewness
parameter ξ, exhibiting the simple characteristics such as
the slope or curvature of certain GPDs or qGPDs.
We have also estimated how large values of the Ioffe time

νmax are needed to effectively invert the Fourier transform
to get the pseudodistributions defined in the x-space. The
value of νmax, should be larger if skewness is present, as it
causes larger variation in the qGPDs and qtGPDs. Roughly,
values νmax > 30 are necessary.
With the obtained pseudodistributions, we have inves-

tigated the breaking of the longitudinal-transverse sepa-
rability. The effects of mπ are rather small here, but larger
values of the momentum transfer t cause significant break-
ing. The issue is related to properties of the kT-unintegrated
distributions (or TMDs).
We stress that our analysis is based on analytic or

semianalytic expressions, which allows for a simple insight
and illustration of the intricate formal features of the field.
At the same time, our results pertain to the quark-model
scale, which is much lower from the experimental or lattice
scales. In the context of the QCD evolution, we have thus
investigated the initial conditions and their sensitivity to Pz,
mπ , t, or ξ. That sensitivity will be carried over to higher
scales, with the exact effects to be estimated in a future
study. With the existing link to the kT-unintegrated dis-
tributions, the QCD evolution of the latter ones can be used
to evolve the qGPDs and qtGPDs.
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APPENDIX A: GENERAL
LORENTZ STRUCTURE

By Lorentz covariance, the matrix element (we skip the
isospin indices for the simplicity of notation)

Mμ ¼ hπðpþ qÞjψ̄
�
−
λ

2
n

�
γμψ

�
λ

2
n

�
jπðpÞi ðA1Þ

can be decomposed as

Mμ ¼ Apμ þ Bqμ þ Cnμ; ðA2Þ

thus leading to three independent amplitudes, A, B, and C.
Explicitly,

A¼4ðζ2Mp−n2tÞ−2Mqðn2t−2ζÞ−2ðζ−2ÞtMn

4m2
πðζ2−n2tÞþ tð−4ζþn2tþ4Þ ;

B¼ð4ζ−2n2tÞMp−4ðm2
πn2−1ÞMqþ2ðt−2ζm2

πÞMn

4m2
πðζ2−n2tÞþ tð−4ζþn2tþ4Þ ;

C¼2ð2−ζÞtMpþ2ðt−2ζm2
πÞMqþ tðt−4m2

πÞMn

4m2
πðζ2−n2tÞþ tð−4ζþn2tþ4Þ ; ðA3Þ

whereMa ¼ Mμaμ Our choice of Eqs. (1), (4) corresponds,
along the lines of the original proposal by Ji [1], to the
combination

nμMμ ¼ A − ζBþ n2C: ðA4Þ
However, as suggested in [17], in view of the lattice QCD
implementations it may be advantageous to project out the
C term, which would lead to

A−ζB

¼2n2½ðζ−2ÞtMp−ðt−2ζm2
πÞMq�þ4Mnðζ2m2

π−ζtþ tÞ
4m2

πðζ2−n2tÞþ tð−4ζþn2tþ4Þ :

ðA5Þ
Also, the C term of the amplitude is subleading in the twist
expansion [17].
Although a consideration of the general or of the projected

case (A5) is certainly possible, we do not pursue it here due to
algebraic complications, and hold on to the definition (A4).

APPENDIX B: KINEMATICS

Whereas our calculations are fully covariant, it is worth-
while to consider specific assignments for the momenta,
having in mind possible lattice implementations where a
particular reference frame must be specified. Without a loss
of generality, wemay pick up a framewhere the three Lorenz
vectors have the t, x, y, z coordinates taken as

n ¼ ðn0; 0; 0; n3Þ;
p ¼ ðp0; 0; 0; p3Þ;
q ¼ ðq0; qT; 0; q3Þ: ðB1Þ

For the n vector, we use the condition (5), where Pz is a
parameter (not necessarily equal top3) controlling how farn is
from the null vector case n2 ¼ 0, which corresponds to the
limit ofPz → ∞ (theGPDcase).With the choice (B1)wehave

ϵnpqν ¼ δν2ðp0n3 − p3n0ÞqT: ðB2Þ

Treating p0 and p3 as known variables, with
p2
0 ¼ m2

π þ p2
3, and using the total of five conditions from

Eq. (2) and (5), we solve the system for n0, n3, q0, qT , and q3,
with the result
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n0 ¼
p0

m2
π
−
p3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ P2
z

p
m2

πPz
;

n3 ¼
p3

m2
π
−
p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ P2
z

p
m2

πPz
;

q0 ¼ −
p0t
2m2

π
þ p3Pzðt − 2ζm2

πÞ
2m2

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ P2
z

p ;

q3 ¼ −
p3t
2m2

π
þ p0Pzðt − 2ζm2

πÞ
2m2

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ P2
z

p ;

q2T ¼ t½1
4
t − ð1 − ζÞP2

z � −m2
πðζ2P2

z þ tÞ
m2

π þ P2
z

: ðB3Þ

For the specific choice Pz ¼ p3 [1] Eqs. (B3) reduce to

n0 ¼ 0; n3 ¼ −
1

Pz
;

q0 ¼ −
2ζP2

z þ t
2p0

; q3 ¼ −ζPz;

q2T ¼ ð2ζP2
z þ tÞ2
4p2

0

− ζ2P2
z − t; ðB4Þ

where n is aligned with the z direction. Another potentially
useful case is for the initial pion at rest, when

n0 ¼
1

mπ
; n3 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ P2
z

p
mπPz

;

q0 ¼ −
t

2mπ
; q3 ¼

Pzðt − 2ζm2
πÞ

2mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ P2
z

p ;

q2T ¼
t


1
4
t − ð1 − ζÞP2

z

�
−m2

πðζ2P2
z þ tÞ

m2
π þ P2

z
: ðB5Þ

The case of GPDs corresponds to the null vector n,
which can be achieved from Eqs. (B3) by taking the limit
Pz → ∞, with the result

n0 ¼
1

p0 þ p3

; n3 ¼ −
1

p0 þ p3

;

q0 ¼ −
t

2ðp0 þ p3Þ
− ζp3; q3 ¼

t
2ðp0 þ p3Þ

− ζp0;

q2T ¼ ðζ − 1Þt − ζ2m2
π: ðB6Þ

For a physical process all momenta must have real
coordinates, in particular qT must be real. This leads to
constraints, which for the qGPD case at various values of
Pz take the form

t
2
≤ m2

π þ ð1 − ζÞP2
z −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

π þ P2
zÞðm2

π þ ð1 − ζÞ2P2
zÞ

q
;

or

t
2
≥ m2

π þ ð1 − ζÞP2
z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

π þ P2
zÞðm2

π þ ð1 − ζÞ2P2
zÞ

q
:

ðB7Þ

For the special case of GPD (Pz → ∞) conditions (B7)
reduce to

t ≤ −
m2

πζ
2

1 − ζ
: ðB8Þ

This shows that the maximum value of t is (for ζ > 0)
strictly less than 0. The reason is that the momentum
transfer along n (for ζ > 0) brings in a negative contribu-
tion to t.

APPENDIX C: EVALUATION OF THE
LOOP INTEGRALS

In this appendix we explain for completeness the
evaluation of the basic loop integrals. The procedure, using
standard methods, follows closely Ref. [90]. We encounter
two types of scalar loop integrals, the two-point function I
and the three-point function J, defined below. They are
evaluated in the Euclidean space using the Schwinger
parametrization of the scalar propagators,

Sk ¼
1

Dk
¼
Z

∞

0

e−aðk2þM2Þ: ðC1Þ

Note that in the Euclidean notation used in the Appendices,
p2 ¼ ðpþ qÞ2 ¼ −m2

π , q2 ¼ −t, and n2 ≥ 0.

1. Two-point function

With the representation (C1) we have
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Iðy; κ; l2; n2Þ ¼ 4Ncg2πq

Z
d4k
ð2πÞ4

δðk · n − yÞ
DkDk−l

¼ 4Ncg2πq

Z
d4k
ð2πÞ4

Z
dλ
2π

eiλðk·n−yÞ
Z

∞

0

dα
Z

∞

0

dβe−αðk2þM2Þ−βððk−lÞ2þM2Þ

¼ 4Ncg2πq

Z
d4k
ð2πÞ4

Z
dλ
2π

Z
∞

0

dα
Z

∞

0

dβ exp

�
−ðαþ βÞðk02 þM2Þ − λ2n2

4ðαþ βÞ þ i
λβκ

αþ β
−

αβl2

αþ β
− iλy

�
:

ðC2Þ

where the shifted momentum is k0 ¼ k − i λn
2ðαþβÞ −

βl
αþβ.

First, we notice that in the case of n2 ¼ 0, the λ
integration yields δðy − κβ

αþβÞ, hence the proper support
θ½xðκ − xÞ� for the momentum fraction x ¼ y follows [90].
However, when (Euclidean) n2 > 0, the λ integral is over a
Gaussian with a spread proportional to 1

n2. Thus, after the λ
integration, we obtain a Gaussian function in ywhose width
is proportional to n2. Clearly, in the limit of n2 → 0 we
retrieve the result given in Ref. [90].

Next, we use the following change of variables:

k2T ¼ k021 þ k022 ; K2 ¼ k020 þ k023 ;

s ¼ αþ β; ψ ¼ β

s
; ðC3Þ

with dk1dk2¼πdk2T , dk0dk3 ¼ πdK2, and dαdβ ¼ sdsdψ .
The integration over K2 and s yields

Iðy; κ; l2; n2Þ ¼ Ncg2πq

8π2
ffiffiffiffiffi
n2

p
Z

∞

0

dk2T

Z
1

0

dψ
1

½k2T þM2 þ ψð1 − ψÞl2 þ 1
n2 ðy − ψκÞ2�3=2 ; ðC4Þ

while the further integration over ψ gives the result

Iðy; κ; l2; n2Þ ¼ Ncg2πq
4π2f2

Z
∞

0

dk2T

2κy−l2n2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2þn2ðk2Tþw2Þ

p þ 2κðκ−yÞ−l2n2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ−yÞ2þn2ðk2Tþw2Þ

p
4½κ2ðk2T þ w2Þ þ l2yðκ − yÞ� − l2n2½l2 þ 4ðk2T þ w2Þ� ðC5Þ

Note the desired symmetry y ↔ κ − y.
In the limit of n2 ¼ 0 and y ¼ x we promptly recover the result of Ref. [90]:

Iðy; κ; l2; n2 ¼ 0Þ ¼ Ncg2πqθ½xðκ − xÞ�
4π2jκj

Z
∞

0

dk2T
1

k2T þM2 þ x
κ ð1 − x

κÞl2
: ðC6Þ

Since the remaining integration over kT in Eq. (C6) is logarithmically divergent, it can only be carried out after a suitable
regularization.
However, curiously, the kT integration can be carried out in Eq. (C5) where a nonzero n2 acts as a regulator, and

asymptotically the integrand in Eq. (C5) behaves as 1=k3T . The result of the integration is (we show it explicitly for the case
of l2 ¼ −m2

π encountered in our analysis)

Iðy; κ;−m2
π; n2Þ ¼

Ncg2πq
4π2

log
�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ2þm2

πn2Þðn2w2þðy−κÞ2Þ
p

−2κðy−κÞþm2
πn2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ2þm2

πn2Þðn2w2þy2Þ
p

−2κy−m2
πn2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þm2

πn2
p : ðC7Þ

This expression can be shown to be symmetric with respect to the replacement y ↔ κ − y. It exhibits the expected quark-
antiquark production cut for mπ > 2M. The asymptotic behavior at large jyj is 1=jyj.
Since for n2 > 0 the kT integration can be carried out, we can rewrite Eq. (C4) as

Iðy; κ; l2; n2Þ ¼ Ncg2πq

4π2
ffiffiffiffiffi
n2

p
Z

1

0

dψ
1h

M2 þ ψð1 − ψÞl2 þ 1
n2 ðy − ψκÞ2

i
1=2 : ðC8Þ
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Coming back to Eq. (C6), it can be promptly derived
from Eq. (C4) by noticing that it contains the distribution

lim
n2→0

1ffiffiffiffiffi
n2

p
ðA2 þ B2

n2Þ3=2
¼ 2

A2
δðBÞ: ðC9Þ

2. Three-point function

The scalar triangle integral is defined as

Jðy; κ; κ0; l2; l02; l · l0; n2Þ ¼ 4Ncg2πq

Z
d4k
ð2πÞ2

δðk · n − yÞ
DkDk−lDk−l0

:

ðC10Þ

Following the procedure from Appendix C 1 for

J ¼ 4Ncg2πq

Z
d4k
ð2πÞ4

Z
dλ
2π

Z
∞

0

dα
Z

∞

0

dβ
Z

∞

0

dγ

× eiλ½k·n−y�−α½k2þM2�−β½ðk−lÞ2þM2�−γ½ðk−l0Þ2þM2� ðC11Þ

with

s ¼ αþ β þ γ; ψ ¼ β=s; τ ¼ γ=s;

dαdβdγ ¼ s2dsdψdτ; ðC12Þ

we find

J ¼ 3Ncg2πq

16π2
ffiffiffiffiffi
n2

p
Z

1

0

dψ
Z

1

0

dτ
Z

∞

0

dk2T
θð1 − ψ − τÞh

k2T þM2 þ ψð1 − ψÞl2 þ τð1 − τÞl02 − 2ψτl · l0 þ 1
n2 ðy − κψ − κ0τÞ2

i
5=2

¼ Ncg2πq

8π2
ffiffiffiffiffi
n2

p
Z

1

0

dψ
Z

1

0

dτ
θð1 − ψ − τÞh

M2 þ ψð1 − ψÞl2 þ τð1 − τÞl02 − 2ψτl · l0 þ 1
n2 ðy − κψ − κ0τÞ2

i
3=2 : ðC13Þ

The integral over k2T is finite, hence above it could have been carried out. The integrations over ψ and τ are analytic, but the
final results are very lengthy and not instructive, so we do not quote them.
Using Eq. (C9) we find that in the limit of n2 → 0

Jðx; κ; κ0; l2; l02; l · l0; 0Þ ¼ Ncg2πq
4π2

Z
1

0

dψ
Z

1

0

dτ
θð1 − ψ − τÞδðx − κψ − κ0τÞ

M2 þ ψð1 − ψÞl2 þ τð1 − τÞl02 − 2ψτl · l0
; ðC14Þ

which agrees with the result of Ref. [90].

APPENDIX D: GPDs FOR mπ = 0 AND t= 0

The GPD case (n2 ¼ 0) for mπ ¼ 0 and t ¼ 0 yields very simple expressions. For the GPDs we have [90]

HI¼1ðX; ξÞ ¼ θð1 − X2Þ;
HI¼0ðX; ξÞ ¼ sgnðXÞθð1 − X2ÞθðX2 − ξ2Þ; ðD1Þ

whereas for the tGPDs [92]

EI¼1ðX; ξÞ ¼ N θð1 − X2Þ
�
θðjXj − ξÞ jXj − 1

ξ − 1
þ θðξ2 − X2Þ

�
;

EI¼0ðX; ξÞ ¼ N θð1 − X2Þ
�
sgnðXÞθðjXj − ξÞ ðjXj − 1Þ

ξ − 1
þ θðξ2 − X2ÞX

ξ

�
: ðD2Þ

The normalization constant is

N ¼ Ncg2πqM

4π2
1

M2

				
reg:

; ðD3Þ

where in the adopted PV regularization (28)
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1

M2

				
reg:

¼ Λ4

M2ðΛ2 þM2Þ2 : ðD4Þ

The corresponding reduced ITDs of Eq. (21) are given
in Eq. (39).

APPENDIX E: POLYNOMIALITY

The moments or I and J functions with respect to y are
defined as

hymIi ¼
Z

∞

−∞
dyymIðy; κ; l2; n2Þ;

hymJi ¼
Z

∞

−∞
dyymJðy; κ; κ0; l2; l02; l · l0; n2Þ; ðE1Þ

with m ¼ 0; 1; 2;…. Taking Eq. (C4) and changing the
integration variable to y0 ¼ ðy − κψÞ=

ffiffiffiffiffi
n2

p
we can write

hymIi ¼ Ncg2πq
8π2

Z
∞

−∞
dy0
Z

∞

0

dk2T

Z
1

0

dψ

×
ð
ffiffiffiffiffi
n2

p
y0 þ κψÞm

½k2T þM2 þ ψð1 − ψÞl2 þ y02�3=2 : ðE2Þ

If the integral over y0 exists, it is a polynomial of degree m
in κ with coefficients given by functions of l2 and n2.

Similarly, with Eq. (C13) and the change of variables
y0 ¼ ðy − κψ − κ0τÞ=

ffiffiffiffiffi
n2

p
, we find that hymJi is a poly-

nomial in variables κ and κ0 of degree m with coefficients
given by functions of l2, l02, l · l0, and n2.
After same work, polynomiality of the basic loop

integrals translates into polynomiality of the y-moments
of qGPDs and qtGPDs for the on-shell pion, which (if exist)
are polynomials in ξ with coefficients given by the
generalized quasi form factors, which are functions of t
and, in general, n2.

APPENDIX F: RADYUSHKIN’S RELATIONS
FOR THE SCALAR ONE-LOOP FUNCTIONS

The relations derived by Radyushkin [15,16,123,124],
following entirely from the Lorentz covariance, link non-
trivially the quasidistributions q̃ðy; n2Þ to the kT-uninte-
grated distributions qðx; k2TÞ, namely

q̃ðy; n2Þ ¼ 1ffiffiffiffiffi
n2

p
Z

dk1

Z
dxq

�
x; k21 −

ðx − yÞ2
n2

�
: ðF1Þ

Here we verify explicitly that these relations hold separately
for the basic n-point functions, and hence generalize for the
considered quasi-(t)GPDs.
Taking Eq. (C2) and integrating it over dK2 we can write

Iðy; κ; l2; n2Þ ¼ Ncg2πq
4π2

Z
∞

0

du
Z

dλ
2π

Z
∞

0

ds
Z

1

0

dψ exp

�
−sðuþM2Þ − λ2n2

4s
þ iλψκ − sψð1 − ψÞl2 − iλy

�
; ðF2Þ

where u ¼ k2T . On the other hand, the kT-unintegrated expression with kT ¼ ðk1; 0Þ and n2 ¼ 0 reads

Iðx; κ; l2; k21Þ ¼
Ncg2πq
4π3

Z
∞

0

dU
Z

dλ
2π

Z
∞

0

sds
Z

1

0

dψ exp½−sðU þ k21 þM2Þ þ iλψκ − sψð1 − ψÞl2 − iλx�; ðF3Þ

where U ¼ K2. Using the identity

1ffiffiffiffiffi
n2

p
Z

dk1e
−s½k2

1
þðx−yÞ2

n2
�−iλx ¼ π

s
e−

λ2

4s−iλy ðF4Þ

we immediately verify that

Iðy;κ;l2;n2Þ¼ 1ffiffiffiffiffi
n2

p
Z

dk1

Z
dxI½x;κ;l2;k21þP2

zðx−yÞ2�:

ðF5Þ

A completely analogous derivation holds for the three-
point function J, as well as for any scalar one-loop n-point
function.

APPENDIX G: ONE-LOOP FUNCTIONS FOR THE
GENERALIZED IOFFE-TIME DISTRIBUTIONS
AND GENERALIZED PSEUDODISTRIBUTIONS

The Ioffe-time representation of the scalar one-loop
function is obtained from Eq. (C8) as the Fourier
transform

IIð−ν; κ; l2;−z2Þ ¼
Z

dyeiνyIðy; κ; l2;−z2=ν2Þ

¼ Ncg2πq
2π2

Z
1

0

dψeiνκψK0

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−z2½M2 þ ψð1 − ψÞl2�

q �
: ðG1Þ
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In the evaluation we have used the covariant formula n2 ¼ −z2=ν2, The corresponding pseudodistribution is

IPðx; κ; l2;−z2Þ ¼
Z

dν
2π

e−iνxIIðν; κ; l2;−z2Þ ¼ Ncg2πq
2π2

Z
dν
2π

Z
1

0

dψe−iνðx−κψÞK0


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−z2½M2 þ ψð1 − ψÞl2�

q �

¼ Ncg2πqθ½xðκ − xÞ�
2π2jκj K0

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−z2
�
M2 þ x

κ

�
1 −

x
κ

�
l2
�s !

; ðG2Þ

where in the last line we have applied the δðx − κψÞ function appearing in the second line. The symbol Kl denotes the
modified Bessel function of the second kind.
Similarly, for the three-point function we find with Eq. (C13)

JIð−ν; κ; κ0; l2; l02; l · l0;−z2Þ ¼ Ncg2πq
4π2

Z
1

0

dψ
Z

1

0

dτθð1 − ψ − τÞeiνðκψþκ0τÞ
ffiffiffiffiffiffiffiffi
−z2

p

A
K1


 ffiffiffiffiffiffiffiffiffiffiffi
−z2A

p �
;

A ¼ M2 þ ψð1 − ψÞl2 þ τð1 − τÞl02 − 2ψτl · l0 ðG3Þ

and

JPðx; κ; κ0; l2; l02; l · l0;−z2Þ ¼ Ncg2πq
4π2

Z
1

0

dψ
Z

1

0

dτθð1 − ψ − τÞδðx − κψ − κ0τÞ
ffiffiffiffiffiffiffiffi
−z2

p

A
K1


 ffiffiffiffiffiffiffiffiffiffiffi
−z2A

p �
: ðG4Þ

For our explicit kinematics, after doing the τ integration we get

JP
�
x; ζ; 1; t; m2

π;−
t
2
;−z2

�
¼ Ncg2πq

4π2

�
θ½xðζ − xÞ�

Z x
ζ

0

dψ þ θ½ð1 − xÞðx − ζÞ�
Z 1−x

1−ζ

0

dψ

� ffiffiffiffiffiffiffiffi
−z2

p

A
K1ð

ffiffiffiffiffiffiffiffiffiffiffi
−z2A

p
Þ
				
τ¼xþζψ

; ðG5Þ

with

Ajτ¼xþζψ ¼ M2 −m2
πð1þ ζψ − xÞðx − ζψÞ − tψð1þ ζψ − x − ψÞ: ðG6Þ

We also need [cf. Eq. (34)] the Fourier transforms of J1 ≡ yJ, where

JI1ð−ν; κ; κ0; l2; l02; l · l0;−z2Þ ¼
Z

dyeiνyyJ ¼ −i
d
dν

Z
dyeiνyJ

¼ −i
d
dν

JIð−ν; κ; κ0; l2; l02; l · l0;−z2Þ; ðG7Þ

and therefore

JP1 ðx; κ; κ0; l2; l02; l · l0;−z2Þ ¼ xJPðx; κ; κ0; l2; l02; l · l0;−z2Þ: ðG8Þ
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