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We study violation of quark-hadron duality for B̄ → Xulν and D → Xdlν decays in the presence of the
right-handed current operator. For this case, we show that duality violation has some aspects different from
the standard model due to the existence of an instanton. In particular, the fermionic zero mode of an
intermediate light quark can give a nonvanishing contribution owing to its chirality structure. A duality-
violating component that arises from a single instanton is then analytically extracted as a finite-distance
singularity, leading to an oscillatory correction to the observable in Minkowski space. Finally, we show that
the size of duality violation for the lepton energy distribution in B̄ decays can be comparable to the chirally
suppressed perturbative contribution, although the absolute size depends on the detail of the QCD vacuum.
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I. INTRODUCTION

Semileptonic decays of the B̄meson play a central role in
determining Cabibbo-Kobayashi-Maskawa (CKM) matrix
[1] elements, jVqbj ðq ¼ c; uÞ. Experimental measurements
for these quantities are implemented in two distinct
processes: inclusive and exclusive decays. For the inclusive
processes, the theoretical analysis is basically formulated
by the operator product expansion (OPE) [2], where the
observable is expanded by an inverse power of heavy
quark. As for the exclusive case, it can be theoretically
calculated by estimating the hadronic matrix element in B̄
decays into specific finial states. Particularly noteworthy is
that the mentioned CKM matrix elements determined by
these two distinct measurements are in disagreement with
one another [3], constituting one of the long-standing issues
in heavy flavor physics. See Refs. [4,5] for discussions
beyond the standard model in regards to the CKM puzzles.
In the inclusive analysis, it should be cautioned that

quark-hadron duality [6,7] is tacitly assumed. Uncertainty
that arises from duality violation is hard to quantify,
as it parametrizes our ignorance in some nonperturbative
aspects of quantum chromodynamics (QCD) [8]. Because
of this notorious complexity, duality violation has been
modeled by certain dynamical mechanisms, including
(a) the resonance-based approach and (b) the instanton-
based approach. In addition, (c) the method based on lattice

QCD has been proposed recently. For (a), the linear Regge
trajectory and the large-Nc limit are taken as starting points
of discussion. In particular, a solvable aspect of two-
dimensional QCD known as the ’t Hooft model [9]
provides a useful testing ground of quark-hadron duality.
The resonance-based approach has been applied for heavy
quark physics in previous works [10–19].
As for (b), it is noted that the short-distance expansion at

the vicinity of x2 ¼ 0 for the Green function is incapable of
reproducing the correlator in the momentum space, up to
singularities of the quark propagator that reside at finite
distance ðx2 ≠ 0Þ. Hence, those singularities give rise to an
error in the OPE analysis, as shown in a one-dimensional
mathematical example [20]. By taking account of possible
sources of the finite-distance singularity, one can extract a
correction to the OPE that is exponentially suppressed
(oscillatory) in the Euclidean (Minkowski) domain. In this
sense, an instanton [21] is considered a probe of the duality-
violating components caused by the nonperturbative effect.
In the previous works, the contribution of finite-distance
singularity has been discussed in Refs. [22,23] and for-
mally investigated for quark-hadron duality in Ref. [20].
For the case of (c), it is based on the ab initio calculation

of hadronic correlators in lattice QCD for inclusive B
decays [24]. In this formalism, (partially) integrated differ-
ential width is evaluated by approximating the integration
kernel via Chebyshev polynomials, where individual
terms of the polynomial expansion are made related to
the Euclidean correlator, leading to a deterministic way to
estimate the observable. This method is interpreted as a
certain extension of the reconstruction for the spectrum
function in previous works (see, e.g., Ref. [25]), where
the smearing procedure is additionally involved. For the
numerical inputs in (c), however, duality-violating
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components that arise from the finite-distance singularity
fall off quickly in the limit where the bottom quark is
sufficiently heavy so that whether the obtained prediction
in the Minkowski domain truly reflects duality-violating
components seems rather nontrivial. Meanwhile, the fully
integrated width predicted in this method gives a result
consistent with the OPE [24].
In this work, in the presence of the right-handed current

(RHC), we show that a duality-violating contribution has
some aspects different from the one in the standard model
(SM), on the basis of the instanton-based approach estab-
lished in Ref. [20]. In particular, the fermionic zero mode
[26] for the intermediate quark in B̄ → Xulν decays gives a
nonvanishing contribution for the RHC, whereas this term
is absent in the SM for the single instanton since it is
prohibited by its chirality structure. Within a certain
approximation, we find that a duality-violating contribution
that arises from the finite-distance singularity for the RHC
is enhanced relative to the one in the SM typically by
∼mb=m�, where m� is an effective mass of the light quark
discussed later. Furthermore, it is shown that the lepton
energy distribution exhibits a parametrically larger behav-
ior than the total width, analogous to the nonzero-mode
contribution in the SM [20], indicating that the duality-
violating contribution from the finite-distance singularity to
the differential width is comparable to the chirally sup-
pressed perturbative contribution in the RHC for the B̄
decays, while the same contribution to theD decays is even
larger up to uncertainty in the saddle point approximation.
This paper is organized as follows: In Sec. II, the

formalism for the inclusive semileptonic decays of the B̄
meson is given in the presence of the RHC. Subsequently, a
duality-violating contribution induced by an instanton is
discussed, with a particular emphasis on the zero mode for
the up-quark propagator in Sec. III. Furthermore, numerical
results associated with the (differential) width are presented
for B̄ → Xulν and also forD → Xdlν. Finally, a concluding
remark is given in Sec. IV.

II. WIDTH IN B̄ → Xulν DECAY

In the presence of the RHC for quarks, the effective
Hamiltonian that leads to b → ulν decay is written as

Heff ¼
4GFffiffiffi

2
p VubðcLJμLJ Lμ þ cRJ

μ
RJ LμÞ þ H:c: ð1Þ

In Eq. (1), JμX ¼ ūγμPXb ðX ¼ L;RÞ and J μ
L ¼ l̄γμPLν are

quark and lepton currents, respectively. In the SM, cL ¼ 1
and cR ¼ 0 are realized. We introduce the following
forward scattering matrix element:

Tμν ¼ c2LT
μν
LL þ cLcRT

μν
LR þ cRcLT

μν
RL þ c2RT

μν
RR; ð2Þ

Tμν
XY ¼ −i

Z
d4xe−iq·xhB̄vjT½Jμ†X ðxÞJνYð0Þ�jB̄vi; ð3Þ

where Tμν represents a total contribution while Tμν
XY gives

an individual term specified by chirality indices. With
Eq. (2), the triple differential width is represented as

d3Γ
dEldEνdq2

¼ −
G2

FjVubj2
4π4

ImðTμνLμνÞ; ð4Þ

Lμν ¼ 2ðpμ
l p

ν
ν̄ þ pμ

ν̄p
ν
l − gμνpl · pν̄ − iϵμνρσplρpν̄σÞ: ð5Þ

In Eq. (4), El ðEνÞ is the charged lepton (neutrino) energy,
while q gives a four-momentum of the lepton system, all of
which are defined at the rest frame of the B̄ meson.
Similarly to Eq. (2), the lepton energy distribution of the
semileptonic decay is given by

dΓ
dy

¼c2L
dΓ
dy

����
LL

þcLcR
dΓ
dy

����
LR

þcRcL
dΓ
dy

����
RL

þc2R
dΓ
dy

����
RR
; ð6Þ

where y ¼ 2El=mb is the dimensionless kinematical var-
iable. In what follows, the second and third terms in Eq. (6)
are referred to as the RHC contributions. As for the last
term in Eq. (6), it has a structure identical to one in the SM
up to chirality flipping. Henceforth, the discussion for the
last term in Eq. (6) is omitted in the remaining part of
this paper.
The contribution of the SM in Eq. (6) is well known and

obtained in, e.g., Refs. [27–34]. As to the RHC contribu-
tions, the differential rate corresponding to the B̄ → Xclν
decay is calculated in Ref. [35]. With r ¼ ðmu=mbÞ2, the
lepton energy distributions calculated in the leading per-
turbative analysis are

1

Γ0

dΓ
dy

����
LL

¼ 2y2ð3− 2yÞ− 6y2r−
6y2r2

ð1− yÞ2 þ
2y2ð3− yÞr3
ð1− yÞ3 ;

ð7Þ

1

Γ0

dΓ
dy

����
LR

¼ 1

Γ0

dΓ
dy

����
RL

¼ −6
ffiffiffi
r

p
y2
�
1 −

r
1 − y

�
2

; ð8Þ

both of which are normalized by Γ0 ¼ G2
Fm

5
bjVubj2=

ð192π3Þ. In obtaining the above expressions, we terminated
the phase space integral via the partonic delta function and
also used formulas for the matrix elements given by
hB̄vjb̄vγμbvjB̄vi ¼ vμ and hB̄vjb̄vγμγνbvjB̄vi ¼ gμν, which
follow from the heavy quark symmetry [36]. By further
integrating Eqs. (7) and (8), one can also obtain the total
widths for the semileptonic decay:

Γ
Γ0

����pert
LL

¼ 1 − 8r − 12r2 ln rþ 8r3 − r4; ð9Þ
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Γ
Γ0

����pert
LR

¼ Γ
Γ0

����pert
RL

¼ −2
ffiffiffi
r

p ½1þ 3rð3þ 2 ln rÞ − 3r2ð3 − 2 ln rÞ − r3�:
ð10Þ

The results corresponding to D → Xdlν can be obtained by
replacing mb → mc, mu → md in Eqs. (7)–(10). It is
evident that the leading perturbative contribution for the
RHC in Eqs. (8) and (10) is suppressed by the light quark
mass, since it is chirally disfavored.
An instanton-induced correction to the SM part is

evaluated by means of the dilute gas approximation
for B → Xueν [37,38] and for B → Xsγ [39] decays.
Meanwhile, duality violation that arises from finite-
distance singularity of the light quark Green function for
the SM part is investigated in Ref. [20] via the saddle point
approximation. These previous works are all based on the
nonzero-mode contributions in the quark propagator. In the
next section, a duality-violating correction to the RHC
contribution in Eqs. (8) and (10) from the zero mode is
calculated.

III. ZERO-MODE AND RHC CONTRIBUTION

In order to analyze the instanton-induced contribution to
the fully integrated width for B̄ → Xulν decay, we
consider formulas alternative to the one based on
momentum space integration discussed in the previous
section:

ΓXY ¼ −16G2
FjVubj2ImðT̃ XYÞ; ð11Þ

T̃ XY ¼ −i
Z

d4xhB̄vjJ†μX ðxÞJνYð0ÞjB̄viL̃μνðxÞ; ð12Þ

L̃μνðxÞ ¼ −
1

2π4
1

x8
ð2xμxν − x2gμνÞ; ð13Þ

where the leptonic tensor in Eq. (13) is defined in the position
space. In what follows, we use the Euclidean notation unless
otherwise specified. In the singular gauge, the instanton
configuration is given by ðDμ ¼ ∂μ − iAa

μτ
a=2Þ

Aa
μ ¼ η̄aμν

ðx − zÞνρ2
ðx − zÞ2½ðx − zÞ2 þ ρ2� ; ð14Þ

where ρ and z are the size and center of the instanton,
respectively,while η̄aμν is a conventional ’tHooft symbol.The
fermion Green function in the presence of the instanton is
calculated inRefs. [40–44]. Inparticular, thepropagatorof the
up quark is

Sðx;y;zÞ¼
X∞
n¼0

ψnðxÞψ†
nðyÞ

λn−mu
¼SzmþSnzmþOðmuÞ; ð15Þ

where Szm and Snzm are the contributions that arise from the
zero mode (n ¼ 0) [45,46] and the nonzero mode (n ≠ 0)
[40,41,43,46,47], respectively:

Szm ¼ −
ρ2

8π2mu

=̃xγμγν=̃yffiffiffiffiffiffiffiffiffi
x̃2ỹ2

p
ðx̃2 þ ρ2Þ3=2ðỹ2 þ ρ2Þ3=2

τ−μ τ
þ
ν PL;

ð16Þ

Snzm ¼ −
=Δ

2π2Δ4

ffiffiffiffiffiffiffiffiffi
x̃2ỹ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̃2 þ ρ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ỹ2 þ ρ2

p �
1þ ρ2

x̃2ỹ2
ðτ− · x̃Þðτþ · ỹÞ

�
−

i
4π2x̃2ỹ2Δ2

ffiffiffiffiffiffiffiffiffi
x̃2ỹ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̃2 þ ρ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ỹ2 þ ρ2

p
× ðτ− · x̃Þ

�
ρ2

x̃2 þ ρ2
=τþðτ− · ΔÞPR þ ρ2

ỹ2 þ ρ2
ðτþ · ΔÞ=τ−PL

�
ðτþ · ỹÞ; ð17Þ

for Δ ¼ x − y, x̃ ¼ x − z, and ỹ ¼ y − z. In the above
relations, τ�μ is a matrix that resides in the 2 × 2 subspace of
the SU(3) group:

τ�μ ¼ ðτ⃗;∓iÞ; τ−μ τ
þ
ν ¼ δμν þ η̄μνaτa; ð18Þ

with τ⃗ being the Pauli matrix. Equations (16) and (17) are
understood as cases of the trivial color orientation (U ¼ 1)
for the instanton, which are to be covariantly transformed
together with the configuration in Eq. (14). The propagators
in the presence of an anti-instanton can be obtained via the
interchanges of τ− ↔ τþ and L ↔ R in Eqs. (16) and (17).

In order to calculate the zero-mode contribution to the
width, we make use of the single instanton approximation
(SIA), which has been applied to the analysis of the
hadronic correlator, etc. At a sufficiently short-distance
region, the correlator in this method is evaluated with the
single instanton given that the separation between instan-
tons is much longer. Effects of the multi-instanton, respon-
sible for the chiral symmetry breaking [45], are taken into
account via replacement of the current quark mass ðmuÞ
with the effective mass ðm�Þ in Eq. (16). The advantage of
the SIA is that it offers an analytical investigation of the
currently considered duality violation based on the finite-
distance singularity. In order for this approximation to work
properly, the same choice ofm� should universally work for
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various observables while, at the same time, the distance for
the correlator should be small enough. The validity of the
SIA is investigated in Ref. [48]: It revealed that for
correlators which include double contributions of the zero
mode, such as the four-quark condensate and the pion
correlator, the SIA successfully works. Indeed, for
jxj ⪅ 0.6 fm, the pion correlator is well reproduced by
the leading single instanton [48]. However, for the two-
quark condensate, which includes the contribution of a
single zero mode, the full instanton liquid gives an effective
mass different from one for the four-quark condensate so
that an uncertainty is involved in regards to universality.
In viewing this issue, we consider 120 MeV ≤ m� ≤
177 MeV as a typical uncertainty range, where the lower
and upper limits come from the values based on the two-
quark condensate in the random instanton liquid model
(RILM) and the interacting instanton liquid model (IILM),
respectively [48].
In the SIA, one can find that the zero mode does not

contribute to T̃ LL while the nonzero mode does not
contribute to T̃ XY for ðX;YÞ ¼ ðL;RÞ; ðR;LÞ, since those
are chirally disfavored. Thus, T̃ LL receives only the non-
zero-mode contribution, while the zero mode from the
(anti-)instanton gives a nonvanishing correction to T̃ LR

ðT̃ RLÞ. In what follows, we analyze the instanton-induced
contribution to T̃ LR, since the anti-instanton correction to
T̃ RL is essentially similar to the former up to some
replacement of indices.
The zero-mode contribution that originates from the

RHC to Eq. (12) is

T̃ zm
LR ¼ i

Z
dρ
ρ5

dðρÞdUd4zd4xeiQ·x

× hB̄vjb̄vðxÞγμPLSzmðx; 0; zÞγνPRbvð0ÞjB̄viL̃μνðxÞ;
ð19Þ

with mbv0 ¼ iQ4 and x0 ¼ −ix4, where Q4 is assumed to
scale like mb. In Eq. (19), dðρÞ is the dimensionless size
distribution of an instanton simply taken as dðρÞ ¼
d0ρδðρ − ρ0Þ. In Eq. (19), the notation of the bottom quark
field is kept in the Minkowski domain. It should be noted
that the propagator for the zero mode in Eq. (16) is
rewritten by

Szmðx; y; zÞ ¼ −
1

m�
ρ2

2π2
Fðx; y; zÞPL þ ðcolor nonsingletÞ;

ð20Þ

Fðx; y; zÞ ¼ x̃ · ỹffiffiffiffiffiffiffiffiffi
x̃2ỹ2

p
ðx̃2 þ ρ2Þ3=2ðỹ2 þ ρ2Þ3=2

; ð21Þ

where themu in Eq. (16) is replaced bym� for the SIA. The
color nonsinglet part in Eq. (20) vanishes when one takes

an average over the color orientation of the instanton and
will be omitted in the following discussion. By substituting
Eq. (20) into Eq. (19) and performing the integral with
respect to the instanton size (this does not affect the result
as long as we consider the fixed-sized instanton), one can
obtain

T̃ zm
LR ¼ −

id0
2π2ρ2m�

Z
d4xd4zdUFðx; 0; zÞeiQ·x

× hB̄vjb̄vðxÞγμγνPRbvð0ÞjB̄viL̃μνðxÞ: ð22Þ

By implementing the Feynman parametrization, we com-
bine the denominators in Fðx; 0; zÞ:

Fðx; 0; zÞeiQ·x ¼
Z

1

0

dαfðx4;α; x⃗; zÞ; ð23Þ

fðx4; α; x⃗; zÞ ¼ −
8

π

½αð1 − αÞ�−5
2

ðx24 þ x̄2Þ3
x̃ · zffiffiffiffiffi
x̃2

p ffiffiffiffiffi
z2

p eiQ·x; ð24Þ

x̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − αxÞ2 þ ρ20

αð1 − αÞ þ x⃗2

s
: ð25Þ

In order to capture duality violation that arises from the
finite-distance singularity, we terminate the integration of
x4 by closing the contour via the upper semicircle
on the complex plane and then picking up the residue at
x4 ¼ ix̄:

Z þ∞

−∞
dx4fðx4;α; x⃗; zÞ ≃ −

4Q2
4

ρ30
f̄ðα; x⃗; zÞe−Q4x̄; ð26Þ

f̄ðα; x⃗; zÞ ¼ ½αð1 − αÞ�−5
2

32

�
2ρ0
x̄

�
3 x̃ · zffiffiffiffiffi

x̃2
p ffiffiffiffiffi

z2
p e−iQ⃗·x⃗; ð27Þ

where the term that has the largest power of Q4 is extracted
in Eq. (26).
Here, we consider the limit where mb is sufficiently

larger than an inverse of the instanton size, which is a
reasonable assumption for the typical value supported by
the instanton liquid model [49]. In this case, the integrals of
α, x⃗, and z are nearly Gaussian that are sharply peaked with
narrow intervals:

x⃗ 2∼
ρ0
mb

;

�
α−

1

2

�
2

∼
1

mbρ0
;

�
z−

x
2

�
2

∼
ρ0
mb

: ð28Þ

Aside from the exponential of e−Q4x̄ in Eq. (26), all the
remaining prefactors including the leptonic tensor in the
position space are evaluated at the saddle point. For b̄vðxÞ
in Eq. (22), one needs to solve the equation of motion to
obtain the heavy quark propagation in the medium of the
instanton, leading to bvðxÞ ¼ UðxÞbð0; x⃗Þ þOð1=mbρ0Þ
[20]. In the limit of large mbρ0, the propagation matrix
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is approximately equal to unity, and, therefore, the bottom
quark bilinear is given by the local operator at the saddle
point, in which case the average over color orientation is
taken straightforwardly, leading to

T̃ zm
LR ¼ i

2

3

d0Q2
4

π2ρ50m
�

Z
dαd3xd4ze−Q4x̄

× hB̄vjb̄vγμγνbvjB̄viL̃μνðxÞ: ð29Þ

One can subsequently perform the Gaussian integral viaR
dαd3xd4ze−Q4x̄ ≃ 4π4ρ30e

−2Q4ρ0=Q4
4 and obtain the result

of the total width in Eq. (11) by Wick rotating the quantity
in Eq. (29) back to the Minkowski domain:

Γ
Γ0

����zm
LR

¼ −
2

3
d0

�
mb

m�

�
192π

ðmbρ0Þ8
cosð2mbρ0Þ: ð30Þ

The RHC contribution in Eq. (30) is to be contrasted with
one in the SM based on the nonzero mode [20]:

Γ
Γ0

����nzm
LL

¼ −
2

3
d0

96π

ðmbρ0Þ8
sinð2mbρ0Þ: ð31Þ

The results for D → Xdlν can be obtained by replacing
mb → mc in Eqs. (30) and (31).
Before addressing the numerical result, we note the

following aspects: In Ref. [20], the instanton-based
approach is regarded as a model of duality violation, yet
the fixed-sized single instanton is certainly insufficient to
be a sole dominant ingredient in the QCD vacuum and,
therefore, leading to some obvious drawbacks. In order
for the model to contribute to the phenomenology in
eþe− → hadrons, hadronic tau decay, and D meson semi-
leptonic decay, a value of the instanton density (size) is
larger (smaller) than what is indicated by the instanton
liquid model. In addition, for the same choice of the
parameters, the predicted values for the oscillation
period for the R ratio as well as the gluon condensate
are too large.
In this work, viewing the aforementioned incapability of

the single instanton, we do not consider this approach as a
model in which the instanton size and density are regarded
as free parameters. Instead, those quantities are fixed to
the values suggested by the instanton liquid model.
Specifically, we set ρ0 ¼ 1=3 fm and n ¼ 1 fm−4, corre-
sponding to d0 ¼ nρ40=2 ¼ 6.2 × 10−3, much smaller than
d0 ¼ 9 × 10−2 adopted in Ref. [20]. As for the quark
masses, the pole mass and MS masses are considered for
heavy quarks, while the light quark masses in the pertur-
bative expressions in Eqs. (9) and (10) are taken as
MS masses at the scale of the associated heavy quark
mass. As described before, the effective mass of the light
quark is varied for the values obtained in the simulations of

the RILM and the IILM, on the basis of the quark
condensate.
In order to investigate a typical size of duality violation

for the total width, we consider the following object:

Rtot
XY½HQ → Xqlν� ¼

���� Γ̃I
XY

Γpert
XY

����; ð32Þ

for ðHQ; qÞ ¼ ðB̄; uÞ and ðD; dÞ. In Eq. (32), ðX;Y; IÞ ¼
ðL;L; nzmÞ corresponds to the result for SM, while
ðX;Y; IÞ ¼ ðL;R; zmÞ is associated with the RHC contri-
bution. The denominator (Γpert

XY) in Eq. (32) is extracted
from Eqs. (9) and (10), while for the numerator (Γ̃I

XY), the
expressions in Eqs. (30) and (31) in which the oscillating
coefficients are removed are used. This is because duality
violation may vanish if the heavy quark mass is acciden-
tally located at oscillating nodes.
The numerical results for the total semileptonic widths

for B̄ and D decays are shown in Tables I and II,
respectively. By comparing the two tables, one can find
that the considered duality-violating contributions are
generically larger for D decays than B̄ decays. By further
taking the ratio of the form Rtot

LR½HQ → Xqlν�=Rtot
LL½HQ →

Xqlν� for ðHQ; qÞ ¼ ðB̄; uÞ; ðD; dÞ, we find that the impor-
tance of the duality-violating contribution for the RHC is
larger than that of the SM by from 5 × 104 to 1 × 105 for B̄
decays and from 2 × 103 to 5 × 103 for D decays.
Notwithstanding this huge relative importance, the absolute
size of duality violation (Rtot

LR) is small, especially for B̄
decays in Table I. As we shall see later, for the differential
decay rate, the zero-mode-induced duality violation can be
as large as the chirally suppressed perturbative contribution
for B̄ and D decays, depending on the phase space region,

TABLE I. Ratio of instanton-induced duality violation to
corresponding perturbative contribution in B̄ → Xulν decays.
The first row shows the adopted values of the bottom quark mass
and effective mass for the light quark in GeVunit. The second and
third rows show the ratios for the RHC and the SM, respectively.

ðmb;m�Þ [GeV]
(4.18,
0.120)

(4.78,
0.120)

(4.18,
0.177)

(4.78,
0.177)

Rtot
LR½B̄ → Xulν� 2 × 10−2 7 × 10−3 1 × 10−2 5 × 10−3

Rtot
LL½B̄ → Xulν� 2 × 10−7 7 × 10−8 2 × 10−7 7 × 10−8

TABLE II. The same as Table I except that B̄ decays are
properly replaced by D decays.

ðmc;m�Þ [GeV]
(1.27,
0.120)

(1.67,
0.120)

(1.27,
0.177)

(1.67,
0.177)

Rtot
LR½D → Xdlν� 7 1 5 1

Rtot
LL½D → Xdlν� 3 × 10−3 3 × 10−4 3 × 10−3 3 × 10−4
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since the smearing procedure potentially gives an excessive
suppression of duality violation.
In the previous work [20], it has been found that duality

violation in the SM that arises from the nonzero mode gives a
parametrically larger contribution to the differential width
than the total width receives. This paradoxical behavior has
been interpreted as follows: Around the end point region of
the phase space, the theoretical expression for the differ-
ential width, which relies on the semiclassical approximation,
is not valid per se. Meanwhile, in order for the duality-
violating term to satisfy the dispersion relation, the OPE-like
counterterm, which originates from the singularity at x2 ¼ 0,
must be accompanied. With the dispersion relation properly
realized due to this treatment, the phase space domain of the
lepton momenta can be deformed as an unphysical region. In
this case, one can obtain the total width by integrating the
differential width that ensures an entire consistency.
For the duality-violating contribution that arises from the

zero mode for the RHC, one also finds a paradoxical
behavior similar to the SM for the differential width. One
difference between theSMand theRHC in this regard is that,
for the RHC, the zero-mode contribution leads to the
singularity at x2 ¼ 0 (obviously in the case of y ¼ 0),
whereas the zero-mode contribution is prohibited due to
the chirality structure in the SIA. Hence, the consistent
realization of the dispersion relation for the RHC would
require the nontrivial contribution from the zero mode in
the short-distance expansion, in order to guarantee that
the integration of the differential width consistently gives the
total width.
As a next step, we investigate the lepton energy

distributions for HQ → Xqlν decays. At this stage, care
must be taken for the aforementioned apparent paradoxical
aspect for the width. Otherwise, a naive integration over the
neutrino momentum to obtain the lepton energy distribu-
tion could easily overestimate the observable. Since the
consistent treatment over the end point region requires the
ad hoc OPE-like counterterms as discussed before, in this
work we do not explicitly integrate over the neutrino
momentum. To this end, the propagators for neutrino
and up quark are considered in the position space, while
the charged lepton propagator is expanded in the momen-
tum space. In practice, to analyze the differential width in
the presence of an instanton, a procedure similar to the total
width can be implemented; we replace q ¼ pl þ pν by
q ¼ pl and also the leptonic tensor by an appropriate one.
That is, we use the following formulas for the differential
width (for definitiveness, the formulas for B̄ decays are
considered below):

dΓXY ¼ −16G2
FjVubj2ImðT̄ XYÞ

d3pl

ð2πÞ32El
; ð33Þ

T̄ XY ¼ −i
Z

d4xe−ipl·xhB̄vjT½J†μX ðxÞJνYð0Þ�jB̄viL̄μν; ð34Þ

L̄μν ¼ −
i

π2x4
ðxμplν þ plμxν − x · plgμν þ iϵμνρσxρpσ

l Þ:
ð35Þ

It is straightforward to confirm that the partonic result for
the SM in Eq. (7) can be reproduced via Eq. (33) for the
case where the free propagator is used for the up quark in
Eq. (34). Duality violation for both RHC and SM can be
calculated on the basis of Eq. (33). As a result, the
normalized lepton energy distributions for the RHC and
the SM are

1

Γ0

dΓ
dy

����zm
LR

¼ −
2

3
d0

�
mb

m�

�
96π

ðmbρ0Þ5
y2

ð1 − y
2
Þ2

× sin

�
2mbρ0

�
1 −

y
2

��
; ð36Þ

1

Γ0

dΓ
dy

����nzm
LL

¼ −
2

3
d0

96π

ðmbρ0Þ5
y2

ð1− y
2
Þ3 cos

�
2mbρ0

�
1−

y
2

��
:

ð37Þ

It should be noted that the above results are obtained
without imposing the dispersion relation, which is different
from the method in Ref. [20]. Nonetheless, the proportion-
ality to ðmbρ0Þ−5 in Eq. (37) is consistent with Ref. [20],
since the neutrino propagator ð∝ xμ=x4Þ is simply fixed
by x2 ¼ −4ρ20 in Eq. (35) while the nontrivial realization of
the dispersion relation in Ref. [20] leads to the same
dependence.
For the numerical results of the lepton energy distribu-

tions, we define a ratio similarly to the total width in
Eq. (32):

RXY½HQ → Xqlν� ¼
ðdΓ=dyÞjIXY
ðdΓ=dyÞjpertXY

: ð38Þ

The above ratios for ðHQ; qÞ ¼ ðB̄; uÞ and ðD; dÞ are
plotted in Figs. 1 and 2, respectively. As similarly to the
total width, one can find that the duality-violating con-
tributions for D → Xdlν decays are generically larger than
those for B̄ → Xulν except that the contributions vanish at
oscillating nodes. It can be seen that duality violations in
the SM are rather small for both B̄ andD decays. As for the
RHC contributions, the typical size of the amplitude of the
oscillation can be as large as the one for the perturbative
contribution in B̄ decays as shown in Fig. 1. In the case of
the D decays in Fig. 2, the duality-violating component for
the RHC is even larger than that of B̄ decays. In this
regards, it should be recalled that, for the D decays, the use
of the saddle point approximation, including the evaluation
of the external heavy quark propagation in the medium of
an instanton, is less accurate than the B̄ decays, especially
for mc ¼ 1.27 GeV.
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IV. SUMMARY AND DISCUSSION

In this paper, we have studied quark-hadron duality for
inclusive semileptonic decays, indicating that the patterns
of duality violation depend on the given effective operators.
By extracting the finite-distance singularity in the light
quark propagator, it is shown that the zero-mode contri-
bution plays a pronounced role for the RHC. While the
duality-violating contributions give a tiny correction to the
smeared observable in the B̄ decays, the lepton energy
distribution receives a correction that is as large as the
chirally suppressed perturbative contributions except for
the oscillating nodes. For the D decays, the typical size of
duality violation is larger than the B̄ decays, although the
saddle point approximation is less accurate for these cases.

The results in this work are mostly based on the single
instanton inspired by the dilute nature of the instanton
vacuum. Provided that the multi-instanton effects are
universally treatable by the effective mass within the range
estimated by the RILM and the IILM, the method is able to
guarantee entire consistency at the short-distance region,
where the finite-distance singularity occurs ð

ffiffiffiffiffiffiffi
jx2j

p
¼ 2ρÞ.

Obviously, in order to investigate duality violation in a
more quantitative way, the very detail of the QCD vacuum,
including fully interacting aspects of the instanton liquid, is
to be taken into account.
Furthermore, a genuine instanton-induced correction to

the RHC, which is not totally calculated in this work, would
also play a somewhat pronounced role: This contribution is,
in general, chirally allowed due to the fermionic zero mode,
as well as duality violation analyzed in this work. Another
point to be mentioned is that duality violation is para-
metrically enhanced by small ρ, as can be seen in Eqs. (30),
(31), (36), and (37), although the contributions of the
instanton smaller than ρ ¼ 1=3 fm are suppressed by its
small density. In order to investigate how significant the
mentioned types of the contributions are, the numerical
simulation based on, e.g., the IILM should be performed.
For avoiding the huge background of B̄ → Xclν decays,

the experimental data for B̄ → Xulν decays are considered
in the particular phase space region characterized by the
multiscales, where a proper formalism is to be based on the
soft-collinear effective theory (SCET) [50]. In the analysis
of this region, the instanton-induced effects should be
included in the context of the SCET in a way discussed
for the effective field theory [51], which gives a practical
end point spectrum on B̄ → Xulν decays.
Another issue to be noted is that a problem which is

originally pointed out in Ref. [20] still remains unsolved:
The method is unable to be applied for spectator-dependent
diagrams such as weak annihilation or Pauli interference
(the latter is for nonleptonic decays), since the propagation
of external light quarks is nontrivial even at the saddle
point. For improving this, the quark equation of motion in
the medium of an instanton should be solved properly.
Meanwhile, the generically discussed aspect for
finite-distance singularity that originates from the zero
mode can be also applied to effective operators such as
ðl̄γμPLνÞ∂νðūσμνPLbÞ discussed in Ref. [35] for B → Xclν
decays. In those specific cases, zero-mode-induced correc-
tions to the OPE cannot be straightforwardly omitted due to
their chirality structures.
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FIG. 1. Ratio of duality-violating component to corresponding
perturbative contribution for lepton energy distribution in
B̄ → Xulν decays. The black solid (red dashed) line represents
the result of the SM multiplied by 104 for mb ¼ 4.18ð4.78Þ GeV.
The green (blue) band stands for the result for the
RHC obtained by varying 120 MeV ≤ m� ≤ 177 MeV with
mb ¼ 4.18ð4.78Þ GeV.

FIG. 2. Similar to Fig. 1 except that B̄ → Xulν is properly
replaced by D → Xdlν.
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