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In-medium masses of the 1S and 1P states of heavy quarkonia are investigated in the magnetized
asymmetric nuclear medium, accounting for the Dirac sea effects, using a combined approach of chiral
effective model and QCD sum rule method. Masses are calculated from the in-medium scalar and twist-2
gluon condensates, calculated within the chiral model. The gluon condensate is simulated through the
scalar dilaton field, χ introduced in the model through a scale-invariance breaking logarithmic potential.
Contribution of the Dirac sea is incorporated through the nucleonic tadpole diagrams. Treating the scalar
fields as classical, the dilaton field, χ, the isoscalar nonstrange σð∼ðhūui þ hd̄diÞÞ, strange ζð∼hs̄siÞ and
isovector δð∼ðhūui − hd̄diÞÞ fields, are obtained by solving their coupled equations of motion as derived
from the chiral model Lagrangian. The effects of magnetic field are incorporated through the Dirac sea as
well as the Landau energy levels of the protons, and the anomalous magnetic moments of the nucleons. The
scalar fields modify appreciably with magnetic field due to the Dirac sea contribution. In-medium masses
of the charmonium and bottomonium ground states are observed to have significant modifications with
magnetic field due to the effects of (inverse) magnetic catalysis. In presence of an external magnetic field,
there is mixing between the longitudinal component of the vector and the pseudoscalar mesons (PV
mixing) in both quarkonia sectors, leading to a rise (drop) of the masses of J=ψ jjðηcÞ andϒjjð1SÞðηbÞ states.
These might show in the experimental observables, e.g., the dilepton spectra in the noncentral,
ultrarelativistic heavy ion collision experiments at RHIC and LHC, where the produced magnetic field
is huge.
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I. INTRODUCTION

The study of the in-medium properties of hadrons is
an important area of research in the physics of strongly
interacting matter. The study of the heavy flavor hadrons
[1] has attracted a lot of attention due to its relevance in the
ultrarelativistic heavy ion collision experiments. Recently,
heavy quarkonia (q̄q; q ¼ c, b) under extreme conditions
of matter, i.e., high density and/or high temperature, have
been investigated extensively. The medium created in the
relativistic, high energy collisions affect the masses and
decay widths of the produced particles and have significant
observable impacts, e.g., the production and propagation of
the particles. In the noncentral heavy ion collisions, strong

magnetic fields are expected to be produced, at RHIC
in BNL and LHC in CERN [2–6]. However, the time
evolution of the produced magnetic field requires detailed
knowledge of the electrical conductivity of the medium
and proper treatment of the solutions of magneto-
hydrodynamic equations [6], which is still an open ques-
tion. The study of the effects of strong magnetic fields on
the in-medium properties of hadrons has initiated a new
area of research in the physics of heavy ion collisions. The
heavy quarkonia are the bound states of a heavy quark
(q ¼ c or, b) and its antiquark. Charmonium (c̄c) and
bottomonium (b̄b) states have been investigated in the
literature using a variety of approaches, e.g., the potential
models [7–9], the QCD sum rule approach [10–21], the
coupled channel approach [22], quark-meson coupling
model [23,24], a chiral effective model [25–28], and a
field theoretic model for composite hadrons [29,30].
In-medium masses of the ground states of heavy quar-

konium in a hadronic medium, have been studied exten-
sively in the literature using the nonperturbative QCD sum
rule (QCDSR) approach. In the isospin asymmetric hot
nuclear matter, in-medium masses have been studied from
the medium modified scalar and twist-2 gluon condensates,
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calculated within the chiral SUð3Þ model in terms of the
scalar dilaton field χ and other scalar fields, in the absence
of a magnetic field [12], and in presence of an external
magnetic field [13,14]. At finite magnetic field, Landau
energy levels of protons and anomalous magnetic moments
(AMMs) of the nucleons contribute to the scalar fields
through the number (ρp;n) and the scalar (ρsp;n) densities of
the nucleons within the magnetized nuclear matter [13–16].
Thermal modifications of the S-waves bottomonium spec-
tral functions have been investigated using QCDSR with
the maximum entropy method [17]. The temperature effects
have been included through the gluon condensates
extracted from the finite temperature lattice QCD data.
Investigation of the effects of finite temperature and baryon
chemical potential on the mass of the charmonium states
has been performed by using the QCD perturbative
(second-order stark effect) and nonperturbative sum rule
methods [18]. The medium effects of temperature and
density have been incorporated through the gluon con-
densates calculated in a resonance gas model. In [30–32],
the magnetically induced mixing between the pseudoscalar
and (longitudinal component of) vector charmoniummesons
(ηc − J=ψ jj) have been investigated using a hadronic effec-
tive Lagrangian which leads to a level repulsion between the
masses of J=ψ jj and ηc with increasing magnetic field. In
[31], the mass shifts of ηc and J=ψ also have been studied
using QCDSR framework, considering the mixing effects
through the current correlator in the phenomenological side.
The OPE side contains the effects of magnetic field in terms
of its operator expectation value and the vacuum scalar gluon
condensate term up to dimension-4. In the chiral effective
model, mass shifts of the heavy quarkonia are obtained
through the modifications in the scalar gluon condensates
[33], given in terms of the medium modified scalar dilaton
field χ, within the chiral SU(3) model [25,27].
The enhancement of the light quark condensates with

increasing magnetic field is called magnetic catalysis
[34–37]. In the literature, this effect has been studied to
a large extent on the quark matter sector using the Nambu–
Jona-Lasinio (NJL) model [38–40]. In Ref. [41], magnetic
catalysis (MC) has been studied in the context of nuclear
matter, through the contributions of magnetized Dirac sea
within the Walecka model and an extended linear sigma
model. Magnetic catalysis has been observed through the
rise in the scalar field σð∼hq̄qiÞ with magnetic field in the
vacuum, for zero AMM of the nucleons. As a consequence,
the effective nucleon mass, m�

N ¼ mN − gσNσ, increases
with magnetic field in the vacuum (mN is the vacuum mass
of the nucleon and gσN , the σ-nucleon coupling constant in
the Lagrangian). In [42], the effects of (inverse) magnetic
catalysis have been studied using the weak-field approxi-
mation of fermion propagator. The critical temperature of
vacuum to nuclear matter phase transition decreases with
magnetic field, for the nonzero AMMs of the nucleons,
implying an inverse magnetic catalysis (IMC) [43].

An opposite behavior is obtained for zero nucleonic
AMM, leads to the magnetic catalysis. In the literature
there are a few works related to the effect of IMC/MC on
hadronic properties in the nuclear matter.
The in-medium masses of the open heavy flavor mesons,

namely the open charm and open bottom mesons, have
been studied within the QCD sum rule approach [44–46],
and using the generalized version of the chiral effective
model, both in the absence [47,48], and in presence of a
magnetic field [49,50]. The open heavy flavor mesons have
their mass modifications in terms of both the light quark
condensates (because of the light quark flavor present in
their quark structure) as well as the gluon condensates in
the sum rule approach. The in-medium masses of the light
vector mesons (ρ;ω;ϕ) have been studied within the QCD
sum rule approach [51]. The medium modifications of the
masses are obtained from the nonstrange (hq̄qi; q ¼ u, d
for ρ, ω) and strange (hs̄si for ϕ) light quark condensates
and the scalar gluon condensates (∼hGa

μνGaμνi), calculated
within the chiral SUð3Þ model, in the strange asymmetric
matter in absence of magnetic field [52], and in the
magnetized nuclear medium [53].
In the magnetized nuclear matter, the mass modifications

of the 1SðJ=ψÞ, 2Sðψð3686ÞÞ and 1Dðψð3770ÞÞ states of
charmonium have been studied in terms of the medium
modifications of the scalar dilaton field χ, which in turn
mimics the gluon condensates of QCD within the chiral
effective model [25]. For the charmonium states, there is
observed to be a mass drop as the density increases beyond
the nuclear matter saturation density ρ0, for different values
of magnetic field, jeBj and isospin asymmetry parameter, η.
The dominant effect was coming from the nuclear matter
density as compared to the effects from the magnetic field.
In [54], the mass shifts of these charmonium states due to
the change in the gluon condensate have been calculated
using the perturbative QCD approach, to the leading order
in density till ρ0. The mass shifts obtained in [25],
calculated for any baryonic density within the chiral
effective model, agrees with the results of [54] in the
linear density approximation of −8, −100, and −140 (in
MeV) for J=ψ, ψð3686Þ, and ψð3770Þ, respectively at
ρB ¼ ρ0 and jeBj ¼ 0. In-medium masses of the open
charm and charmonium mesons have also been studied in
the magnetized strange hadronic matter [28]. The PV
mixing between the longitudinal component of vector
and pseudoscalar open charm (D�jj −D) mesons [55] as
well as for the S-waves of charmonia [30,55] have been
studied using a hadronic effective Lagrangian. The in-
medium masses thus obtained have been used to study the
in-medium hadronic decay widths forD� → Dπ [55] and of
ψð3770Þ → DD̄ [30,55], accounting for the lowest Landau
energy level contributions for the charged D mesons. In
[56], the spin-magnetic field interaction between B − B�
and ηbð4SÞ −ϒð4SÞ have been studied using a Hamiltonian
approach [57] in the presence of an external magnetic field.
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The in-medium partial decay widths of ϒð4SÞ going to BB̄
have been studied using a field theoretic model for
composite hadrons with quark (and antiquark) constituents
[56]. The in-medium decay widths of charmonium states to
DD̄ in the magnetized nuclear matter have also been
studied using a light quark-antiquark pair creation model,
namely the 3P0 model [58]. The spin-magnetic field
interaction between the spin-singlet and longitudinal com-
ponent of the spin-triplet states have been studied using a
Hamiltonian formalism of [57] on the 1S states of heavy
quarkonia (ηc − J=ψ) and (ηb −ϒð1SÞ), which lead to a
rise (drop) in the mass of the J=ψ jjðηcÞ and ϒð1SÞjjðηbÞ
with increasing magnetic field [15,16,57]. The effects of
(inverse) magnetic catalysis due to the Dirac sea con-
tribution at finite jeBj, have not been considered in the
studies mentioned above. The studies of the magnetic
field modified hadronic properties, specifically of the
heavy flavor mesons have important observable conse-
quences, such as in the formation time of heavy quarko-
nia, the particle production ratio, etc. in the noncentral
ultra relativistic heavy ion collision experiments [59,60].
In the present work, we study the in-medium masses of

the 1S-wave (vector, J=ψ , pseudoscalar, ηc) and 1P-wave
(scalar, χc0, axial-vector, χc1) charmonium states as well
as the 1S-wave (vector, ϒð1SÞ, pseudoscalar, ηb) and
1P-wave (scalar, χb0, axial-vector, χb1) bottomonium
states, in a magnetized isospin asymmetric nuclear
medium, using the QCD sum rule approach, by incorpo-
rating the effects of Dirac sea in presence of an external
magnetic field. At finite magnetic field, effects of
the pseudoscalar-vector (PV) mixing between the pseudo-
scalar ηc (ηb) and longitudinal component of vector J=ψ jj

(ϒjjð1SÞ) mesons are studied in both quarkonia sector,
accounting for the Dirac sea effects on their in-medium
masses.
The outline of the paper is: in Sec. II, the chiral effective

model is described briefly to calculate the medium modi-
fied gluon condensates. Section III illustrates the QCD sum
rule framework to calculate the in-medium masses of the
lowest lying states of heavy quarkonia. Mass shifts of the
S-wave states due to the pseudoscalar-vector (PV) mesons
mixing are introduced in presence of a magnetic field.
In Sec. IV, results of the magnetized Dirac sea effects
are discussed. Section V summarizes the findings of the
present work.

II. THE CHIRAL SUð3ÞL × SUð3ÞR MODEL

In-medium masses of the quarkonium ground states are
computed within the QCD sum rule approach, in terms of
the scalar and twist-2 gluon condensates. In the present
study, these condensates are calculated within an effective
chiral hadronic model [61]. The chiral model is based on
the nonlinear realization of chiral SUð3ÞL × SUð3ÞR sym-
metry [62–64], and the broken scale invariance of QCD

[61,65,66]. The QCD scale-invariance breaking is incorpo-
rated through a logarithmic potential in the scalar dilaton
field χ [67], in the model. The chiral model Lagrangian
density has the following general form [61],

L ¼ Lkin þ LBM þ Lvec þ L0 þ Lscale−break þ LSB þ Lmag

ð1Þ

in the above expression, Lkin is the kinetic energy of the
baryons and the mesons; LBM represents the baryon-
mesons (both spin-0 and spin-1 mesons) interactions;
Lvec contains the quartic self-interactions of the vector
mesons and their couplings with the scalar ones; L0

incorporates the spontaneous chiral symmetry breaking
effects via meson-meson interactions; Lscale−break is the
QCD scale symmetry breaking logarithmic potential; the
explicit symmetry breaking term is LSB; finally the mag-
netic field effects on the charged and neutral baryons in the
nuclear medium are given by [25,26,49,50,68–71],

Lmag ¼ −
1

4
FμνFμν − qiψ̄ iγμAμψ i −

1

4
κiμNψ̄ iσ

μνFμνψ i

ð2Þ

where, ψ i is the baryon field operator (i ¼ p, n, in case of
nuclear matter), the parameter, κi is related to the anoma-
lous magnetic moment of the ith baryon, κp ¼ 3.5856 and
κn ¼ −3.8263, are the gyromagnetic ratio corresponding to
the anomalous magnetic moments (AMM) of the proton
and the neutron respectively [68–75]. In the magnetized
nuclear medium there are contributions from the protons
Landau energy levels [72], and the nucleons anomalous
magnetic moments [72,75], to the number and scalar
densities (ρi; ρsi ; i ¼ p, n, respectively) of the nucleons
[49,50]. In the current study, the Dirac sea contributes to the
scalar densities of nucleons at finite magnetic field,
including the effects of the anomalous magnetic moments
of nucleons within the chiral SUð3Þ model. One-loop
self energy functions of the nucleons are evaluated
through summation over the scalars (σ, ζ and δ) and
vectors (ρ and ω) tadpole diagrams, using the weak-field
expansion of the nucleonic propagator [42], accounting for
the AMMs of nucleons, within the chiral effective model.
The meson fields of the chiral model Lagrangian are

treated as the classical fields, whereas the nucleons as the
quantum fields in the evaluation of the Dirac sea contri-
bution to the scalar fields. The scalar dilaton field,
χ simulates the scalar gluon condensate hαsπ Ga

μνGaμνi, as
well as the twist-2 gluon operator hαsπ Ga

μσGaσ
ν i, within the

model. The energy momentum tensor, Tμν derived from the
χ-dependent terms in the chiral model Lagrangian density
is thus [12]
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Tμν ¼ ð∂μχÞ
�

∂L
∂ð∂νχÞ

�
− gμνLχ : ð3Þ

The QCD energy momentum tensor, in the limit of finite
current quark mass contains a symmetric traceless part and
a trace part [76],

Tμν ¼ −STðGa
μσGaσ

ν Þ þ gμν
4

�X
i

miq̄iqi þ
βQCD
2g

ðGa
σkG

aσ
k Þ
�

ð4Þ

with the leading order QCD β function [12], βQCDðgÞ ¼
− g3

ð4πÞ2 ð11 − 2
3
NfÞ, for three color quantum numbers of

QCD, and Nf ¼ 3 number of quark flavors. Here, mi’s
(i ¼ u, d, s) are the current quark masses. The medium
expectation value of the twist-2 gluon operator is,

�
αs
π
Ga

μσGa σ
ν

�
¼
�
uμuν −

gμν
4

�
G2 ð5Þ

where uμ is the 4-velocity of the nuclear medium taken to
be at rest in the present investigation, namely, uμ ¼
ð1; 0; 0; 0Þ. The energy momentum tensor of QCD is
thus [12]

Tμν ¼ −
π

αs

�
uμuν −

gμν
4

�
G2

þ gμν
4

�X
i

mihq̄iqii þ
βQCD
2g

hGa
σkG

aσ
k i
�

ð6Þ

Comparing the expressions of energy momentum tensor
from Eqs. (6) and (3), the expressions for G2 (the twist-2
component) and the scalar gluon condensate are given by
multiplying both sides with ðuμuν − gμν

4
Þ and gμν respec-

tively. These are given by

G2 ¼
αs
π

�
−ð1 − dþ 4k4Þðχ4 − χ40Þ − χ4 ln

�
χ4

χ40

�

þ 4

3
dχ4 ln

��ðσ2 − δ2Þζ
σ20ζ0

��
χ

χ0

�
3
��

ð7Þ

and [77],

�
αs
π
Ga

μνGaμν

�
¼ 8

9

�
ð1 − dÞχ4 þ

�
χ

χ0

�
2
�
m2

πfπσ

þ
� ffiffiffi

2
p

m2
kfk −

1ffiffiffi
2

p m2
πfπ

�
ζ

��
ð8Þ

The expectation values of the scalar and the twist-2 gluon
condensates in magnetized nuclear medium, depend on

the in-medium values of the nonstrange scalar-isoscalar
field σ, the strange scalar-isoscalar field ζ, the nonstrange
scalar-isovector field δ and the scalar dilaton field χ, within
the chiral SUð3Þ model. The Euler Lagrange’s equations of
motion for the scalar fields are derived from the chiral
model Lagrangian. Contributions of magnetic fields to the
scalar fields are obtained through the scalar (ρsp;n) and
number (ρp;n) densities of the nucleons, which are modified
due to the Landau energy levels of protons and the
anomalous magnetic moments of nucleons. Effects of
the magnetized Dirac sea also contributes to the scalar
densities of nucleons and hence on the scalar fields, at zero
and finite density matter.

III. IN-MEDIUM MASSES WITHIN
THE QCD SUM RULE APPROACH

The in-medium masses of the 1S-wave and 1P-wave
states of charmonium [1S∶ J=ψ ; ηc and 1P∶ χc0; χc1] and
bottomonium [1S∶ϒð1SÞ; ηb and 1P∶ χb0; χb1] are studied
within the QCD Sum Rule approach. In this approach,
masses of the heavy-quarkonium ground states are calcu-
lated in terms of the medium modified scalar and twist-2
gluon condensates. The condensates are obtained within
the chiral model, through the in-medium values of the
scalar fields in the magnetized, asymmetric nuclear matter
with the additional contribution from the magnetized Dirac
sea. The in-medium mass squared, m�2

i of the i-type of
quarkonium ground state (i ¼ vector, pseudoscalar, scalar,
and axial-vector) is given as [78],

m�2
i ≃

Mi
n−1ðξÞ
Mi

nðξÞ
− 4m2

qξ; ð9Þ

where Mi
n is the nth moment of the i-type meson state

and mqðq ¼ c; bÞ is the running heavy quark mass depen-
dent on the renormalization scale ξ. Using the operator
product expansion technique [OPE], the moment can be
written as [10,78],

Mi
nðξÞ ¼ Ai

nðξÞ½1þ ainðξÞαs þ binðξÞϕb þ cinðξÞϕc�; ð10Þ

where Ai
n; ain; bin, and cin are the Wilson coefficients. The

coefficients, Ai
n result from the bare-loop diagram of

perturbative QCD, ain are the contributions of the pertur-
bative radiative corrections, and bin are related to the scalar
gluon condensate through

ϕb ¼
4π2

9

hαsπ Ga
μνGaμνi

ð4m2
qÞ2

: ð11Þ

By substituting the expression for the scalar gluon con-
densate from Eq. (8),
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ϕb ¼
32π2

81ð4m2
qÞ2
�
ð1 − dÞχ4 þ

�
χ

χ0

�
2
�
m2

πfπσ

þ
� ffiffiffi

2
p

m2
kfk −

1ffiffiffi
2

p m2
πfπ

�
ζ

��
. ð12Þ

The coefficients cin are associated with the twist-2 gluon
condensates as

ϕc ¼
4π2

3ð4m2
qÞ2

G2; ð13Þ

which using Eq. (7), reduces to

ϕc ¼
4παs

3ð4m2
qÞ2
�
−ð1 − dþ 4k4Þðχ4 − χ40Þ − χ4 ln

�
χ4

χ40

�

þ 4

3
dχ4 ln

�ðσ2 − δ2Þζχ3
σ20ζ0χ

3
0

��
: ð14Þ

The ξ-dependent parameters mq (q ¼ c, b) and the running
coupling constant αs are [12,78]

mqðξÞ
mq

¼ 1 −
αs
π

�
2þ ξ

1þ ξ
lnð2þ ξÞ − 2 ln 2

�
ð15Þ

with mc ≡mcðp2 ¼ −m2
cÞ ¼ 1.26 GeV and mb ≡

mbðp2 ¼ −m2
bÞ ¼ 4.23 GeV [12,79], and

αsðQ2
0 þ 4m2

qÞ

¼ αsð4m2
qÞ
	�

1þ ð33 − 2nfÞ
12π

αsð4m2
qÞ ln

Q2
0 þ 4m2

q

4m2
q

�

ð16Þ

with Q2
0 ¼ 4m2

qξ ðq ¼ c; bÞ, and nf ¼ 4, αsð4m2
cÞ ≃ 0.23

in the charm quark sector, and nf ¼ 5, αsð4m2
bÞ ≃ 0.15 in

the bottom quark sector [79].
The Wilson coefficients, Ai

n; ain and bin are given in [78]
for different JPC quantum numbers of states, e.g., the
pseudoscalar, vector, scalar, axial-vector channels. The cins’
are listed for the vector and pseudoscalar (1S states)
channels in [10], for the 1P-wave states (scalar and
axial-vector) cins’ are calculated using a background field
technique [20].
At finite magnetic field, mixing of the pseudoscalar

(P≡ ηcð1SÞ) and vector (V ≡ J=ψ) charmonium states are
considered through the interaction Lagrangian [30–32,46,55]

LPVγ ¼
gPV
mav

eF̃μνð∂μPÞVν; ð17Þ

where mav ¼ ðmV þmPÞ=2, mP and mV are the masses for
the pseudoscalar and vector charmonium states, F̃μν is the

dual electromagnetic field strength tensor. In Eq. (17), the
coupling parameter gPV is fitted from the observed value of
the radiative decay width,

ΓðV → PγÞ ¼ e2

12

g2PVp
3
cm

πm2
av

; ð18Þ

where, pcm ¼ ðm2
V −m2

PÞ=ð2mVÞ is the magnitude of the
center ofmassmomentum in the final state. Themasses of the
pseudoscalar and the longitudinal component of the vector
mesons including the mixing effects are given by

m2ðPVÞ
P;V jj ¼ 1

2

 
M2þ þ c2PV

m2
av

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

− þ 2c2PVM
2þ

m2
av

þ c4PV
m4

av

s !
;

ð19Þ

where M2þ¼m2
Pþm2

V , M
2
−¼m2

V−m2
P, and cPV ¼ gPV jeBj.

The effective Lagrangian given byEq. (17) is observed to lead
to the mass modifications of the longitudinal component
of J=ψ and ηc states in the presence of magnetic field. In
Eq. (19), the effects of the magnetized Dirac sea,
the Landau quantization of protons and the AMMs of the
nucleons are incorporated through the in-medium values of
mP;V . The in-mediummasses ofmP,mV are calculated using
the QCDSR approach. Effects of the spin-magnetic field
interaction have been studied for the S-wave states of
heavy quarkonia [15,16,56,57,80]. This leads to a level
repulsion between the mass eigenstates of the spin-0 and
longitudinal component of the spin-1 states. The interaction
leads to a mixing effect between (ϒð1SÞ − ηb). Thus, the
effective masses of ϒjjð1SÞ and ηb, accounting for the mass
shifts due to the spin-magnetic interaction Hamiltonian
(−μ⃗:B⃗) [57],

meff
ϒð1SÞ ¼ m�

ϒð1SÞ þ ΔmsB; meff
ηb ¼ m�

ηb − ΔmsB ð20Þ

In the above equation, m�
ϒð1SÞ=ηb denotes the in-medium

masses of the 1S-wave bottomonium states calculated within
QCDSR, accounting for the Dirac sea effects. ΔmsB is the
mass shift due to the spin-magnetic field interaction, given by

ΔmsB ¼ ΔM
2

ðð1þ χsB
2Þ1=2 − 1Þ; χsB ¼ 2gμbB

ΔM
ð21Þ

where, μb ¼ ð1
3
eÞ=ð2mbÞ is the bottomquarkBohrmagneton

with the constituent bottom quarkmass,mb ¼ 4.7 GeV [57],
ΔM ¼ m�

ϒð1SÞ −m�
ηb , and g is chosen to be 2 [ignoring the

anomalous magnetic moments of the bottom quark (anti-
quark)]. The Hamiltonian approach is taken to study the spin-
mixing effects in the bottomonium sector (unlike c̄c), due to
the lack of experimental data on the bottomonium radiative
decay width, ϒð1SÞ → ηbγ.
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IV. RESULTS AND DISCUSSIONS

A. Charmonium states

In this subsection, the results for the in-medium masses
of the lowest S-wave: J=ψ (3S1), ηc (1S0) and P-wave:
χc0 (3P0), χc1 (3P1), states of charmonium are discussed in
the presence of magnetized asymmetric nuclear matter,
accounting for the effects of the magnetized Dirac sea
(denoted as DS). In the sum rule approach, masses are
obtained by calculating the moments (Mi

n) for all the four
meson currents: vector (3S1), pseudoscalar (1S0), scalar
(3P0) and axial-vector (3P1). The momentsMi

n, are given in
terms of the perturbative Wilson coefficients and the
nonperturbative gluon condensates of QCD, as given by
Eq. (10). Wilson coefficients are calculated for different
JPC quantum numbers of the currents and are independent
of the medium effects [10,20,78]. The mass formula in the
sum rule framework [Eq. (9)], depends on the running
charm quark mass, mcðξÞ, and the running coupling
constant, αsðξÞ, which are functions of the renormalization
scale ξ, given by Eqs. (15) and (16) respectively. The scalar
gluon condensate hαsπ Ga

μνGaμνi is connected to the ϕb term,
whereas, the twist-2 gluon condensate G2 to the ϕc term,
which incorporate the medium effects in the mass calcu-
lation. The gluon condensates are obtained from the chiral
effective model [Eqs. (7) and (8)], in terms of the in-
medium scalar fields within the chiral model. In the present
investigation, the effects of the magnetized Dirac sea are
taken into account through the scalar densities of protons
(ρsp) and neutrons (ρsn). In the magnetized nuclear matter,
effects of Landau energy levels of protons and the anoma-
lous magnetic moments of nucleons are also taken into

account, which lead to the modifications of the number and
scalar densities of nucleons (ρi; ρsi ; i ¼ p, n) [49,50,68,69].
Therefore, within the chiral SUð3Þ model, the coupled
equations of motion in the scalar fields are solved account-
ing for the protons Landau energy levels and the Dirac
sea contribution at finite magnetic field, for the given values
of baryon density, ρB, isospin asymmetry parameter,
η ¼ ðρn − ρpÞ=2ρB, (ρp and ρn are the number densities
of proton and neutron, respectively) and magnetic field,
jeBj (in units of m2

π). Effects of the magnetized Dirac sea
lead to the appreciable changes in the values of the scalar
fields within the chiral effective model. In Fig. 1, the values
of the light quark condensates ð−hq̄qiÞ1=3; q ¼ u, d (in
units of MeV) increase with magnetic field, at ρB ¼ 0,
implying magnetic catalysis, with and without the AMMs
of the Dirac sea of nucleons. There is observed to be a sharp
increase for nonzero AMMs of nucleons, as compared to
the case of zero AMM. At ρB ¼ ρ0, for symmetric as well
as asymmetric nuclear matter with η ¼ 0 and 0.5 respec-
tively, light quark condensates tend to decrease with eB
for nonzero AMMs of the nucleons, an effect called inverse
magnetic catalysis. Its opposite behavior is observed,
i.e., increasing values of the light quark condensates with
increasing magnetic field for zero AMM, at ρ0 and η ¼ 0,
0.5, indicating magnetic catalysis. Thus, the contribution
of Dirac sea leads to an inverse magnetic catalysis due to the
decreasing values of the light quark condensates with
magnetic field within the chiral effective model, at ρ0 for
nonzero anomalous magnetic moments of the nucleons.
For zero AMM, magnetic catalysis is observed due to the
increasing values of the light quark condensates with jeBj. It
implies that the AMMs of the nucleons play an important
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FIG. 1. The light quark condensates ð−hq̄qiÞ1=3 in MeV for (a) q ¼ u and (b) q ¼ d, are shown as functions of jeBj=m2
π , at ρB ¼ 0,

and ρ0 for η ¼ 0, 0.5. The condensates are obtained from the in-medium scalar fields, accounting for the Dirac sea effects. The (drop)
rise of the quantity with magnetic field indicate the phenomena of (inverse) magnetic catalysis. The effects of the nucleons’ AMMs are
considered and compared to the no AMM condition.
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role through the magnetized Dirac sea contribution. Along
with the light quark condensates, there are observed to be
appreciable changes in the magnitudes of the scalar as well
as the twist-2 gluon condensates with increasing magnetic
field, accounting for the Dirac sea contribution, as shown in
Figs. 2 and 3. In Fig. 2, hαsπ Ga

μνGaμνi1=4, corresponding to the
scalar gluon condensate, in units of MeV is plotted as a
function of magnetic field jeBj in units of m2

π , at ρB ¼ 0; ρ0
for symmetric and asymmetric nuclear matter, including the
effects of the Dirac sea at finite magnetic field, accounting
for (and not) the AMMs of the nucleons. The change in the
scalar gluon condensate with magnetic field are obtained
from the magnetized Dirac sea modified scalar dilaton
field χ, as well as of the scalar isoscalar fields σ and ζ,
from Eq. (8). The term ðG2Þ1=4 in MeV (with appropriate
sign), corresponds to twist-2 gluon condensate is plotted in
Fig. 3, as functions of jeBj=m2

π at ρB ¼ 0; ρ0 for η ¼ 0, 0.5,
accounting for the DS effects for the S- and P-wave states of
charmonium. Similar pattern are obtained for the 1S and 1P
wave states of bottomonium, as will be described later, for
different multiplying factor of αsðξÞ. The running coupling
constant αsðξÞ, present in the expression of G2 [Eq. (7)] are
different for S waves with ξ ¼ 1 [10] and P waves with
ξ ¼ 2.5 [20] states of charmonium. In Fig. 3, the variation in
the twist-2 gluon condensate G2 is coming from that of the
scalar dilaton field χ and other scalar fields with respect to
jeBj, following Eq. (7), accounting for the Dirac sea effects
within the chiral model. In the presence of an external
magnetic field, the mixing between the longitudinal com-
ponent of the vector and the pseudoscalar states of charmo-
nium are studied using a phenomenological Lagrangian
approach, accounting for the additional effects of Dirac sea
to the masses. The effective masses of J=ψ jj and ηc thus

given by Eq. (19). The nuclear matter saturation density,
ρ0 is taken to be 0.15 fm−3 in the present work [61].
The value of the renormalization scale, ξ ¼ 1

is chosen for the S-wave [10] charmonium states and
ξ ¼ 2.5 [20] for the P-wave charmonium states, to study
their respective in-medium masses. These choices lead to
the ξ dependent coupling constant and charm quark mass,
αs ¼ 0.21 and mc ¼ 1.24 GeV for the 1S-wave states and
αs ¼ 0.1948 andmc ¼ 1.22 GeV for the 1P-wave states of
charmonium. Using the parameters and ϕb in terms of the
scalar gluon condensate, hαsπ Ga

μνGaμνi, calculated within
the chiral effective model, the vacuum masses of J=ψ and
ηc are found to be 3196.56 MeV and 3066.57 MeV,
respectively. The values of the twist-2 gluon condensate,
G2 is zero, and of hαsπ Ga

μνGaμνi is ð373.02 MeVÞ4 at
vacuum. The vacuum masses of χc0 and χc1 are obtained
as 3720.95 MeVand 3878.55 MeV, respectively. The mass
shifts of J=ψ at ρB ¼ ρ0 and jeBj ¼ 0 of −4.21 MeV
calculated in this work can be compared with −8 MeV of
mass shifts obtained using the leading order QCD formula
(similar to second-order Stark effect), in the linear density
approximation [54].
For any particular state (i ¼ vector, pseudoscalar,

scalar and axial-vector) of heavy quarkonia, the quantity
m�

i , in Eq. (9), in terms of the ratio of two consecutive
moments and parameters involving the renormalization
scale, ξ, can be varied as a function of n. The minimum
value ofm�

i corresponds to the physical mass of the state. In
our present study, the ratio of two consecutive moments
(Mi

n−1ðξÞ=Mi
nðξÞ) in the moment sum rule approach is

adopted to obtain the mass of the lowest lying resonance
[78]. For higher values of n, the effects of the higher lying
resonances and continuum can be neglected. However, for
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FIG. 2. The scalar gluon condensate hðαs=πÞGa
μνGaμνi1=4 in MeVat (a) ρB ¼ 0 and (b) ρB ¼ ρ0 (for η ¼ 0, 0.5), are shown as functions

of jeBj (in units ofm2
π). The condensates are calculated in terms of the in-medium scalar fields, accounting for the Dirac sea (DS) effects.

The effects of the nucleons’ AMMs are considered and compared with the no AMM case.
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large values of n, the incorporation of the higher dimen-
sional operators in the OPE side do not let the first order
perturbation theory to hold. To minimize the contributions
of the higher dimensional operators, the value of Q2

0 and
hence of ξ must be chosen nonzero [79]. Proper choice of ξ
sets a range of values for n, which saturates the phenom-
enological side with the lowest lying resonance [79].
This range is called the stability region in n which changes
with ξ. For small values of n, breakdown occurs in the
stability region due to the contribution of the higher lying
resonances. In our calculations, the stability region of n, for
the 1S and 1P states of charmonium and bottomonium are
in accordance with the findings of [10,20,78,79]. In Fig. 4,
them�

i are plotted as functions of n for the four lowest lying
states of charmonium, at ρB ¼ 0; ρ0ðη ¼ 0Þ for eB ¼ 0. In
this figure, the physical mass of the 1S-waves vector (J=ψ )

and pseudoscalar (ηc) states of charmonium are obtained
at n ¼ 8 and n ¼ 9, respectively for ξ ¼ 1. For both the
1P-waves scalar (χc0) and axial-vector (χc1) states, it is
obtained at n ¼ 9.
At zero density and finite magnetic field, only Dirac sea

effect is there with no protons’ Landau level contribution,
in the absence of matter part. The masses are calculated by
considering the nonzero anomalous magnetic moments
(AMMs) of the nucleons and compared to the case when
AMM is taken to be zero. At finite density matter, the scalar
fields are solved considering the magnetized Dirac sea
contribution along with the Landau quantization of protons
and nonzero anomalous magnetic moments of the nucle-
ons, in presence of magnetic field. The values of the
scalar gluon condensate from Eq. (8), in terms of the scalar
dilaton field, χ and the scalar fields σ, ζ (in the limit of
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FIG. 3. The twist-2 gluon condensate ðG2Þ1=4 in MeVare plotted as functions of jeBj=m2
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finite quark masses), are (in ðMeVÞ4), hαsπ Ga
μνGaμνi¼

ð373Þ4;ð372.88Þ4;ð372.48Þ4;ð371.44Þ4 and ð370.36Þ4 at
jeBj=m2

π ¼ 1, 2, 3, 3.7, and 3.9, respectively for ρB ¼ 0
and with AMM case. For the case of without AMM, at
zero density, values of hαsπ Ga

μνGaμνi are ð373.01 MeVÞ4,
ð372.93 MeVÞ4, ð372.49 MeVÞ4, and ð371.41 MeVÞ4 at
jeBj=m2

π ¼ 2, 4, 8, and 12, respectively. In the presence of
magnetic field, the expectation value of the twist-2 gluon
operator G2 becomes nonzero at ρB ¼ 0 due to the Dirac
sea contribution. Thus, the values of G2 in terms of the
scalar fields [from Eq. (7)] are given as ð57.26 MeVÞ4
(for 1S states), ð56.19 MeVÞ4 (for 1P states) at 2m2

π , and
ð92.31 MeVÞ4 (for 1S), ð90.59 MeVÞ4 (for 1P) at 3.7m2

π ,
with nonzero AMMs of nucleons. In the case of zero
AMM, zero density, the values are ð35.99 MeVÞ4 (for 1S),
ð35.32 MeVÞ4 (for 1P) at 2m2

π, and ð74.94 MeVÞ4 (for 1S),
ð73.55 MeVÞ4 (for 1P) at 8m2

π . The running coupling
constant, αs is a function of the renormalization scale, ξ,
thus different choices of ξ for the S-wave and P-wave states

lead to slight variation in G2 values. The values of these
condensates are seen to change considerably with the
magnetic field, at zero density, accounting for the Dirac
sea effect, whereas there is no effect from the Landau
quantization of protons. The variation in masses as func-
tions of the magnetic field thus obtained from the modified
gluon condensates, as shown in Fig. 5 for ρB ¼ 0, and
Figs. (6) (1S) to (7) (1P) at ρ0, η ¼ 0, for the 1S (J=ψ , ηc)
and 1P (χc0, χc1) states of charmonium. At finite density
matter, ρB ¼ ρ0, the contribution from the protons Landau
energy levels and anomalous magnetic moments of nucle-
ons are taken into account along with the Dirac sea effects.
In Figs. (6 and 7), masses including the DS effects (plots (a)
and (c)) are compared to the case when there is no Dirac sea
effect [plots (b) and (d)] for 1S and 1P wave states of
charmonium, taking into account the PV mixing effect of
ðJ=ψ jj − ηcÞ for the 1S states in (6). The parameter gPV ≡
gηcJ=ψ in the phenomenological Lagrangian (17), is evalu-
ated to be 2.094 from the observed radiative decay width of
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ΓðJ=ψ → ηcγÞ in vacuum, 92.9 keV [81], using Eq. (18).
This effect leads to the rise (drop) in the masses of J=ψ jj
(ηc) states with magnetic field as shown in Figs. 5 and 6 at
ρB ¼ 0 and ρ0 respectively, of amount 0.467ð−9.012Þ,
10.994ð−24.148Þ at jeBj=m2

π ¼ 4 and 8, at ρ0, η ¼ 0 for
nonzero AMMs of the nucleons, including the Dirac sea
effects. The values at ρB ¼ 0 are given as 1.327ð−0.99Þ,
ð3.511Þð−2.627Þ at jeBj=m2

π ¼ 2, 3.5 for nonzero AMMs
of the nucleons, incorporating the Dirac sea effects. The
differences are taken with respect to their corresponding
vacuum mass. The rise and drop in the masses of J=ψ jj and
ηc is identified as a level repulsion between the states with
increasing magnetic field. The level repulsion occurred
due to the magnetically induced PV mixing between J=ψ jj
and ηc using an effective hadronic interaction Lagrangian
[30–32]. In the QCD sum rule approach, the magnetically

induced PV mixing effects have been incorporated through
the current correlator in the phenomenological side and
the magnetic field effects through the operator expectation
value in the OPE side, leading to the level repulsion
between J=ψ jj − ηc with increasing magnetic field [31,32].
The level repulsion from the two approaches of QCDSR
and the hadronic effective Lagrangian [in the 2nd order of
jeBj and leading order in ðmV−mP

2mav
Þ of Eq. (19)], have been

observed to be in good agreement in the weak-field region
(below jeBj ∼ 0.1 GeV2) with a slight deviation as jeBj
increases further [31,32]. The vacuum masses of J=ψ and
ηc were found to be 3.092 GeV and 3.025 GeV, respec-
tively, for hαsπ G2i of ð0.35 GeVÞ4, using the Borel trans-
form of sum rule where the Borel curves indicated the
level repulsion between J=ψ and ηc at jeBj ¼ 0 and 5m2

π ,
accounting for the phenomenologically incorporated
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mixing effects in the spectral ansatz of QCDSR [31,32]. In
the present work, the vacuum masses for J=ψ and ηc are
obtained as 3.196 GeV and 3.067 GeV by using hαsπ G2i of
ð0.37 GeVÞ4 from the chiral SUð3Þ model. An increase
(decrease) in the energy levels of the longitudinal compo-
nent of J=ψ (ηc) with magnetic field has been studied due
to the spin-magnetic field interaction Hamiltonian within
a Cornell potential model [57]. In an external magnetic
field, the quarkonia have a conserved pseudomomentum
instead of a conserved center-of-mass momentum. The
spin-mixing also lead to the suppression of J=ψ decays to
lepton pairs and turn on decays of ηc state which should
experimentally be realized as a reduction in the dilepton
yields of J=ψ and the appearance of a peak at mηc in the
dilepton spectrum. In [57], an approximate suppression of
11% of the J=ψ decays have been predicted.

The in-medium masses of the J=ψ , ηc, χc0, and χc1 states
of charmonium (decrease) increase with increasing mag-
netic field at ρ0, due to the (inverse) magnetic catalysis
effect (without PV mixing effect of the 1S waves), for the
case of (nonzero AMMs) zero AMM of the nucleons. In
Fig. 6, the masses of J=ψ (ηc) increase (decrease) with
magnetic field, both with and without AMMs of the
nucleons in the DS contribution, when the PV mixing
effect is considered between (J=ψ-ηc). Although the rate at
which mass rises (drops) is modified considerably by the
DS effects for nonzero AMMs of the nucleons. In com-
parison to such effects, there are almost no change observed
with increasing magnetic field in the absence of Dirac sea
effects, due to only the protons’ Landau energy levels,
and nucleons’ AMMs in the magnetized nuclear matter.
The observed behavior imply that, an important effect
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FIG. 6. Masses (in MeV) are plotted as functions of jeBj=m2
π for J=ψ [(a) and (b)], and ηc [(c) and (d)] at ρB ¼ ρ0, η ¼ 0. The

contributions of the magnetized Dirac sea [(a), (c)] to the masses are shown in addition to the effects of the protons’ Landau energy levels
and the AMMs of the nucleons in magnetized nuclear matter. This is compared to the case when the DS effect is absent [(b) and (d)]. The
PV mixing effects between ðJ=ψ jj − ηcÞ are considered, accounting for (and not) the effects of magnetized DS and the AMMs of the
nucleons.
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due to the nonzero anomalous magnetic moments of
nucleons is coming through the Dirac sea contribution.
The mass variation are of similar pattern for the asymmetric
nuclear matter (η ¼ 0.5). The mass shifts (in MeV) due to
the magnetized Dirac sea effects for J=ψ and ηc at ρ0
and zero temperature are −0.41= − 3.51= − 13.3 and
−0.31= − 2.47= − 8.27 at jeBj=m2

π ¼ 4=8=12, respectively,
for η ¼ 0, which for η ¼ 0.5 are 0.05= − 1.72= − 11.39
(for J=ψ) and 0.04= − 1.32= − 7.24 (for ηc). This can
be compared with the corresponding mass shifts for
J=ψ and ηc of −0.54= − 0.84 and −0.44= − 0.68 at
jeBj=m2

π ¼ 5=7, for η ¼ 0 and 0.24=0.27 and 0.20=0.23
for η ¼ 0.5, respectively, [13] in the magnetized nuclear
matter, calculated using the QCD sum rule approach and
chiral SUð3Þ model to obtain the medium modified gluon
condensates. The shifts are taken with respect to the mass at
ρ0 and jeBj ¼ 0, to show the effects of the magnetic field.

The effects of the magnetized Dirac sea on the in-medium
masses of 1P-wave states χc0 and χc1 can be inferred
from the difference of mχc0ðmχc1Þ between jeBj=m2

π ¼ 4

and 8 as −5ð−7.45Þ MeV, which can be compared with
−2.29ð−3Þ MeV between jeBj=m2

π ¼ 3 and 7 in [14], at
ρB ¼ ρ0, T ¼ 0, in the symmetric nuclear matter, using the
Borel sum rule. The study of the mass shifts of charmonia
due to the medium modifications of the gluon condensates
in hot and dense hadronic matter, lead to the downward
mass shifts of J=ψ within the QCD perturbative (second-
order stark effect) approach [18]. The mass shifts calculated
using the Borel transformed QCD sum rule lead to
approximately twice as large mass shifts for the χc1 state
than for the mass shifts of J=ψ [18], which can be
compared with the mass shifts of −9.14 MeV for χc1
which is nearly twice as much as −4.21 MeV for the J=ψ
calculated at ρB ¼ ρ0, T ¼ 0 and jeBj ¼ 0, in the
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FIG. 7. Masses (in MeV) are plotted as functions of jeBj=m2
π for χc0 [(a) and (b)], and χc1 [(c) and (d)] at ρB ¼ ρ0, η ¼ 0. The

contributions of the magnetized Dirac sea [(a) and (c)] to the masses are shown in addition to the effects of the protons’ Landau energy
levels and the AMMs of the nucleons in magnetized nuclear matter. This is compared to the case when the DS effect is absent [(b) and
(d)]. The effects of nucleons’ AMMs are taken into account and compared to the case when it is not.
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present work. The gluon condensates were calculated using
a hadronic resonance gas model as compared to the chiral
effective model used in the present study.
In Fig. 8, the in-medium masses of (a) ηc, (b) J=ψ ,

(c) χc0, and (d) χc1 charmonium states are plotted as
functions of the magnetic field, at ρB ¼ 0; ρ0 for η ¼ 0,
0.5 to show the density effects on the masses, accounting
for the effects of Dirac sea. In Ref. [9], the charmonia
spectra (in MeV) of 2980.3 (ηc), 3097.36 (J=ψ), 3415.7
(χc0), and 3508.2 (χc1) were obtained perturbatively, in a
potential model. The values of the QCD gluon condensates,
hαsπ Ga

μνGaμνi and G2 (for 1S and 1P states) at ρ0, η ¼ 0 and
with AMM, are given respectively, as: ð371.78 MeVÞ4,
−9.7576 × 107 MeV4 (1S), −9.0513 × 107 MeV4 (1P)
at 2m2

π; ð371.58 MeVÞ4, −1.0083 × 108 MeV4 (1S),
−9.3531 × 107 MeV4 (1P) at 4m2

π; and ð369.87 MeVÞ4,

−1.1937 × 108 MeV4 (1S), −1.1073 × 108 MeV4 (1P)
at 8m2

π; which for the case of without AMM are
ð371.83 MeVÞ4, −9.6866 × 107 MeV4 (1S), −8.9855 ×
107 MeV4 (1P) at 2m2

π; ð371.9643 MeVÞ4, −9.4449 ×
107 MeV4 (1S), −8.7613 × 107 MeV4 (1P) at 4m2

π; and
ð372.5342 MeVÞ4, −8.1640 × 107 MeV4 (1S), −7.5731 ×
107 MeV4 (1P) at 8m2

π . The condensates in the asymmetric
nuclear matter (η ¼ 0.5), at the nuclear matter saturation
density (ρ0) are given respectively by: ð371.97 MeVÞ4,
−9.3679 × 107 MeV4 (1S), −8.6899 × 107 MeV4 (1P)
at 2m2

π; ð371.89 MeVÞ4, −9.5119 × 107 MeV4 (1S),
−8.8234 × 107 MeV4 (1P) at 4m2

π; and ð370.91 MeVÞ4,
−1.0893 × 108 MeV4 (1S), −1.0104 × 108 MeV4 (1P) at
8m2

π, for the case of nonzero AMM. The values in case of
without AMM are: ð371.92 MeVÞ4, −9.4527 × 107 MeV4
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FIG. 8. Masses of (a) ηc, (b) J=ψ , (c) χc0, and (d) χc1 states of charmonium (in MeV) are plotted as functions of jeBj=m2
π , at ρB ¼ 0; ρ0

for symmetric as well as asymmetric nuclear matter η ¼ 0, 0.5. The contributions of Dirac sea (DS) to the masses are studied along with
the effects of the Landau energy levels of protons and AMMs of the nucleons in the magnetized nuclear matter. At ρB ¼ 0, with no
Landau quantization of protons only DS effect is there (apart from the PV mixing for the 1Swave states in Fig. 5). Masses are shown by
considering (and not) the effects of the anomalous magnetic moments of nucleons at finite jeBj.
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(1S), −8.7685 × 107 MeV4 (1P) at 2m2
π; ð372.08 MeVÞ4,

−9.1366 × 107 MeV4 (1S), −8.4753 × 107 MeV4 (1P) at
4m2

π; and ð372.61 MeVÞ4, −7.8478 × 107 MeV4 (1S),
−7.2798 × 107 MeV4 (1P) at 8m2

π, for hαsπ Ga
μνGaμνi and

G2 of 1S and 1P states, respectively. The masses plotted
incorporating the effects of magnetized Dirac sea, are
denoted as “with DS, with AMM” when the anomalous
magnetic moments of the nucleons are considered and ”with
DS, w/o AMM” for zero AMM. The different behavior of
the pseudoscalar meson mass with magnetic field in the
absence of nuclear matter, can be attributed to the variation in
the Wilson coefficients for different channels.

B. Bottomonium states

In this section, the results for the in-medium masses of
the bottomonium ground states, namely the 1S-wave:
ϒð1SÞ (3S1), ηb (1S0) and 1P-wave: χb0 (3P0), χb1 (3P1),
are illustrated in the magnetic asymmetric nuclear matter
with the additional contribution from the magnetized Dirac

sea. The masses are calculated using the QCD sum rule
approach in a similar fashion as described above for the
corresponding 1S and 1P waves states of charmonium.
The running bottom quark mass, mbðξÞ and the running
coupling constant, αsðξÞ, as given by Eqs. (15) and (16)
respectively, are different from the charmonium states, as
the number of current quark flavors is nf ¼ 5 for bottom
quark, which is nf ¼ 4 for the charm quark, also the
ξ-independent values of the quark mass and couplings (in
Eqs. (15) and (16), respectively) are different in the two
sectors of charm and bottom quarks. The scalar gluon
condensate, hαsπ Ga

μνGaμνi through the ϕb term and the
twist-2 gluon condensate, G2 in ϕc term, incorporate the
effects of density, magnetic fields and isospin asymmetry of
the nuclear medium on the bottomonium masses. In the
present investigation, we have studied the additional con-
tribution of magnetized Dirac sea on the bottomonium
masses. The scalar densities of protons (ρsp) and neutrons
(ρsn) have contributions from the Dirac sea, in addition to
the Landau level contributions of protons in the Fermi sea
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of nucleons. The values of the scalar gluon condensate,
hαsπ Ga

μνGaμνi remain the same [as can be inferred from
Eq. (8)] as it is already discussed, for ρB ¼ 0 as well as ρ0,
and for different values of magnetic fields. However,
the values of twist-2 gluon condensates, from Eq. (7),
depend on αs, which lead to different values for G2 of 1S
and 1P states of bottomonium. E.g., at ρB ¼ 0, for nonzero
AMMs of nucleons, the values of G2 are ð51.83 MeVÞ4
(for 1S), and ð51.23 MeVÞ4 (for 1P) at jeBj ¼ 2m2

π ,
which are different to that in the charmonium sector
[ð57.26 MeVÞ4 (for 1S), and ð56.19 MeVÞ (for 1P) at
jeBj ¼ 2m2

π], but the variation in the values with increasing
magnetic field are found to be similar in both sectors.
Therefore, using the values of ϕb and ϕc, the in-medium
masses of the bottomonium ground states are calculated
using Eq. (9). In presence of an external magnetic field, the

spin-magnetic field interaction are studied for the 1S states
of bottomonium using a Hamiltonian approach [57]. The
effective masses of ϒjjð1SÞ and ηb, taking into account the
spin-mixing effect, are computed using Eq. (20). Similar to
the charmonium sector, the value of the renormalization
scale, ξ ¼ 1 is chosen for the S-wave states and ξ ¼ 2.5 is
taken for the P-wave states to study their respective in-
medium masses. These choices lead to the ξ-dependent
running coupling constant and running bottom quark mass,
αs ¼ 0.1411 and mb ¼ 4.18 GeV for the 1S states and
αs ¼ 0.1346 and mb ¼ 4.13 GeV for the 1P states of
bottomonium, respectively. From these parameters and
with ϕb calculated within the chiral effective model, the
vacuum masses (in MeV) of ϒð1SÞ and ηb are obtained
to be 9751.24 and 9681.47 respectively. The vacuum
masses (in MeV) of χb0 and χb1 are obtained as
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FIG. 10. Masses (in MeV) are plotted as functions of jeBj=m2
π , for (a) ηb, (b) ϒð1SÞ, (c) χb0 and (d) χb1 at ρB ¼ 0. The effects of the

magnetized Dirac sea are shown in the masses, accounting for (and not) the anomalous magnetic moments of the Dirac sea of nucleons.
The spin-mixing effects (denoted as PV mixing in the figure) between ðϒjjð1SÞ − ηbÞ are considered, taking into account the DS effects
and compared to the case when it is not included.
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10573.41 and 10812.1, respectively. The vacuum masses of
the lowest lying b̄b states thus obtained can be compared
with the position (in GeV) of the lowest peak in the
bottomonia spectral function at zero temperature, at 9.56
(ϒ ð1SÞ), 9.51 (ηb), 10.15 (χb0) and 10.42 (χb1), obtained
using the QCD sum rule with maximum entropy method
[17]. The peak positions are at higher energies than the
vacuum masses of these states. However, it is due to the
contribution of the excited states along with the ground
state in the spectral density function [17], which can also be
the case in “poleþ continuum” assumption of the usual
sum rules where the mass of the ground state are obtained at
higher values of energy than the actual vacuum mass of the
state [17]. In Fig. (9), m�

i for all four bottomonium ground
states (a) ηb, (b) ϒð1SÞ, (c) χb0, and (d) χb1, are plotted as
functions of the order of the moment, n. The value of n,

corresponding to the minimum point gives the physical
mass of the associated state, which is for ηb,ϒð1SÞ, χb0 and
χb1 is at n ¼ 16, 15, 21, and 19, respectively at ρB ¼ 0; ρ0,
η ¼ 0 and for jeBj ¼ 0. The masses are plotted incorpo-
rating the effects of magnetized Dirac sea (DS), are denoted
as “with DS, with AMM” when the anomalous magnetic
moments of the nucleons are considered and “with DS,
w/o AMM” when AMM is taken to be zero. In order to see
the importance of the Dirac sea effect on the bottomonium
masses, Figs. (10–12) illustrate the variation of masses
with magnetic field. The two situations are compared, when
the Dirac sea contribution is there [plots (a) and (c)] along
with the protons Landau quantization and when it is absent
(“w/o DS”) [plots (b) and (d)] in Figs. 11 and 12 at finite
density. At zero density, only Dirac sea effect is there on
the masses in presence of an external magnetic field.
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FIG. 11. Masses (in MeV) are plotted as functions of jeBj=m2
π for ϒð1SÞ [(a) and (b)], and ηb [(c) and (d)] at ρB ¼ ρ0, η ¼ 0. The

contributions of the magnetized Dirac sea [(a), (c)] to the masses are shown in addition to the effects of the protons’ Landau energy levels
and the AMMs of the nucleons in magnetized nuclear matter. This is compared to the case when DS effect is absent [(b) and (d)]. The
spin-mixing effects between ðϒjjð1SÞ − ηbÞ are considered, accounting for (and not) the effects of magnetized DS and the AMMs of the
nucleons.
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The masses of the four lowest lying states of bottomonium
have appreciable modifications with increasing magnetic
field, when including the DS effects as compared to the no
DS effect. In Fig. 10, the masses are plotted as functions of
jeBj=m2

π for zero baryon density, ρB ¼ 0, accounting
for the Dirac sea contribution with the additional spin-
magnetic field interaction for the 1S states of bottomonium
(ϒð1SÞ − ηb). The masses are plotted up to eB ¼ 3.9m2

π at
ρB ¼ 0, for nonzero anomalous magnetic moments of the
nucleons, as the solutions of the scalar fields including the
DS effects are obtained till this point in our current study.
It can be attributed to the dominating contribution of
the AMMs of Dirac sea of nucleons through ρsp;n, as the
magnetic field increases. Besides the absence of the
magnetized Fermi sea part through ρp;n and ρsp;n, in
the coupled equations of motion of the scalar fields at

ρB ¼ 0, lead to unstable solutions for the scalar fields after
a certain value of jeBj for nonzero AMMs of the nucleons.
Thus, the effects of anomalous magnetic moment on the
bottomonium states are observed to be quite significant at
zero as well as at finite density matter, through the magnetic
field modified propagators for the Dirac sea of nucleons.
The different behavior of the pseudoscalar meson mass
with magnetic field in the absence of nuclear matter, can be
attributed to the distinct values of the Wilson coefficients
for different meson current channels. In Figs. 11 and 12,
masses are plotted with magnetic field variation, at ρB ¼ ρ0
for symmetric nuclear matter. Similar behavior in masses
with slightly different values are obtained in the asym-
metric matter for η ¼ 0.5. The mass shifts of 1S and 1P
wave states of bottomonium, accounting for the Dirac sea
effects in the magnetized nuclear matter, at ρ0, η ¼ 0,
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FIG. 12. Masses (in MeV) are plotted as functions of jeBj=m2
π for χb0 [(a) and (b)], and χb1 [(c) and (d)] at ρB ¼ ρ0, η ¼ 0. The

contributions of the magnetized Dirac sea [(a) and (c)] to the masses are shown in addition to the effects of the protons’ Landau energy
levels and the AMMs of the nucleons in magnetized nuclear matter. This is compared to the case when DS effect is absent [(b) and (d)].
The effects of nucleons’ AMMs are taken into account and compared to the case when it is not.
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are (in MeV) −0.36= − 0.56 (for ηb), −0.39= − 0.701
(for ϒð1SÞ), −0.975= − 1.77 (for χb0) and −0.96= − 1.74
(for χb1) at jeBj ¼ 4=8m2

π . The change in mj; j ¼
ηb;ϒð1SÞ; χb0; χb1 between jeBj=m2

π ¼ 4 and 8 of
−0.21, −0.31, −0.79 and −0.78 MeV can be compared
with the in-medium mass change of ηb, ϒð1SÞ, χb0 and χb1
as −0.13, −0.2, −0.55 and −0.56 between jeBj=m2

π ¼ 3
and 7 at T ¼ 0 [14], by incorporating the magnetic field
effects due to the Landau quantization of protons and
AMMs of the nucleons. In [14], the Borel sum rule has
been employed to study the in-medium mass of the lowest
lying heavy quarkonia in hot magnetized nuclear matter.
The effects of baryon density as well as of magnetic fields
are shown to the masses of (a) ηb, (b) ϒð1SÞ, (c) χb0, and
(d) χb1, in Fig. 13, as functions of jeBj=m2

π , at ρB ¼ 0; ρ0
for η ¼ 0, 0.5, accounting for the (inverse) magnetic

catalysis. The effects of the spin-magnetic field interaction
to the longitudinal component of vector meson, ϒð1SÞ
and pseudoscalar meson, ηb are studied here, using a
Hamiltonian approach [57]. This lead to a rise (drop) in
the masses of ϒjjð1SÞ (ηb) with increasing magnetic field,
as shown in Figs. 10 [b (a)] for ρB ¼ 0 and (11) [a,b (c,d)]
for ρB ¼ ρ0. The mass of the bottom quark is taken to
be mb ¼ 4.7 GeV in the bottom quark Bohr magneton,
μb ¼ jej=3

2mb
[57]. The rise (drop) in theϒjjð1SÞðηbÞmass with

increasing magnetic field should manifests in the suppres-
sion of dilepton decays of ϒð1SÞ state and a profuse
production of lepton pairs from ηb state. In [57], approx-
imately 2.8% suppression of dilepton decays ofϒð1SÞ have
been predicted which should instead appear as a peak in the
dilepton spectrum at the invariant mass of mηb . However,
due to the given finite resolution of the detector, it may be
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FIG. 13. Masses of (a) ηb, (b) ϒð1SÞ, (c) χb0, and (d) χb1 states of bottomonium (in MeV) are plotted as functions of jeBj=m2
π , at

ρB ¼ 0; ρ0 for symmetric as well as asymmetric nuclear matter η ¼ 0, 0.5. The contributions of Dirac sea (DS) to the masses are studied
along with the effects of the Landau energy levels of protons and AMMs of the nucleons in the magnetized nuclear matter. At ρB ¼ 0,
with no Landau quantization of protons only DS effect is there (apart from the spin-mixing for the 1Swave states in Fig. 10). Masses are
shown by considering (and not) the effects of the anomalous magnetic moments of nucleons at finite magnetic field.
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experimentally difficult to resolve this properties of 1S
bottomonium states in the dilepton invariant mass spectrum
[57]. The spectra of heavy quarkonia have been inves-
tigated using a potential model [9], consisting of a
relativistic kinetic energy term, a linear confining potential
with scalar and vector relativistic corrections as well as
the perturbative one-loop QCD short distance potential. The
masses are calculated using a variational technique. The
bottomonia mass spectra (in MeV) are given as 9413.7 (ηb),
9460.69 (ϒð1SÞ), 9861.12 (χb0), and 9891.33 (χb1) [9].
The general pattern in the mass variation are of similar

kind in the charmonium and bottomonium sectors with
change in the density and as well as in the magnetic fields,
accounting for the (inverse) magnetic catalysis effect, with
(without) the PV mixing for the 1S states. The effects of
magnetic field to the in-medium masses of the heavy
quarkonia within the magnetized nuclear medium, are
observed to be much more prominent when taken through
the Dirac sea contribution for zero and finite baryon
density. The magnetic field effects, as seen from the
figures, are almost negligible (without PV mixing of S
waves) when Dirac sea contribution is not taken into
account. The in-medium masses accounting for the PV
mixing effect in the 1S-wave states of c̄c and b̄b mesons,
get modified considerably at finite density matter due
to AMMs of the nucleons through the Dirac sea.
Incorporation of nonzero AMMs of the nucleons through
the Dirac sea contribution, lead to significant changes to
the masses of the heavy quarkonia in terms of the scalar
and twist-2 gluon condensates at zero and finite density
matter. Thus the effects of an external magnetic field
through the Dirac sea along with the Landau energy levels
of protons, and nonzero AMMs of the nucleons are
considered within the chiral SUð3Þ model in our present
work. The results include appreciable mass modifications
of the heavy quarkonium states calculated in the QCD
sum rule approach obtained through the medium modified
scalar and twist-2 gluon condensates in the chiral model.
These mass shifts can significantly modify the in-medium
decay widths of charmonium (bottomonium) mesons to
open charm (bottom) mesons. This may affect the pro-
duction of the open heavy flavor mesons as well as of the
heavy quarkonia, the formation time of heavy quarkonia,
etc., in the peripheral ultra relativistic heavy ion collision
experiments where the produced magnetic field is esti-
mated to be large.

V. SUMMARY

In the summary, the in-medium masses of the 1S and 1P
waves states of charmonium and bottomonium are studied
using the QCD sum rule approach, in the magnetized

nuclear medium, accounting for the Dirac sea effects. The
medium effects are incorporated through the scalar and
twist-2 gluon condensates, calculated in terms of the
medium modified scalar dilaton field, χ, and other scalar
fields (σ, ζ, δ), within the chiral effective model. The effects
of magnetic field come from the Landau energy levels of
protons and the nonzero anomalous magnetic moments of
the nucleons, in the magnetized nuclear matter. In the
current work, the contribution of the magnetized Dirac sea
is incorporated through the scalar densities of nucleons
within the chiral effective model. Appreciable modifica-
tions in the condensates are obtained due to the Dirac sea
effect along with the Landau level contribution of protons,
in comparison to the case when Dirac sea effect is not
considered. At zero density, the contribution of magnetic
field is realized only through the magnetized Dirac sea,
with no effect from the Landau energy levels of protons.
The nonzero anomalous magnetic moments (AMMs) of
protons and neutrons have noticeable effects on the in-
medium masses, through the magnetized Dirac sea. In-
medium masses of the charmonium and bottomonium
ground states, accounting for the Dirac sea effects, are
observed to decrease with increasing magnetic field, at
finite density matter (ρB ¼ ρ0), when AMMs are nonzero,
but show opposite behavior (increasing mass with jeBj)
for zero AMMs of the nucleons. The magnetic fields thus
have significant contribution on the in-medium properties
(masses and hence on the decay widths) of heavy quarkonia
due to the effects of (inverse) magnetic catalysis. This may
affect the yield of open heavy flavor mesons and heavy
quarkonia in the noncentral, high energy heavy ion colli-
sion experiments. At finite magnetic field, pseudoscalar-
vector mesons (PV) mixing between the longitudinal
component of vector and the pseudoscalar meson states,
including Dirac sea effects, lead to an upward (downward)
shifts in the masses of J=ψ jj (ηc) and ϒjjð1SÞ (ηb). This
might be observed as a quasi-peak at the masses of ηc and
ηb states as a consequence of the modified dilepton
production. The mixing effect can also lead to a change
in the formation time of heavy quarkonia, etc. in the
noncentral heavy ion collision experiments at RHIC,
LHC where huge magnetic fields are generated.
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