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We obtain the leading twist T-odd quark transverse momentum-dependent parton distribution functions
(TMDs) of the proton, namely, the Sivers function f lqu (x, p? ) and the Boer-Mulders function hlL 1(x, p?),
in a light-front quark-diquark model constructed with the wave functions predicted by the soft-wall
AdS/QCD. The gluon rescattering is crucial to predict nonzero T-odd TMDs. We study the utility of a
nonperturbative SU(3) gluon rescattering kernel going beyond the usual approximation of perturbative
U(1) gluons. The spin asymmetries in semi-inclusive deep inelastic scattering (SIDIS) associated with
these T-odd TMDs are found to be consistent with HERMES and COMPASS data. We further predict the
Sivers asymmetries of pion production in the SIDIS process in the kinematical region of the Electron-Ion
Collider (EIC) and the EIC in China. We also evaluate the generalized Sivers and Boer-Mulders shifts and
compare them with the available lattice QCD simulations.
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I. INTRODUCTION

The generalized parton distributions (GPDs) [1-3] and
the transverse momentum-dependent parton distribution
(TMDs) [4,5] provide insights into the three-dimensional
structure of the proton and the spin and orbital angular
momentum distributions at the partonic level and have been
studied in different QCD-inspired models [6—17]. Various
single spin asymmetries (SSAs) [18,19] measured in the
semi-inclusive deep inelastic scattering (SIDIS) and the
Drell-Yan (DY) processes can be related with the T-odd
TMDs, namely, Sivers [20,21] and Boer-Mulders functions
[22,23]. The Sivers and Boer-Mulders asymmetries in the
SIDIS require a final-state interaction (FSI) in which the
struck quark exchanges a gluon with the spectators
[24-28]. In the quark-diquark model of a proton, the
FSI involves a gluon exchanged between the struck quark
and the diquark. In some works with a light-front quark-
diquark model [29-31] and the light-front time-ordered
perturbation theory [32], the effect of FSI has been
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incorporated in the light-front wave functions (LFWFs)
to model the Sivers and Boer-Mulders functions. Another
way to produce the Sivers and Boer-Mulders functions in
the overlap of the light-front wave function formalism is to
introduce a kernel that contains the FSI. In this work, we
follow the second path, i.e., to include the FSI effects
through a gluon rescattering kernel [33,34]. We obtain the
gluon rescattering kernel by utilizing model-dependent
relations between the T-odd TMDs and the GPDs. These
relation are valid only under very specific conditions,
typically realized only in models that describe hadrons
as two-body bound systems and the FSIs do not change any
of the spectator’s quantum numbers and modify only its
transverse momentum [35]. Examples of these models are
the scalar-diquark spectator model or the quark-target
model for the proton and relativistic models for the pion
with a leading Fock component.

The FSI, which is a soft gluon exchange between the
active quark and the spectators, can be described by a
Wilson line included in the quark distribution function
[33,36]. It describes the phase factor of the struck quark as
it leaves the proton [37]. This Wilson line phase factor
describes the effect of the transverse component of the
force acting on the struck quark and is on average directed
toward the center of the proton, thus giving rise to
chromodynamics lensing [23,38,39]. In the quark-diquark
model of nucleons, the spin-flip GPD E,(x,¢) and the

Sivers function f#] (x, p?) are expressed as the overlap of
same LFWFs and enable us to relate the Sivers function
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with the GPD in the impact parameter space through the
“lensing function” Z(x,b;) [40-42]. Again, the first
moment of T-odd TMDs (Sivers and Boer-Mulders func-
tions) can be written as the convolution of the GPD E with
the gluon rescattering kernel, and, thus, the lensing function
and the gluon rescattering kernel are related to each
other [41,42].

As the Sivers and Boer-Mulders functions are related to
the SSAs observed in the SIDIS and the DY processes,
they are investigated in several models [18,19,43-46]. In
this work, we consider a light-front quark-diquark model
including only scalar diquarks with the wave functions
modeled from the prediction of light-front holography
[47,48]. Rather than modifying the wave functions
[30,41], here we consider the gluon rescattering kernel
to incorporate the FSI effect [36,38]. Both perturbative
U(1) and nonperturbative SU(3) gluon rescattering
kernels are compared and contrasted in the model. We
concentrate only on the SIDIS processes and compare our
results for the SSAs with the HERMES and COMPASS
data [17,26,43,46]. The generalized Sivers and Boer-
Mulders shifts provide information about the average
transverse momentum distributions of unpolarized quarks
orthogonal to the transverse spin of the proton and that of
the transversely polarized quarks in an unpolarized pro-
ton, respectively. We compare our results for these shifts
with the available lattice QCD results [49].

During the past two decades, great efforts have been
made to determine the Sivers function and other TMDs
via the SIDIS process at several experimental facilities
around the world, which include HERMES, COMPASS,
and JLab [24-27,50-52]. However, TMDs, especially the
spin-dependent ones, are still very poorly known due to
many difficulties. The JLab experiments were performed at
relatively low energies, where target mass corrections and
high-twist effects are expected to be sizable. HERMES
data were mostly obtained in the so-called valence quark
domain, where the contribution to the cross section is
controlled by valence quarks, and, thus, the data are not
fairly sensitive to sea quark distributions. The ongoing
and upcoming SIDIS experiments at the 12-GeV upgraded
JLab focus on precise measurements of valence
quark TMDs. Meanwhile, the Electron-lon Collider in
China (EicC) with high luminosity and wide kinematic
coverage has the capability to provide high-precision
experimental data [53]. The SIDIS measurements at

|

EicC together with those at 12-GeV upgraded JLab aim
at the study of valence quark distributions. Note that
CERN COMPASS, BNL RHIC, Fermilab, and the pro-
posed EIC in the United States [54] also can offer
significant insights into the three-dimensional imaging
of internal structure of the nucleon and other hadrons and
provide us important hints on how the spin and mass as
well as other interesting properties of nucleon emerge
from the fundamental degrees of freedom, i.e., quark and
gluon. Our calculation based on the quark-diquark model
provides a prediction of the expected data for the valence
quark Sivers and Boer-Mulders TMDs and the associated
spin asymmetries in SIDIS from future experiments. The
LFWFs in this model are modeled from the two-particle
effective wave functions obtained in soft-wall AdS/QCD.
This model is consistent with the Drell-Yan—West relation
and has been successfully employed to compute a wide
class of different and related proton observables, e.g., the
electromagnetic form factors and associated radii, parton
distribution functions, GPDs, T-even TMDs, Wigner
distributions, gravitational form factors and mechanical
properties, transverse densities, etc., with remarkable
overall success [48,55-62]. Here, we extend our inves-
tigations of the proton to compute its T-odd TMDs.
The paper is organized as follows. In Secs. I and III, we
give a brief introduction about the light-front quark-diquark
model and the TMDs, respectively. The relation between
the gluon rescattering kernel and the lensing function is
presented in Sec. I'V. Our model results for the Sivers and
Boer-Mulders TMDs are discussed in Sec. V. The Sivers and
Boer-Mulders shifts are evaluated and compared with lattice
QCD results in Sec. VA, and the results for the SSAs are
presented in Sec. V B. We provide a summary in Sec. VI.

II. LIGHT-FRONT QUARK-DIQUARK MODEL

Here, we consider the generic ansatz for the light-front
quark-diquark model for the proton [47], where the LFWFs
are constructed from the solution of soft-wall anti—de Sitter
(AdS)/QCD. In this model, the three valence quarks of the
proton are contemplated as an effective system composed
of a quark (fermion) and a bound state of diquark (boson)
having spin zero, i.e., scalar diquark. Then, the two-particle
Fock state expansion for the proton spin components, J* =
i% in a frame where the transverse momentum of proton is

. 2 .
assumed to be zero, i.e., P = (P*,0,, %), is expressed as

dxd’p ) 1 () 1
IP;T(¢)>=§ / Wi (6P| +5.0,xPT,p) +yoy (v, pL) —5,0:xPT,p) . (1)
) 2027 /x(1-x) "7 2 2

Note that, for nonzero transverse momentum of the
proton, i.e., P # 0, the physical transverse momenta of
the quark and the diquark are k% =xP, +p, and
k? = (1 —x)P, —p,, respectively, where x and p,

correspond to the longitudinal momentum fraction and
the relative transverse momentum of the constituents,

respectively. l//i;V (x,p.) are the LFWFs with the proton
helicities Ay = =+ and for the quark 4, = =; plus and minus
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represent +% and —%, respectively. The LFWFs at the

model scale y3 = 0.32 GeV? are given by [61]

v, (epL) =0y (L),

1 )
p +ip®
yij(x,pJ_) = —foﬂsz )(X» PL)
1_ .2
_ p —1IpT (2
l//+q(x7pL) = 7(/’51 )(x, PL)
v, (nps) =0 (D), 2)

with ¢\~ (x,p.) being the modified form of the soft-

wall AdS/QCD wave functions modeled by introducing the
parameters a and b for the quark g [47.63]:

4 flog(1/x)

i i a(i) (i)
o)) (x,py) = Ny 224 |22l (1 — )bl

K 1—x
2 log(1/x
X exp {_%%} . (3)

When a) = b =0, ¢! (x,p,) reduces to the original
AdS/QCD solution [63]. Note that the modification of the
soft-wall AdS/QCD solution in Eq. (3) is not unique. A
generic reparametrization function w(x) that unifies the
description of polarized and unpolarized quark distribu-
tions in the proton has been introduced in Refs. [64,65]. We
take the AdS/QCD scale parameter k = 0.4 GeV, fixed by
fitting the nucleon electromagnetic form factors in the
soft-wall model of AdS/QCD [66,67]. In this model, the
quarks are assumed to be massless, and the parameters
al and b)) with the constants N/ are determined by
fitting the electromagnetic properties of the nucleons,
ie., F{(0)=n, and F3(0)=xk,, with n, =2 and n, =1
being the number of valence u and d quarks, respectively,
in the proton and the anomalous magnetic moments
for the u and d quarks are x, = 1.673 and x; = —2.033
[56,58]. Since no flavor or isospin symmetry is
imposed, the parameters for d and u quarks in the model

are different. The parameters are given by a&l) = 0.020,
al) =010, b =0022, b =038, o =1.033,
a) =1.087, b = -0.15, B = -0.20, N} =2.055,
NV = 17618, N =1.322, and N = —2.4827. We
assume a 5% uncertainty in the model parameters. We
determine the model scale y3 = 0.32 GeV? by matching
the total first moments of the valence quarks and the Q?
dependences of the gravitational form factors A(Q?) and
B(Q?) at higher scale u> = 4 GeV?, with the result from
the lattice QCD simulations after performing the QCD
evolution of our model results [61]. The model motivated
by soft-wall AdS/QCD has been extensively employed to

study and successfully reproduce many interesting proper-
ties of the proton [47,48,55-62,68].

III. TMDS

The TMDs of a quark inside the proton are defined
through the quark-quark correlator function defined as [69]

1 [d7 &z
q’qm(X,Pl;S):z/(zﬂ)(zﬂ)lz

x P =P Sl (0)TWio gy (2)[P:S)] o+ o,
(4)

where flavor and color indexes and summations are
implicit. Here, y represents the quark field, and I" denotes
the Dirac matrix which in the leading twist is taken as I' =
{y*,y"y’,i6’Ty*} corresponding to unpolarized, longitu-
dinally polarized, and transversely polarized quarks,
respectively. Here, p is the momentum of the active
quark inside the proton of momentum P, spin S, and x =
pT/P* is the longitudinal momentum fraction carried by
the active quark. The gauge link W)y that ensures the
SU(3) color gauge invariance of the bilocal quark operator
is expressed as

Wio..) = Pexp (—ig/ dng, -A (n"=n- °°7ZJ_))~ (5)

z,

In the current study, we choose the light cone gauge
A" =0, and the effect of the gauge link in SIDIS is
encoded in a gluon rescattering kernel discussed in Sec. IV.

The proton with helicity A has spin components St = l%,
S~ = A%7, and S7. The unpolarized TMD f (x, p7) is then
given by [70]

i p2) = 3Tr(@ ), (©

and the T-odd TMDs at the leading twist, the Sivers
function fi7(x.p3), and the Boer-Mulders function
hi(x,p?) are parametrized as [70]

i QJ
_ €rP' St

@1l (x,p:8) = - fitepd).  (7)

ij i
LR p2). ()

Dic/ 3 (x,p 2 S) = -
lio7 ) (x.p 5 5) L

The T-even TMDs are suppressed in the above equations.
The unpolarized TMD f(x, p? ) describes the momentum
distribution of unpolarized quarks within an unpolarized
proton, whereas the Sivers function f7(x,p2) encodes
distribution of unpolarized quarks inside a transversely
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polarized proton, which comes from a correlation of the
proton transverse spin and the quark transverse momentum.
The Boer-Mulders function hllq (x,p?%) describes the spin-
orbit correlations of transversely polarized quarks within an
unpolarized proton.

Using LFWFs, the unpolarized TMD is expressed as

PR, 9)

A
f(l](x’ J_ 16 322‘ ﬂN| =

where the proton and the active quark helicities remain
unchanged in the overlap of LFWFs. The Sivers function
requires the proton helicity to be flipped from the initial to
the final state, but the quark helicity remains unchanged.
On the other hand, the Boer-Mulders function necessitates
the quark helicity to be flipped from the initial to the final
state, while keeping the proton helicity the same in the
overlap of LFWFs. To calculate these T-odd TMDs, we
express them as the overlap integrations of LFWFs differ-
ing by one unit orbital angular momentum, i.e., AL, = £1
[36]. However, to generate nonzero T-odd TMDs, one also
needs to take into account the gauge link. Physically, this is
equivalent to consider initial- or final-state interactions of
the active quark with the target remnant, which we refer to
collectively as gluon rescattering. We consider that this
physics is encoded in a gluon rescattering kernel G(x, q )
such that [33,34]

flT(x PL)

2 /
=i Y[R G )

1673
Ay Ay

(10)

=i [ b6 a ) (L)
)

where q, =p, —p’, and pt = p'—ip? To proceed
further, we must specify the form of the gluon rescattering
kernel G(x, q ). Alternatively, to incorporate the effects of
the final-state interaction, the LFWFs can be modified to
have a phase factor, which is essential to obtain Sivers or
Boer-Mulders functions [30,41,71,72]. In this work, we
explicitly employ a nonperturbative gluon rescattering
kernel G(x,q ) [73] to produce nonzero T-odd TMDs.

IV. THE GLUON RESCATTERING KERNEL
AND THE LENSING FUNCTION

The simplest form for the one-gluon exchange approxi-
mation of the gauge link is to assume that [36,73,74]

CF A
2 9
q1

ImGP*™"(x, ¢, ) «

(12)

with a;, being the coupling constant and C. the color factor.
Equation (12) is referred to as the perturbative Abelian
gluon rescattering kernel, which can be derived by working
with perturbative Abelian gluons. By hypothesis, the
coupling is weak, i.e., a; < 1, though different values of
a, have been used in Eq. (12) in the literature. For example,
while Ref. [75] employs a; = 0.3, other authors prefer to
consider much larger values of the coupling constant, e.g.,
a, = 0.911 is used in Ref. [76] and o, = 1.2 in Ref. [77].
However, using such large values of a, disputes the weak
coupling hypothesis that leads to Eq. (12). Though the
perturbative kernel with a; ~ 1 may be considered in some
extent as a “phenomenological model” which reproduces
some data, it indicates the necessity of higher-order
corrections or nonperturbative kernel. The main reason
for the discrepancy is that the perturbative kernel cannot
capture precisely the dynamics of soft gluons, which are
mainly responsible for producing a nonperturbative quan-
tity like the Sivers and Boer-Mulders TMDs. An exact
structure of the nonperturbative gluon rescattering kernel is
yet not available, and, in practice, some approximation
procedure is needed. Meantime, the gluon rescattering
kernel can be expressed in term of the so-called QCD
lensing function /(x, g, ) as [73]

2 (1=x)I(x.q.)
(27)? q1 ’

iG(x,q,) = — (13)

which has been derived from the relation between the first
moment of the Boer-Mulders function with the chiral-odd
GPD. In Ref. [78], the QCD lensing function /(x, ¢, ) has
been obtained from the eikonal amplitude for final-state
rescattering via the exchange of soft U(1), SU(2), and
SU(3) gluons.

The lensing function in the impact parameter space is
given by [78]

Ti(x,b,) = “21;:6) %’%c(’ﬁ), (14)

X

where the color function C(%) reads

)
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with

%<(1b—Lx)> Z%/dpuufo <(Z;L_p;)>pl(—l?2¢) (16)

being the eikonal phase and D; (—p? ) the gauge-independent
part of the gluon propagator. The real and imaginary parts
of f(y/4) in Eq. (15) emerge from the real and imaginary
parts of the eikonal amplitude for final-state rescattering via
the exchange of generalized infinite ladders of gluons. For
SU(3) gluons,

SU®3)

Re[f 5 ~'1(a) = 8ap(—c20° + csa — coa® — cga® + )

(17)
and
Im[fig@](a) = Sgp(cra — c30° + csa® — cza’ + -+,
(18)
where a = y/4 and ¢; are numerical coefficients given in
Ref. [78]. We compute the eikonal phase y in Eq. (16) using
a nonperturbative Dyson-Schwinger gluon propagator

given by

Dy (K3, Adep)

L (a(R) \MP (/A (kAN 2
E(as(/\écm) <1+c(ki/A2>"+d<ki/A2>2"> ’
(19)

_ (0)
“l) = Inle + /A7) + by 2

where all parameters are taken from Refs. [78,79]. The
lensing function in momentum space is then obtained by
the inverse Fourier transform of Eq. (14):

qi i /2
I(x, — == d-b
( QL)CIL (1-x)°
bi

X exp (-i(;"_;)z(x, by (1)

This leads to the nonperturbative SU(3) gluon rescattering
kernel followed by Eq. (13). Thus, going beyond the usual
approximation of perturbative U(1) gluons, we compute
the nonperturbative T-odd TMDs using the nonperturbative
SU(3) gluon rescattering kernel.

The perturbative lensing function for the Abelian gluons
is given by [73]

1
pert — _9_27 22
U(])(x’ qL) 2 (1 — x)qL P ( )

which leads to

2
. g 1
lGI()/e(l})(QL) =7 2 2

. 23
A qi (23)

following Eq. (13). After replacing ¢*> — 4xCra,, one
obtains the perturbative gluon rescattering kernel

As CF

5 -
gy

iG"(q,) (24)

V. RESULTS

Using the overlap representation of LFWFs [Eqgs. (9)—
(11)], we evaluate the TMDs in the light-front quark-
diquark model. With the LFWFs given in Eq. (2), the
explicit expression for the unpolarized TMD reads

log(1/x)

2 log(1
fixpl) = Tl P {_plog(/x)]

(1 —x)?

x <F1(x) + ﬁFz(x)), (25)

M2
with

2

Fi(x) = NG e (1= )21,

Fa(x) = [N e’ =2(1 = )21,

(26)
We obtain the expression for the Sivers and Boer-Mulders
functions as

Lg 2

17 (x.p1) hlq(pm)

1 (x,pi)
ot/

7TK2

_ 2R Pl ol

K2(1-x)?

y /d2‘h (ql cos(6,, —9,,))
Pl

qi 10g[1/x]]
2k (1 —x)?

xex (W os(HqL—Gm)>, (27)

x iG(x,q )exp {

where
F;’(x) _ Ngl)Néz)xafll)Jra,(f)—l (1 _ x)bfll)erflz)—l‘ (28)

Using the perturbative gluon rescattering kernel [Eq. (24)],
we get
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FIG. 1. Comparison of the up-quark Sivers function generated by the perturbative (dashed red curves) and nonperturbative (solid blue

curves) gluon rescattering kernels at different values of x. Upper left: x = 0.1; upper right: x = 0.3; lower left: x = 0.5; lower right:

x = 0.7. The perturbative results are computed with a; = 0.3.

Lq(pert)
T

Lg(pe
hl q(p rl)(

(x.p?1) x.p?)

=2(Cra)(1-x2Fi()

[ (1-eoftios))
(29)

_ pjlog[1/x]
K> (1-x)?

Pl

exp [
X

Note that in our scalar quark-diquark model, the relations
between the Sivers and Boer-Mulders TMDs for both the
up and down quarks have the same sign. This is a special
property of the quark-scalar diquark model as reported in
Refs. [29,31,70,80]. Including the axial-vector diquark, one
perhaps distinguishes the relations for the up and the down
quarks [30,70,81].

Figure 1 illustrates the difference between the Sivers
functions generated by the perturbative and nonperturbative

gluon rescattering kernels for the up quark, whereas the
same for the down quarks are shown in Fig. 2. We notice
that a straightforward rescaling of the normalization of the
perturbative gluon kernel, say, by increasing the coupling
ay, cannot fully capture the nonperturbative effects. This is
due to the fact that the difference between the two TMDs
(perturbative and nonperturbative) is x dependent. At low x,
the size of the nonperturbatively generated functions is
larger than that of the perturbatively generated TMDs,
while the opposite is true at large x.

In Fig. 3, we show the three-dimensional structure
of the Sivers TMDs computed by the perturbative
gluon rescattering kernel with the coupling constant
a = 0.3. We note that the overall features of our Sivers
functions are similar to those of other theoretical calcu-
lations in Refs. [29,31,70,80].

We further obtain the f;"7 and £11"/*¥ moments of the
perturbatively evaluated Sivers function in our model:
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FIG. 2. Comparison of the down-quark Sivers function generated by the perturbative (dashed red curves) and nonperturbative (solid
blue curves) gluon rescattering kernels at different values of x. Upper left: x = 0.1; upper right: x = 0.3; lower left: x = 0.5; lower right:
x = 0.7. The perturbative results are computed with a, = 0.3.
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FIG. 3. Three-dimensional plots of the Sivers TMD xf ILT" (x,p?) as a function of x and p? generated by the perturbative kernel with
a = 0.3. The left panel is for the up quark, and the right panel is for the down quark. The numbers on the vertical axes are in units of
GeV~2, and p? is in units of GeV?.
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FIG. 4. Upper panel: the first moment of the Sivers function for the up (upper left) and down (upper right) quarks. Lower panel:
the 1/2 moment of the Sivers function for the up (lower left) and down (lower right) quarks after the QCD evolution at > = 2.5 GeV?
[86—89]. The quark Sivers functions are generated by the perturbative (with a; = 0.3) and the nonperturbative gluon rescattering
kernels. The red dashed and solid blue lines represent the perturbatively and nonperturbatively generated moments, respectively. Our
results are compared with the fits to extracted data from Anselmino ef al. [12,82], Vogelsang and Yuan [83], and Collins et al. [84].

D) = / p, 2L "L L0(x.p,)
Y
——2aScFM2%, (30)
L) - / @, % fi(epy)

« (1= i)
log[1/x]
(31)

—4(-1+ \/E)ﬁaSCFM

We present our results for the flle and f 1T1/ 24
transverse moments of the perturbatively and nonperturba-
tively generated Sivers TMDs for the up and down quarks
in Fig. 4, where we compare them with the global fit by

Anselmino et al. [12,82], Vogelsang and Yuan [83], and
Collins et al. [84], respectively. In Table I, we provide a
comparison between our results for the first moments of the

Sivers TMDs |xf ,LT(I) (x)| and the data at various resolution
scales Q? extracted by the COMPASS Collaboration [85].
We notice that our moment results for quark Sivers TMDs
are quite consistent with the extracted data [85] and the
global fit [82].

A model-independent constraint on our T-odd TMDs is
the positivity bound [90]. For the Sivers functions, the
positivity constrain is given by

Ps(x.p1) = fi(x.p1) - |f1T(x P20, (32)

and the Boer-Mulders TMD follows
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TABLE L

Our predictions for the first p, moments of the Sivers TMDs at different values of x and different resolution scales Q. We
compare our results with the available COMPASS data [85]. Our predictions are computed using the perturbatively and non-
perturbatively generated Sivers functions with 5% uncertainty in the model parameters.

L(1u L(1)d
befir ()] s ()]
0? Our results Our results Our results Our results
X (GeV?) COMPASS [85]  (Perturbative)  (Nonperturbative) COMPASS [85]  (Perturbative)  (Nonperturbative)
0.0063 1.27  0.0022 +£0.0051 0.0002 £ 0.0001  0.0002 £0.0001  0.001 £0.021  0.0002 £ 0.0003  0.0004 + 0.0002
0.0105 1.55 0.0029 +0.0040 0.0004 £+ 0.0005 0.0004 £0.0001  0.004 £0.017  0.0004 £ 0.0005 0.0007 £ 0.0003
0.0164  1.83 0.0058 +0.0037 0.0006 £ 0.0004 0.0010 £0.0003  0.019 £0.015  0.0007 £ 0.0002  0.0013 +£ 0.0001
0.0257  2.17 0.0097 +£0.0033 0.0012 £ 0.0001  0.0029 £0.0003  0.034 £0.013  0.0013 £0.0016  0.0030 +£ 0.0004
0.0399  2.82 0.0179+£0.0036 0.0022 £0.0030 0.0059 £0.0012  0.032£0.015  0.0026 £ 0.0032  0.0068 =+ 0.0023
0.0629 434 0.0224 £0.0046 0.0044 £ 0.0053 0.0109 £0.0013  0.048 £0.019  0.0053 £ 0.0029  0.0130 = 0.0029
0.101 6.76  0.0171 £0.0057 0.0087 £0.0028  0.019 £0.0011  0.025+£0.023 0.0107 £0.0013  0.0239 +£ 0.0046
0.163 10.6  0.0295+0.0070 0.0162 +0.0012 0.0318 £0.0012  0.056 £0.027  0.0206 £+ 0.0063  0.0404 £ 0.0038
0.288  20.7  0.0160 £+ 0.0073 0.0303 £0.0073 0.0463 £0.0014  0.017 £0.028  0.0388 £0.0018 0.0593 £ 0.0015
_ P11 27mn!
P ) = 15 p0) =G (e 20, G3) e =288 [avent [app, (22

Figure 5 confirms that the positivity constraints
defined in Eqs. (32) and (33) are safely satisfied when
the T-odd TMDs are generated by the nonperturbative
rescattering kernel. We observe that there is a violation of
the positivity constraints when the TMDs are generated by
the perturbative kernel with o = 0.3, although the violation
occurs only for large p | . This violation becomes somewhat
more pronounced for small x. Similar violations of the
positivity constraint for the pion [76,77] and the proton
[91,92] have been reported in the literature. It seems to
indicate a limitation of the perturbative gluon rescattering
kernel to accurately capture the large p, behavior of the
T-odd TMDs.

A. Comparison to lattice QCD

To compare with lattice QCD simulations [49], we
evaluate the generalized Sivers and Boer-Mulders shifts.
They provide information about the average transverse
momentum distributions of unpolarized quarks orthogonal
to the transverse spin of the nucleon and that of the
transversely polarized quarks in an unpolarized nucleon,
respectively. The generalized Sivers and Boer-Mulders
shifts are defined as [49]

~1[1](1
(209 = (b 02) = et @)
= =110 :
)
ili-[l](l)(bZ)
(P)™M=(p)yr(b1) = MW, (34)
fi77 (1)

respectively, where the generalized moments of the TMDs
read

X Ju(by.py)f(x, p?). (35)
Table II presents our results for the generalized Sivers shift
for (u — d), i.e., (p1 )5 — (p )5, As can be seen from
Table II, it is possible to fit the lattice QCD data by
employing a large a, with the perturbative kernel. Since
ay, = 0.7 or beyond is not consistent with the weak
coupling hypothesis, we prefer to deem the predictions
with @y = 0.3 as a more realistic result with the perturbative
kernel. Then it becomes apparent that the nonperturbative
kernel does a better job, bringing our predictions closer to
the lattice QCD results. In Table III, we present the
generalized Boer-Mulders shift in our model and observe
that the perturbative kernel with a;, = 0.3 provides a better
description of the lattice QCD results compared to the
nonperturbative kernel. In Fig. 6, we compare our results
for the generalized Sivers and Boer-Mulders shifts evalu-
ated using both the perturbative and the nonperturbative
gluon rescattering kernel with lattice QCD simulations.

B. Sivers and Boer-Mulders asymmetries

The correlation between the transverse momentum of the
parton and the transverse spin of the proton is described by
the Sivers asymmetry. In the SIDIS procedure, the Sivers
asymmetry can be determined by incorporating the weight
factor of sin(¢;, — ¢,) as [12,26,93,94]

ASin(¢11_¢:)

fd¢hd¢ [dafPT —£'hX dngl—M hX] sm(th )
fd¢hd¢s fPT—J’hX +do fPl—nf’hX]

where 7, | at the superscript of P correspond to the up and
down transverse spins of the target proton. Using the QCD
factorization theorem, the SIDIS cross section for the one-
photon exchange process can be expressed as [12,93,94]

. (36)
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FIG. 5. The positivity bound Pg(x, p ) at x = 0.1 (upper left), x = 0.3 (upper right), x = 0.5 (lower left), and x = 0.7 (lower right)
with the Sivers function is generated by the perturbative kernel (red dashed curves) and the nonperturbative kernel (solid blue curves).

TABLE II.  Our predictions, in GeV, for the generalized Sivers shifts given by Eq. (34) at different values of |b | in femtometers. The
lattice data are taken from Ref. [49]. Our predictions are computed using the nonperturbatively and perturbatively generated Sivers
functions with 5% uncertainty in the model parameters. The perturbative predictions are given at three different values of «a;.

Perturbative Perturbative Perturbative

b | Lattice QCD Nonperturbative [a, = 0.3] [a, = 0.5] [a, = 0.7]

0.119 —0.293 £ 0.007 —0.2647 + 0.0126 —0.1331 £ 0.0134 —0.2219 +0.0178 —0.3106 = 0.0181
0.168 —0.289 £ 0.009 —0.2605 + 0.0128 —0.1327 £ 0.0142 —0.2211 +£0.0173 —0.3096 + 0.0188
0.237 —0.283 £0.013 —0.2557 £ 0.0123 —0.1317 £ 0.0139 —0.2195 + 0.0176 —0.3073 £ 0.0184
0.335 —0.243 £0.025 —0.2531 +0.0125 —0.1298 £+ 0.0136 —0.2163 +0.0178 —0.3029 + 0.0186
0.356 —0.239 £ 0.025 —0.2466 + 0.0124 —0.1293 £ 0.0133 —0.2155 +0.0169 —0.3017 £ 0.0176
0.428 —0.200 £ 0.035 —0.2426 + 0.0122 —0.1274 £ 0.0130 —0.2124 £+ 0.0172 —0.2974 + 0.0179
0.474 —0.198 £0.043 —0.2388 +0.0118 —0.1260 £ 0.0136 —0.2101 £ 0.0166 —0.2942 + 0.0164
0.530 —0.217 £ 0.066 —0.2346 + 0.0115 —0.1243 £ 0.0139 —0.2071 £ 0.0167 —0.2899 + 0.0168
0.593 —-0.316 £0.125 —0.2302 +0.0122 —0.1220 £+ 0.0132 —0.2034 4+ 0.0162 —0.2847 +0.0163
0.712 —0.203 £ 0.138 —0.2227 +0.0109 —0.1173 £0.0123 —0.1955 +0.0158 —0.2737 £+ 0.0159
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TABLE III. Our predictions, in GeV, for the generalized Boer-Mulders shifts given by Eq. (34) at different values of |b | in
femtometers. The lattice data are taken from Ref. [49]. Our predictions are computed using the nonperturbatively and perturbatively
generated Sivers functions with 5% uncertainty in the model parameters. The perturbative predictions are given at three different values
of aj.

Perturbative Perturbative Perturbative
b, | Lattice QCD Nonperturbative [a, = 0.3] [a, = 0.5] [a, = 0.7]
0.118 —0.157 £0.013 —0.2647 + 0.0126 —0.1331 £ 0.0134 —0.2219 +0.0178 —0.3106 + 0.0181
0.167 —0.153 £0.013 —0.2605 + 0.0128 —0.1327 £ 0.0142 —0.2211 £ 0.0173 —0.3096 + 0.0188
0.237 —0.137 £0.014 —0.2557 £ 0.0123 —-0.1317 £0.0139 —0.2195 + 0.0176 —-0.3073 £ 0.0184
0.335 —0.138 £0.020 —0.2531 £ 0.0125 —0.1298 £+ 0.0136 —0.2163 + 0.0178 —0.3029 + 0.0186
0.356 —0.116 = 0.021 —0.2466 + 0.0124 —0.1293 £+ 0.0133 —0.2155 +0.0169 —0.3017 £ 0.0176
0.428 —0.084 £ 0.033 —0.2426 + 0.0122 —0.1274 £ 0.0130 —0.2124 + 0.0172 —0.2974 + 0.0179
0.474 —0.107 £ 0.037 —0.2388 +0.0118 —0.1260 £ 0.0136 —0.2101 + 0.0166 —0.2942 + 0.0164
0.530 —0.003 £ 0.056 —0.2346 +0.0115 —0.1243 £ 0.0139 —0.2071 £ 0.0167 —0.2899 £ 0.0168
0.593 —0.206 £ 0.125 —0.2302 + 0.0122 —-0.1220 £ 0.0132 —0.2034 + 0.0162 —0.2347 £ 0.0163
0.713 —0.115£0.073 —0.2227 +0.0109 —0.1173 £0.0123 —0.1955 + 0.0158 —0.2237 £ 0.0159
CN—ChX _ i .N2 ~Lq—C 2 2
do —ny/P(x’pJ_’Q )®d0'q q x:Qisz’ Z:m:Zh, y:B:Q—, (38)
v 2P.q P.g P.l sx

® Dy (2. k11 0%). (37)

with xz being the Bjorken variable and Q*> = —¢°. The
fraction of energy transferred by the photon in the
laboratory frame is denoted by y, whereas the fraction
of energy carried by the produced hadron is given by
z =P; /k™. The transverse momenta of the fragmented
- quark and the produced hadron are denoted by k; and
tion functions (FFs) denoted by D, (z.k.;Q?). This P, , respectively. The relation between p,, k|, and P,
procedure is valid in the region where P} ~A%., < Q®  is given by k; =P, —zp,. The transverse momentum
[95,96]. The TMD factorization is presented for the SIDIS ~ of the produced hadron makes an azimuthal angle ¢, and
and the DY processes in Refs. [97-99] and extensively used ~ the transverse spin (S,) of the proton has an azimuthal
in the literature. The kinematic variables relevant to the  angle ¢, with respect to the lepton plane. The SIDIS cross-
y * —N process are defined in the center-of-mass reference  section difference in the numerator of Eq. (36) can be

In the above expression, the hard scattering part d6“9~%4 is
calculable in perturbative QCD. The soft part is factorized

into TMDs designated by 7, /p(x.p1; Q%) and fragmenta-

frame as written as [100]
NonPerl'urbative ) ) o Lattice NonPert'urbat.ive ) ) o Lattice
0.0 ] 0.0p @s=0.3 l 7
— — as=0.
= = e as=0.5
® [«]
O S S as=0.7 *
3 = -0 g ] L
z 3 T _f 3 -
< A~
SN Sl 02k e 1
o S kb Y i
P 5 Wl = e
9= 0 e N URPPPICIE L
S S =08 e
~—— N
-0.4} _ _ _ ] -0.4f _ _ _
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
b |[fm] b1 [[fm]

FIG. 6. The generalized Sivers shift (left panel) and the generalized Boer-Mulders shift (right panel) for u — d as a function of the
quark separation b | for the SIDIS. We compare the perturbatively (purple dashed line for a;, = 0.3, black dotted line for a; = 0.5, and
magenta dot-dashed line for a, = 0.7) and nonperturbatively (red solid line) generated results with 5% uncertainty in the model
parameters. Our model results are compared with the lattice QCD simulations (blue points with error bar) [49].
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do?P' =X _ ot P =EIX g2
dxgdydzd®P; dp,  sxy?

+ (1= y)(sin(gy + ¢ ) Fyy ™" + sin(3y, — ) ")

+(2-y)/(- y><sin<¢s>F§}‘;<¢f’ +25in(2¢hy, — ) Fon 2"y (39)

14+ (1=y)2 (e
w0y sin(¢h—¢s>F§}‘}““ "

(¢h ¢s>

where the weighted structure functions F, are defined as

¢h " Zeu / d’p Pk 5 (PL —zp =k )W(P L, Pyu)f* (x. L) D¥ (2. Kk 1), (40)

with f“(x,p ) and D*(z, k | ) being the leading twist TMDs and the FFs, respectively. By integrating the numerator over

(¢h ¢A) and’

hence, the particular asymmetry can be calculated. For example, the ¢, and ¢, integration with the welght factors
sin(¢;, — ¢;) and cos(2¢),) ends up with the Sivers and Boer-Mulders asymmetries, respectively.
Similarly, the denominator of Eq. (36) can be written as [100]

¢, and ¢, with a particular weight factor W(¢,,, ¢,), one obtains the corresponding structure function Fy,

dotP'=¢'hX + dePl—wf’hX 202 1+ (1 _ y>2 o) @
= F 2 — y)\/T = ycos(hy ) Fen'® 1 (1 = y) cos (2, ) Foos?)
dxpdydzd®P? | de, sxy? 2 v +(2-) ycos(gy)Fyy™ + (1= y) cos(2y) Fy
(41)
The Sivers asymmetry in terms of structure functions is expressed as [100]
) 27202 1+(1-y)? Fsm((ﬁh_%)(x, ZPu)
A;}r}((/’h—ff’x) (X, z, PhJ_v y) — sxy”
2,2 1+(1-y)?
2’ — 5 Fuy(x.2.Py)
2r’a 21+siyy >.e [dp { B pL} i (x, pi>D?/U(Z’PhJ_ -zp.) (42)

277:26!2]+Sl\‘ e [dpofi(x.pl)D il (z2,Py—zp.)

We evaluate the Sivers asymmetries b%/ employing our
model TMDs and the unpolarized FF DV/*(z,|P, — zp, |)
as phenomenological input taken from Refs. [101,102].
The model results for the Sivers asymmetries in the z and
z~ channels are presented in Fig. 7, where we compare our
predictions with the HERMES data [26] in the kinematical
region

0023 <x <04, 02<z<0.7,
0.31 <y <0.95, and P, > 0.05. (43)

Note that we evolve our f7: (x p?) and f4(x, p?) from the
model scale to the scale > = 2.5 GeV? relevant to the
experimental data for the asymmetries following QCD
evolutions reported in Refs. [86-89,103]. We illustrate
the differences between the asymmetries generated by
using the perturbative and nonperturbative gluon rescatter-
ing kernels for the Sivers TMDs. We find that both the

|
perturbatively and nonperturbatively generated asymme-
tries are reasonably consistent with the experimental data.

We further predict the Sivers asymmetries in the SIDIS
process, which can be measured by the proposed EIC and
the EicC. The kinematical region of the EIC adopted in our
model calculation is [54,104]

0.001 <x<04,
1GeV? < Q?,

02<z<0.8, 0.1<y<0.95,
Vs=100GeV, W >5GeV, (44)
with W? = (P + q)> ~1=*Q? being the invariant mass
square of the virtual photon-proton system. Meanwhile,
we adopt the following kinematical region for the EicC
[53,104]:
0.01<x<0.5, 02<z<0.7, 03<y<09,

1GeV? < Q?<200GeV?, +/s=16.7GeV, W>2GeV.
(45)
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FIG. 7. Model results of the Sivers asymmetries A}y in(dn=)
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Z PhJ_ [GGV]

0.8

in the z* (upper row) and =~ (lower row) channels are compared with the

HERMES data [26]. The solid red lines represent the results calculated using perturbatively generated Sivers TMDs, whereas the black
dashed lines correspond to the results evaluated employing nonperturbatively generated Sivers TMDs. Both f#(x, p3 ) and f%(x, p?)
are evolved from the model scale to u> = 2.5 GeV? relevant to the experimental scale following the QCD evolution [86-89,103]. The

fragmentation function D?/

As these facilities cover different kinematical regions,
it is necessary to consider the QCD evolution effects
of the TMDs and the fragmentation function. We evolve

the fragmentation function D" (z. k | ) from y2=2.5Ge V>
to a higher scale, which is relevant for the EIC and the FicC,
following QCD evolution reported in Ref. [87]. Employing
the above kinematical configurations and our model
TMDs, we numerically calculate the Sivers asymmetries
|

2 2 (1-y) }) 0082¢
joman) _ AP ST
27? 21+(7)FUU(X z.Pyy)

SXy

X, Z, PhJ_)

Z, 1s taken as phenomenologica mput at = 2. eV~.
“(z,k ) is tak ph logical [101] inp u* =25 GeV?

of pion production in SIDIS process at EIC and EicC.

Figure 8 shows our predictions on the ASln(¢h %) at EIC for
#t and z~ production, whereas F1g 9 presents our
predictions at the EicC. We find that the results at the
EIC are consistent with those at the EicC.

The Boer-Mulders asymmetry can be calculated by using
the weight factor of cos(2¢,) and expressed in terms of
structure functions as [105]

D 2 2
4ﬁ&gzﬁm2§%w%MwW%wmﬁmma

MM h—2P1|)

27202 1+(1-y)*

sxy2 Zu ZdePLfD

(46
p2)D}*(z.|P, — zp.]) )

The Boer-Mulders TMDs /i*(x,p?) are obtained in our model and given in Eq. (27), whereas the unpolarized FF

D" (z,

» —2zp_|) and the Collins function H{"(z, [P, — zp_|) are taken as phenomenological inputs [101,102]:
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FIG. 8. Model predictions of the Sivers asymmetries Ai}[}(‘b”_‘/)"‘)
in the z* (upper row) and 7~ (lower row) channels for the
kinematical region of the EIC [54,104]. The solid red lines
represent the results calculated using perturbatively generated
Sivers TMDs, whereas the black dashed lines correspond to the
results evaluated employing nonperturbatively generated Sivers
TMDs. Both fi#(x,p?) and f%(x,p3) are evolved from the
model scale to y> = 25 GeV? relevant for the EIC scale follow-
ing the QCD evolution [86-89,103]. The fragmentation function

Di'/ “(z,k_) is taken as phenomenological [101] input at y* =

2.5 GeV? is also evolved to the same scale 25 GeV? following
Ref. [87].
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FIG. 9. Model predictions of the Sivers asymmetries Ag";'/’” =)

in the z* (upper row) and z~ (lower row) channels for the
kinematical region of the EicC [53,104]. The solid red lines
represent the results calculated using perturbatively generated
Sivers TMDs, whereas the black dashed lines correspond to the
results evaluated employing nonperturbatively generated Sivers
TMDs. Both fi#(x,p3) and f%(x,p}) are evolved from the
model scale to u> = 25 GeV? relevant for the EIC scale follow-
ing the QCD evolution [86—89,103]. The fragmentation function

Dif/”(z, k) is taken as phenomenological [101] input at p?> =
2.5 GeV? is also evolved to the same scale 25 GeV? following
Ref. [87].
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FIG. 10. Model results of the Boer-Mulders Aiff, 201) in the 7+ (upper row) and 7z~ (lower row) channels are compared with the
HERMES data [17,46]. The solid red lines represent the results calculated using perturbatively generated Boer-Mulders TMDs, whereas
the black dashed lines correspond to the results evaluated employing nonperturbatively generated Boer-Mulders. Both 4% (x, p? ) and
14 (x, pi) are evolved from the model scale to 4> = 2.5 GeV? relevant to the experimental scale following the QCD evolution [87,106].
The fragmentation function Hi*(z,k, ) is taken as phenomenological [102,107] input at y*> = 2.5 GeV>.
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—k7 /{K7)
Dh/v k :Dh/u e L 7
1 (2 k) =Dy @_RET
M oK)
H(z, k) = ) oA () DM (2)h(k —_—,
Pees) = ()N E @D )

(47)
with

o (p1+ po) e
s

k
2e5fze—ki/M%. (48)

NE(z) =NEz1(1-z)

k) =

Here, z = P, /k™ is the energy fraction carried by the
fragmenting quark having transverse momentum k ;. The
numerical values of the parameters can be found in
Ref. [102]. The Boer-Mulders asymmetries in the z™
and 7z~ channels are shown in Fig. 10. We compare our
model results with the HERMES data [17,46] in the
kinematical region

0.023 < x < 1.0,
0.3 <y <0.85,

02<z<10,
and P,, > 0.05. (49)

We observe that our predictions for the Boer-Mulders
asymmetries with both the perturbatively and nonpertur-
batively generated Boer-Mulders TMDs are fairly consis-
tent with the HERMES data within the uncertainties.

VI. CONCLUSION

We have presented a detailed study of the T-odd TMDs
in a quark-diquark model of proton written as overlaps of
LFWFs with a soft gluon rescattering kernel which incor-
porates the effect of the FSI. The generalized Sivers and
Boer-Mulders shifts and the SSAs are also studied in the
model. In the generalized Sivers and Boer-Mulders shifts,
the disagreements between perturbative and nonperturba-
tive kernels become prominent. The generalized shifts with
the nonperturbative kernel are found to be consistent with
the lattice QCD results, whereas the results with the
perturbative kernel varies widely with a,. The perturbative
kernel with some intermediate value a = 0.5 produces
shifts close to the nonperturbative kernel, but it is too
sensitive to the variation of @, and requires higher-order

corrections to make any reliable predictions. The Sivers

asymmetry Aiijnr((/)“ )

cos(2¢,,
o

and the Boer-Mulders asymmetry

for zt and 7z~ channels are found to be in good
agreement with the HERMES data. Our study shows that
the nonperturbative kernel does a much better job than the
perturbative kernel if, in accordance with the weak coupling
hypothesis, a; is considered to be small (a; < 1).
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