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In QCD sum-rule methods, the fundamental field-theoretical quantities are correlation functions of
composite operators that serve as hadronic interpolating fields. One of the challenges of loop corrections to
QCD correlation functions in conventional approaches is the renormalization-induced mixing of composite
operators. This involves a multi-step process of first renormalizing the operators, and then calculating the
correlation functions in this mixed basis. This process becomes increasingly complicated as the number of
operators mixed under renormalization increases, a situation that is exacerbated as the operator mass
dimension increases in important physical systems such as tetraquarks, pentaquarks, and hybrids.
Diagrammatic renormalization provides an alternative to the conventional operator renormalization
approach. Diagrammatic renormalization methods are outlined and applied to a variety of QCD sum-
rule examples of increasing complexity. The results are benchmarked, and the diagrammatic method is
contrasted with the conventional operator mixing approach. Advantages and conceptual interpretations of
the diagrammatic renormalization approach are outlined and technical subtleties are explored.
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I. INTRODUCTION

QCD sum-rules are founded on the concept of quark-
hadron duality where QCD composite operators, with
appropriate quantum numbers and valence content, are
used as interpolating fields to relate hadronic properties to
QCD correlation functions of composite operators [1,2]
(see also QCD sum-rule reviews in Refs. [3–6]). From this
basic formulation, it is immediately evident that renorm-
alization of the underlying composite operators in the
correlation function is a necessary aspect of QCD sum-
rule calculations. In most cases, the composite operator
renormalization effects enter at next-to-leading loop order
(NLO), but in cases of cross-correlators between different
currents (e.g., glueballs and quark-antiquark mesons [7,8]),
composite operator renormalization enters at leading-order
(LO). Thus, in the conventional approach of renormaliza-
tion constants (or counterterms), renormalization of QCD
correlation functions requires two distinct steps: first,

replacement of bare quantities (couplings, masses, and
fields) with their renormalized counterparts and second, the
renormalization of the composite operators themselves.
Both steps of this conventional renormalization approach
must be implemented correctly to cancel the divergences
within QCD correlation functions used to predict hadronic
properties.
Renormalization of composite operators in gauge theo-

ries has a long history [9–12]. Under renormalization, a
gauge-invariant operator not only mixes with other gauge-
invariant operators of equal or lower dimension, but also
with equations of motion and nonphysical operators [9–11]
(see also [13,14] for reviews). Although background field
methods simplify some aspects of composite operator
renormalization [15,16], the underlying mixing becomes
increasingly complicated as the operator mass dimension
increases. For example, the renormalization of the simplest
single-flavor dimension-six q̄qq̄q light quark operators
involves the mixing of 10 operators [17], and the renorm-
alization of dimension-five mixed quark/gluon q̄Gq oper-
ators mixes five or six operators [17,18]. Some of these
mixings result in “nuisance operators” that do not ulti-
mately contribute to correlation functions [18], adding
extraneous calculational overhead to sum-rule applications.
The increasing complexity of the conventional approach

to renormalization of higher-dimension composite opera-
tors provides significant challenges for QCD sum-rule
calculations nowadays with numerous experimental
discoveries of exotic hadrons such as multiquark states
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(e.g., tetraquarks and pentaquarks) and hybrid (conven-
tional hadrons with valence gluonic content) candidates
(see e.g., Refs. [19–21] for reviews). Next-to-leading order
(NLO) QCD sum-rule studies of tetraquark and pentaquark
states would require renormalization of dimension-six and
dimension-15=2 operators containing heavy quarks for a
variety of quantum numbers, flavor content, and color
structures. It is, therefore, not surprising that the over-
whelming majority of QCD sum-rule studies of heavy-
quark tetraquark and pentaquark systems are LO
calculations (see e.g., [6,20] for reviews). To our knowl-
edge, renormalization of the composite operators in these
systems has never been studied. Thus, there is strong moti-
vation to develop more efficient composite operator renorm-
alization methodologies for QCD sum-rule applications.
As outlined above, the conventional approach to renorm-

alization is based on Lagrangian counterterms and extends
to the renormalization of composite operators in a natural
way (see e.g., Ref. [14]). However, the diagrammatic
renormalization method is a lesser-utilized approach to
renormalization that is based on individual Feynman
diagrams of Lagrangian fields [22–25] (see Refs. [13,26]
for an overview). The diagrammatic method can be
extended to Feynman diagrams that contain composite
operator insertions (see e.g., Ref. [13]), and so is relevant to
QCD correlation functions of composite operators occur-
ring in QCD sum-rule methods.
The purpose of this paper is to outline and apply

diagrammatic renormalization methods for QCD correla-
tion functions in a variety of examples including q̄q quark
mesons, q̄q-glueball mixing, and heavy-light diquarks. In
these examples, the results of diagrammatic renormaliza-
tion will be shown to agree with conventional renormal-
ization approaches, demonstrating validity of the
diagrammatic method in QCD sum-rule applications.
Conceptual insights that emerge from comparing the two
renormalization approaches will be emphasized, including
techniques for the anomalous dimension factors in the
diagrammatic approach. Technical subtleties that could
lead to erroneous results in the diagrammatic technique
will be highlighted, and the effects of different gauge
parameter choices will be outlined. Advantages of the
diagrammatic approach will be discussed with an emphasis
on future applications to multiquark systems.

II. DIAGRAMMATIC RENORMALIZATION
OF QCD CORRELATION FUNCTIONS

Many QCD sum-rules analyses are based on two-point
correlation functions of composite operators (currents)
JΓi

ðxÞ,

ΠΓ1Γ2
ðqÞ ¼ i

Z
dDxeiq·xhOjT½JΓ1

ðxÞJ†Γ2
ð0Þ�jOi; ð1Þ

where D ¼ 4þ 2ϵ represents the spacetime dimension for
dimensional regularization and Γi represents the collective

quantum numbers associated with the currents. In many
cases, the correlation function is diagonal with Γ1 ¼ Γ2, but
nondiagonal correlation functions with Γ1 ≠ Γ2 occur when
studying mixed interpretations of hadrons (e.g., mixing of
glueballs and quark-antiquark mesons). Generally, some
projectionoperator is applied to (1) yielding a scalar function
ΠðQ2Þ where Q2 ¼ −q2. (See (9) for an example.) Based
on its high-energy behavior, ΠðQ2Þ satisfies a dispersion
relation,

ΠðQ2Þ ¼ Πð0Þ þQ2Π0ð0Þ þ 1

2
Q4Π00ð0Þ þ � � �

þ 1

n
Q2nΠðnÞð0Þ þQ2nþ2

1

π

Z
∞

t0

ImΠðtÞ
tnþ1ðtþQ2Þ dt;

ð2Þ

where theΠðnÞð0Þ are subtraction constants and t0 is a field-
theoretical threshold. Except for cases where a low-energy
theorem exists (see e.g., Ref. [27]), the subtraction constants
are unknown and will typically be divergent. However, the
divergent subtraction constants are eliminated in QCD sum-
rule methods (e.g., by taking a sufficient number of Q2

derivatives or applying some integral transform) [1–5], and
hence, they do not affect physical predictions. From a field-
theoretical perspective, the ΠðnÞð0Þ are local divergences
because of their Q2 polynomial structure, a property that
becomes relevant in diagrammatic renormalization.
In conventional renormalization, a renormalized com-

posite operator (i.e., current) JRðxÞ is expressed as a sum of
renormalization constants and bare operators

JR ¼
Xn
i¼1

ZiJ
ðiÞ
B ; ð3Þ

and hence, in general, there will be renormalization-
induced mixing of n composite operators. Calculation of
the Zi first involves developing the operator basis from the
general principles [9–11,13,14] and then calculating Green

functions containing the bare operator JðiÞB and QCD fields
to determine the renormalization factors Zi. Although there
are different approaches to help disentangle the contribu-

tions from different JðiÞB (see e.g., Refs. [17,18,28]), one
must still compute multiple Green functions to fully
determine (3). Calculation of the renormalized correlator
then proceeds via the renormalized currents (3) which, in
principle, involves all possible combinations of currents

JðiÞB JðjÞB and the replacement of the bare coupling/masses
with their renormalized versions. If the entire renormaliza-
tion procedure is implemented correctly, then all nonlocal
divergences will cancel, and only local (subtraction term)
divergences will remain. Thus, in a basis of n mixed bare
operators, one anticipates the need to calculate at least n
Green functions for renormalization of the composite
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operator and then nðnþ 1Þ=2 bare-operator correlators,
with potentially multiple Feynman diagrams in each case.
Thus, the calculation of QCD correlation functions
becomes increasingly demanding in conventional renorm-
alization as n increases (e.g., n ∼ 10 for tetraquark sys-
tems). Furthermore, there are very few intermediate
benchmarks to ensure accuracy in the final result. These
challenges of computational efficiency and accuracy in
conventional renormalization are the motivation for devel-
oping diagrammatic renormalization methods for QCD
correlation functions.
The essential idea of diagrammatic renormalization is to

renormalize each Feynman diagram G that occurs in the
perturbative expansion of bare quantities through a sub-
traction process. Following Ref. [13], the renormalized
diagram RðGÞ is obtained by first removing all (nonlocal)
subdivergences to construct R̄ðGÞ, and then applying a
counterterm CðGÞ to remove any remaining local diver-
gences

RðGÞ ¼ R̄ðGÞ þ CðGÞ: ð4Þ

In the case of QCD correlation functions, the local
divergences correspond to the subtraction constants which
are already eliminated when forming QCD sum-rules, so
the process is slightly simpler: for a correlation function
diagram G, it is only necessary to construct R̄ðGÞ by
recursively subtracting from the bare diagram UðGÞ sub-
divergences occurring in subdiagrams γ

R̄ðGÞ ¼ UðGÞ −
X
γ

CγðGÞ; CγðGÞ ¼ T ∘R̄ðγÞ ð5Þ

where T isolates the divergent part of the subdiagram γ
(e.g., ϵ-expansion terms that diverge as ϵ → 0 in minimal-
subtraction schemes). Thus, in (5), each subdiagram is
replaced with a counterterm diagram that subtracts its
divergent part. After every diagram has been renormalized
via (5), the resulting sum of diagrams is the renormalized
correlation function with all mass/coupling parameters
understood as their renormalized versions at the renorm-
alization scale ν associated with the subtraction scheme T
(typically MS or MS scheme). The entire process of
renormalization-induced operator mixing in the conven-
tional renormalization approach is obviated, leading to
considerable increases in computational efficiency because
it is only necessary to compute and renormalize the
diagrams associated with the bare correlator. Because the
process (5) must cancel all nonlocal divergences for each
diagram, diagrammatic renormalization has a built-in
internal diagnostic to improve calculational accuracy.
These features will be illustrated in the applications
presented in Sec. III.

III. QCD SUM-RULE APPLICATIONS
OF DIAGRAMMATIC RENORMALIZATION

In this section, NLO (i.e., two-loop) applications of
diagrammatic renormalization to QCD correlation func-
tions are presented and contrasted with conventional
renormalization. When relevant, calculations will be pre-
sented for the (momentum-space) gluon propagator

iδab
h
− gμν

k2 þ ð1 − ξÞ kμkνk4

i
in both Landau (ξ ¼ 0) and

Feynman (ξ ¼ 1) gauge to provide greater insight and
guide gauge parameter selections in future applications. All
calculations are performed in dimensional regularization
with D ¼ 4þ 2ϵ and results are presented in the MS
scheme using FeynCalc [29–31], TARCER [32] imple-
mentation of recursion relations for two-loop integrals
[33,34], Package-X [35], results for master integrals
[36–38], and HypExp [39,40] with HPL [41] for the
expansion of hypergeometric functions.

A. Vector mesonic correlation function for light quarks

The QCD correlation function of light quark vector
(mesonic) currents is the most familiar example of a QCD
correlation function

ΠμνðqÞ ¼ i
Z

dDxeiq·xhOjT½JμðxÞJνð0Þ�jOi; ð6Þ

JμðxÞ ¼ ψ̄ðxÞγμψðxÞ: ð7Þ
Because the current is conserved, the correlation function
(6) can be expressed via a single form factor

ΠμνðqÞ ¼ ðgμν − qμqν=q2ÞΠvðQ2Þ; Q2 ¼ −q2 ð8Þ

ΠvðQ2Þ ¼ 1

ðD − 1ÞΠ
μ
μðqÞ: ð9Þ

It is well known that the vector current (7) does not require
any renormalization factors [42] (see also [14]) so that

JμR ¼ JμB ð10Þ

[i.e., Z ¼ 1 in (3)], and hence, the vector current is the
simplest example to illustrate diagrammatic renor-
malization.
The Feynman diagrams for Πv are shown in Fig. 1 up to

NLO (two-loops), and, in the light-quark chiral limit, Πv
can be expressed in the form

Πv ¼
Q2

4π2

�
−Lþ α

π
ðALþ BL2Þ

�
; L ¼ log ðQ2=ν2Þ

ð11Þ

where the first term represents the LO Diagram a of Fig. 1,
ν is the MS renormalization scale, and the NLO Diagrams
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b–d (i.e., those proportional to α
π) are parametrized by the

coefficients fA;Bg. Polynomial terms (i.e., nonlogarithmic
contributions) are omitted in (11) because they represent
dispersion-relation subtractions that do not contribute to the
QCD spectral function sum-rules. The Fig. 1 Feynman
diagram d represents a gluon-exchange topology, while
diagrams b and c correspond to the self-energy topology.
The NLO results for each topology in conventional

renormalization (which in this case is trivial) are shown
in Table I for the gluon propagator in both Landau and
Feynman gauges. Although the conventional renormaliza-
tion process is trivial, in Feynman gauge, the individual
topologies contain problematic L=ϵ nonlocal divergences
that only cancel in the total result. However, there is
considerable simplification in Landau gauge because the
quark self-energy is zero in the chiral limit, and therefore,
the exchange topology is free of nonlocal divergences.
Taking into account normalization conventions, the total
NLO result for Πv in Table I agrees with standard
calculations (see e.g., Ref. [14]) and are gauge-independent
as required for a gauge-invariant current.

Following the general process outlined in Sec. II, dia-
grammatic renormalization for the light quark vector
correlation function first requires isolation of the subdi-
vergences arising from the one-loop subdiagram topologies
shown in Fig. 2. The resulting divergent parts of the
subdiagrams, referenced to the topology of the original
diagram, are given in Table II. Counterterm diagrams of
Fig. 3 are generated from the subdivergences of Fig. 2, and
then subtracted to obtain the renormalized diagram given in
Table III for Feynman gauge and for Landau gauge. As
outlined in Sec. II, within the renormalized entries, the
coupling is interpreted as αðνÞ in MS scheme. Note that the
counterterm for the LO diagram (Diagram a in Fig. 3) is
purely local and, as discussed above in Sec. II, is therefore
ignored because it corresponds to a dispersion relation
subtraction term that does not enter QCD spectral function
sum-rules. As in conventional renormalization, Table VI
exhibits considerable simplifications in Landau gauge
because the quark self-energy is zero in the chiral limit.
The agreement between the total NLO result for Πv in
conventional and diagrammatic renormalization (compare
Tables I and III) provides a valuable benchmark for the
application of diagrammatic renormalization methods for
QCD sum-rules.
In principle, there is an additional subdiagram shown in

Fig. 4 along with its counterterm diagram. This counterterm
diagram is zero because of the massless tadpole. However,
even if the counterterm diagram was nonzero (e.g., the
same topology but with a massive line), the external
momentum would not enter the counterterm diagram,
and hence, the subtraction would correspond to a
dispersion-relation subtraction constant which does not
contribute to QCD sum-rules.
Another technical subtlety in the diagrammatic method

that requires attention is the role of D-dependent factors
that occur in the calculation of a subdivergence. Such
D-dependent factors could come from contractions of γ
matrices, for example. When computing the divergent part
of a subdiagram, it is essential to include all D-dependent
factors associated with that subdiagram. Failure to do so
will result in errors for the finite parts. For example, with
computational tools such as FeynCalc [29–31], it may be
tempting (for coding simplicity) to defer Dirac/Lorentz
algebra until computation of the counterterm diagram, but

(a) (b)

(c) (d)

FIG. 1. Leading-order diagram (a) and next-to-leading order
[diagrams (b)–(d)] Feynman diagrams for correlation functions of
vector and scalar currents. The circled times denotes either the
vector or scalar composite operator Feynman rule and the double
line represents the external momentum q. Diagrams b and c are
the self-energy topology, and diagram d is the gluon exchange
topology.

TABLE I. The NLO conventional renormalization contributions to Πv in (11) for the Feynman diagrams of Fig. 1
for Feynman gauge (ξ ¼ 1) and Landau gauge (ξ ¼ 0). The self-energy entry represents the sum of the two
diagrams, and hence, the total contribution is the sum of the exchange and self-energy entries.

Gauge Feynman Landau

Topology Exchange Self-Energy Total Exchange Self-Energy Total

A − 34
9
þ 2

3
1
ϵ

25
9
− 2

3
1
ϵ −1 −1 0 −1

B 2
3

− 2
3

0 0 0 0
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this leads to errors in the final result. Similarly, it is also
important to maintain the ordering of the quark propagators
and other Dirac matrices when calculating the subdiagrams
[e.g., Fig. 2(c) and (d)].
Despite the simplicity of the vector current renormaliza-

tion (10), some of the advantages of diagrammatic renorm-
alization are already evident. In particular, no knowledge
of the renormalization properties of the vector current
were needed in the diagrammatic approach, an aspect that
will be illustrated more powerfully in the subsequent
examples where the renormalization factors are nontrivial.
Furthermore, the nonlocal divergences for every diagram
must cancel against the counterterm diagrams generated
from the subdivergences, which provides a self-consistency
check at the level of each individual diagram. In conven-
tional renormalization, divergences only cancel in the sum

of diagrams, making it more difficult to isolate calculation
errors at intermediate stages.

B. Scalar mesonic correlation function for light quarks

The QCD correlation function of light-quark scalar
mesonic currents extends the vector current analysis of
Sec. III A to a situation where the composite operator
renormalization is multiplicative but nontrivial (Z ≠ 1).
The scalar correlation function is defined as

ΠsðQ2Þ ¼ i
Z

dDxeiq·xhOjT½JðxÞJð0Þ�jOi; Q2 ¼ −q2

ð12Þ

JðxÞ ¼ ψ̄ðxÞψðxÞ: ð13Þ

Conventional renormalization of the scalar current is given
by [42] (see also [14])

(b)(a)

(c) (d)

FIG. 2. Subdiagrams extracted from Fig. 1. Diagrams a and b
originate from the NLO self-energy topology and diagrams c and
d from the NLO exchange topology. The circled times denotes
either the vector or scalar composite operator Feynman rule and
the double line represents the external momentum q.

(a) (b)

(c) (d) (e)

FIG. 3. Counterterm diagrams generated by the subdiagrams of Fig. 2 and associated with the underlying diagrams in Fig. 1, where the
black square denotes the subdivergence insertion, circled times denotes either the vector or scalar composite operator Feynman rule, and
the double line represents the external momentum q. Diagram a is a counterterm for the LO diagram in Fig. 1.

TABLE II. Divergent parts of the one-loop subdiagrams of
Fig. 2 for the vector current correlation function in both Feynman
and Landau gauge. The subdiagrams are classified by the
exchange or self-energy topology of the Fig. 1 diagram from
which they originate. The results for the two exchange subdia-
grams and the two self-energy subdiagrams are equal. The index
μ is associated with the vector current Feynman rule and the
momentum p represents the quark loop momentum flowing
through the self-energy.

Gauge Feynman Landau

Topology Exchange Self-Energy Exchange Self-Energy

Subdivergence −γμ α
π
1
3ϵ −i=p α

π
1
3ϵ 0 0
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JR ¼ ZmJB; Zm ¼ 1þ α

π

1

ϵ
; ð14Þ

where the notation Zm is a reminder that the scalar current
renormalization constant and quark mass renormalization
are related.
The Feynman diagrams for Πs are shown in Fig. 1 up to

NLO (two-loops), and, in the light-quark chiral limit, Πs
can be expressed in the form

Πs ¼
3Q2

8π2

�
Lþ α

π
ðALþ BL2Þ

�
; L ¼ log ðQ2=ν2Þ

ð15Þ

where the first term represents the LO diagram of Fig. 1 and
the NLO corrections are parameterized by the coefficients
fA; Bg. As before, polynomial terms are omitted in (11)
because they represent dispersion-relation subtractions that
do not contribute to the QCD spectral function sum-rules.
The NLO results for each topology in conventional

renormalization are shown in Table IV for the gluon
propagator in both Landau and Feynman gauge. For
conventional renormalization, the factor Z2

m [with Zm from
(14)] combines with the LO diagram to generate the NLO
renormalization-induced corrections in Table IV.

Conventional renormalization is more subtle for the
scalar case with cancellations of L=ϵ nonlocal divergences
via the renormalization-induced contributions in both
Landau and Feynman gauge. As in the vector case, there
are some simplifications in Landau gauge because the
quark self-energy is zero in the chiral limit. Taking into
account normalization conventions, the total NLO result for
Πs in Table IV agrees with standard calculations (see, e.g.,
Refs. [43–45]) and are gauge-independent as required for a
gauge-invariant current.
Proceeding in the same way as the vector case, dia-

grammatic renormalization for the light quark scalar
correlation function begins with isolating the subdivergen-
ces arising from the one-loop subdiagram topologies shown
in Fig. 2. The resulting divergent parts of the subdiagrams,
referenced to the topology of the original diagram, are
given in Table V. Note that the self-energy subdivergence
does not depend on the current (compare Tables II and V)
because the self-energy subdiagram is isolated from the
current vertex.
The Fig. 1 renormalized diagrams obtained by sub-

tracting the Fig. 3 counterterm diagrams generated by the
Fig. 2 subdivergences (see Table V) are given in Table VI
for Feynman gauge and for Landau gauge. As before, the
counterterm for the LO diagram (diagram (a) in Fig. 3) is
purely local and, therefore, is ignored because it corre-
sponds to a dispersion-relation subtraction term that does
not enter QCD spectral function sum-rules. As in conven-
tional renormalization, Table VI exhibits considerable
simplifications in Landau gauge because the quark self-
energy is zero in the chiral limit.
The agreement between the total NLO result for Πs in

conventional and diagrammatic renormalization (compare
Tables IV and VI) is quite remarkable because the dia-
grammatic method has not used the Eq. (14) renormaliza-
tion properties of the scalar composite operator. This
provides an important benchmark demonstrating that
diagrammatic renormalization methods can calculate
QCD correlation functions without any knowledge of
the underlying renormalization properties of the composite
operator.

TABLE III. The NLO diagrammatic renormalization contributions toΠv in (11) for the Feynman diagrams of Fig. 1 in Feynman gauge
ξ ¼ 1, then Landau gauge ξ ¼ 0. The bare entries are repeated from Table I, and the factor of 2 in the exchange counterterm entries is a
result of the two identical counterterm diagrams in Fig. 3. The (bold) renormalized entries are obtained by subtracting the counterterm
from the bare result. The self-energy entries also represent the sum of two diagram, and hence, the total contribution is the sum of the
renormalized exchange and renormalized self-energy entries (bold columns).

Gauge

Topology Exchange Self-Energy

Diagram Bare Counterterm Renormalized Bare Counterterm Renormalized Total

Feynman
A − 34

9
þ 2

3
1
ϵ 2

�− 5
9
þ 1

3
1
ϵ

�
− 8

3
25
9
− 2

3
1
ϵ

10
9
− 2

3
1
ϵ

5
3 −1

B 2
3

2ð1
6
Þ 1

3 − 2
3

− 1
3

− 1
3 0

Landau
A −1 2 × 0 ¼ 0 −1 0 0 0 −1
B 0 2 × 0 ¼ 0 0 0 0 0 0

(b)(a)

FIG. 4. Subdiagram (a) extracted from the quark loop in the
self-energy topologies of Fig. 1 and its associated counterterm,
i.e., diagram (b). The ⊗ denotes either the vector or scalar
composite operator Feynman rule, the black square denotes the
subdivergence insertion, and the double line represents the
external momentum q.
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An important technical subtlety is embedded in the scalar
current correlation function. Because the coupling in the
renormalized correlation function is the MS scheme cou-
pling αðνÞ, the nonzero value for B in Πs implies that the
renormalization-group (RG) equation for the QCD spectral
function sum-rule will have an anomalous dimension term.
In the conventional renormalization approach, this is most
easily implemented with a quark mass prefactor in the
current (13) (see, e.g., [45]) because Zm in (14) is the quark
mass renormalization factor. Although the diagrammatic
method is seemingly oblivious to the renormalization of
the scalar operator, its effect implicitly emerges from the
diagrammatic calculation, and the anomalous dimension
can be extracted from the correlation function. Standard RG
methods for QCD sum-rules [46] can then be applied after
extracting the anomalous dimension from the correlation
function.

C. Scalar and vector mesonic correlation function
for heavy quarks

The analysis of vector and scalar mesonic correlation
functions will now be extended to massive quarks with an
emphasis on how the diagrammatic renormalization meth-
ods are influenced by the quark mass m. Thus, the focus
will be on the divergent parts and the diagrammatic
renormalization method, and hence, the lengthy expres-
sions for the finite parts will be omitted.
The inclusion of quark mass does not modify the

exchange topology subdivergences of Fig. 2, so the
exchange topology results of Tables II and V remain valid.
As noted above, the self-energy subdivergences for
massive quarks given in Table VII do not depend on the
current.
The divergent parts of NLO contributions from Fig. 1,

the counterterm diagrams of Fig. 3 obtained via the Fig. 2

TABLE IV. The NLO conventional renormalization contributions toΠs in (15) for the Feynman diagrams of Fig. 1 for Feynman gauge
(ξ ¼ 1) and Landau gauge (ξ ¼ 0). The self-energy entry represents the sum of the two diagrams, and hence, the total contribution is the
sum of the renormalization, exchange, and self-energy entries. The gauge-independent renormalization entry represents the LO diagram
combined with the renormalization factor Z2

m expanded to order α. The total result is gauge-independent as expected.

Gauge Feynman Landau

Topology Renormalization Exchange Self-Energy Exchange Self-Energy Total

A −4þ 2
ϵ

38
3
− 8

3
1
ϵ −3þ 2

3
1
ϵ

29
3
− 2

ϵ 0 17
3

B 1 − 8
3

2
3

−2 0 −1

TABLE V. Divergent parts of the one-loop subdiagrams of Fig. 2 for the scalar current correlation function in both Feynman and
Landau gauge. The subdiagrams are classified by the exchange or self-energy topology of the Fig. 1 diagram from which they originate.
The results for the two exchange subdiagrams and the two self-energy subdiagrams are equal, and the self-energy entries are identical to
Table II because the subdiagram is isolated from the current vertex. The momentum p represents the quark loop momentum flowing
through the self-energy.

Gauge Feynman Landau

Topology Exchange Self-Energy Exchange Self-Energy

Subdivergence − α
π

4
3ϵ −i=p α

π
1
3ϵ − α

π
1
ϵ 0

TABLE VI. The NLO diagrammatic renormalization contributions to Πs in (11) for the bare Feynman diagrams of Fig. 1 and the
counterterm diagrams of Fig. 3 in Feynman gauge ξ ¼ 1, then Landau gauge ξ ¼ 0. The bare entries are repeated from Table IV, and the
factor of 2 in the exchange counterterm entries is a result of the two identical counterterm diagrams in Fig. 3. The (bold) renormalized
entries are obtained by subtracting the counterterm from the bare result. The self-energy entries also represent the sum of two diagram,
and hence, the total contribution is the sum of the renormalized exchange and renormalized self-energy entries (bold columns).

Gauge

Topology Exchange Self-Energy

Diagram Bare Counterterm Renormalized Bare Counterterm Renormalized Total

Feynman
A 38

3
− 8

3
1
ϵ

2ð8
3
− 4

3
1
ϵÞ 22

3 −3þ 2
3
1
ϵ − 4

3
þ 2

3
1
ϵ − 5

3
17
3

B − 8
3

2ð− 2
3
Þ − 4

3
2
3

1
3

1
3 −1

Landau
A 29

3
− 2

ϵ 2ð2 − 1
ϵÞ 17

3 0 0 0 17
3

B −2 2ð− 1
2
Þ −1 0 0 0 −1
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subdivergences (Tables II, V, and VII), and the resulting
renormalized diagrams have the general form

ΠΓðQ2Þ ¼ m2

π2
α

π

1

ϵ

�
Aþ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wðwþ 1Þp L̃

�
; Q2 ¼ −q2;

ð16Þ

w ¼ Q2

4m2
; L̃ ¼ log

� ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p þ ffiffiffiffi
w

p
ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p
−

ffiffiffiffi
w

p
�
; ð17Þ

where A and B are polynomials in w and Γ ∈ fs; vg.
Because we find that all A contributions are local, they
correspond to a dispersion-relation subtraction that can be
ignored. Similarly the LO counterterm diagram can be
ignored as previously discussed. However, the L̃ divergent
structure is problematic, and hence, B ¼ 0 must result for
the renormalized diagrams.
The NLO divergent parts of the heavy-quark vector and

scalar correlation functions for the bare diagrams of Fig. 1
and the counterterm diagrams of Fig. 3 generated by the
Fig. 2 subdivergences (see Tables II, V, and VII) are given
in Table VIII for Feynman gauge and for Landau gauge.
Similar to the light-quark analyses, Table VIII shows that
there are still some simplifications in Landau gauge for the
heavy-quark vector and scalar correlation functions.
As is evident from Table VIII, the nonlocal divergences

of each diagram are cancelled by its counterterm diagrams,
resulting in B ¼ 0 for the renormalized diagrams as
required in the diagrammatic renormalization method.

Once again, it is remarkable that the diagrammatic renorm-
alization method does not require any knowledge of the
conventional renormalization of the underlying vector and
scalar composite operators [see Eqs. (10) and (14)] in the
correlation function.

D. Heavy-light diquark correlation functions

Heavy-light diquark systems are important within con-
stituent diquark models of closed charm c̄cq̄q tetraquark
systems (see e.g., Ref. [47]). These diquark systems have
also been studied in QCD sum-rules at NLO for a variety of
quantum numbers [48] using conventional renormalization
of the diquark composite operators up to two-loop order
[49]. Correlation functions of heavy-light diquarks thus
provide an interesting QCD system for exploring diagram-
matic renormalization methods.
The heavy-light diquark correlation function is defined as

ΠðΓÞðqÞ ¼ i
Z

dDxeiq·xh0jT½JðΓÞα ðxÞSαω½x; 0�JðΓÞ†ω ð0Þ�j0i;

ð18Þ

where α, ω are color indices, Γ indicates the quantum
numbers, and gauge-invariant information is extracted using
the Schwinger string (see Refs. [48,50,51])

Sαω½x; 0� ¼ P exp

�
ig
λa

2

Z
x

0

dzμAa
μðzÞ

�
αω

; ð19Þ

where P is the path ordering operator. The heavy-light
diquark currents are

JðΓÞα ¼ ϵαβγQT
βCOΓqγ; ð20Þ

where C is the charge conjugation operator, T denotes
transpose,Q is a heavy quark, and q is a light quark [50,51].
The operators OΓ ¼ γ5; I; γμ; γμγ5 respectively couple to
scalar S ðJP ¼ 0þÞ, pseudoscalar P ð0−Þ, axial vector A
ð1þÞ, and vector V ð1−Þ heavy-light diquarks. Analogous to
(8), the axial vector and vector projections of the diquark
correlation functions are given by

TABLE VII. Divergent parts of the heavy-quark, one-loop self-
energy subdiagrams of Fig. 2 (i.e., subdiagrams originating from
a self-energy topology in Fig. 1) in both Feynman and Landau
gauge. The results for the two self-energy subdiagrams are equal
and are identical for the scalar and vector correlation functions
because the self-energy is isolated from the current vertex. The
momentum p represents the quark loop momentum flowing
through the self-energy.

Gauge Feynman Landau

Subdivergence −ið=p − 4mÞ απ 1
3ϵ im α

π
1
ϵ

TABLE VIII. The NLO divergent contributions toΠΓ in (11) for the bare Feynman diagrams of Fig. 1 and the counterterm diagrams of
Fig. 3 in Feynman gauge ξ ¼ 1, then Landau gauge ξ ¼ 0. The vector current is Γ ¼ v and the scalar is Γ ¼ s. The factor of 2 in the
exchange counterterm entries is a result of the two identical counterterm diagrams in Fig. 3, and the self-energy entries also represent the
sum of two diagrams. Thus, the renormalized diagram is the difference between the bare and counterterm entries, resulting in B ¼ 0 for
the renormalized diagrams.

Current Gauge

Topology Exchange Self-energy

Diagram Bare Counterterm Bare Counterterm

Vector
Feynman B 1

3
ðwþ 1Þð2w − 1Þ 2½1

6
ðwþ 1Þð2w − 1Þ� − 1

6
ð4w2 þ 2wþ 1Þ − 1

6
ð4w2 þ 2wþ 1Þ

Landau B 0 0 − 3
2

− 3
2

Scalar
Feynman B −4ðwþ 1Þ2 2½−2ðwþ 1Þ2� 1

2
ðwþ 1Þð2w − 7Þ 1

2
ðwþ 1Þð2w − 7Þ

Landau B −3ðwþ 1Þ2 2½− 3
2
ðwþ 1Þ2� − 9

2
ðwþ 1Þ − 9

2
ðwþ 1Þ
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ΠðA;VÞðQ2Þ ¼ 1

D − 1

�
qμqν

q2
− gμν

�
ΠðA;VÞ

μν ðqÞ: ð21Þ

Up to NLO, the explicit cancellation of the gauge parameter
via the Schwinger string (19) has been demonstrated, and it
has been shown that Sαω½x; 0� ¼ δαω in Landau gauge
[48,50,51]. Thus, up to NLO, the gauge-invariant informa-
tion content of the diquark correlation function is extracted
in Landau gauge where the Schwinger string becomes the
trivial identity operator in color space.
Conventional renormalization of the diquark composite

operators up to order α is given by [48,49]

JðΓÞα R ¼ ZðΓÞ
d JðΓÞα B; ZðSÞ

d ¼ 1þ α

2πϵ
;

ZðPÞ
d ¼ 1þ α

2πϵ
; ZðAÞ

d ¼ 1; ZðVÞ
d ¼ 1: ð22Þ

Thus, in conventional renormalization up to NLO, there
will only be renormalization-induced diagrams in the scalar
(S) and pseudoscalar (P) channels. In Ref. [48], the diquark
correlation functions have been calculated up to NLO in
conventional renormalization, which provides a detailed
benchmark for diagrammatic renormalization.
The Feynman diagrams forΠðΓÞ are shown in Fig. 5 up to

NLO (two-loops), their one-loop subdiagrams are shown in
Fig. 6, and the counterterm diagrams generated by the
subdiagrams are shown in Fig. 7. The diagram topologies
are classified by light-quark self energy, heavy-quark self-
energy, and gluon exchange.
The nonlocal divergences associated with Figs. 5 and 7

have the general form

ΠðΓÞðQ2Þ ¼ B
m2

π2
α

π

1

ϵ

ð1þ wÞ
w2

log ð1þ wÞ; w ¼ Q2

m2

ð23Þ

where m is the heavy quark mass and B is a polynomial in
w. The finite parts involve approximately 15 structures
including dilogarithms and trilogarithms (see Ref. [48]) and
are not presented for brevity, but are discussed below.
The subdivergences arising from the Fig. 6 subdiagrams

are given in Table IX. The nonlocal divergent parts of the
resulting Fig. 7 counterterm diagrams, the NLO diagrams
of Fig. 5, and the renormalized diagrams are given in
Table X. The LO counterterm diagrams are ignored as
discussed previously.
As is evident from Table X, the nonlocal divergences of

each diagram are cancelled by its counterterm diagram,
resulting in B ¼ 0 for the renormalized diagrams as required
in the diagrammatic renormalization method. It has also
been verified that the diagrammatically renormalized finite
parts, where the coupling and mass are the MS-scheme
quantities αðνÞ and mðνÞ, agree with the conventional
renormalization results of Ref. [48], providing a detailed
validation of diagrammatic renormalization methods in
QCD spectral function sum-rules. As in all previous
examples, it is emphasized that the diagrammatic renorm-
alization method does not require any knowledge of conven-
tional renormalization (22) for the underlying diquark
composite operators in the correlation function.
At this stage, another calculational efficiency of dia-

grammatic methods becomes apparent in the diquark
analysis. In conventional renormalization, it is somewhat
cumbersome to implement mass renormalization in the LO
diagram, but no comparable challenges exist in the dia-
grammatic approach. Furthermore, another diagrammatic
self-consistency check becomes evident for the examples

(a) (b)

(c) (d)

FIG. 5. Leading-order (Diagram a) and NLO Feynman dia-
grams for correlation functions of heavy-light diquark currents.
The circled times denotes the diquark composite operator Feyn-
man rule for OΓ, and the double line represents the external
momentum q. The thick line represents the heavy quark, and the
thin line represents the light quark.

(b)(a)

(c) (d)

FIG. 6. Subdiagrams extracted from Fig. 5. Diagrams (a) and
(b) originate from the NLO self-energy topology and diagrams (c)
and (d) from the NLO exchange topology. The circled times
denotes the diquark composite operator Feynman rule forOΓ, and
the double line represents the external momentum q. The thick
line represents the heavy quark, and the thin line represents the
light quark.
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developed. In every case where there are no nonlocal
divergences in the bare diagram, all corresponding subdia-
grams are finite (i.e., no subdivergence). This property can
be used to identify calculation errors within individual
diagrams to improve accuracy in loop computations.

E. Scalar quark meson glueball
mixed correlation function

In the diagrammatic renormalization examples presented
above, the composite operators were multiplicatively
renormalizable, and the correlation functions were diagonal
(i.e., contained a single current). The mixed correlator of
the scalar light quark meson and scalar glueball operators
(relevant to mixing of scalar quark mesons with glueballs
[7,8,52]) is defined by

ΠgqðQ2Þ¼ i
Z

dDxeiq·xh0jT½JgðxÞJqð0Þ�j0i; Q2≡−q2;

ð24Þ

JgðxÞ ¼ Ga
μνGa

μν ¼ G2; JqðxÞ ¼ q̄ðxÞqðxÞ ð25Þ

where Jg is the scalar glueball current and JqðxÞ is identical
to the scalar meson current (13). Conventional renormal-
ization of the scalar glueball operator [14,16] is one of the
most familiar cases of operator mixing under renormaliza-
tion,

½Jg�R ¼ ½G2�R ¼
�
1þ β0

ϵ

α

π

�
½G2�B − 4

α

π

1

ϵ
½mqq̄q�B; ð26Þ

where β0 ¼ 11
4
− 1

6
nf is the one-loop β function coefficient

and, for simplicity, only a single (light) quark flavor of
mass mq has been included (extension to additional light
flavors is straightforward). At first order in α and to leading
order in the chiral expansion of the light-quark mass mq,
the general form of Πgq is

Πgq ¼ mq
Q2

π2
α

π
½ALþ BL2�; L ¼ log

�
Q2

ν2

�
; ð27Þ

and, as before, polynomial terms are omitted in (27)
because they do not contribute to the QCD spectral function
sum-rules.
In conventional renormalization to first-order in α, Πgq is

given by the (two-loop) Feynman diagram of Fig. 8
combined with the renormalization-induced diagram (a)
of Fig. 1 and the −4mq

α
π
1
ϵ prefactor of the scalar quark

operator q̄q in (26). (The β0
ϵ
α
π prefactor of the glueball

operator in (26) leads to a higher-order α contribution to
Πgq.) The (gauge-independent) conventional renormaliza-
tion results given in Table XI show that the nonlocal L

ϵ
divergence from the bare loop is cancelled by the renorm-
alization-induced diagram.
In the diagrammatic renormalization method for Πgq, the

one-loop subdiagrams for Fig. 8 are shown in Fig. 9. The
subdiagrams are classified as either a gluon-vertex or

(a) (b)

(c) (d) (e)

FIG. 7. Counterterm diagrams generated by the subdiagrams of Fig. 6 and associated with the underlying diagrams in Fig. 5, where the
black square denotes the subdivergence insertion, circled times denotes the diquark composite operator Feynman rule for OΓ, and the
double line represents the external momentum q. Diagram (a) is a counterterm for the LO diagram in Fig. 5.

TABLE IX. Divergent parts of the heavy-light diquark one-loop
subdiagrams of Fig. 6 in Landau gauge as required for the
Schwinger string simplification. The results for the two self-
energy subdiagrams are equal to the Landau gauge results in
Tables II, V, VII and are identical for all quantum numbers
because the self-energy is isolated from the diquark current
vertex. The results for the two exchange diagrams are also equal,
and OΓ is the appropriate operator for the JP quantum numbers.

JP q Self-energy Q Self-energy Exchange

0� 0 im α
π
1
ϵ

α
π
1
ϵOΓ

1� 0 im α
π
1
ϵ 0
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quark-vertex topology, and their resulting divergent parts
are given in Table XII. The results for the bare diagram of
Fig. 8, the corresponding counterterm diagrams of Fig. 10,
and the renormalized diagram are given in Table XIII.
The agreement between the total result for Πgq in

conventional and diagrammatic renormalization (compare
Tables XI and XIII) is an impressive illustration of
diagrammatic renormalization methods in situations where
there is composite operator mixing in conventional renorm-
alization. The diagrammatic method required no prior
knowledge of the underlying composite operator renorm-
alization in (26).
This benchmark example for the quark/glueball mixed

correlation function can also be used to build conceptual
understanding of the relationship between conventional and
diagrammatic renormalization. It is easily seen that sub-
traction of the Table XII subdivergence for the gluon vertex
topology is identical to the renormalization-induced dia-
gram generated by the coefficient of q̄q in (26), and hence,
the diagrammatic counterterm diagram and the conventional
renormalization-induced term are operationally identical.
The analogy can be taken even further by recognizing that
the gluon-vertex subdiagramwould be used in conventional
renormalization to project out the q̄q operator’s contribution
in (26). Furthermore, the absence of a quark-vertex diver-
gence in Table XII illustrates that, in conventional renorm-
alization, the q̄q operator does not mix with gluonic
operators as illustrated in the multiplicative renormalization
result (14) for the q̄q operator.

IV. DISCUSSION

The Sec. III E analysis of the mixed correlation function
of scalar glueball and quark meson operators provided a
conceptual interpretation of the relationship between

diagrammatic and conventional renormalization methods.
The conceptual connections between diagrammatic and
conventional renormalization are still present in the other
benchmark examples presented, but these connections are a
bit more difficult to discern. For example, in conventional
renormalization for Feynman gauge, the Fig. 2 gluon
exchange subdiagram for the light-quark vector correlator
is used to find the conventional renormalization of the
vector composite operator (10). The Table II divergence in
the gluon exchange subdiagram corresponds to the quark
field renormalization for the external quark lines, which
establishes that no additional renormalization factor is
needed for the vector composite operator (i.e., Eq. (10)
corresponds to Z ¼ 1). The Fig. 2 self-energy subdiagram
also corresponds to the quark field renormalizations as
reflected by the same 1

3ϵ prefactors in Table II. When the
self-energy counterterm diagram of Fig. 3 is calculated, the
=p factor conspires to cancel one of the propagators so that
the self-energy and gluon-exchange counterterm diagrams
have the same loop-integration structure and cancel as seen
from Table III.
A similar (but more subtle) conceptual interpretation

applies to the scalar current case in Feynman gauge, except
that the Fig. 2 gluon exchange subdiagram divergence
corresponds to a combination of the quark field renormal-
ization for the external quark lines and the renormalization
factor in (14). However, the Fig. 2 self-energy subdiagram is
still related to the quark field renormalizations, and hence,
the prefactors of the subdivergences in Table V are now
different. The self-energy subdivergence =p factor again
conspires to cancel one of the propagators so that the Fig. 3
self-energy and gluon-exchange counterterm diagrams have

TABLE X. The NLO divergent contributions to ΠðΓÞ in (23) for the bare Feynman diagrams of Fig. 5 and the counterterm diagrams of
Fig. 7 in Landau gauge as required for the Schwinger string simplification. The factor of 2 in the exchange counterterm entries is a result
of the two identical counterterm diagrams in Fig. 7. The renormalized diagram is thus the difference between the bare and counterterm
entries, resulting in B ¼ 0 for the renormalized diagrams.

JP
Topology Exchange Q Self-energy q Self-energy

Diagram Bare Counterterm Bare Counterterm Bare Counterterm

0� B − 3
4
wðwþ 1Þ 2½− 3

8
wðwþ 1Þ� −3w −3w 0 0

1� B 0 0 − 3
2
ðw − 1Þ − 3

2
ðw − 1Þ 0 0

FIG. 8. Two-loop diagram for Πgq where circled times repre-
sents the Feynman rule for the Jg glueball current and circled plus
is the Feynman rule for the Jq quark scalar current.

TABLE XI. Conventional renormalization contributions to Πgq
in (27). The bare entry represents the Feynman diagram of Fig. 8.
The renormalization entry represents renormalization-induced
diagram (a) of Fig. 1 (with the scalar quark meson ⊗ operator)
combined with the renormalization factor −4mq

α
π
1
ϵ. The total

contribution is the sum of the (gauge-independent) bare and
renormalization entries.

Bare Renormalization Total

A 3
ϵ −

35
2

− 3
ϵ þ 6 − 23

2
B 3 − 3

2
3
2
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the same structure as the Fig. 1 LO bare diagram. However,
because Z ≠ 1 for the scalar operator renormalization, the
two counterterms do not cancel, as seen in Table VI, but
instead, their residual contribution is from the scalar
operator renormalization factor (14). From Table VI, the
residual contribution from the counterterms is 4 − 2

ϵ, which
when subtracted, is identical to the conventional renorm-
alization contribution (which is also proportional to the
Fig. 1 LO bare diagram) in Table IV.
Thus, the diagrammatic renormalization results (e.g.,

Tables III and VI) can be parsed in two ways. The bare and
counterterm contributions for each diagram can be com-
bined to cancel the divergence in each diagram leading to
the total renormalized result emerging from the sum of the
renormalized diagrams. Alternatively, the counterterm con-
tributions can be combined to reconstruct the conventional
renormalization-induced contribution (e.g., Table IV).
With the conceptual connections between diagrammatic

and conventional renormalization now established, the
advantages of the diagrammatic method become more
apparent. In both the conventional and diagrammatic
approaches, similar subdiagrams need to be computed.
In the diagrammatic case, these subdiagrams naturally
emerge from the underlying diagrams of the loop expan-
sion, but, in the conventional method, one is calculating
Green functions containing the composite operator and
fundamental fields with only the general guiding principles
of composite operator renormalization. In the conventional
approach, it may be necessary to carefully choose and
analyze the Green functions to project out and disentangle
the mixings in the underlying composite operator’s renorm-
alization structure. After the entire conventional operator
renormalization process is complete, it is then necessary to
go back and compute the new diagrams resulting from

composite operator renormalization, including any operator
mixing. By contrast, the diagrammatic method does not
need to disentangle the structure of the subdiagrams and it
does not matter if the underlying structure comes from
multiple operators; all that is necessary is to include the
subdiagram’s divergence into the associated counterterm
diagram. Thus, diagrammatic renormalization methods
provide a considerable increase in computational efficiency
for QCD sum-rule correlation functions.
A consistency check exists at each stage of the dia-

grammatic approach because the nonlocal divergences of
an individual diagram must be canceled by the counter-
terms generated by the subdiagrams. By contrast, in the
conventional approach, the consistency check comes only
at the final stage of the calculation where the nonlocal
divergences must cancel in the total result summing all bare
diagrams and all renormalization-induced operator mixing
diagrams. In the situation where conventional renormali-
zation may involve mixing of many operators (e.g.,
dimension-six four-quark operators of Refs. [17]), it may
be difficult to isolate calculation errors that could exist
within any of the renormalization constants, individual
renormalization-induced diagrams, or individual bare
diagrams.
In summary, the motivation for this paper is the need to

develop efficient renormalization techniques for NLOQCD
sum-rule analyses, what with numerous experimental dis-
coveries of exotic hadrons such as tetraquarks, pentaquarks
and hybrids (see e.g., Refs. [19–21] for reviews). For these

(a) (b)

FIG. 9. Subdiagrams extracted from Fig. 8. Diagram (a) is the
gluon vertex topology and diagram (b) is the quark vertex
topology. The double line represents the external momentum
q, circled times denotes theG2 composite operator Feynman rule,
and circled plus denotes the q̄q composite operator Feynman rule.

(a) (b)

FIG. 10. Counterterm diagrams generated by the subdiagrams
of Fig. 9 and associated with the underlying diagram in Fig. 8,
where the black square denotes the subdivergence insertion,
circled times denotes the G2 composite operator Feynman rule,
circled plus denotes the q̄q composite operator Feynman rule, and
the double line represents the external momentum q.

TABLE XII. Gauge-independent divergent parts of the subdia-
grams of Fig. 9 (i.e., subdiagrams originating from Fig. 8).

Topology Gluon vertex Quark vertex

Subdivergence 4mq
α
π
1
ϵ 0

TABLE XIII. Diagrammatic renormalization contributions to
Πgq in (27) for the bare Feynman diagram of Fig. 8 and
counterterm diagrams of Fig. 10. The bare entries are repeated
from Table XI. The renormalized entries are obtained by
subtracting the counterterms from the bare result. All contribu-
tions are gauge-independent.

Diagram Bare
Gluon vertex
counterterm

Quark vertex
counterterm Renormalized

A 3
ϵ −

35
2

3
ϵ − 6 0 − 23

2
B 3 3

2
0 3

2

DE OLIVEIRA, HARNETT, PALAMETA, and STEELE PHYS. REV. D 106, 114023 (2022)

114023-12



NLO QCD sum-rule analyses, it is necessary to renorm-
alize correlation functions of QCD composite operators of
high mass dimension (e.g., 15=2 for pentaquarks).
The conventional renormalization of composite opera-

tors becomes increasingly complicated as mass dimension
increases, possibly requiring a large basis of operators
mixed under renormalization. In conventional renormali-
zation, the calculation of a QCD correlation function is a
two-step process of first renormalizing the composite
operator, and second, calculating renormalization-induced
diagrams arising from the operator mixing under renorm-
alization. Thus, there are strong motivations to develop
more efficient composite operator renormalization method-
ologies for QCD sum-rule applications.
Diagrammatic renormalization methods provide a com-

pelling alternative to conventional renormalization by
obviating the need to disentangle operator mixing. QCD
sum-rule examples for vector and scalar mesons (Secs. III
A–III C), diquarks (Sec. III D), and scalar quark/glueball
mixing (Sec. III E) have been presented in both conven-
tional and diagrammatic approaches to illustrate the validity
and advantages of diagrammatic methods in QCD sum-
rules, and to highlight subtleties in the diagrammatic
method. Key steps of the diagrammatic renormalization
methodology in QCD sum-rules are summarized in the
Appendix along with results for extracting divergent parts
of subdiagrams. It is hoped that the efficiency and internal
self-consistency checks of diagrammatic methods will
provide the necessary tools for QCD sum-rule practitioners
to tackle the very challenging prospect of NLO QCD sum-
rule analyses for exotic hadrons.
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APPENDIX: METHODOLOGICAL SUMMARY
AND KEY RESULTS

In this Appendix, a methodological summary is provided
to guide the application of diagrammatic renormalization
methods to QCD sum-rules for two-point correlation
functions, with a particular view to applications to NLO
contributions in multiquark systems such as tetraquarks
and pentaquarks. Key results for the divergent parts of
one-loop integrals are also provided to support the outlined
methodology.
The diagrammatic renormalization methodology begins

by constructing all (NLO) loop diagrams for the desired
two-point QCD sum-rule correlation function. Each indi-
vidual diagram is then renormalized using the following
steps. Each step in the process includes an action, possible
consistency check(s), and items to note.

(1) Calculate bare diagram
Action: Calculate the bare diagram (in dimen-

sional regularization), discarding any local diver-
gences (corresponding to dispersion relation
subtractions), retaining all finite parts, and paying
particular attention to the nonlocal divergences.
Consistency checks: Perform calculations in

arbitrary covariant gauge or two different gauges;
proceed through method even for diagrams without
nonlocal divergences.
Notes: Make initial choice of renormalization

scheme (e.g., MS scheme) and associated renorm-
alization scale.

(2) Construct subdiagrams and counterterm diagrams
Action: For each bare diagram, identify every

subdiagram (i.e., containing one or more loops) and
construct the corresponding counterterm diagram.
Discard subdiagrams and counterterm diagrams
(such as in Fig. 4) that do not carry the external
momentum because they represent local divergences
(corresponding to dispersion relation subtractions).
Consistency checks: Perform calculations in ar-

bitrary covariant gauge or two different gauges;
proceed through method even for subdiagrams
emerging from bare diagrams without nonlocal
divergences.
Notes: Ensure that Dirac and Lorentz structures

internal to the subdiagram are isolated so that only
external line degrees of freedom remain to form
counterterm diagram.

(3) Calculate divergent parts of subdiagrams (subdi-
vergences)
Action: Extract divergent part of the subdiagrams

(see Eqs. (A1)–(A10) for divergent parts of selected
one-loop integrals) and ignore all finite parts.
Consistency checks: Bare diagrams without non-

local divergences should have finite subdiagrams;
such verification should occur in an arbitrary covar-
iant gauge or two different gauges.
Notes: Ensure that Dirac and Lorentz structures

internal to the subdiagram are evaluated and not
deferred to later stages of calculation; result should
only carry external line degrees of freedom.

(4) Calculate counterterm diagrams
Action: Use divergent parts of subdiagrams (sub-

divergences) to calculate counterterm diagrams,
retaining finite parts, discarding any local contribu-
tions (corresponding to dispersion relation subtrac-
tions), and paying particular attention to nonlocal
divergences.
Consistency checks: Perform calculations in ar-

bitrary covariant gauge or two different gauges.
Notes: Align renormalization scale with scheme

chosen for bare diagram (e.g., MS scheme).
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(5) Calculate renormalized diagram
Action: Subtract results for counterterm diagram

(s) from bare diagram to find renormalized diagram.
Consistency checks: Ensure cancellation of non-

local divergences in renormalized diagram; verify
cancellation in an arbitrary covariant gauge or in two
different gauges.
Notes: Make final decision on renormalization

scheme, converting renormalization scale as needed
(e.g., from MS to MS scheme) and interpret coupling
and mass parameters in renormalized result as αðνÞ,
mðνÞ for renormalization scale ν in the chosen scheme.

After all individual diagrams have been renormalized, the
renormalized diagrams are combined to obtain the final
result for the renormalized QCD sum-rule correlation
function, with coupling and mass parameters interpreted

as αðνÞ, mðνÞ for renormalization scale ν in the chosen
scheme. The final result for the correlation function should
be gauge independent, providing an additional consistency
check supplementing those outlined in the above summary.
Anomalous dimensions for the correlation function can be
extracted from the final result.
Divergent parts of one-loop Feynman integrals used in

our examples and that are anticipated to occur for one-loop
subdiagram topologies in future NLO applications to QCD
sum-rules (including multiquark systems) are now outlined
for our dimensional regularization conventionD ¼ 4þ 2ϵ.
For two-point subdiagram topologies containing one
external momentum scale in loop integrals (e.g., diagrams
a and b in Fig. 6), useful results for divergent parts are as
follows:

Z
dDk
ð2πÞD

1

ðk2 −m2
1Þððkþ qÞ2 −m2

2Þ
¼ −

i
16π2ϵ

þOðϵÞ ðA1Þ

Z
dDk
ð2πÞD

kμ

ðk2 −m2
1Þððkþ qÞ2 −m2

2Þ
¼ i

32π2ϵ
qμ þOðϵÞ ðA2Þ

Z
dDk
ð2πÞD

kμkν

ðk2 −m2
1Þððkþ qÞ2 −m2

2Þ
¼ i

48π2ϵ

�
1

4
q2gμν − qμqν

�
þOðϵÞ ðA3Þ

Z
dDk
ð2πÞD

kμkν

k4ððk − qÞ2 −m2
2Þ

¼ −
i

64π2ϵ
gμν þOðϵÞ ðA4Þ

Z
dDk
ð2πÞD

kρkλkω

k4ððk − qÞ2 −m2
2Þ

¼ −
i

192π2ϵ
ðgρωqλ þ gρλqω þ gλωqρÞ þOðϵÞ; ðA5Þ

where the divergent parts are independent of the propagator masses m1, m2 and Eqs. (A4) and (A5) emerge from gauge
parameter dependence and are therefore written for m1 ¼ 0 to emphasize this point. Similarly, for three-point subdiagram
topologies containing two external momentum scales in loop integrals (e.g., Fig. 9), useful results for divergent parts are as
follows:

Z
dDk
ð2πÞD

1

ðk2 −m2
1Þððk − qÞ2 −m2

2Þððk − pÞ2 −m2
3Þ

¼ 0þOðϵÞ ðA6Þ

Z
dDk
ð2πÞD

kμ

ðk2 −m2
1Þððk − qÞ2 −m2

2Þððk − pÞ2 −m2
3Þ

¼ 0þOðϵÞ ðA7Þ

Z
dDk
ð2πÞD

kμkν

ðk2 −m2
1Þððk − qÞ2 −m2

2Þððk − pÞ2 −m2
3Þ

¼ −
i

64π2ϵ
gμν þOðϵÞ ðA8Þ

Z
dDk
ð2πÞD

kρkλkω

ðk2 −m2
1Þððk − qÞ2 −m2

2Þððk − pÞ2 −m2
3Þ

¼ −
i

192π2ϵ
ðgρωðpþ qÞλ þ gρλðpþ qÞω þ gλωðpþ qÞρÞ þOðϵÞ ðA9Þ
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Z
dDk
ð2πÞD

kρkλkμkν

ðk2 −m2
1Þððk − qÞ2 −m2

2Þððk − pÞ2 −m2
3Þ

¼ −
i

768π2ϵ
ðgμνð2pλpρ þ 2qλqρ þ pλqρ þ qλpρÞ þ gμνgλρðp2 þ q2 − p · qÞ þ permutationsÞ þOðϵÞ ðA10Þ

where the permutations in (A10) indicate those necessary to form a completely symmetric tensor in fμ; ν; λ; ρg and zero in
Eqs. (A6) and (A7) indicate that the integral is finite.
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