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Inspired by the center-vortex dominance in the infrared sector of SUðNÞ Yang-Mills theory observed on
the lattice, we propose a vacuum wave functional localized on an ensemble of correlated center vortices
endowed with stiffness and magnetic monopoles that change the orientation of the vortex flux. In the
electric-field representation, this wave functional becomes an effective partition function for N complex
scalar fields. The inclusion of both oriented and nonoriented vortices as well as so-called N-vortex
matchings leads to an effective potential that has only a center symmetry left. In the center-vortex
condensed phase, this symmetry is spontaneously broken. In this case, the Wilson loop average can be
approximated by a solitonic saddle point localized around the minimal surface. The asymptotic string
tension thus obtained displays Casimir scaling.
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I. INTRODUCTION

Understanding confinement of quarks and gluons is
one of the fundamental problems of particle physics.
Due to its nonperturbative character, lattice simulations
defined in a Euclidean spacetime have been essential to
assess this phenomenon in a reliable way. The quest has
been focused on the characterization of relevant configu-
rations. In Ref. [1], center vortices were detected as the
infrared dominant configurations of Yang-Mills theory. In
particular, in Ref. [2] it was shown that the center vortices
found after center projection in the maximal center gauge
represent indeed physical degrees of freedom, in the sense
that their density shows the proper scaling toward the
continuum limit. Furthermore, in the center projected gauge
theory, the deconfinement phase transition emerges as a
depercolation transition from a phase of percolating vor-
tices to a phase of small vortices predominantly aligned
along the time axis [3]. Although the field strength of center
vortices is along the Cartan algebra, they carry topological
Pontryagin charge [4,5]. A nonzero total topological charge
of a center vortex requires the vortex flux to be nonoriented,
with the change of orientation generated by magnetic
monopole loops on the center-vortex surfaces [4].
In 4d SUðNÞ Yang-Mills (YM) theory, the ensemble

of percolating center-vortex worldsurfaces detected in

center-projected Monte Carlo configurations reproduce
an area law with N-ality for the Wilson loop [6]. This
type of vortex ensemble has been modeled in terms of
random closed worldsurfaces represented on the lattice by a
set of plaquettes [7,8]. They are governed by a lattice action
with a term proportional to its area (tension) and another
one proportional to the number of pairs of nonparallel
neighboring plaquettes (stiffness). In this manner, the
confining string tension for fundamental quarks and the
order of the deconfinement phase transition were described
[8]. In Ref. [9] (see also [10]), it was argued that ensembles
of percolating oriented and nonoriented center-vortex
surfaces together with natural correlations could generate,
besides N-ality, the confining flux tube between quarks
[11–14] and the Lüscher term [15]. The line of reasoning
is as follows. In the lattice formulation of a condensate
of loops, which generate closed worldsurfaces in 4d, the
Goldstone modes are Uð1Þ gauge link variables governed
by the Wilson action [16]. Now, besides loops, center
vortices may form closed arrays where N lines are matched
at a given point. In the 4d lattice, this corresponds to
configurations where the plaquettes form open worldsur-
faces glued at their borders to form closed arrays. This is
done with the condition that plaquettes at the borders are
attached in groups of N to a common link. By promoting
the gauge link variables from Uð1Þ to SUðNÞ, this match-
ing rule was taken into account. The inclusion of arrays
where center-vortex worldsurfaces are attached to monop-
ole worldlines, with their own natural matching rules, was
done by including an ensemble of adjoint lattice holono-
mies. Finally, the naive continuum limit led to effective
SUðNÞ gauge fields and minimally coupled interacting
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adjoint scalar fields. This is the correct field content to
drive a spontaneous symmetry breaking (SSB) phase that
supports a topologically stable flux tube between quarks,
with N-ality, corrected by the collective transverse fluctua-
tions. Moreover, the Abelian-like profiles observed in YM
lattice simulations [11–14] and the asymptotic Casimir
scaling of the string tension, which is among the possible
behaviors [17,18], can also be accommodated in these
models [19–21].
Establishing the relevance of N-matching and correlations

with lower dimensional defects is of primary interest to
complete the picture of confinement provided by random
worldsurfaces. One possible line would be a careful explora-
tion of the path discussed above. For example, adding stiffness
is expected to be essential for a well-defined continuum limit
of the latticemodel in Ref. [16] and its possible extensions [9].
Otherwise, the surfaces would collapse, as occurs with
triangulated random surfaces when only the Polyakov (or
Nambu-Goto) action is considered [22,23].
The aim of this work is to assume center-vortex domi-

nance in the Yang-Mills vacuum and to study the effect of
various vortex features on the confinement properties
measured by the Wilson loop. For this aim, we shall use
the Hamiltonian approach (based on the canonical quantiza-
tion in the Weyl gauge A0 ¼ 0) where, at a given time, a
quantum state is represented by a wave functional ΨðAÞ for
the spatial components AiðxÞ, i ¼ 1; 2; 3, defined on the
physical space x ∈ R3. Besides being more transparent,
the Hamiltonian approach has the technical advantage that
we have to deal only with the simpler one-dimensional
loops instead of the two-dimensional vortex surfaces of the
Euclidean functional integral approach. Generic center-
vortex surfaces in four-dimensional space-time emerge in
three-dimensional space as loops (which, as time passes, trace
out the two-dimensional vortex worldsurfaces). We shall
assume a vacuum wave functional which is concentrated on
an ensemble of correlated elementary center vortices
endowed with stiffness, the center-vortex N-matching rule,
and attached monopoles. The inclusion of stiffness is
absolutely necessary. As is well known from the study of
random polymers, the end-to-end probability is ill defined
when the monomer size a goes to zero. This can be
circumvented by invoking an effective monomer size aeff ,
which incorporates stiffness as the alignment of microscopic
monomers on a finite physical scale [24]. Interestingly,
there is also the option of explicitly including stiffness
and implementing the continuum limit in the presence of
external fields [25,26]. These studies were essential for
applications to interacting ensembles formed by center-vortex
worldlines and monopole worldlines in 3d and 4d Euclidean
spacetime, respectively [27–29,9]. They will also prove
useful in the Hamiltonian description of the center-vortex
ensemble in 3þ 1 dimensions, where probability amplitudes
for the vortex loops will be characterized by properties, like
tension and stiffness, inherited from the four-dimensional

worldsurfaces. Our starting point will be a gas of elementary
center-vortex loops. Then, on top of this, we will include the
effect of center-vortex matching and attached monopoles.
The organization of the paper is as follows: In Sec. II we

discuss the representation of center vortices in terms of
Abelian variables. In Sec. III, we present a vacuum wave
functional peaked at these configurations, including loops
as well as arrays formed by correlated center vortices.
Section IV is devoted to computing the Wilson loop in this
state. Finally, in Sec. V we present our conclusions.

II. ANATOMY OF CENTER VORTICES

In 4d Euclidean spacetime, center vortices are field
configurations representing closed surfaces of electric or
magnetic flux whose Wilson loop W½A�ðCÞ is given by a
nontrivial center element provided the loop C is non-
trivially linked to the center-vortex surface. In 3d, center-
vortex configurations AðCÞ have flux localized on closed
loops C. They satisfy

W½AðC1Þ�ðC2Þ ¼ ZLðC1;C2Þ; ð1Þ

where LðC1; C2Þ is the Gaussian linking number between
the center-vortex loop C1 and the external quark loop C2.
The center element Z depends on the quark representation
and on the ZðNÞ vortex charge. General antisymmetric
quark representations (also known as fundamental repre-
sentations), which are labeled by the N-ality k, will be
discussed in Appendix B. In the body of this work, we shall
consider quarks in the defining representation of SUðNÞ
where the Wilson loop is

W½A�ðCÞ ¼ 1

N
Tr

�
P exp

�
i
I
C
dx · A

��
; ð2Þ

with the components of the vector field A being N × N
matrices in suðNÞ. Now, even in this representation, the
center element Z in Eq. (1) could still assume N − 1

different values Zl ¼ ei
2πl
N , l ¼ 1; 2;…; N − 1, associated

with the possible center-vortex charges. The ensembles we
shall consider will always involve elementary center
vortices, which are characterized by Z ¼ e�i2πN , whose
powers generate the whole ZðNÞ group. In addition, as
changing C1 → −C1 changes the sign of the linking
number, we can consider, say, Z ¼ e−i

2π
N . In this case,

ZI ¼ eiC ; C ¼ 2π2Nω; ω ¼ ωqTq; ð3Þ

where Tq, q ¼ 1;…; N − 1 are the Cartan generators, while
the tuple ω⃗ ¼ ðω1;…;ωN−1Þ is a weight of the defining
representation. We shall use the term “co-weight” for the
algebra-valued quantity C . In fact, in the defining repre-
sentation of SUðNÞ there are N different weights, and thus
N different co-weights C ½j�; j ¼ 1; 2;…; N, that give rise to
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one and the same center element Z ¼ e−i
2π
N . They satisfy the

relation

XN
j¼1

C ½j� ¼ 0: ð4Þ

Throughout the paper we adopt the normalization
ðTA; TBÞ ¼ δAB, where the internal product between two
Lie algebra elements X, Y is given by the Killing form,
ðX; YÞ ¼ TrðAdðXÞAdðYÞÞ, where Adð·Þ denotes the
adjoint representation of suðNÞ. For the generators in the
defining representation this implies TrðTATBÞ ¼ δAB=ð2NÞ.

A. Abelian projection

On the lattice, center vortices were studied in the direct
maximal center gauge, which brings the link variables Uμ ∈
SUðNÞ as close as possible to center elements Zμ ∈ ZðNÞ,
which were used to define a center-projected lattice [30].
This way, center vortices can be detected as those objects
that pierce the P-plaquettes. These degrees of freedom were
also studied in the indirect maximal center gauge, where
the maximal Abelian gauge is initially used to bring the
link variables as close as possible to Cartan (diagonal)
variables Cμ. Next, center vortices can be detected by using
the remaining Uð1ÞN−1 gauge symmetry to obtain a center-
projected lattice out of the Abelian-projected variables Cμ

[1]. In the next section, we shall construct a wave functional
ΨðAÞ peaked on an ensemble of Abelian projected center
vortices, which is aimed at describing the infrared properties
of the vacuum state in SUðNÞ Yang-Mills theory in the
Schrödinger representation. In continuum (3þ 1)d space-
time,ΨðAÞ depends on the gauge field variable AðxÞ defined
on the real space (x ∈ R3).
In order to represent the different center-vortex configu-

rations in this Abelian context, it is convenient to start with
an oriented vortex line γ, associated with a co-weight C ,
which can be considered as part of a closed center-vortex
loop. Such a vortex line gives rise to a gauge potential

aC ðx; γÞ ¼ −C
Z
γ
dx̄ ×∇xDðx − x̄Þ; ð5Þ

whereDðxÞ is the Green’s function of the Laplacian in three
dimensions, i.e. −ΔDðxÞ ¼ δð3ÞðxÞ. This gauge field may
also be written in terms of a source jðx; γÞ localized on the
path γ, as follows:

aC ðx; γÞ ¼ C
∇ × jðx; γÞ

−Δ
; jðx; γÞ ¼

Z
γ
dx̄δðx − x̄Þ:

ð6Þ

From this representation follows for the magnetic field

∇ × aC ðx; γÞ ¼ C ðjðx; γÞ þ∇ð−ΔÞ−1∇ · jðx; γÞÞ: ð7Þ

For a closed oriented path γ; ∂γ ¼ 0we have∇ · jðx; γÞ ¼ 0
so that

∇ × aC ðx; γÞ ¼ C jðx; γÞ; ð8Þ

while for an open oriented path γ starting (ending) at xi (xf )
one finds

∇ × aC ðx; γÞ ¼ C jðx; γÞ − C
x − xi

4πjx − xij3
þ C

x − xf
4πjx − xf j3

:

ð9Þ

Of course, in the latter case, aC ðx; γÞ does not represent a
true center vortex, as there is no concept of linking between
an open line and a quark loop C. Accordingly, the last two
terms in Eq. (9) give the contributions from the endpoints,
which are the magnetic fields of a magnetic monopole and
antimonopole, respectively, with magnetic “charges” �C .
By conservation of magnetic flux, an open magnetic flux
line has to carry a magnetic monopole and antimonopole,
respectively, at its endpoints. Then, using Stokes’s theorem,
the contribution to the exponent of W½A�ðCÞ contains the
flux generated by the monopoles through a surface SðCÞ
with boundary C plus the intersection number between γ
and SðCÞ. On the other hand, when γ is closed, aC ðx; γÞ
does correspond to a center vortex. That is, the Wilson loop
is given by Eq. (1), as it only depends on the intersection
number, which can be equated to the linking number
Lðγ; CÞ in this case.
A closed γ can also be obtained by gluing together two

open oriented lines γ1, γ2 associated with the same co-
weight C , such that the monopole endpoint of γ1 coincides
with the antimonopole endpoint of γ2 and vice versa. In this
manner, the monopole and antimonopole contributions to
the total magnetic field cancel and we are back to Eq. (8).
Now, since each co-weight of the defining representation
yields by Eq. (3) the same center element we can also form
center vortices by gluing together open vortex lines carry-
ing different co-weights,

aðVÞ ¼
X
n

aC n
ðγnÞ: ð10Þ

Of particular interest will be vortex configurations V
formed by identifying the monopole or antimonopole
endpoints of N open vortex lines γ1; γ2;…, each belonging
to a different co-weight C n ∈ fC ½k�g. Due to the property
(4) of the co-weights the contributions of all N magnetic
(anti)monopoles at such matching points (referred to in the
following as N-matchings) cancel and we find for the
associated magnetic field

∇ × aðVÞ ¼
X
n

C njðγnÞ: ð11Þ
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In general, since each open vortex line has two endpoints
and N open lines meet at each N-matching point a vortex
field configuration consisting only of N-point matchings
(i.e. no oriented vortex loops) has to satisfy the sum rule:
2I ¼ NV where I is the number of open vortex lines and V
is the number of vertices. Here again the Wilson loop only
depends on an intersection number that can be equated
to a linking number between the closed array and C. For
example, for a pair of N-matching-points (see Fig. 1), the
vortex field configuration is given by

aðVÞ ¼
XN
n¼1

aC n
ðγnÞ; ð12Þ

where γ1;…; γN are open lines all starting and ending,
respectively, at the same point (but each being associated
with a different co-weight). In this case, Eq. (1) is obtained
with C1 being the composition of N − 1 loops,

C1 ¼ ðγ1 − γNÞ ∪ … ∪ ðγN−1 − γNÞ: ð13Þ

There is still another relevant type of matching rule that we
will consider. The indirect maximal center gauge allows
one to analyze not only the center projected link-variables
Zμ but also the Abelian-projected ones Cμ. While Zμ shows
the presence of percolating center vortices localized on
closed surfaces (respectively, loops) in 4d (respectively,
3d), the analysis of Cμ makes it possible to keep track of the
orientation of the flux in the Cartan subalgebra. In 4d, for
SUð2Þ, besides surfaces characterized by a single orienta-
tion, it was noticed that the Lie Algebra orientation can
change at monopole worldlines [31]. This was done by
applying the De-Grand and Toussaint method, introduced
in Ref. [32] to analyze the link-variable eiθμ in the compact
Uð1Þ gauge theory. In this case, the flux of θμ on a plaquette
was written as fμν ¼ f̄μν þ 2πnμν, where f̄μν ∈ ½−π;þπ�
and nμν ∈ Z. In 4d, at a fixed time slice, as the total flux

through the surface of a cube is zero, the total flux of f̄μν is
nontrivial if and only if the total flux of the Dirac field
2πnμν is nontrivial, which occurs when there is a monopole
inside the cube. The plaquettes with nμν ≠ 0 can be
changed by a gauge transformation, but the monopole
locations cannot. These locations are the only physical
degrees of freedom associated with nμν. In the case of
SUð2Þ, the fluxes live in the Cartan subalgebra generated
by σ3. In general, on a cube around a monopole, f̄μν could
be spread. However, the simulations showed that it is
collimated. There is a flux πσ3 entering one of its plaquettes
and a flux −πσ3 leaving another. The total flux is conserved
due to a flux 2πσ3 carried by a Dirac string leaving a third
plaquette. The latter contributes trivially to the Wilson loop
and action: ei2πσ3 ¼ I. Indeed, it was established that about
61% of the vortex lines have no monopoles on them, 31%
contain a monopole-antimonopole pair, and 8% of closed
vortex lines have an even number of pairs, with monopoles
alternating with antimonopoles [31]. For general N, the
nonoriented case would correspond to situations where a
(collimated) flux C 1 enters a plaquette of a cube around a
monopole and a flux C 2 leaves through a different
plaquette.1 The flux would be conserved due to the
presence of a nontrivial flux C 1 − C 2 leaving a third
(trivial) plaquette: eiðC 1−C 2Þ ¼ ZZ̄I ¼ I [cf. Eq. (3)].
Therefore, it is clear that, in the continuum, if nonoriented
collimated fluxes were described in terms of Cartan vector
gauge fields, the introduction of Dirac strings would be
required. In the present work, the use of Dirac strings will be
avoided by extending the field content to include a Cartan
scalar monopole field. In this regard, let us initially consider
arrays of lines where the monopole endpoint of one of them
coincides with the antimonopole endpoint of the other. For
example, we can take a gauge field aðVÞ of the form given
in Eq. (10) constructed in terms of M oriented lines γn,
n ¼ 1;…M, carrying weightsC n, which form a chain. They
are glued such that the final endpoint (xfn) of γn coincides
with the initial endpoint of γnþ1 (n < M) and the final
endpoint xfM of γM coincides with the initial endpoint of γ1.
Thus, following this sequence of lines, a closed path is
obtained. In addition, from one line to the next, the flux
orientation given by one of the possible co-weights C ½j�
changes to a different value. In this case, the associated
magnetic flux is not collimated; instead, it is given by

∇ × aðVÞ ¼
XM
n¼1

C njðγnÞ þ
XM
n¼1

ðC n − C nþ1Þ
x − xfn

4πjx − xfnj3
;

ð14Þ

FIG. 1. Here, we depict the flux for an array with a pair of
N-matching points. The arrows indicate the orientation of the
paths γ1;…; γN , which are associated to the co-weights
C 1;…;C N , respectively (C 1 þ C 2 þ � � � þ C N ¼ 0).

1Note that for N ¼ 2 the co-weights are C ½1� ¼ þπσ3,
C ½2� ¼ −πσ3. For N ¼ 3, in terms of the diagonal Gell-Mann
matrices, we have C ½1� ¼πðλ3þλ8=

ffiffiffi
3

p Þ, C ½2� ¼πð−λ3þλ8=
ffiffiffi
3

p Þ,
C ½3� ¼ −2πλ8=

ffiffiffi
3

p
.
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whereCMþ1 ¼ C 1 [forM ¼ 2, see Fig. 2(a)]. In addition, as
the different co-weights give rise to the same center element,
the contribution to the Wilson loop originated from the
first term in Eq. (14) can be equated to the linking number
between the closed path γ1 ∪ … ∪ γM and C, which is
the fingerprint of center vortices. The second term leads to
additional solid-angle contributions subtended from the
monopole locations. This is not in line with the lattice
simulations, as the contribution of nonoriented lattice con-
figurations to the Wilson loop is given by (the lattice version
of) Eq. (1), i.e. by the linking number between the chains
and the quark loop. To get Abelian nonoriented collimated
configurations, we still have to introduce in aðVÞ an addi-
tional term

X
n

aE n
ðδnÞ; aE n

ðδnÞ ¼ E n

Z
δn

dx̄ ×∇xDðx − x̄Þ;

E n ¼ C n − C nþ1; ð15Þ

for Dirac lines δn running from xfn to ∞. The effect is to
replace Eq. (14) by the total flux

XM
n¼1

C njðγnÞ þ
XM
n¼1

E njðδnÞ: ð16Þ

Again, like in the lattice, the Dirac lines do not contribute to
the Wilson loop, which only receives the center-vortex
contribution originated from the first term. Of course, the
treatment that must be given to center-vortex and Dirac
lines in the ensemble is completely different. For example,
unlike the former, the latter do not have physical properties
such as stiffness and tension. In order to get rid of the
unobservable Dirac lines, leaving only the physical effect of
their endpoints, we shall extend the field content. More
precisely, in Sec. III B we shall include a Cartan scalar
monopole potential, defining the magnetic flux such that
only the physical collimated part

P
n¼1 C njðγnÞ survives

[see Figs. 2(b) and 2(c)]. We would also like to stress that
Dirac strings are naturally avoided when the collimated
nonoriented gauge configurations AðCÞ are written as non-
Abelian objects which are locally Abelian. Some comments
about this point are given in Sec. III C.

III. CENTER-VORTEX PEAKED WAVE
FUNCTIONAL

In this section, as a preliminary step to account for the
center-vortex dominance observed in the infrared regime of
lattice simulations, we shall consider a wave functional
concentrated at the Cartan vector potentials of center-vortex
configurations aðfγgÞ,

ΨðAÞ ¼
X
fγg

ψfγgδðA − aðfγgÞÞ; ð17Þ

aðfγgÞ ¼
X
n

aC n
ðγnÞ; ð18Þ

where aC ðγÞ is given by Eq. (5). The amplitudes ψfγg
give the weight of a particular vortex network fγg in the
Yang-Mills vacuum wave functional. The sum is over
the different networks fγg of lines γn, which include
loops as well as open lines forming the closed arrays V
discussed in the previous section. Furthermore, C n ∈
fC ½1�;C ½2�;…;C ½N�g is the co-weight associated with the
vortex line γn. For a general V with I lines, N-matching
points and M magnetic monopoles, the sum rule 2I ¼
NV þ 2M must be applied.2 Switching to the electric field
representation

FIG. 2. (a) Flux ∇ × aðVÞ [cf. Eq. (14)] for M ¼ 2. The arrows on the paths indicate their orientation. There is a noncollimated
component with flux C 1 − C 2 (C 2 − C 1) leaving xf1 (x

f
2). (b) The flux is collimated by including Dirac strings δ1, δ2 (not displayed)

leaving xf1, x
f
2, and carrying the same fluxes as before. Their unobservability can be implemented by means of appropriate scalar

potentials when defining the total flux. Another possible nonoriented (in the Lie algebra) collimated flux, is shown in (c).

2At this level, which only involves vector potentials, it is not
yet possible to associate the M ≠ 0 sector with collimated
(nonoriented) center-vortex fluxes, which will be done in
Sec. III B.
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Ψ̃ðEÞ ¼
Z

½DA�ei
R

d3xðE;AÞΨðAÞ; ð19Þ

the quantum state (17) becomes

Ψ̃ðEÞ ¼
X
fγg

ψfγge
i
P

n

R
d3xðE;aCn ðγnÞÞ: ð20Þ

Using the explicit form of the vortex gauge potential aC ðγÞ
[cf. Eq. (5)], we obtainZ

d3xðEðxÞ; aC ðx; γÞÞ ¼
Z
γ
dx · ΛT

C ðxÞ;

ΛT
C ðxÞ ¼

Z
d3x̄Dðx − x̄Þ∇x̄ × ðC ; EÞ

ð21Þ

and the wave functional (20) becomes

Ψ̃ðEÞ ¼
X
fγg

Ψfγg
Y
n

e
i
R
γn

dx·ΛT
Cn ðxÞ: ð22Þ

For an ensemble fγg of uncorrelated lines γn the weight
function ψfγg is obviously given by

ψfγg ¼
Y
n

ψγn ; ð23Þ

where ψγn is the statistical weight of the single vortex line
γn. Such an ensemble is realized when all γn are closed by
themselves, which corresponds to a magnetic field

∇ × aðfγgÞ ¼
X
n

C njγn : ð24Þ

In this case, Ψ̃ðEÞ in Eq. (22) is an expansion in terms of
Wilson loops computed with the dual transverse gauge fields
ΛT
C . As is well known, the set of all Wilson loops form an

(overcomplete) basis for the gauge invariant wave func-
tionals. For didactic reasons, let us first confine ourselves
to such ensembles of oriented closed center-vortex loops fγg
(i.e. no magnetic monopoles, no N-matchings) and in
addition assume that all involved loops γn are associated
with the same co-weight C . The corresponding wave
functional, which we denote by Ψ̃C ðEÞ, follows then from
Eqs. (22) and (23) to be given by

Ψ̃C ðEÞ ¼
X
fγg

Y
n

h
ψγne

i
R
γn

dx·ΛT
C

i
≕
X
fγg

Y
n

Ψ̃γnðEÞ: ð25Þ

The studies of Refs. [7,8] show that the probability
amplitude ψγ for the occurrence of a given center vortex
can be modeled by the tension and stiffness. Parametrizing
a line γ by a fictitious time s, which we choose as the

arc length of the trajectory xðsÞ traced out by γ in R3,
the weight for an individual center vortex line γ can be
chosen as

ψγ ¼ exp

�
−
Z
γ
ds

�
1

2κ
_u · _uþ μ

��
; ð26Þ

where a dot means the derivative with respect to s and
u ¼ _x=

ffiffiffiffiffi
_x2

p
is the unit tangent vector of xðsÞ. The param-

eters μ and 1=κ control the effect of tension and stiffness.
We are particularly interested in the confining phase

where center vortices percolate. As we will see below,
percolating center vortices require a negative μ. However,
for μ < 0 the weight in Eq. (26) favors infinitely long
vortex lines, which would result in an unstable phase. As is
known from lattice studies [2], center vortices show a
repulsive interaction with a proper scaling behavior towards
the continuum limit. In order to account for this interaction,
we shall modify the amplitude ψfγg in Eq. (23) according to

ψfγg ¼
Y
n

ψγn exp

�
−
λ0
2

Z
d3xρ2ðxÞ

�
; ð27Þ

where

ρðxÞ ¼
X
n

Z
γn

dsnδðx − xðsnÞÞ ð28Þ

is the vortex-line density. This implements the so-called
excluded volume effects. Equivalently, using

e−
λ0
2

R
d3xρ2 ¼

Z
½Dσ�e− 1

2λ0

R
d3xσ2ei

R
d3xσðxÞρðxÞ; ð29Þ

we can perform the shift μ → μ − iσðxÞ in Eq. (26), replace
ψγ by

ψγ ¼ exp

�
−
Z
γ
ds

�
1

2κ
_u · _uþ μ − iσðxÞ

��
; ð30Þ

and at the end of the calculation integrate over the auxiliary
field σ with the Gaussian weight defined in Eq. (29). In the
following, we will not explicitly write the functional
integral over σ nor the Gaussian weight. That is, the
integration measure

R
Dσ exp½− R σ2=ð2λ0Þ� will be under-

stood until it is explicitly carried out. In the next step, to
handle the wave functional defined by Eqs. (25) and (30),
wewill exploit that the sum of closed loops inD ¼ 3 can be
represented by a scalar effective field theory.

A. Representation of the center-vortex ensemble by a
scalar field theory

Consider first the contribution Ψ̃γðEÞ (25) of an indi-
vidual vortex line γ to the wave functional Ψ̃C ðEÞ. In the
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total set of vortex clusters fγg, a vortex line γ (associated
with a fixed co-weight C ) occurs with arbitrary length
L and shape. Consider first the set of vortex lines with a
fixed length L, fixed endpoints, xi and xf and fixed initial
and final tangent vectors, ui and uf , but arbitrary shape.
Exploiting methods from polymer physics [26] we treat
these vortex lines as “wormlike chains” and represent the
sum over them by a functional integral. Collecting position
x and unit tangent vector u ¼ _x=

ffiffiffiffiffi
x2

p
in a single letter

v ¼ ðx; uÞ, the contribution of this set lines, γðvf ; vi; LÞ, is
given by

Ψ̃½γðvf ; vi; LÞ�ðEÞ ¼
Z

½DvðsÞ�Lvf ;viψγΨ̃γðEÞ; ð31Þ

where ½DvðsÞ�Lvf ;vi integrates over open lines γ with length L
and with initial and final coordinates vi and vf , respectively.
Inserting here the explicit form of the amplitude Ψ̃γðEÞ
(25), (30) we find

Ψ̃½γðvf ;vi;LÞ�ðEÞ¼
Z

½DvðsÞ�Lvf ;vi exp
�
−
Z

L

0

dsLðxðsÞÞ
�
;

ð32Þ

with

LðxðsÞÞ ¼ 1

2κ
_uðsÞ · _uðsÞ þ μ− iσðxÞ− i _uðsÞ ·ΛTðxðsÞ; EÞ:

ð33Þ

Equation (32) is the (Euclidean) functional integral repre-
sentation of the wave function of a particle with classical
Lagrangian (33). Accordingly it satisfies the Euclidean
“Schrödinger equation” (with the length L playing the role
of the Euclidean time), which is the heat equation

− ∂LΨ̃½γðv;v0;LÞ�ðEÞ

¼
�
−
κ

2
Δu þ μ− iσðxÞþ u · ð∇− iΛT

C Þ
�
Ψ̃½γðv;v0;LÞ�ðEÞ;

ð34Þ

where Δu is the Laplacian on the unit sphere S2. As in the
analogous case of the point particle this amplitude satisfies
the initial condition

Ψ̃½γðv; v0; L ¼ 0Þ�ðEÞ ¼ δð3Þðx − x0Þδð2Þðu − u0Þ:

After expanding the u dependence of (34) using spherical
harmonics, an infinite set of coupled equations for the
different angular momenta (l) can be obtained. In the limit
of small stiffness 1=κ, the dominant term Ψ̃0½γðx; x0; LÞ�ðEÞ
is u independent (l ¼ 0) and satisfies the ordinary diffusion
equation [9,25,27–29]

−∂LΨ̃0½γðx; x0; LÞ�ðEÞ ¼ OC Ψ̃0½γðx; x0; LÞ�ðEÞ; ð35Þ

OC ¼ −
1

3κ
D2ðΛT

C Þ þ μ − iσðxÞ; DðΛT
C Þ ¼ ∇ − iΛT

C :

ð36Þ

Then, the amplitude (32) becomes the usual quantum
transition amplitude of a particle with Hamiltonian OC

Ψ̃0½γðx; x0; LÞ�ðEÞ ≈ hxje−LOC jx0i: ð37Þ

Consider now the set of all closed oriented center vortex
loops. From a single vortex line γðvf ; vi; LÞ we find an
oriented closed loop of length L by identifying the initial
and final coordinates vf ¼ vi and integrate over them.
Furthermore, we have to sum over vortex loops of arbitrary
length L. This leads to the integral

R∞
0 dL=L… where the

factor 1=L has to be included to avoid overcounting due to
the choice of reference point on the loop. Finally, we have
to sum over an arbitrary number n of loops, which results in
the sum

P∞
n¼0 1=n!…where the factor 1=n! is needed since

a permutation of loops does not result in a new vortex
configuration. Taking all this into account, we find for the
wave functional generated by the set of all oriented center-
vortex loops associated with the co-weight C

Ψ̃C ðEÞ ≈ exp

�Z
∞

0

dL
L

Z
dxΨ̃0½γðx; x; LÞ�ðEÞ

�
: ð38Þ

Inserting here the expression (37) and using the proper-time
representation for the logarithm

Z
∞

0

dL
L

exp ð−LOÞ ¼ − logOþ const ð39Þ

as well as

Z
dvhvj log Ojvi ¼ Trðlog OÞ ¼ log det O ð40Þ

and, furthermore, representing the functional determinant
by a complex scalar field ϕ, we finally obtain for the wave
functional (38)

Ψ̃C ðEÞ ¼
Z

Dðϕ†;ϕÞ exp
�
−
Z

d3xϕ†OCϕ

�
: ð41Þ

So far, we have included the set of oriented vortex loops,
all being associated with the same co-weight C . Taking
now into account that there are N different co-weights C ½k�
and each of the associated set of center-vortex loops
contributes a factor (41) to the wave functional we obtain

INFRARED YANG-MILLS WAVE FUNCTIONAL DUE TO … PHYS. REV. D 106, 114021 (2022)

114021-7



Ψ̃0ðEÞ ≔
YN
j¼1

Ψ̃C ½j� ðEÞ

¼
Z YN

j¼1

Dðϕ†
j ;ϕjÞ exp

�
−
Z

d3x
XN
j¼1

ϕ̄jOC ½j�ϕj

�
:

ð42Þ

Let us now also includeN-matchings as well as magnetic
monopoles. In this case, the amplitude ψfγg in Eq. (23) has,
of course, to be modified. We denote the probability
(amplitude) that two vortex lines of the cluster fγg match
at one of their endpoints to form a magnetic monopole by
ϑ0 and the probability (amplitude) that N vortex line form
an N-matching point by ξ0. If a vortex cluster fγg contains
V N-matching points and M magnetic monopoles the
weight function is then given by

ψfγg ¼ ξV0 ϑ
M
0

Y
n

ψγn : ð43Þ

Note that, although oriented and nonoriented center vor-
tices give the same result for the Wilson loop, their
treatment in the ensemble must be different. The sum over
vortex clusters in Eq. (20) includes in fact integrals over
the monopole positions (see Appendix A). Therefore, the
physical parameter ϑ0 is essential to match the dimensions
of contributions with different numbers of monopoles. The
repulsive interaction between center vortices introduced in
Eq. (27) was observed on the lattice for SUð2Þ, where only
one species of center vortices exists [2]. Therefore we shall
assume here that this interaction occurs only between
vortices of the same species. Then the shift introduced
before Eq. (30) becomes co-weight dependent, μ →
μ − iσj, and we have N scalar fields σj, one for each
co-weight C ½j�, which have to be integrated with the
Gaussian weight 1

2λ0

R
d3x

P
j σ

2
j . Extending the analysis

for the oriented vortex loops to this general case (see
Appendix A), one arrives at the following wave functional:

Ψ̃ðEÞ ¼
Z YN

k¼1

Dðϕ̄k;ϕkÞ exp ½−W½ϕ;ΛT��; ð44Þ

W½ϕ;ΛT� ¼
Z

d3x

�
−

1

3κ

XN
k¼1

ϕ̄kD2ðΛT
C ½k�

Þϕk þ VðϕÞ
�
;

VðϕÞ ¼ λ0
2

X
k

�
ϕ̄kϕk þ

μ

λ0

�
2

− ξ0

 YN
k¼1

ϕk þ c:c:

!

− ϑ0
X
k≠l

ϕ̄kϕl: ð45Þ

The upshot of the inclusion of the magnetic monopoles
and N-matchings is the appearance of interactions between

the scalar fields ϕk associated to different co-weights C ½k�.
This is of course expected since magnetic monopoles and
N-matchings occur when center vortex lines associated
with different co-weights match at one of their endpoints.
For later use let us discuss the symmetry of the action

Wðϕ;ΛÞ of the effective field theory (45). If only oriented
vortex loops were included (i.e. neglecting N-matching
and magnetic monopoles), which corresponds to ξ0 ¼ 0,
ϑ0 ¼ 0, the theory is obviously invariant with respect to a
separate change of the phase of the individual fields ϕk,

ϕk → eiφkϕk; k ¼ 1;…; N ð46Þ

so it has an Uð1ÞN symmetry. When we include
N-matching, ξ0 ≠ 0 but still exclude magnetic monopoles,
ϑ0 ¼ 0, the phases of the individual fields can no longer be
independently changed but have to satisfy the constraint

eφ1eφ2…eφN ¼ 1: ð47Þ

in order to keep the potential invariant, i.e. N − 1 phases φi
can be chosen independently and the remaining phase is
then determined by Eq. (47). This condition reduces the
symmetry to Uð1ÞN−1. When magnetic monopoles, which
arise from the matching of the endpoints of two vortex lines
γk and γl associated with different co-weights C k ≠ C l, are
included, ϑ0 ≠ 0, but N-matchings are excluded, ξ0 ¼ 0,
invariance of the potential requires the constraints

eiφk ¼ eiφl ð48Þ

for each pair of co-weights. The potential is then only
invariant with respect to a simultaneous change of the
phases of all fields by the same amount

ϕk → exp iφϕk; k ¼ 1;…; N ð49Þ

and as a consequence the symmetry of the classical
potential is reduced to Uð1Þ. Finally, including magnetic
monopoles and N-matching points, ξ0 ≠ 0, ϑ0 ≠ 0, both
constraints (47) and (48) have to be fulfilled. This restricts
the possible phase transformations in Eq. (49) to those
satisfying the condition

exp iNφ ¼ 1 → φ ¼ n2π=N; n ¼ 0; 1; 2;…; N − 1

ð50Þ

and the theory is only invariant with respect to a multipli-
cation of all fields ϕk by the center elements:

ϕk → Znϕk; Zn ¼ exp ðin2π=NÞ; ð51Þ

leaving the symmetry group ZðNÞ. Accordingly, the
vacuum field configurations of scalar fields ϕk will be
characterized by a center element, see Sec. IV.
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B. Collimating the nonoriented center vortex
component

We are eventually interested in calculating the Wilson
loop average. Since the wave functional constructed above
has support only on Cartan gauge potentials aðfγgÞ, we
can use the ordinary Stokes theorem to express the Wilson
loop as

W½a�ðCÞ ¼ 1

N
Tr

�
exp

�
i
Z
SðCÞ

dS · B

��
; ð52Þ

B ¼ ∇ × a, where SðCÞ is an arbitrary area bounded by the
loop C. As discussed in Sec. II, the curl of the Cartan gauge
field associated to chains contains collimated (vortex) and
noncollimated (monopolelike) fluxes [see e.g. Eq. (14)].
Accordingly, we obtain two multiplicative contributions to
the Wilson loop

W½a�ðCÞ ¼ WcollWnoncoll; ð53Þ

where Wcoll yields a center element. That is, there is an
extra monopolelike contribution to the Wilson loop, in
addition to the center element produced by center-vortex
configurations [cf. Eq. (1)]. In order to comply with the
collimated flux property of Abelian projected chain con-
figurations observed in the lattice, we introduce a dual
Cartan scalar potential ζ and consider the replacement

B ¼ ∇ × aðfγgÞ −∇ζ ð54Þ

in Eq. (52), such that the total flux B only contains the
collimated part. This way, the Wilson loop becomes a pure
center element as in the case of the center projected lattice.
This can also be thought of as getting rid of unphysical
Dirac strings [see Eq. (15)], leaving only the physical effect
originated from their endpoints. From Eqs. (7) and (18),
this requires

ζðxÞ ¼ ð−ΔÞ−1∇ · bðx; fγgÞ;
bðx; fγgÞ ¼

X
n

C njðx; γnÞ; ð55Þ

where the sum runs over all vortex lines γn forming the
vortex cluster fγg. Then, for a general fγg, the total flux
becomes

B ¼ bðx; fγgÞ: ð56Þ

Accordingly, the modified Wilson loop now yields
ZLðfγg;CÞ, where Lðfγg; CÞ is the linking number between
the Wilson loop and the vortex cluster fγg. Of course, this
would also be obtained if the Dirac strings in Eq. (15) were
added to the gauge field configuration aðVÞ in Eq. (12).
With the introduction of the dual scalar potential ζ

constrained by Eq. (55), our vortex wave functional becomes

ΨðA; ζÞ ¼
X
fγg

ψfγgδðA − aðfγgÞÞδðζ − ð−ΔÞ−1∇bðfγgÞÞ;

ð57Þ

where aðfγgÞ and bðfγgÞ are given by Eqs. (18) and (56),
respectively. Analogously to the electric field representa-
tion (19), we define a dual representation for the wave
functional (57) by

Ψ̃ðE; ηÞ ¼
Z

½DA�
Z

½Dζ�ei
R

d3xðE;AÞei
R

d3xðζ;ηÞΨðA; ζÞ:

ð58Þ

Inserting here the explicit form of our vortex wave func-
tional (25), we obtain

Ψ̃ðE; ηÞ ¼
X
fγg

ψfγg exp
�
i
X
n

Z
γn

dx · ΛC n
ðE; ηÞ

�
; ð59Þ

which is the same expression as the original electric field
representation (45) except that the transverse field ΛTðEÞ
(21) is replaced by

ΛC ðE; ηÞ ¼ ΛT
C ðEÞ þ ΛL

C ðηÞ; ð60Þ

whose longitudinal part is

ΛL
C ðx; ηÞ ¼

Z
d3x̄Dðx − x̄Þ∇x̄ðC ; ηÞ: ð61Þ

Now, repeating the steps that led to the effective field
theory description (44), (45) of the center-vortex ensemble,
we find for (59)

Ψ̃ðE; ηÞ ¼
YN
j¼1

Z
Dðϕ̄k;ϕkÞ exp ½−W½ϕ;Λ��: ð62Þ

Now, with Eq. (57), the scalar product in the Hilbert space
of the Yang-Mills wave functional also includes a func-
tional integration over the scalar field ζ and the expectation
value of the Wilson loop (52), (54) becomes

hWDðCÞi ¼
1

D

Z
½DA�½Dζ�Tr D

�
exp

�
i
Z
SðCÞ

dS

· ð∇ × A −∇ζÞ
��

jΨðA; ζÞj2: ð63Þ

Here, we considered a general D-dimensional quark
representation Dð·Þ of SUðNÞ. Defining the (vector-
valued) characteristic function of the area SðCÞ bounded
by the Wilson loop C
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Σðx; SðCÞÞ ¼ 1

2

Z
SðCÞ

dσ1dσ2
∂x
∂σ1

×
∂x
∂σ2

δðx − x̄ðσÞÞ; ð64Þ

with x̄ðσÞ being a parametrization of SðCÞ,3 we find

hWDðCÞi ¼
1

D

X
Ω

Z
½DA�½Dζ�

�
exp

�
−i
Z

d3xðAq · ∇

× Σ − ζq∇ · ΣÞΩq

��
jΨðA; ζÞj2: ð65Þ

In the above expression, the trace was calculated in the
basis in which the Cartan generators DðTqÞ are diagonal.

The tuple of eigenvalues Ω⃗ ¼ ðΩ1;…;ΩNÞ for a given
common eigenvector, i.e. DðTqÞjΩi ¼ ΩqjΩi, are the
weights of the representation. In the dual representation
(58), this expectation value becomes the convolution

hWDðCÞi ¼
1

D

X
Ω

Z
½DE�½Dη�Ψ̃�ðE; ηÞΨ̃ðEþ Ω∇

× ΣðSÞ; η − Ω∇ · ΣðSÞÞ; ð66Þ

where Ω ¼ ΩqTq.

C. Non-Abelian representation of collimated vortex
configurations

Before moving to Sec. IV, where we estimate the
expectation value of the Wilson loop, we would like to
discuss how collimated configurations are accommodated
in the Yang-Mills context. In fact, not only center-vortex
loops and arrays with N-matching, but also collimated
fluxes formed by nonoriented components can be repre-
sented in terms of non-Abelian gauge fields. All of them
can be written in the form [9,33]

AdðAcollÞ ¼ iR∇R−1; R ¼ AdðSÞ; S ∈ SUðNÞ;
ð67Þ

where S changes by a center element when going around
the center vortices.4 They are thin center-vortex configu-
rations in the sense that the Wilson loop computed with
Acoll always gives a center element [cf. Eq. (1)], while the
field strength is always localized at the center-vortex
defects, where RðSÞ is multivalued,

AdðFijÞ ¼ iR½∂i; ∂j�R−1: ð68Þ

For example, for Abelian center-vortex loops and lines with
N-matching, S is in the Cartan subgroup, which gives
Acoll ¼

P
n aC n

ðγnÞ. On the other hand, for nonoriented
configurations, S ¼ VW, where V is Cartan and changes by
a center element when going around the vortices, while W
is single-valued and changes the orientation of the flux.
This can be better visualized by writing Acoll in terms of a
local Lie basis

nA ¼ STAS−1; A ¼ 1;…; N2 − 1;

where nq, q ¼ 1;…; N − 1 are local Cartan directions
(½nq; np� ¼ 0). The off-diagonal generators can be labeled
byNðN − 1Þ tuples α⃗ formed byN − 1 components αq. For
each α⃗, there is a pair fTα; T ᾱg that together with α ¼ αqTq

generates an suð2Þ subalgebra of suðNÞ,5

½α; Tα� ¼
i
N
T ᾱ; ½Tα; T ᾱ� ¼ iα: ð69Þ

When the local Cartan directions contain pointlike defects,
the local off-diagonal directions nα, nᾱ contain defects
localized on lines. Take for example [33],

S ¼ exp

�
i
φ

2π
C 2

�
WðθÞ; WðθÞ ¼ exp ðiθ

ffiffiffiffi
N

p
TαÞ;

ð70Þ

where φ and θ are the polar angles, C 2 ¼ 2π2Nω2, and Tα

is labeled by the root α⃗ ¼ ω⃗1 − ω⃗2. In this case

Acoll ¼ S½aC 1
ðγ1Þ þ aC 2

ðγ2Þ�S−1 þ i½Lα;∇Lα�; ð71Þ

Lα ¼ SNαS−1 ¼ cos θNαþ sin θ cosφ
ffiffiffiffi
N

p
T ᾱ

þ sin θ sinφ
ffiffiffiffi
N

p
Tα; ð72Þ

where γ1, γ2 are lines running along the z axis (see Fig. 3).
Because ofWðθÞ, Lα is a topologically nontrivial map from
S2, parametrized by θ;ϕ, into vectors in an suð2Þ sub-
algebra of suðNÞ. Consequently, it is not possible to
perform a regular gauge transformation so as to align
the gauge field along the global Cartan directions Tq.
Nevertheless, we can embedded this configuration in the
lattice and determine the maximal Abelian gauge form for
the associated link variables. To do so, we can consider the
mapping SD

3Note that the characteristic function satisfies
H
C0 dx ·

Σðx; SðCÞÞ ¼ IðSðCÞ; C0Þ ¼ LðC;C0Þ where IðSðCÞ; C0Þ is the
intersection number between the area SðCÞ and the loop C0.

4The use of AdðSÞ is equivalent to subtract a contribution
localized on a surface (ideal center vortex), after computing
iS∂iS−1, as done in Ref. [5].

5For N ¼ 2, the pairs fTα; T ᾱg are in correspondence with the
Pauli matrices in fσ1; σ2g, while for N ¼ 3, they correspond to
the Gell-Mann matrices in fλ1; λ2g, fλ4; λ5g, and fλ6; λ7g.
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SD α S−1D ¼ S α S−1;

SD ¼ S exp

�
−i

φ

2π
C 2

�
exp

�
i
χ

2π
ðC 2 − C 1Þ

�
;

ð73Þ

where χ changes by 2π when going around the path γ1 ∪ δ1
(see Fig. 3) in the positive sense. It leads to the same local
Cartan directions Lα as S in Eq. (70) and satisfies

iSD∇S−1D ¼ −SDaE 1
ðδ1ÞS−1D þ i½Lα;∇Lα�;

E 1 ¼ C 1 − C 2: ð74Þ

Note that the left-hand side of this equation can be written
without relying on the adjoint representation [cf. (67)]
because SD is single valued when going around any loop.
This, together with Eq. (71), yields

Acoll ¼ SDðaC 1
ðγ1Þ þ aC 2

ðγ2Þ þ aE 1
ðδ1ÞÞS−1D þ iSD∇S−1D :

ð75Þ

Although SD has (Dirac string) defects, the calculation of
any Wilson loop for Acoll and aC 1

ðγ1Þ þ aC 2
ðγ2Þ þ aE 1

ðδ1Þ
gives the same result. Then, when embedded in the lattice,
the corresponding link variables become equivalent. This is
because SD leads to a well-defined field on the lattice sites,
as long as the Dirac strings do not pass through these
points. In other words, the lattice maximal Abelian gauge
applied to the link variables for Acoll would agree with the
collimated Abelian fluxes (with the additional trivial
plaquettes) observed in the lattice and modeled throughout
this work (see Sec. II A). In Fig. 3, we show the flux for
the Abelianized field aC 1

ðγ1Þ þ aC 2
ðγ2Þ þ aE 1

ðδ1Þ in the

continuum. This illustrates the situation in Figs. 2(b) and
2(c) around xf1.
It is interesting to note that the thin collimated configu-

rations can be thickened and accommodated in a set of
restricted gauge fields. The latter were introduced for SUð2Þ
in Ref. [34], and generalized to SUðNÞ in Refs. [33,35].
These restricted fields are “locally” Abelian configurations
in the sense that, in regions with no ideal center vortices,
they can be written as the gauge transformation of a Cartan
gauge field. In addition, the corresponding non-Abelian
field strength points along the local Cartan directions nq

and receives the contribution of a topological monopole
flux. In the case of Acoll, this term is responsible for the flux
collimation (see the discussion in Refs. [36,33]). We also
note that all possible smooth non-Abelian vector gauge fields
can be separated into sectors labeled by SUðNÞ mappings
with defects [37,38]. This allowed for the implementation of
a sector-dependent gauge fixing procedure that could cir-
cumvent Singer’s no-go theorem.

IV. THE AVERAGE OF THE WILSON LOOP
OPERATOR

The Wilson loop is an important order parameter for
confinement, which has been intensively studied both on
the lattice and in the continuum. Its expectation value
provides information about the potential between static
sources. At asymptotic distances, the string tension σD is
known to depend only on the N-ality k of the representation
Dð·Þ, defined by the relation

Dðei2πN IÞ ¼ ei
2πk
N I: ð76Þ

Moreover, due to gluon screening, among the strings
of representations with a given N-ality k, only the one
associated to the smallest string tension will be stable. As
for the precise dependence of the string tension with k,
current lattice data cannot distinguish between a Casimir
and a Sine law,

σCasimir
k ¼ σ

kðN − kÞ
N − 1

; σSinek ¼ σ
sinðkπ=NÞ
sinðπ=NÞ ; ð77Þ

where σ is the fundamental string tension. As discussed in
Ref. [17], for both the Sine and Casimir scenarios, the most
stable strings are those of the k-antisymmetric representa-
tion, which will be considered from now on.
To elaborate the expression for the Wilson loop (66)

derived above and also to exploit results obtained in
previous work we rewrite the action of the effective field
theory in a more compact form. The fields ϕk appearing in
the vortex wave functional (62) can be assembled into an
N × N matrix

FIG. 3. The collimated flux associated with the Abelianized
configuration aC 1

ðγ1Þ þ aC 2
ðγ2Þ þ aE 1

ðδ1Þ. Besides the physical
contributions C 1 (C 2) carried by γ1 (γ2), we display the
unobservable Dirac string δ1, which carries flux C 1 − C 2. The
arrows give the orientation of the lines.
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Φ ¼ 1ffiffiffiffiffi
3κ

p

0
BBBBB@

ϕ1 0 0 …

0 ϕ2 0 …

0 0 ϕ3 …

..

. ..
. ..

. . .
.

1
CCCCCA: ð78Þ

In addition, the Fierz identity6

TA
ijT

A
kl ¼

1

2N

�
δilδjk −

1

N
δijδkl

�
; ð79Þ

which holds for the normalization TrðTATBÞ ¼ δAB
2N , implies

X
i;j

ϕ̄iT
ij
AT

ji
Aϕj ¼

1

2N

X
i;j

ϕ̄iϕj

�
1 −

1

N
δij

�
: ð80Þ

Using these relations, the action (62) can be rewritten as

WðΦ;ΛÞ ¼
Z

d3xðTrððDðΛÞΦÞ†DðΛÞΦÞ þ VðΦÞÞ;

D ¼ ∇ − iΛ;

VðΦÞ ¼ λ

2
TrðΦ†Φ − a2INÞ2 − ξðdetΦþ detΦ†Þ

− ϑTrðΦ†TAΦTAÞ; ð81Þ

where we introduced the Lie-algebra valued field

Λ ¼ ΛT þ ΛL;

ΛT ¼ 2π2N
Z

d3x̄Dðx − x̄Þ∇x̄ × E;

ΛL ¼ 2π2N
Z

d3x̄Dðx − x̄Þ∇x̄η: ð82Þ

It is clear that the columns of Φ are proportional to the
weight vectors of the defining representation, whose ith
entry equals one, while the rest are zero. Therefore, the ith
column of DðΛÞΦ is

ðDðΛÞΦÞji ¼ ð3κÞ−1=2DðΛC ½i� Þϕi; ð83Þ

which makes contact with the scalar derivative in Eq. (45).
Moreover, the parameters in the potential (81) are related to
those in Eq. (45) by

λ ¼ 9κ2λ0; a2 ¼ −
μ

3κλ0
−

ϑ0
3κλ0

N − 1

N
;

ξ ¼ ð3κÞN2ξ0; ϑ ¼ 6κNϑ0: ð84Þ

In this compact representation the ZðNÞ symmetry of the
potential is manifest, see also the discussion at the end of
Sec. III A.
To find the Wilson loop from Eq. (66), we have to

calculate the dual wave functional Ψ̃ (without and with
displaced arguments), which is given by the scalar field
theory (81). Let us first consider the case with undisplaced
arguments, Ψ̃ðE; ηÞ. For sufficiently large λ0, i.e. sufficiently
strong vortex interaction, the saddle points are approxi-
mately given by the minima of the potential, which should be
chosen as space independent in order to minimize the action.
In the percolating regime (μ < 0), the scalar field develops a
nonzero vacuum value: the minima of the potential occur at
the field configurations characterized by a center element

Φn ¼ vZnIN; Zn ¼ ei
2πn
N ; n ¼ 0; 1; 2;…; N − 1;

ð85Þ

where IN is the N-dimensional unit matrix. Furthermore, the
vacuum value v of the field Φ is obtained by minimizing the
potential (81) for the ansatz (85) with respect to v, resulting
in the equation

2λNðv2 − a2Þ − 2ξNvN−2 − ϑ
N2 − 1

N
¼ 0: ð86Þ

To lowest order in the corresponding saddle-point approxi-
mation (replacing the integral by its integrand at the saddle
point) the wave functional (62) is then given by

Ψ̃ðE; ηÞ ≈ exp ½−WðvIN ;ΛÞ�;

WðvIN ;ΛÞ ¼ v2
Z

d3xTrðΛ2Þ; ð87Þ

Since Λ is linear in the dual variables E, η, Eq. (87) gives a
Gaussian wave functional peaked at E ¼ 0, η ¼ 0, and for
sufficiently large vacuum values v the fluctuations in the
dual variables E, η become suppressed. In the spirit of the
leading order saddle-point approximation, we can then also
replace the integral over E, η in Eq. (62) by its integrand at
E ¼ 0, η ¼ 0, thus obtaining for the Wilson loop (66)

hWDðCÞi ≈ const
X
Ω

Ψ̃ðΩ∇ × ΣðSÞ;−Ω∇ · ΣðSÞÞ: ð88Þ

Each term of the sum in Eq. (88) is given by a field theory in
the presence of the external vector field 2π2NΩΣðSÞ. The
average of the Wilson loop may then be approximated by a
sum over independent saddle points

hWDðCÞi ≈ const
X
Ω

exp ½−WðΦΩ
0 ; 2π2NΩΣðSÞÞ�; ð89Þ

whereΦΩ
0 is the classical solution associated to the weightΩ.

For simplicity, in the following we will consider weights of
6Note that the summation over A runs here over all generators,

not just over the generators of the Cartan group.
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the defining representation. The general case of an arbitrary
weight and arbitrary k-antisymmetric representation with
N-ality k ¼ 2;…; N − 1 will be treated in Appendix B. To
obtain the classical solutions, we need to understand the
implications of the presence of the external vector field
2π2NΩΣðSÞ, which for the defining representation is simply
CΣðSÞ. Its cancellation induces a solitonlike saddle point.
The transition between a pair of discrete vacua is localized
around the minimal surface with boundary C. For definite-
ness, we shall consider a planar circular loop C of radius
R located in the x − y plane and centered at the origin.
Choosing SðCÞ for example as the complement in the x − y
plane of the disc encircled by C, the vector field CΣðSÞ is
directed along the z axis and is nonvanishing only on the
surface SðCÞ located at z ¼ 0. It is then not difficult to show
[29] that the only effect of this source is to impose the
boundary condition

Φðx; y; z → ∞Þ ¼ veiC IN; Φðx; y; z → −∞Þ ¼ vIN;

x2 þ y2 ≤ R2: ð90Þ

and that for large loops C, ignoring boundary effects (i.e.
neglecting gradients in the x − y directions), the action (81)
of the soliton reduces to

W½Φ;Λ� ≈ σA; σ ¼
Z

dx3ðTrð∂x3Φ†
∂x3ΦÞ þ VðΦ;Φ†ÞÞ;

ð91Þ

where A is the area of the disc enclosed by C. The soliton is
then found by solving the one-dimensional field equation

∂
2
zΦ ¼ λΦðΦ†Φ − a2INÞ − ξðΦ†Þ−1 detΦ† − ϑTAΦTA;

ð92Þ

with the boundary condition (90). For the defining repre-
sentation, we have eiC ¼ e−i2π=N; ∀C . Therefore the
boundary condition is the same for all co-weights. As
discussed in Ref. [29], the field equation can be solved
by the Ansatz (see Appendix B for details)

Φ ¼
�
ηIN þ η0

2π
C

�
eiC θ=2πeiα; ð93Þ

where the boundary condition (90) imposes the following
constraints to the profile functions

ηð−∞Þ ¼ ηð∞Þ ¼ v; η0ð−∞Þ ¼ η0ð∞Þ ¼ 0: ð94Þ

Due to the relation eiC ¼ e−i
2π
N , the transition between the

different vacua at z → −∞ and z → ∞ can be made by a
change of either θ or α. As discussed in Ref. [29], for the
region of parameter space that implements the appropriate
hierarchy of spontaneous symmetry breaking, the profiles

η; η0; α remain essentially constant at their vacuum values
(η ¼ v; η0 ¼ 0;α ¼ 0). The boundary conditions (90) will
then be accomplished by a variation of θ, i.e.

θð−∞Þ ¼ 0; θðþ∞Þ ¼ 2π: ð95Þ

Moreover, the variation of θ will be governed by the Sine-
Gordon equation

∂
2
zθ ¼ ϑ

2
sin θ: ð96Þ

Finally, to evaluate (91) we used Derrick’s theorem, which
implies that the kinetic and potential contributions are equal.
Then we obtain the following approximate expression for the
string tension:

σ ¼ 2v2
N − 1

N

Z
dzð∂zθÞ2: ð97Þ

This string tension is determined by the two quantities v and
ϑ. The first one, the vacuum value v of the module of the
scalar field Φ, is a measure for the density of center vortex
flux lines in the Yang-Mills vacuum. The second one, ϑ,
enters the equation of motion for the soliton θðzÞ and gives
the weight (probability amplitude) of the nonoriented center
vortex configurations (which contain magnetic monopoles)
in the vacuum wave functional, see Eq. (43).
Above we have considered the Wilson loop for gauge

fields in the defining representation, which has an N-ality
k ¼ 1. The general case is worked out in the Appendix B
with the following result: the string tension for a repre-
sentation with N-ality k ≠ 1 is related to that with k ¼ 1 by

σk ¼
kðN − kÞ
N − 1

σ; k ¼ 1; 2;…; N − 1: ð98Þ

Thus, in the asymptotic regime, we find for the Wilson loop
an area law with Casimir scaling,

hWDðCÞi ≈ exp

�
−σ

kðN − kÞ
N − 1

A

�
: ð99Þ

This is one of the behaviors extracted in Ref. [18] from the
lattice data, which cannot distinguish between this behavior
and the asymptotic sine law (77).

V. CONCLUSIONS

In this work, we have proposed a vacuum wave
functional peaked on an ensemble of collimated center
vortices to describe the deep infrared properties of SUðNÞ
Yang-Mills theory within the Hamiltonian approach. The
fluxes of the center-vortex fields entering the wave func-
tional are fixed-time counterparts of the two-dimensional
vortex surfaces found on the four-dimensional lattice. The
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ensemble consists of oriented and nonoriented vortices,
with the possibility of matching N elementary vortex lines
that carry N different (defining) weights of SUðNÞ. As
shown in Ref. [5], and also found on the lattice [39],
nonoriented center vortices are absolutely necessary for a
nonvanishing Pontryagin index. Furthermore, in 4d ensem-
bles of percolating center vortices, the coexistence of
oriented and nonoriented components, N-matching rules
among center-vortex surfaces, and natural matching rules
among monopole lines, is essential to generate a confining
flux tube [9] (see also [10]). Indeed, the center-vortex field
configurations in our vacuum wave functional incorporate
all the features and correlations of center vortices observed
for SUð2Þ in the indirect maximal center gauge, naturally
extended to SUðNÞ. In particular, the change of vortex
orientation (in the Cartan subalgebra) is caused by mag-
netic monopoles. In the Abelian projected scenario, to
describe properly the observed collimation of nonoriented
fluxes, the Cartan gauge fields associated with the center-
vortex lines were supplemented by a Cartan scalar field.
The center vortices were then endowed with stiffness and,
using techniques from Polymer physics, we were able to
express the electric-field representation of our wave func-
tional as an effective theory of N complex scalar fields.
When both oriented and nonoriented vortices as well as
N-vortex matchings are included, the effective potential of
the scalar fields has a ZðNÞ symmetry, which is, however,
broken by its vacuum configurations, given by the N
different center elements of SUðNÞ. Using this representa-
tion of our wave functional, and relying on a saddle-point
approximation to the functional integral over the effective
scalar fields, we have calculated the Wilson loop in the
k-antisymmetric representation. The saddle point is given
by a solitonic field configuration, which interpolates
between two different minima and which is localized on
the minimal surface spanned by the Wilson loop. We found
an area law for the Wilson loop and a string tension that
shows an asymptotic Casimir scaling, which is in line with
one of the possible scalings seen in lattice calculations.
These properties agree with those found in the 4d ensemble
of percolating center-vortex surfaces with oriented and
nonoriented components (for a review, see [10]). The
results obtained in this work provide further evidence
that the coexistence of these components, together with
their natural correlations, are essential to describe all the
asymptotic confining properties in Yang-Mills theory. In
the future, we plan to use the wave functional constructed in

the present paper to calculate the t’Hooft loop and the
topological susceptibility.
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APPENDIX A: EXTENDING THE ENSEMBLE

In Sec. III A, we derived the effective field representation
(42) for an ensemble of uncorrelated loops. Here, we shall
discuss how correlations between vortices are incorporated.
Let us initially consider arrays with V N-matching points,
with the probability amplitude (43)

ψfγg ¼ ξV0
YI
n¼1

ψγn ; ðA1Þ

where ψγ has the same form used in Eq. (30), and we also
included a probability density ξV0 for the occurrence of the
matching points fx1;…; xVg. Of course, the constraint
2I ¼ NV must be satisfied, where I is the number of lines.
Now, from Eq. (31) and the approximation in Eq. (35), the
sum over lines with fixed initial point x1 and final point x2,
which carry a magnetic weight C , gives a factorZ

∞

0

dLdu2du1Ψ̃0½γðv; v0; LÞ�ðEÞ ∝ GC ðx2; x1Þ;

OCGC ðx2; x1Þ ¼ δðx2 − x1Þ: ðA2Þ

In this respect, note that Q contains the sum over all
possible shapes with fixed length L, which is then
supplemented by an integral over all possible L. That is,
in the sum over fγg within Eq. (20), the partial contribution
of arrays with a given number of lines, fixed endpoints and
topology, has the form

∝
Z

d3x1…d3xVξV0
YI
k¼1

GC k
ðxk2; xk1Þ; ðA3Þ

where the points xk1, x
k
2 (k ¼ 1;…; I) take values on the set

of vertices fx1;…; xVg. It is clear that this leads to the wave
functional

Ψ̃ðEÞ ¼
YN
j¼1

Z
½Dϕ̄j�½Dϕj� exp

�
−
Z

d3x

�XN
i¼1

ϕ̄iOC i
ϕi − ξ0ðϕ1…ϕN þ c:c:Þ

��
: ðA4Þ

In effect, Eq. (A4) can be rewritten as
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Ψ̃ðEÞ ¼
YN
j¼1

ðdetOC j
Þ−1 exp

Z
d3x ξ0

�
δ

δJ1
…

δ

δJN
þ δ

δJ̄1
…

δ

δJ̄N

�
× exp

Z
d3x d3y

�XN
i¼1

J̄iðxÞGC i
ðx; yÞJiðyÞ

�����
J̄¼J¼0

:

ðA5Þ

While the functional determinants give the center-vortex
loop contribution Ψ̃0ðEÞ in Eq. (42), the perturbative
expansion (in ξ0) of the second factor gives rise to a
superposition of terms of the form (A3). Furthermore,
being an (effective) field theory, this wave functional
automatically fulfils all the above mentioned requirements.
To include the contribution of monopoles, we introduce a
parameter ϑ0 to describe the probability of their occurrence.
That is, the sum over fγg in Eq. (20) contains the partial
contributions

∝
Z

d3x1…d3xV

Z
d3x̄1…d3x̄ZξV0 ϑ

Z
0

YI
k¼1

GC k
ðxk2; xk1Þ;

ðA6Þ

for an array with V points with N-line matching and Z
monopoles. Here, the corresponding sets of locations were
denoted as fx1;…; xVg and fx̄1;…x̄Zg, while the points xk1,
xk2 (k ¼ 1;…; I) take values on them. Of course, the
constraint 2I ¼ NV þ 2Z must be satisfied. This leads to

Ψ̃ðEÞ ¼
YN
j¼1

Z
½Dϕ̄j�½Dϕj� exp ½−WðΛÞ�;

WðΛÞ ¼
Z

d3x

�
−

1

3κ

XN
i¼1

ϕ̄iD2ðΛT
C i
Þϕi þ Vðϕ; ϕ̄Þ

�
;

Vðϕ; ϕ̄Þ ¼ λ0
2

X
i

�
ϕ̄iϕi þ

μ

λ0

�
2

− ξ0ðϕ1…ϕN þ c:c:Þ

− ϑ0
X
i≠j

ϕ̄iϕj: ðA7Þ

APPENDIX B: SADDLE POINT FOR A GENERAL
EIGENVALUE Ω

In Sec. IV, we obtained an approximate expression for
the Wilson loop in a k-antisymmetric representation in
terms of a classical solution [Eq. (89)], and computed it for
the defining representation. In this section we shall study
the saddle-point solution for a general k-antisymmetric
representation. Let us begin by studying their properties.
For k ¼ 1, it corresponds to the defining representation,
which is spanned by the basis vectors jω1i;…jωNi. Their
components are jωii ¼ ð0;…; 1;…; 0ÞT , with the nonzero
entry being in the ith position. The Cartan generators are
diagonal in this basis, with eigenvalues given by the

weights ω⃗i. For k ¼ 2, the representation is spanned by
the antisymmetrized tensor products

jviji ¼
1ffiffiffi
2

p ðjωii ⊗ jωji − jωji ⊗ jωiiÞ; i < j: ðB1Þ

In this case, the generators and the weights are respectively
given by

T̃A ¼ TA ⊗ I þ I ⊗ TA; ðB2Þ

Ω⃗ði1;i2Þ ¼ ω⃗i1 þ ω⃗i2 ; i1 < i2; ðB3Þ

with 1 ≤ i1; i2 ≤ N. These results may be extended
straightforwardly for 2 < k < N. For general 1 ≤ k < N,
the weights will then be

Ω⃗ði1;…;ikÞ ¼ ω⃗i1 þ � � � þ ω⃗ik ; ðB4Þ

where ði1;…; ikÞ is a tuple of integers satisfying
i1 < … < ik, 1 ≤ i1;…; ik ≤ N. The number of such
weights is NðN − 1Þ…ðN − kÞ=k!, which coincides with
the dimension of the antisymmetric representation with
N-ality k. In order to identify the highest weight, a notion of
ordering is necessary. As usual, we define a weight to be
positive if the last nonvanishing component is positive. The
weights of the defining representation satisfy

ω⃗1 > ω⃗2 > … > ω⃗N: ðB5Þ

Based on these definitions, we can review the solution
obtained in Ref. [29] for the highest weight Ω⃗≡ Ω⃗ð1;…;kÞ of
the k-antisymmetric representation. In this case, the matrix
structure of the external source is given by

2NΩjij ¼ hωij2NΩjωji ¼ δiðjÞ2NΩ⃗ · ω⃗ðjÞ; ðB6Þ

with no sum over j. This can be written as

diagð2NΩ⃗ · ω⃗1;…; 2NΩ⃗ · ω⃗NÞ ¼
N − k
N

P1 −
k
N
P2; ðB7Þ

where P1 ¼ diagð1; 1;…; 0Þ with the k first entries being 1
and the remaining being zero, while P2 ¼ IN − P1. Here,
we used that Ω⃗ ¼ w⃗1 þ � � � þ ω⃗k and the well-known
relation [33]
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ω⃗i · ω⃗j ¼
Nδij − 1

2N2
: ðB8Þ

As the algebra of the matrices P1, P2 is closed, an Ansatz
based on them closes the equations of motion. In particular,
using

Φ ¼ ðh1P1 þ h2P2Þeiθ1N−k
N P1−iθ2 kNP2 ðB9Þ

in Eq. (92), we obtain scalar equations for the profiles h1,
h2, θ1, θ2. An alternative, equivalent form of this Ansatz is

Φ ¼ ðηIN þ η02NΩÞei2NθΩeiα: ðB10Þ
The equivalence is established by using the relations

η0 ¼ h1 − h2; η ¼ k
N
h1 þ

N − k
N

h2: ðB11Þ

To implement the boundary conditions

Φðx; y; z → ∞Þ ¼ vei2N2πΩIN; Φðx; y; z → −∞Þ ¼ vIN;

ðB12Þ

the profiles η; η0 should satisfy

ηð−∞Þ ¼ ηð∞Þ ¼ v; η0ð−∞Þ ¼ η0ð∞Þ ¼ 0: ðB13Þ

As analyzed in Ref. [29], in the relevant region of
parameter space (λa2; ξvN−2 ≫ ϑ) the profiles η; η0; α

remain essentially constant at their vacuum values, and
the transition between the different vacua is accomplished
by a variation of θ, which satisfies the equation

∂
2
zθ ¼ ϑ

2
sin θ: ðB14Þ

The energy per unit length of the soliton is then given by
Eq. (91) and yields, after using Derrick’s theorem,

σk ¼ 2v2
kðN − kÞ

N

Z
dzð∂zθÞ2: ðB15Þ

Finally, we study the solution for a general eigenvalue
Ω⃗ði1;…;ikÞ of the generators DðTqÞ. In this case, the matrix
2NΩði1;…;ikÞ is given by

diagð2NΩ⃗ði1;…;ikÞ · ω⃗1;…; 2NΩ⃗ði1;…;ikÞ · ω⃗NÞ

¼ N − k
N

P1ði1;…;ikÞ −
k
N
P2ði1;…;ikÞ: ðB16Þ

The matrix P1ði1;…;ikÞ has zeros everywhere except on
the diagonal entries i which coincide with some of the
ði1;…; ikÞ. Moreover, P2ði1;…;ikÞ ¼ IN − P1ði1;…;ikÞ. As the
algebraic properties of these matrices (namely, their prod-
ucts and traces) are identical to those of Eq. (B7), the scalar
equations obtained for the profiles are the same, and so is
the expression for the energy. Therefore Eq. (98) holds for
the general case.
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