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We use a Oðαs;ΛQCD=mcÞ heavy quark effective theory scheme, where only OðΛQCD=mbÞ corrections
are neglected, to study the matrix elements of the scalar, pseudoscalar, vector, axial-vector and tensor
currents between the Λb ground state and the odd parity charm Λcð2595Þþ and Λcð2625Þþ resonances. We
show that in the near-zero recoil regime, the scheme describes reasonably well, taking into account
uncertainties, the results for the 24 form factors obtained in lattice QCD (LQCD) just in terms of only four
Isgur-Wise (IW) functions. We also find some support for the possibility that the Λcð2595Þþ and
Λcð2625Þþ resonances might form a heavy quark spin symmetry (HQSS) doublet. However, we argue that
the available LQCD description of these two resonances is not accurate enough to disentangle the possible
effects of the Σcπ and Σ�

cπ thresholds, located only a few MeV above their position, and that it cannot be

ruled out that these states are not HQSS partners. Finally, we study the ratio
dΓ½Λb→Λ�

c;1=2−lν̄l�=dq2
dΓ½Λb→Λ�

c;3=2−lν̄l�=dq2
of the

Standard Model differential semileptonic decay widths, with q the four-momentum transferred between
the initial and final hadrons. We provide a natural explanation for the existence of large deviations, near the
zero recoil, of this ratio from 1=2 (value predicted in the infinite heavy quark mass limit, assuming that
the Λ�

c;1=2− and Λ�
c;3=2− are the two members of a HQSS doublet) based on S-wave contributions to the

Λb → Λ�
c;1=2− decay amplitude driven by a subleading IW function.

DOI: 10.1103/PhysRevD.106.114020

I. INTRODUCTION

Heavy quark symmetry plays an important role in our
understanding of low-energy strong interactions and the
classification of the heavy-light hadronic spectrum. In the
infinite heavy quark mass limit (mQ → ∞), the degrees of
freedom of the infinitely massive heavy quark decouple
from the light quark ones, and hence the heavy and light
degrees of freedom are separately conserved. The dynamics
of hadrons containing a heavy quark is blind to the flavor
and spin of the heavy quark, with the latter exhibiting an
SUð2ÞQ pattern known as the heavy quark spin symmetry
(HQSS). Light degrees of freedom (ldof) with spin-parity
jPldof yield to a degenerate doublet under rotations of the

heavy quark spin sQ. The quantum numbers of this doublet
are JP ¼ ½jldof � 1

2
�P since the spin-parity of the heavy

quark is 1
2
þ. Note here that the ldof quantum numbers

contain both the orbital angular-momentum and spin parts.
In the real world, HQSS is broken due to the large

(mQ ≫ ΛQCD) but finite mass of the heavy quark, e.g., c
and b quarks. These doublets are not exactly degenerate
with a hyperfine splitting of order ΛQCD=mQ. The similar
masses of the isoscalar odd parity resonances Λcð2595Þþ
and Λcð2625Þþ, with JP ¼ 1

2
− and 3

2
− respectively, makes

them promising candidates for the lightest charmed baryon
doublet with jPldof ¼ 1−. This assignment has been widely
adopted in the literature, see e.g., Refs. [1–7]. Various
constituent quark models (CQMs) predict a nearly degen-
erate pair of P-wave charmed isoscalar baryons Λ�

c with
JP ¼ 1

2
− and 3

2
−, respectively, which masses are close to

those of the Λcð2595Þþ and Λcð2625Þþ [3,8–10]. Two
different orbital excitations are considered in Ref. [3],
driven by the so-called λ and ρ degrees of freedom. While
the former accounts for the excitation between the heavy
quark and the light quark subsystem, the latter considers the
excitation between the two light quarks. Owing to the big
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difference between the heavy- and light-quark masses, the
low-lying states are dominated by the lowest λ-mode
excitation and the mixture with ρ excitations is small
[3]. In this picture, the Λcð2595Þþ and Λcð2625Þþ corre-
spond to the HQSS doublet associated to (lλ ¼ 1, lρ ¼ 0)
with total ldof spin sldof ¼ 0, leading to jPldof ¼ 1−. The
predicted decay widths of these resonances within this
scheme are found to be consistent with data [4,11].
The Λcð2595Þþ and Λcð2625Þþ have also been

described in hadronic-molecular models, as the counter-
parts of the Λð1405Þ and Λð1520Þ with the strange quark
replaced by the charm one [12–20]. Since the Σc and Σ�

c

form the ground jPldof ¼ 1þ HQSS doublet, the ldof
quantum numbers of the S-wave Σcπ and Σ�

cπ pairs are
1− for both cases. In Ref. [12], the Λcð2595Þþ is dynami-
cally generated from the S-wave scattering of the
Goldstone bosons off the JP ¼ 1

2
þ charmed baryon octet.

A similar treatment is performed in Ref. [19], where the
masses of the Λcð2595Þþ and Λcð2625Þþ are reproduced as
Σcπ and Σ�

cπ bound states by fine-tuned parameters. A
coupled-channel approach including the DN is studied in
Ref. [13] for the Λcð2595Þþ, and it is extended to the
Λcð2625Þþ sector subsequently in Refs. [14,15]. HQSS,
however, is not respected since the D�N channel is not
considered and the D and D� mesons form the ground
jPldof ¼ 1=2− HQSS doublet in the meson sector. The first
molecular description of the Λcð2595Þþ and Λcð2625Þþ
respecting HQSS was provided in Refs. [17,18], where the
SU(3) Weinberg-Tomozawa chiral Lagrangian is extended
to SUð6Þlsf × SUð2ÞQ, with lsf standing here for the spin-
flavor symmetry in the light sector. The model is supple-
mented by a pattern of symmetry breaking corrections and
using the particular renormalization scheme proposed in
Refs. [14,16]. One JP ¼ 3

2
− state is dynamically generated

by the Σ�
cπ −D�N coupled-channel dynamics, which is

identified in [17] with the Λcð2625Þþ, even though its mass
is about 40 MeV larger and it is significantly wider than the
physical resonance. Thus within this scheme, the
Λcð2625Þþ would be the counterpart of the Λð1520Þ in
the charm sector. Interestingly, the model of Refs. [17,18]
produces two JP ¼ 1

2
− states generated near the nominal

position of the Λcð2595Þþ. One is narrow and it strongly
couples to DN and especially to D�N, with a small mixing
with Σcπ. It is identified with the Λcð2595Þþ resonance in
Refs. [17,18]. The other JP ¼ 1

2
− molecular state, however,

is quite broad because of the sizable coupling to the open
channel Σcπ. The two states would be analogous to those
forming the two-pole structure of the Λð1405Þ [21–24],
where the states couple to Σπ and K̄N, respectively [24]. A
big difference, between the charm and strange sectors, is
that while D�N plays a crucial role in the charm sector
within the scheme of Refs. [17,18], the K̄�N channel is not
considered in the chiral unitary approaches [21–24]
because of the large K̄� − K̄ mass gap.

In Ref. [25], it is stressed that the narrow JP ¼
1
2
− Λcð2595Þþ found in [17,18] is mostly generated from
theDN −D�N coupled-channel dynamics with a dominant
jPldof ¼ 0− configuration. The small coupling of this state to
the Σcπ channel is then a consequence of HQSS due to its
small jldof ¼ 1− component. The coupling of the broad
JP ¼ 1

2
− state to the Σcπ, however, is larger than those to

DN and D�N and thus dominated by the jPldof ¼ 1−

configuration. It means that the isoscalar JP ¼
3
2
− Λcð2625Þþ state found in Refs. [17,18] would be
the HQSS partner of the broad JP ¼ 1

2
− state with jPldof ¼

1− [25], instead of the observed Λcð2595Þþ. A similar
two-pole structure for the JP ¼ 1

2
− sector is found in

Ref. [26] by making use of a SU(4) flavor extension of the
local hidden gauge formalism. In that work, an additional
broad state around 2675 MeV is found in the isoscalar
JP ¼ 3

2
− sector with the single-channel Σ�

cπ Weinberg-
Tomozawa interaction, which would not be related to
the Λcð2625Þþ.
The interplay between the Σð�Þ

c π −Dð�ÞN baryon-meson
pairs and the bare P-wave CQM states has been recently
studied, in the framework of an effective field theory,
respecting heavy quark spin and chiral symmetries [27]. It
is shown that the Λcð2625Þþ should be viewed mostly
as a dressed three-quark state, which is originated from a
bare CQM state. The Λcð2595Þþ, however, should be
either dynamically generated by the chiral Σcπ interaction,
or the result of the DN −D�N coupled-channel dynamics
with a jPldof ¼ 0− configuration, depending on the
employed renormalization procedure. In any case, these
two resonances would not be HQSS partners [27]. This is
because the bare JP ¼ 3

2
− CQM state and the Σcπ thresh-

old are located extremely close to the Λcð2625Þþ and
Λcð2595Þþ, respectively, and thus play different roles in
each sector.
HQSS also puts constraints on the form factors of

currents containing heavy quarks, based on the observation
that the current Q̄Γq (Q̄ΓQ0) transforms as a spinor under
SUð2ÞQ [SUð2ÞQ0 as well] [28]. In particular in the heavy
quark limit, the semileptonic decay of a Λb into the lowest
HQSS doublet with jPldof ¼ 1− can be described by a
universal leading order Isgur-Wise (IW) function (σ)
[29]. Besides, at zero recoil, the weak-current matrix
elements between a Λb and any excited charmed baryon
vanish [1]. The form factors for the exclusive semileptonic
Λb decays to the excited Λc baryons were first obtained to
order OðΛQCD=mcÞ in heavy quark effective theory
(HQET) in Ref. [30], and were improved to order
OðΛQCD=mbÞ in Refs. [1,5], where the Λcð2595Þþ and
Λcð2625Þþ were regarded as the lowest-lying jPldof ¼ 1−

doublet. At order OðΛQCD=mQÞ (here Q ¼ c and b), there

appear five additional independent functions (σðcÞ1 , ϕðcÞ
kin,
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ϕðbÞ
kin, ϕ

ðcÞ
mag and ϕðbÞ

mag) and two low-energy constants (LECs)
Λ̄ and Λ̄0, following the notation introduced in Ref. [1]. The
LECs (Λ̄ð0Þ) denote the energy in the hadron of the light
degrees of freedom in the mQ → ∞ limit. The functions

ϕðcÞ
kin and ϕ

ðbÞ
kin can be reabsorbed, neglectingOðΛ2

QCD=m
2
QÞ,

in the leading order IW function σ, common for both
decays. Therefore, to describe the various form factors of
the currents between the Λb and the Λ�

c;1=2− and Λ�
c;3=2−

states at order OðΛQCD=mQÞ, only three of these sublead-
ing functions and the two LECs Λ̄ and Λ̄0 are needed
[25,30]. Furthermore, if the OðΛQCD=mbÞ corrections
are neglected, and one only considers up to order
OðΛQCD=mcÞ, all the form factors for the Λb →
Λ�
c;1=2− ;Λ

�
c;3=2− transitions are given in terms of only three

independent functions, σðωÞ;ϕðcÞ
kin and σðcÞ1 , and the Λ̄ and

Λ̄0 LECs [also see, for instance, Eqs. (31)–(33) of
Ref. [25]]. The ΛQCD=mb or Λ2

QCD=m
2
c contributions,

not taken into account in this limit, are expected to be
smaller than the theoretical uncertainties induced by the
errors on ðΛ̄ − Λ̄0Þ.
Moreover, the semileptonic form factors between the

Λb and a final JP ¼ 1
2
− charm baryon, but with jPldof ¼ 0−,

denoted as Λ0�
c;1=2− , vanish in the mQ → ∞ limit. The

unique nonvanishing correction at order OðΛQCD=mcÞ
comes from the chromomagnetic operator, which
can be described by a universal function with a structure
of the type ϵμνρτσ

μνvρv0τ with v and v0 the four-velocities
of the Λb and Λ0�

c;1=2− , respectively [1]. Thus, the different
HQSS pattern of form factors for the Λb semileptonic
decay into a charm jPldof ¼ 1− doublet or a jPldof ¼ 0−

singlet might be used to test whether the ldof configu-
ration in the Λcð2595Þþ corresponds mainly to any of
these quantum numbers, provided that the decays are
measured.
Given the lack of data for the form factors of the Λb →

Λcð2595Þþ and Λb → Λcð2625Þþ semileptonic decays,
the lattice QCD (LQCD) simulations carried out in
Refs. [6,31] provide valuable information from first
principles.1 (In the second of the references, the exact
zero-recoil rotational symmetry relations among the
different form factors are imposed to ensure the correct
behavior of the angular observables.) Using LQCD form
factors [34–37], the line shape of the Λb → Λcμ

−ν̄μ decay,
with Λc the JP ¼ 1=2þ ground state charm baryon for
which jPldof ¼ 0þ, has been found to be consistent with the
LHCb measurement [38]. This gives strong support to the
LQCD calculation of semileptonic form factors. Note,
however, that the form factors for the Λb → Λc and those

for the Λb → Λ�
c;1=2− ;Λ

�
c;3=2− transitions are not related at

all, since the ldof in the final charm baryon have different
configurations. In Ref. [1], branching fractions and
heavy quark sum rules for Λb decays to Λcð2595Þþ
and Λcð2625Þþ (identified as the HQSS doublet of
jPldof ¼ 1−) within the Standard Model (SM) were evalu-
ated in the large Nc limit of QCD, using the bound state
soliton picture.
The relevant expressions for the matrix elements, up to

order αs and ΛQCD=mQ in HQET, to test lepton flavor
universality are provided in Ref. [5]. However in that
work, only rough estimates of the form factors, obtained
from the zero recoil sum rule [39,40], could be used. New
physics signatures for various b → clν̄l four Fermi
interactions in the baryon sector have been also inves-
tigated in Refs. [7,41], using a HQET-based parametriza-
tion of the form factors to existing quark model results [2]
in the former, and the LQCD form factors obtained in
[6,31] in the latter recent study, which is limited to a
region close to zero recoil. As previously noted also in
Ref. [6], the results of Ref. [7] show a tension between
LQCD data and HQET predictions to order αs and
ΛQCD=mQ, and points out to the existence of unexpectedly
large HQET-violating terms, potentially large 1=m2

c cor-
rections near zero recoil, in the LQCD form factors.
Further studies of this issue are thus needed, since it is
still an open question how well HQSS works for the
semileptonic Λb → Λcð2595Þþ and Λb → Λcð2625Þþ
transitions, and if the Λcð2595Þþ and Λcð2625Þþ form
a HQSS doublet [27].
In this work, we will try to answer some of these

questions using the LQCD form factors recently obtained
in Refs. [6,31]. In Sec. II, we will provide the explicit
definition of the Λb → Λ�

c semileptonic form factors used
in this work, and the relations between them and those
obtained in Refs. [6,31]. We briefly review the form
factors in HQET, up to order Oðαs;ΛQCD=mcÞ, in Sec. III.
We test how well HQSS describes these form factors and
perform a detailed numerical analysis in Sec. IV.
Section V includes a brief summary of the main results
of this work. Finally in the Appendices A and B, we
provide relations between the different sets of form factors
considered in this work.

II. FORM FACTORS FOR Λb → Λ�
c SEMILEPTONIC

TRANSITIONS

The form factors for the Λb → Λcð2595Þþlν̄l
[Λb → Λcð2625Þþlν̄l] semileptonic transitions parame-
trize the matrix elements of the local currents ½c̄ð0ÞΓbð0Þ�
between the Λb and the Λcð2595Þþ [Λcð2625Þþ] states.
Following the notation of Ref. [1] for the vector and
axial-vector currents and extending it to the scalar,
pseudoscalar, and tensor currents, we have for the
Λb → Λcð2595Þþ

1The form factors for the Λb → Λ�
c;1=2− and Λb → Λ�

c;3=2−

transitions have also been investigated within the framework of
constituent quark models, see e.g., in Refs. [2,32,33].
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hΛcð2595Þþðp0; s0Þjc̄bjΛbðp; sÞi ¼ d̃Sūcðp0; s0Þγ5ubðp; sÞ;
hΛcð2595Þþðp0; s0Þjc̄γ5bjΛbðp; sÞi ¼ d̃Pūcðp0; s0Þubðp; sÞ;

hΛcð2595Þþðp0; s0Þjc̄γμbjΛbðp; sÞi ¼ ūcðp0; s0Þ
�
d̃V1

γμ þ d̃V2

pμ

mΛb

þ d̃V3

p0μ

mΛ�
c;1=2

�
γ5ubðp; sÞ;

hΛcð2595Þþðp0; s0Þjc̄γμγ5bjΛbðp; sÞi ¼ ūcðp0; s0Þ
�
d̃A1

γμ þ d̃A2

pμ

mΛb

þ d̃A3

p0μ

mΛ�
c;1=2

�
ubðp; sÞ;

hΛcð2595Þþðp0; s0Þjc̄σμνγ5bjΛbðp; sÞi ¼ ūcðp0; s0Þ
�
i
d̃T1

m2
Λb

ðpμp0ν − pνp0μÞ þ i
d̃T2

mΛb

ðγμpν − γνpμÞ

þ i
d̃T3

mΛb

ðγμp0ν − γνp0μÞ þ d̃T4
σμν

�
ubðp; sÞ; ð1Þ

where mΛ�
c;1=2

is the mass of Λcð2595Þþ, and ubðp; sÞ and ucðp0; s0Þ are the spinors of Λb and Λcð2595Þþ baryons,

respectively (p and p0 are four-momenta, while s and s0 are spin indices). The form factors d̃S;P;Vi;Ai;Ti
are scalar functions

of q2 ¼ ðp − p0Þ2, or equivalently ω ¼ ðm2
Λb

þm2
Λ�
c;1=2

− q2Þ=ð2mΛb
mΛ�

c;1=2
Þ.

The form factor decomposition for the hΛcð2595Þþðp0; s0Þjc̄σμνbjΛbðp; sÞi matrix element can be straightforwardly
obtained from that of the σμνγ5 operator by making use of σμνγ5 ¼ − i

2
ϵμνλρσλρ, with the convention ϵ0123 ¼ þ1.

Likewise, the Λb → Λcð2625Þþ matrix elements can be parametrized as

hΛcð2625Þþðp0;s0Þjc̄bjΛbðp;sÞi¼ l̃S
pλ

mΛb

ūc;λðp0;s0Þubðp;sÞ;

hΛcð2625Þþðp0;s0Þjc̄γ5bjΛbðp;sÞi¼ l̃P
pλ

mΛb

ūc;λðp0;s0Þγ5ubðp;sÞ;

hΛcð2625Þþðp0;s0Þjc̄γμbjΛbðp;sÞi¼ ūc;λðp0;s0Þ
�
pλ

mΛb

�
l̃V1

γμþ l̃V2

pμ

mΛb

þ l̃V3

p0μ

mΛ�
c;3=2

�
þ l̃V4

gλμ
�
ubðp;sÞ;

hΛcð2625Þþðp0;s0Þjc̄γμγ5bjΛbðp;sÞi¼ ūc;λðp0;s0Þ
�
pλ

mΛb

�
l̃A1

γμþ l̃A2

pμ

mΛb

þ l̃A3

p0μ

mΛ�
c;3=2

�
þ l̃A4

gλμ
�
γ5ubðp;sÞ;

hΛcð2625Þþðp0;s0Þjc̄σμνbjΛbðp;sÞi¼ ūc;λðp0;s0Þ
�
pλ

mΛb

�
i
l̃T1

m2
Λb

ðpμp0ν−pνp0μÞþi
l̃T2

mΛb

ðγμpν−γνpμÞ

þi
l̃T3

mΛb

ðγμp0ν−γνp0μÞþ l̃T4
σμν

�
þil̃T5

ðgλμγν−gλνγμÞþi
l̃T6

mΛb

ðgλμpν−gλνpμÞ
�
ubðp;sÞ;

ð2Þ

where mΛ�
c;3=2

is now the mass of Λcð2625Þþ, uc;λðp0; s0Þ is
the Rarita-Schwinger spinor for the spin-3

2
Λcð2625Þþ,

which satisfies p0λuc;λ ¼ γλuc;λ ¼ 0, and the form factors
l̃S;P;Vi;Ai;Ti

are scalar functions of q2 ¼ ðp − p0Þ2, or ω,
which is now expressed in terms of mΛ�

c;3=2
. Note there is

also one more independent structure il̃T7
ðgλμp0ν −

gλνp0μÞ=mΛb
in the form factor decomposition of the

tensor operator, which cannot be eliminated simply by
the equation of motion or transversality conditions.
However, it is shown in Ref. [7] that the combination
of operators,

Kμν ¼ ūλc½vλðσμν − iðv0μγν − v0νγμÞÞ þ iðgλμ½ðωþ 1Þγν
− vν − v0ν� − gλν½ðωþ 1Þγμ − vμ − v0μ�Þ�ub; ð3Þ

does not contribute to physical amplitudes. Here we have
introduced the notations vμ ¼ pμ=mΛb

, v0μ ¼ p0
μ=mΛ�

c;3=2

and ω ¼ v · v0, determined by q2. Thus, we can set to zero
the contribution of l̃T7

to the physical amplitudes by
redefining l̃Ti

for i ¼ 3, 4, 5, 6.
As in the case of the Λcð2595Þþ, the

hΛcð2625Þþðp0; s0Þjc̄σμνγ5bjΛbðp; sÞi form factors can be
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obtained from the tensor ones introduced in the decom-
position of the matrix element of the σμν operator.
The helicity form factors for Λb → Λcð2595Þþ and

Λb → Λcð2625Þþ determined in the LQCD simulation
carried out in Refs. [6,31] are linear combinations of those
introduced above, and the relation between both sets of
form factors is given in Appendix A.

III. Λb → Λ�
c FORM FACTORS AND HEAVY

QUARK EFFECTIVE THEORY

In this section, we will provide the form factors for the
semileptonic decay of the Λb into the members of the
jPldof ¼ 1− HQSS doubletΛ�

c;1=2− andΛ
�
c;3=2− in HQETup to

order OðΛQCD=mcÞ and including QCD short range log-
arithms [7,42].
In the infinite heavy quark limit (mQ → ∞), the form

factors d̃i and l̃i in Eqs. (1) and (2) for the Λb decay into the
two members (Λ�

c) of the jPldof ¼ 1− HQSS doublet can be
described by a universal IW function [29]. In this limit, the
ground state Λb is a HQSS singlet with jPldof ¼ 0þ, and thus
can be described by a Dirac spinor ubðvÞ, with v the
velocity of the Λb, satisfying the condition =vubðvÞ ¼ ubðvÞ
[43]. For the jPldof ¼ 1− doublet with velocity v0, the ldof are
represented by a vector Aμ subject to the transversality
condition v0 · A ¼ 0. Then, the Λ�

c doublet can be intro-
duced by the multiplet spinor,

Uμ
cðv0Þ ¼ Aμuhðv0Þ; ð4Þ

where the spinor uh describes the heavy quark c obeying
=v0uh ¼ uh. Note that Uμ

cðv0Þ is not an irreducible repre-
sentation under the Lorentz group, instead it contains both
spin 3=2 ¼ ð1þ 1=2Þ and 1=2 ¼ ð1 − 1=2Þ components,

Uμ
cðv0Þ ¼ uμcðv0Þ þ 1ffiffiffi

3
p ðγμ þ v0μÞγ5ucðv0Þ; ð5Þ

where uμcðv0Þ and ucðv0Þ are the Rarita-Schwinger and
Dirac spinors for JP ¼ 3

2
− and 1

2
− states, respectively. Note

that v0 · Ucðv0Þ ¼ 0, =v0Ucðv0Þ ¼ Ucðv0Þ, and γμu
μ
cðv0Þ ¼ 0.

Then one can easily obtain that in the mQ → ∞ limit, the
most general form for the matrix element respecting HQSS
(i.e., being invariant under arbitrary separate rotations of
the b- and c-quark spins [25]) is

hΛ�
c; jPldof ¼ 1−jh̄ðcÞv0 Γh

ðbÞ
v jΛbi ¼ σðωÞvλŪλ

cðv0ÞΓubðvÞ; ð6Þ

where hðQÞ
v is the heavy quark field in HQET, Γ is a Dirac

matrix, and σðωÞ is the dimensionless leading IW function.
Using Eqs. (5) and (6), one finds

hΛ�
c;1=2− jh̄ðcÞv0 Γh

ðbÞ
v jΛbi ¼

1ffiffiffi
3

p σðωÞūcð=v − ωÞγ5Γub;

hΛ�
c;3=2− jh̄ðcÞv0 Γh

ðbÞ
v jΛbi ¼ σðωÞvλūλcΓub; ð7Þ

and thus, it is straightforward to obtain [25] the d̃i and l̃i
form factors in terms of σðωÞ.
At order OðΛQCD=mQÞ, there are corrections originating

from the matching of the b → c flavor changing current
onto the effective theory (HQET) and from order
OðΛQCD=mQÞ effective Lagrangian [1]. Considering for
simplicity only OðΛQCD=mcÞ contributions, this is to say
keeping invariance under rotations of the spin of the b
quark, we have first for the current corrections [44]

c̄Γb ¼ h̄ðcÞv0

�
Γ −

i
2mc

=⃖DΓ
�
hðbÞv ; ð8Þ

where Dμ is the gauge covariant derivative. The charm
quark next-leading order effective Lagrangian contains the
kinetic energy and the chromomagnetic terms [44]

δL0ðcÞ
v ¼ 1

2mc
h̄ðcÞv0

�
ðiD⊥Þ2 þ

gs
2
σ ·G

�
hðcÞv0 : ð9Þ

The operator that appears in the correction of Eq. (8) can be
parametrized as [30]

h̄ðcÞv0 iD⃖λΓh
ðbÞ
v ¼ ½σðcÞ1 ðωÞvμvλ þ σðcÞ2 ðωÞvμv0λ

þ σðcÞ3 ðωÞgμλ�Ψ̄μðcÞ
v0 ΓΨðbÞ

v ; ð10Þ

with ΨμðcÞ
v0 and ΨðbÞ

v the HQET fields which destroy the
spin-1=2 and spin-3=2 members of the charm jPldof ¼ 1−

doublet and the ground state Λb, respectively. Multiplying
Eq. (10) by v0λ and making use of the equation of

motion ðv0 ·DÞhðcÞv0 ¼0, one obtains σðcÞ2 ðωÞ ¼ −ωσðcÞ1 ðωÞ.
Additionally, translational invariance allows to write [1]

σðcÞ3 ðωÞ ¼ ðΛ̄ − ωΛ̄0ÞσðωÞ þ ðω2 − 1ÞσðcÞ1 ðωÞ; ð11Þ

where, as already mentioned, Λ̄ðΛ̄0Þ denotes the energy, in
the ΛbðΛ�

cÞ baryon, of the light degrees of freedom in the
mQ → ∞ limit. Then one has

hΛ�
c; jPldof ¼ 1−jh̄ðcÞv0 i=⃖DΓhðbÞv jΛbi

¼ Ūμ
cðv0Þ½vμð=v − ωÞσðcÞ1 ðωÞ þ γμσ

ðcÞ
3 ðωÞ�ΓubðvÞ;

ð12Þ

and thus
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hΛ�
c;1=2− jh̄ðcÞv0 i=⃖DΓhðbÞv jΛbi

¼ 1ffiffiffi
3

p ūc½ðω2 − 1ÞσðcÞ1 ðωÞ − 3σðcÞ3 ðωÞ�γ5Γub;

hΛ�
c;3=2− jh̄ðcÞv0 i=⃖DΓhðbÞv jΛbi ¼ σðcÞ1 ðωÞvλūλcð=v − ωÞΓub: ð13Þ

In addition, the correction ϕðcÞ
kinðωÞ from the charm

kinetic energy operator h̄ðcÞv0 ðiD⊥Þ2hðcÞv0 in Eq. (9) respects
HQSS and hence it enters in the same way as the
leading IW function σðωÞ, and it simply renormalizes
the latter [1,30]:

σðωÞ → σ̃ðωÞ ¼ σðωÞ þ ϕðcÞ
kinðωÞ
2mc

: ð14Þ

However, the chromomagnetic operator h̄ðcÞv0 gsσ · GhðcÞv0 =2
breaks HQSS and it leads to a contribution to the matrix

elements of h̄ðcÞv0 Γh
ðbÞ
v [1,30],

iϕðcÞ
maggμαvνŪα

cðv0Þσμν
1þ=v0

2
ΓubðvÞ

¼ϕðcÞ
magvλūλcðv0ÞΓubðvÞ−

2ϕðcÞ
magffiffiffi
3

p ūcðv0Þð=v−ωÞγ5ΓubðvÞ:

ð15Þ

Combining the leading order [Eq. (7)], and the
OðΛQCD=mcÞ [Eqs. (13)–(15)] contributions, we obtain
that the general form of the semileptonic matrix elements,
keeping the invariance under spin rotations of the quark b,
reads [25]

hΛ�
c;1=2− jc̄ΓbjΛbi¼

1ffiffiffi
3

p ūc½ð=v−ωÞΔ1ðωÞ−Δ2ðωÞ�γ5Γub;

hΛ�
c;3=2− jc̄ΓbjΛbi¼vλūλc½Ω1ðωÞ−ð=v−ωÞΩ2ðωÞ�Γub; ð16Þ

where we have introduced the scalar form factors

Δ1ðωÞ ¼ σðωÞ þ 1

2mc
½ϕðcÞ

kinðωÞ − 2ϕðcÞ
magðωÞ�

¼ σ̃ðωÞ − ϕðcÞ
magðωÞ
mc

;

Δ2ðωÞ ¼
ðω2 − 1ÞσðcÞ1 ðωÞ − 3σðcÞ3 ðωÞ

2mc

¼ −
2ðω2 − 1ÞσðcÞ1 ðωÞ þ 3ðΛ̄ − ωΛ̄0ÞσðωÞ

2mc
;

Ω1ðωÞ ¼ σðωÞ þ 1

2mc
½ϕc

kinðωÞ þ ϕðcÞ
magðωÞ�

¼ σ̃ðωÞ þ ϕðcÞ
magðωÞ
2mc

; Ω2ðωÞ ¼
σðcÞ1 ðωÞ
2mc

; ð17Þ

which are determined by the leading IW function σ and the
subleading OðΛQCD=mcÞ correction discussed in Ref. [1].
The starting point in the construction of the low-energy

effective theory is the observation that a very heavy quark
bound inside a hadron moves more or less with the hadron’s
velocity v, and is almost on shell, i.e., pμ

Q ¼ mQvμ þ kμ.
Thus, HQET provides an expansion in powers of the
residual momentum k, which is nominally ∼ΛQCD, regard-
less of the momentum of the hadron [44]. Near zero recoil,
one can set the four-velocities of the initial and final
hadrons to be the same and one has a small residual
momentum assigned to the outgoing hadron. However, the
outgoing hadron momentum in the Λb rest frame soon
becomes larger than ΛQCD, reaching values around
∼1.7ð2.2Þ GeV in the end point of the spectrum for the
tau (muon) semileptonic mode. Hence, far from zero recoil,
the residual momentum will start to get large and then to
keep k small, one should switch to a new effective theory
with different four-velocities, v for the initial hadron and v0
for the outgoing one, with ω ¼ v · v0 quickly deviating
from one. Because of this mismatch of velocities, the
leading IWs might rapidly decrease and the ðΔ1;Δ2Þ or
ðΩ1;Ω2Þ hierarchy relations inferred from Eq. (17) far from
zero recoil might not be as good as in the vicinity of ω ¼ 1.
This observation does not dispute that the full QCD and
HQET form factors must agree if one goes to high enough
orders in the HQET expansion.
It is worth stressing that the OðΛQCD=mcÞ decomposi-

tion of Eq. (16) is valid for anyΛb transition to JP ¼ 1
2
− and

JP ¼ 3
2
− baryons, regardless of the ldof quantum numbers

in the final charm states. This is so since Eq. (16) includes
the most general breaking of the invariance under a spin
rotation of the quark c. However, the expressions of the
Δ1;2 and Ω1;2 form factors in terms of the leading and
subleading IW functions given in Eq. (17) are specific toΛb

decays into the two members of the jPldof ¼ 1− HQSS
doublet. Otherwise, the relations of Eq. (17) are lost and
thus, for instance, Δ1ðωÞ does not need to approach
Ω1ðωÞ in the heavy charm quark mass limit. This might
be of special interest, since as we argued in the
Introduction, the Λcð2595Þþ [JP ¼ 1

2
−] could contain, in

addition to jPldof ¼ 1−, ldof components with jPldof ¼ 0−

quantum numbers. For the case of this latter unnatural
transition, the matrix elements of the 1=mQ current and
kinetic energy operator corrections are zero for the same
reason that the leading form factor vanished [1]. The time
ordered products involving the chromomagnetic operator
lead to nonzero contributions, which however vanish at
zero recoil [1] and can be cast in a Δ1-type form factor. To
order 1=mQ, the corresponding Δ2 form factor is therefore
zero. These different HQSS patterns for the Λb semi-
leptonic decay into a charm jPldof ¼ 1− doublet or a jPldof ¼
0− singlet might shed light into the ldof configuration in the
Λcð2595Þþ resonance. Similarly, the JP ¼ 3

2
− Λcð2625Þþ
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resonance could have, in addition to jPldof ¼ 1−, a jPldof ¼
2− component. For this also unnatural 0þ → 2− transition,
in contrast to what we saw for the jPldof ¼ 1− component,
the leading IW function and the kinetic energy operator
correction vanish, as it occurs for the 0þ → 0− case
[1,30]. Different to the latter case, the matrix element
of the 1=mQ current term does not vanish for the

transition to jPldof ¼ 2−, and it takes a form that can be
absorbed into the Ω2ðωÞ form factor. The chromomag-
netic correction provides a 1=mc-suppressed contribution
to Ω1ðωÞ. Both corrections, however, vanish at zero
recoil.
By employing Eq. (16), the Λ�

c;1=2− form factors up to
Oðαs;ΛQCD=mcÞ order read

hΛ�
c;1=2− jc̄bjΛbi ¼ −

1ffiffiffi
3

p ūc½ð1þ ωÞð1þ CSα̂sÞΔ1 þ Δ2�γ5ub;

hΛ�
c;1=2− jc̄γ5bjΛbi ¼ −

1ffiffiffi
3

p ūc½ðω − 1Þð1þ CPα̂sÞΔ1 þ Δ2�ub;

hΛ�
c;1=2− jc̄γμbjΛbi ¼

1ffiffiffi
3

p ūcf½ðω − 1Þð1þ CV1
α̂sÞΔ1 þ Δ2�γμ − ½2þ α̂sð2CV1

þ CV2
ðωþ 1ÞÞ�Δ1vμ

− CV3
α̂sðωþ 1ÞΔ1v0μgγ5ub;

hΛ�
c;1=2− jc̄γμγ5bjΛbi ¼

1ffiffiffi
3

p ūcf½ðωþ 1Þð1þ CA1
α̂sÞΔ1 þ Δ2�γμ − ½2þ α̂sð2CA1

þ CA2
ðω − 1ÞÞ�Δ1vμ

− CA3
α̂sðω − 1ÞΔ1v0μgub;

hΛ�
c;1=2− jc̄σμνγ5bjΛbi ¼ −

1ffiffiffi
3

p ūcfi2CT3
α̂sΔ1ðvμv0ν − vνv0μÞ þ i½2þ α̂sð2ðCT1

þ CT3
Þ þ ðω − 1ÞCT2

Þ�Δ1ðγμvν − γνvμÞ

− iCT3
α̂sðωþ 1ÞΔ1ðγμv0ν − γνv0μÞ þ ½ðω − 1Þð1þ α̂sðCT1

− CT2
þ CT3

ÞÞΔ1 þ Δ2�σμνÞgub; ð18Þ

and for Λ�
c;3=2−,

hΛ�
c;3=2− jc̄bjΛbi ¼ ūλcvλ½ð1þ CSα̂sÞΩ1 þ ðω − 1ÞΩ2�ub;

hΛ�
c;3=2− jc̄γ5bjΛbi ¼ ūλcvλ½ð1þ CPα̂sÞΩ1 þ ðωþ 1ÞΩ2�ub;

hΛ�
c;3=2− jc̄γμbjΛbi ¼ ūλcvλf½ð1þ CV1

α̂sÞΩ1 þ ðωþ 1ÞΩ2�γμ þ ðCV2
α̂sΩ1 − 2Ω2Þvμ þ CV3

α̂sΩ1v0μgub;
hΛ�

c;3=2− jc̄γμγ5bjΛbi ¼ ūλcvλf½ð1þ CA1
α̂sÞΩ1 þ ðω − 1ÞΩ2�γμ þ ðCA2

α̂sΩ1 − 2Ω2Þvμ þ CA3
α̂sΩ1v0μgγ5ub;

hΛ�
c;3=2− jc̄σμνbjΛbi ¼ ūλcvλfið2Ω2 − CT2

α̂sΩ1Þðγμvν − γνvμÞ − iCT3
α̂sΩ1ðγμv0ν − γνv0μÞ

þ ½ð1þ CT1
α̂sÞΩ1 þ ðω − 1ÞΩ2�σμνgub; ð19Þ

where we have also included the Oðα̂s ¼ αs=πÞ perturba-
tive corrections to the heavy quark currents, which are
computed by matching QCD onto HQET [44]. We use the
results of Eq. (9) and Appendix A of Ref. [42], where the
known CΓi

ðωÞ functions can also be found. The previous
analysis of Ref. [7] also accounted for short range radiative
effects. The approach adopted here differs from that used in
this latter reference only by terms of the order of
Oðαs × ΛQCD=mcÞ. This is because in this work, for
simplicity, we incorporate the α̂s corrections also to the
1=mc-suppressed contributions induced by the subleading
pieces of Δ1 and Ω1 IW functions. At the order we are
working in the HQET expansion, these are higher-order
terms and it is equally sounded to keep them finite or to set
them to zero as in Ref. [7].

The matrix elements of Eqs. (18) and (19) can be used to
express the form factors d̃i and l̃i in terms of Δ1;2 and Ω1;2.
The resulting scheme account up to order Oðαs;ΛQCD=mcÞ
corrections. For the sake of clarity, we give the explicit
expressions in Appendix B.Wewant to stress that, since the
OðΛQCD=mcÞ decomposition of Eq. (16) is valid for anyΛb

transition to JP ¼ 1
2
− and JP ¼ 3

2
− baryons, regardless of

the ldof quantum numbers in the final charm states, the
form factors for Λb → Λ�

c;1=2− ;Λ
�
c;3=2− in Eqs. (18) and (19)

do not rely on the assumption that the final excited charm
baryons form the lowest-lying JP ¼ 1− HQSS ldof doublet,
since Δ1;2 andΩ1;2 do not need to be related in principle. In
other words, to order Oðαs;ΛQCD=mcÞ, Eqs. (18) and (19)
give the most general form-factor decomposition for any
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Λb transition to JP ¼ 1
2
− and JP ¼ 3

2
− baryons independ-

ently of whether they belong to the same HQSS ldof
doublet or not.
Neglecting radiative corrections, the Λb → Λ�

c;1=2−lν̄l
and Λb → Λ�

c;3=2−lν̄l SM differential decay widths
deduced from the vector and axial matrix elements in
Eqs. (18) and (19) are given by [25]2

dΓ½Λb→Λ�
c;JP �

dω

¼ð2Jþ1Þ8Γ0

3

�
mΛ�

c

mΛb

�
3
�
1−

m2
l

q2

�
2

ðω2−1ÞJ

×

�
α2J

�
3ω

q2þm2
l

m2
Λb

þ2
mΛ�

c

mΛb

ðω2−1Þ
�
1þ2m2

l

q2

��

þ2ðω2−1Þ½α1ðωÞα2ðωÞ�J

×

�
2q2þm2

l

m2
Λb

þ
�
1−

m2
Λ�
c

m2
Λb

��
1þ2m2

l

q2

��
þO

�
αs;

ΛQCD

mb

��

ð20Þ

withml the final charged lepton mass, Γ0 ¼ jVcbj2G2
Fm

5
Λb
=

ð192π3Þ, where jVcbj is the modulus of the Cabibbo-
Kobayashi-Maskawa matrix element for the b → c tran-
sition and GF ¼ 1.16638 × 10−11 MeV−2 is the Fermi
decay constant, and

α2J¼1=2ðωÞ ¼ Δ2
2ðωÞ þ ðω2 − 1ÞΔ2

1ðωÞ;
α1ðωÞα2ðωÞjJ¼1=2 ¼ Δ1ðωÞΔ2ðωÞ

α2J¼3=2ðωÞ ¼ Ω2
1ðωÞ þ ðω2 − 1ÞΩ2

2ðωÞ;
α1ðωÞα2ðωÞjJ¼3=2 ¼ Ω1ðωÞΩ2ðωÞ: ð21Þ

In the strict mc → ∞ limit,3

lim
mc→∞

�
dΓ½Λb → Λ�

c;1=2− �=dω
dΓ½Λb → Λ�

c;3=2− �=dω
�

¼ 1

2

�
limmc→∞Δ1ðωÞ
limmc→∞Ω1ðωÞ

�
2

ð22Þ

and ifΛ�
c;1=2− andΛ

�
c;3=2− are the two members of the jPldof ¼

1− HQSS doublet, the above ratio will be 1=2, since the

relations of Eq. (17) will be satisfied and Δ1ðωÞ∼
Ω1ðωÞ ∼ σðωÞ. However in the vicinity of zero recoil
(ω ≤ 1.05), one might find large deviations, because in
this kinematic region, the subleading contribution Δ2

2ðωÞ to
α2J¼1=2ðωÞ could be comparable or larger than the other one,

ðω2 − 1ÞΔ2
1ðωÞ, which is used to obtain4 Eq. (22). Actually,

the Δ2ðωÞ form factor accounts for an S-wave term to
the Λb → Λ�

c;1=2− decay amplitude proportional to 3ðΛ̄ −
Λ̄0Þσð1Þ=ð2mcÞ ∼ ð0.2–0.3Þσð1Þ [25]. This follows from
Eq. (17), using mc ∼ 1.4 GeV for the charm quark mass,
Λ̄ ∼ 0.8 GeV and Λ̄0 ∼ 1� 0.1 GeV for the energies of the
ldof, in the mQ → ∞ limit, in the Λb and the P-wave
Λ�
cðjPq ¼ 1−Þ baryon. Since the SM Λb → Λ�

c;3=2− semi-
leptonic decay driven by the matrix elements in Eq. (19)
occurs at least in P wave, it appears an extra factor ðω2 − 1Þ,
and the ratio

dΓ½Λb→Λ�
c;1=2− �=dω

dΓ½Λb→Λ�
c;3=2− �=dω

could differ significantly from

1=2 when ω is close to 1.
Notice that in the SM, there exist S-, P- and D-wave

contributions to the 1=2þ → 1=2− semileptonic matrix
element. D wave only involves the vector current, while
both vector and axial currents appear in S and P waves.
The S-wave terms are driven by the vector d̃V1

and the
combination ðd̃A1

þ d̃A2
þ d̃A3

Þ of axial form factors, but
the axial contribution vanishes in the massless lepton limit.
From Appendix B, we see that both d̃V1

and ðd̃A1
þ d̃A2

þ
d̃A3

Þ are proportional to Δ2ðω ¼ 1Þ at zero recoil, which
gives rise to the S-wave α2J¼1=2 term in the differential
decay rate of Eq. (20). For the 1=2þ → 3=2− decay, the
vector l̃V4

accounts for the S-wave transition [1], while all
the rest of the form factors account for higher-wave
contributions. However, we see in Appendix B that this
form factor is zero up to order Oðαs;ΛQCD=mcÞ, and hence
the differential decay rate of Eq. (20) in this case proceeds
at least in P wave. Actually, the leading contribution to l̃V4

is of orderOðΛQCD=mbÞ [1], but as we will show at the end
of Sec. IV B, the consideration of this small contribution
does not modify the theoretical expectation of finding large
deviations from 1=2 for the ratio of differential decay rates
close to zero recoil.

IV. NUMERICAL ANALYSIS

In the last two sections, we have presented a general
parametrization andOðαs;ΛQCD=mcÞHQETform factors for
the Λb→Λ�

c;1=2−=Λ
�
c;3=2− semileptonic transitions. Although

in recent years the LHC has collected large numbers ofΛb →
Λcð2595Þþμ−ν̄μ and Λb → Λcð2625Þþμ−ν̄μ samples [38],
the extraction of the form factors is, however, not available

2We have numerically checked that the effects on the differ-
ential decay widths produced by the radiative corrections in
Eqs. (18) and (19) are quite small. Actually, they are negligible
when compared to the uncertainties induced on these distribu-
tions by the errors of the LQCD form factors. Therefore, for
simplicity, we have not included the radiative corrections in
the calculation of the differential decay widths, and to
obtain Eq. (20), we have set all the CΓi

ðωÞ functions to zero.
3Note that the ðω2 − 1Þ multiplying Δ2

1ðωÞ compensates the
overall extra ðω2 − 1Þ factor which appears for the JP ¼ 3=2−
decay width in Eq. (20).

4As can be seen in the right-bottom panel of Fig. 7, atω ¼ 1.05
one has that Δ2

2ðω ¼ 1.05Þ ≈ 0.25Δ2
1ðω ¼ 1.05Þ which is 2.5

times larger that the corresponding value for ðω2 − 1ÞΔ2
1ðωÞ.
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yet. Without experimental input for the form factors,
LQCD provides a valuable framework to test how well the
jPldof ¼ 1− HQSS predictions, with corrections of order
Oðαs;ΛQCD=mcÞ, works to describe the Λcð2595Þþ and
Λcð2625Þþ form factorsmeasured on the lattice, andwhether
there is a possibility of a sizable jPldof ¼ 0− configuration for
the Λcð2595Þþ resonance.

A. LQCD and OðΛQCD=mcÞ HQET form factors

The first LQCD calculation of the form factors for
these transitions was carried out in Ref. [6], using three
different ensembles of gauge-field configurations with
2þ 1 flavors of domain-wall fermions generated by the
RBC and UKQCD collaborations [45,46], and three-
quark interpolating fields to excite the Λ�

c states.
The form factors in Ref. [6] are defined through a
helicity decomposition of the amplitudes and are evalu-
ated at three unphysical pion masses, mπ¼0.4312ð13Þ,
0.3400(11) and 0.3030(12) GeV. Finally, the results were
extrapolated to the physical point (continuum limit and
physical pion mass), where the LQCD form factors are
parametrized as [6,31]

fðωÞ ¼ Ff þ Afðω − 1Þ; ð23Þ

which corresponds to a Taylor expansion around zero
recoil ω ¼ 1. Because only two different close kinematics
(ω ¼ 1.01 and ω ¼ 1.03) are available at the physical
point in the LQCD calculation of Ref. [6], the

parametrization of Eq. (23) is expected to be only reliable
for small (ω − 1). Systematic uncertainties are estimated
from the variation of results obtained from two different
extrapolations of the lattice results to the physical limit.
The helicity form factors, which parametrize the matrix
elements of the vector, axial-vector and tensor currents,
for the two available values of ω are treated in Ref. [6] as
independent quantities. Thus, a total of 48 parameters
were fitted to the lattice data. In the improved analysis
carried out by the same authors in Ref. [31], relations
among the different form factors at zero recoil, which
follow from rotational symmetry, are imposed to ensure
the correct behavior of the angular observables near the
end point, and thus the number of free parameters is
reduced to 39. In this work, we will employ the updated
results of Ref. [31]. The form factors d̃i and l̃i introduced
in Eqs. (1) and (2) are computed from the helicity form
factors determined in Refs. [6,31] with the help of
Eqs. (A1) and (A2), respectively.
As discussed in Sec. III, there are only two independent

functions Δ1;2ðωÞ and Ω1;2ðωÞ for the Λb → Λ�
c;1=2− and

Λb → Λ�
c;3=2− decays, respectively, including up to

Oðαs;ΛQCD=mcÞ contributions; this is to say, neglecting
OðΛQCD=mbÞ corrections. In order to test if the HQSS
describes the semileptonic Λb → Λcð2595Þþ and Λb →
Λcð2625Þþ decays at this order, we determine the Δ1;2ðωÞ
and Ω1;2ðωÞ functions from two of the form factors in each
of the transitions, and then predict the rest of the form
factors using the relations collected in Appendix B. We take

Δ1ðωÞ ¼
ffiffiffi
3

p ½d̃A1
ðωÞ − d̃V1

ðωÞ�
2þ α̂s½ð1þ ωÞCA1

þ CV1
ð1 − ωÞ� ;

Δ2ðωÞ ¼
ffiffiffi
3

p ½ð1þ ωÞð1þ CA1
α̂sÞd̃V1

ðωÞ þ ð1 − ωÞð1þ CV1
α̂sÞd̃A1

ðωÞ�
2þ α̂s½ð1þ ωÞCA1

þ ð1 − ωÞCV1
� ;

Ω1ðωÞ ¼
ð1 − ωÞl̃V1

ðωÞ þ ð1þ ωÞl̃A1
ðωÞ

2þ α̂s½ð1 − ωÞCV1
þ ð1þ ωÞCA1

� ;

Ω2ðωÞ ¼
ð1þ α̂sCA1

Þl̃V1
ðωÞ − ð1þ α̂sCV1

Þl̃A1
ðωÞ

2þ α̂s½ð1 − ωÞCV1
þ ð1þ ωÞCA1

� : ð24Þ

As already mentioned, α̂s ¼ αs=π and the explicit ex-
pressions for the CΓi

can be found in Ref. [42]. Here there
is a subtle point. We note that all types of contributions
suppressed by any power of the charm quark mass should
be included in the unknown Δ1;2 and Ω1;2 functions
empirically determined from the LQCD form factors.
Thus, we expect only OðΛQCD=mbÞ corrections, from
the breaking of b-quark spin rotational invariance, to the
matrix elements of the scalar, pseudoscalar, vector, axial-
vector and tensor currents between the Λb ground state
and the final odd parity charm Λcð2595Þþ and Λcð2625Þþ

resonances, for the whole range of ω values accessible in
the decay.
The Λb → Λcð2595Þþ and Λb → Λcð2625Þþ form fac-

tors d̃i and l̃i evaluated using Eq. (B1) are compared with
the LQCD results in Figs. 1 (1=2þ → 1=2−), 3 (vector and
axial-vector 1=2þ → 3=2−) and 5 (tensor 1=2þ → 3=2−).
There, the purple solid and blue dotted curves correspond
to the LQCD results and the HQET predictions, obtained
using the Δ1;2 or Ω1;2 functions determined as specified in
Eq. (24), respectively. Statistic and systematic uncertain-
ties, given in Refs. [6,31], are added in quadrature and
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FIG. 1. Comparison between the LQCD [31] (purple uncertainty bands and solid curves) and the Oðαs;ΛQCD=mcÞ HQET [Eqs. (24)
and (B1)] form factors for the Λb → Λcð2595Þþ transition, as a function of ω. The HQET predictions are displayed by blue bands and
dotted lines. The LQCD results are obtained using the relations given in Appendix A between the form factors displayed here and the
helicity ones computed in Ref. [31].
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shown in the plots. We do not show the scalar and
pseudoscalar form factors (d̃S;P and l̃S;P), since they were
not computed in the LQCD simulation of Refs. [6,31].
They are given in Appendix A using their relation to the
vector and axial-vector form factors obtained from the
heavy quark equations of motion.
The comparison of the LQCD and Oðαs;ΛQCD=mcÞ

HQET results for the helicity form factors, which are
those directly obtained in the lattice calculation [6,31],
are presented in Fig. 2 for Λb → Λcð2595Þþ, and Figs. 4
and 6 for Λb → Λcð2625Þþ. The comparison for the scalar
and pseudoscalar form factors (d̃S;P and l̃S;P) can be

inferred from the results shown in these figures for fðJ
PÞ

0

and gðJ
PÞ

0 , cf. Eqs. (A1) and (A2).
For the Λb → Λcð2595Þþ transition, we see that LQCD

and HQET agree in general within uncertainties. The
largest discrepancies are found for the vector d̃V3

and
tensor d̃T1

and d̃T3
form factors. At this order within the

HQET scheme, they are nonzero only because of the
small radiative corrections, of the order of 0.02–0.03
as can be inferred from Table I in Appendix B, and they
are hardly visible in the plots. Moreover, these form
factors are poorly determined on the lattice and, in fact,
the large uncertainties affecting them make these dis-
crepancies of little significance. Note that the axial d̃A3

form factor which also at this order of the HQET
expansion gets only contributions from small short-
distance terms, is accurately determined in Ref. [31],
and it turns out to be compatible with zero in the whole ω
interval shown in the figure. The radiative corrections to
d̃V2

and d̃T2
are somewhat larger than in the previous

cases (∼5%) and slightly improve the agreement between
LQCD and HQET predictions. The results in Fig. 2,
where we pay attention to the helicity form factors
directly determined in the LQCD simulation, confirm
the quite reasonable comparison between LQCD and
HQET predictions. The most significant discrepancy is

found now for the axial g
ð1
2
−Þ

0 helicity form factor, which
contributes to the axial d̃A2

and d̃A3
, where however

LQCD and HQET predictions agree within errors.
On the other hand, we do not appreciate significant
discrepancies between both sets of predictions for the
helicity form factors involved in the vector d̃V3

and tensor
d̃T1

and d̃T3
. Therefore, the origin of the differences

noted above must be sought in the large cancellations
responsible for these form factors being zero at
order Oðαs;ΛQCD=mcÞ.
At first sight, the comparison of LQCD and

Oðαs;ΛQCD=mcÞ HQET form factors for the Λb →
Λcð2625Þþ decay does not look as satisfactory as that
described above for Λb → Λcð2595Þþ, as one might infer
from Figs. 3 and 5. In particular, the discrepancies are

clearly visible in l̃V3
, l̃V4

, l̃A4
, lT5

and l̃T6
, which are

predicted to be zero at this order of the HQET expansion,
except for the first one which gets a tiny short-distance
contribution. We however note, the LQCD predictions of
Ref. [31] for these form factors are compatible with
typical values of order OðΛQCD=mbÞ ∼ 0.1, except for
the case of jl̃V3

j, which takes notably higher values. As in
the case of d̃V3

for the Λb → Λcð2595Þþ mode, we also
believe that the origin of the differences for l̃V3

stems from
some inaccuracies in the required large cancellations,

among the f
ð3
2
−Þ

0 ; f
ð3
2
−Þ

þ ; f
ð3
2
−Þ

⊥ and f
ð3
2
−Þ

⊥0 helicity form factors,
to make the leading and OðΛQCD=mcÞ contributions
to this form factor vanish. The same helicity form factors,
but in a different linear combination, appear also in l̃V2

, for
which some disagreement, near zero recoil, between
LQCD and Oðαs;ΛQCD=mcÞ HQET predictions can be
appreciated in Fig. 3. Paying now attention to the results
in Figs. 4 and 6, we observe there are five dominant

helicity transitions, those associated to f
ð3
2
−Þ

0 ; g
ð3
2
−Þ

þ and g
ð3
2
−Þ

⊥
for vector and axial-vector currents, and h̃

ð3
2
−Þ

þ and h̃
ð3
2
−Þ

⊥
for the tensor ones. Importantly, the Oðαs;ΛQCD=mcÞ
HQET scheme provides a good reproduction
of the LQCD results for these leading form factors.5

The largest differences appear for f
ð3
2
−Þ

0 , where the central
values of both schemes are separated by almost one sigma,
which might explain the discrepancies pointed out above
for l̃V2

and l̃V3
. The rest of the helicity form factors are

very small, around a factor 20–40 smaller (in absolute
value) than the five dominant ones mentioned above.
Order OðΛQCD=mbÞ corrections to the HQET results or
further systematic errors affecting the LQCD ones could
change the predictions displayed in Figs. 4 and 6, and
improve the apparent disagreement exhibited there for
these subleading form factors.
Therefore, we conclude that theOðαs;ΛQCD=mcÞ HQET

scheme describes reasonably well the LQCD results, taking
into account that the neglected HQET OðΛQCD=mbÞ sub-
leading corrections or LQCD systematic uncertainties
might be important in those cases where discrepancies
are more apparent on a naive visual inspection of Figs. 3
and 5. The results of the next subsection will give further
support to this general conclusion.

B. HQSS form factors and differential
decay rates

In this subsection, we try first to assess how well the
Λcð2595Þþ and Λcð2625Þþ are described by a jPldof ¼ 1−

5We note that radiative corrections improve the agreement
between both approaches for these helicity form factors, in

particular for f
ð3
2
−Þ

0 ð∝ l̃SÞ, h̃ð
3
2
−Þ

þ and h̃
ð3
2
−Þ

⊥ .
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FIG. 2. Comparison of the Λb → Λcð2595Þþ LQCD (purple uncertainty bands and solid curves) and Oðαs;ΛQCD=mcÞ HQET results
for the helicity form factors, which are those directly computed in Ref. [31], as a function of ω. The HQET predictions are obtained by
inverting the relations given in Appendix A, and using for the d̃i form factors, the OðΛQCD=mcÞ expressions of Eq. (B1). The HQET
predictions are displayed by blue bands and dotted lines.
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configuration for the ldof. We discussed in Sec. III that
Δ2ðωÞ ¼ Ω2ðωÞ ¼ 0 in the heavy charm quark limit, and
that in addition, Δ1ðωÞ ¼ Ω1ðωÞ ¼ σðωÞ if the Λcð2595Þþ
and Λcð2625Þþ are the members of the lowest-lying HQSS
jPldof ¼ 1− doublet. Thus, the difference between the Δ1ðωÞ
and Ω1ðωÞ should be of order OðΛQCD=mcÞ, while Δ2ðωÞ
and Ω2ðωÞ are both of order OðΛQCD=mcÞ, and hence
suppressed compared to the leading Δ1ðωÞ and Ω1ðωÞ
functions, cf. (17). Note that the overall sign of the form
factors for each decay mode depends on the phase con-
ventions of the Λ�

c states [6], and only the relative signs

among the form factors for a specific mode are well
determined. The comparisons between the Δ1;2 and Ω1;2

IW functions, obtained from the LQCD results for the
d̃V1

; d̃A1
; l̃V1

and l̃A2
form factors [Eq. (24)], are shown in

Fig. 7. We see that the differences between Δ1 and −Ω1 are
small compared to any, Δ1 or Ω1, of these leading IW
functions, and can be naturally attributed to OðΛQCD=mcÞ
contributions. This gives some support, or at least does not
contradict, that the Λcð2595Þþ and Λcð2625Þþ resonances
might form the lowest-lying HQSS jPldof ¼ 1− doublet.
Nevertheless, we would remind that in the LQCD

FIG. 3. Same as Fig. 1 for the Λb → Λcð2625Þþ vector and axial-vector form factors.
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simulation carried out in Refs. [6,31], the Λ�
c states

were described using three-quark interpolating fields.
This should not create any bias for an unquenched simu-
lation, since these operators should capture any baryon-

meson (Σð�Þ
c π) component in the QCD state, assuming a

sufficiently large evolution time. The chiral-continuum
extrapolations of the masses of the states excited on the
lattice are [6]

mΛ�
c;1=2

¼ ð2693� 43stat � 95sysÞ MeV;

mΛ�
c;3=2

¼ ð2742� 43stat � 96sysÞ MeV ð25Þ

which, though are consistent with the experimental
values of mΛ�

c;1=2
¼ 2592.25ð28Þ MeV and mΛ�

c;3=2
¼

2628.11ð19ÞMeV [47], are not accurate enough to dis-
entangle the possible effects of the Σcπ and Σ�

cπ thresh-
olds located only a few MeV above the position of the
physical resonances, especially in the case of the
Λcð2595Þþ and Σcπ [27]. Therefore, the claim made in
this latter reference that the Λcð2595Þþ and Λcð2625Þþ
resonances are not HQSS partners cannot be discarded
using the LQCD data studied here. In Ref. [27], the JP ¼
3=2− state is described mostly as a dressed three-quark
state, whose origin is determined by a bare state [3],

FIG. 4. Same as Fig. 2 for the Λb → Λcð2625Þþ scalar, pseudoscalar, vector and axial-vector helicity form factors.
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predicted to lie very close to the mass of the resonance.
The JP ¼ 1=2− resonance seemed to have, however, a
predominant molecular structure. This is, depending on
the renormalization scheme, either because the
Λcð2595Þþ is the result of the chiral Σcπ interaction
[19,27], whose threshold is located much closer than the
mass of the bare three-quark state, or because the ldof in
its inner structure are coupled to the unnatural jPldof ¼ 0−

quantum numbers which gives rise to a double-
pole pattern for this resonance analog to that established
for the Λð1405Þ [17,18]. To shed light into this problem,
it would require new LQCD simulations giving rise to
more accurate determinations of the masses of the mΛ�

c;1=2

and mΛ�
c;3=2

, with precision better than the mass difference

with the Σcπ and Σ�
cπ thresholds, and using not only

three-quark interpolating operators, but also other ones
with larger overlaps to hadron-molecular degrees of
freedom.
Coming back to Fig. 7, we observe that both Δ2 and Ω2

are also smaller (absolute value) than Δ1 and Ω1,

respectively, near zero recoil. Actually, the ratios
Δ2=Δ1 and Ω2=Ω1 (right-bottom plot) have a typical
size of order OðΛQCD=mcÞ. This supports the compati-
bility of the LQCD and Oðαs;ΛQCD=mcÞ HQET predic-
tions for the form factors, discussed in the previous
subsection. In the left plot of Fig. 8, we show the
SM dΓ½Λb → Λ�

c;JPτν̄τ�=dω distributions, obtained both
using the full set of the 14 LQCD form factors computed
in Ref. [31] and the Oðαs;ΛQCD=mcÞ HQET expressions
of Eqs. (20) and (21), which involve only the Δ1;2 and
Ω1;2 functions determined in Eq. (24). We limit the
comparison to the region of reliability of the LQCD
form factors and find a good agreement, even more
taking into account uncertainties, for the whole studied
region.
On the other hand, we can see in Fig. 7 that in the

vicinity of zero recoil, Δ2=Δ1 is higher than Ω2=Ω1,
reaching the former ratio values around 0.3–0.35.
Moreover, since Δ2 accounts for an S-wave term to the
Λb → Λ�

c;1=2− decay amplitude [see discussion of

FIG. 5. Same as Fig. 1 for the Λb → Λcð2625Þþ tensor form factors.
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FIG. 6. Same as Fig. 2 for the Λb → Λcð2625Þþ tensor helicity form factors.

FIG. 7. Comparison between the leading and subleading Δ1;2 and Ω1;2 functions, determined as specified in Eq. (24). Note that it
would be necessary to include a relative phase between the states Λcð2595Þþ and Λcð2625Þþ to obtain Δ1 and Ω1 with the same sign.

DU, HERNÁNDEZ, and NIEVES PHYS. REV. D 106, 114020 (2022)

114020-16



Eq. (22)], which becomes dominant close to ω ¼ 1,
we see in the right-bottom panel of Fig. 8 that this
subleading IW function has an enormous numerical
impact in the Λb → Λcð2595Þþ differential decay dis-
tribution, and its contribution becomes totally dominant.
This result confirms the findings of Refs. [1,25],
obtained using the soliton model derived in Ref. [1],
where the large size of these finite charm quark
mass HQSS breaking terms on the Λcð2595Þþ differ-
ential decay distribution was first pointed out (see for
instance Fig. 2 of Ref. [25]). In sharp contrast, the
effects on the Λcð2625Þþ distribution of the subleading
Ω2 function are small below ω ¼ 1.05 (right panel
of Fig. 8).
From the above discussion, we naturally find an explan-

ation for large deviations, near zero recoil, of the
dΓ½Λb→Λ�

c;1=2− �=dω
dΓ½Λb→Λ�

c;3=2− �=dω
ratio from the value of 1=2 predicted in

the mQ → ∞ limit, assuming that the Λ�
c;1=2− and Λ�

c;3=2−

are the two members of the jPldof ¼ 1− HQSS doublet.
Actually, this ratio at ω ¼ 1.05 takes values around
2.5 and much larger ones in the near-zero recoil
regime. This tension between LQCD data and the
HQET predictions triggered the claim in Refs. [7,31]
of unexpectedly large HQSS-violating terms, with poten-
tially large 1=m2

c corrections, near zero recoil.6 We assign
here these huge HQSS breaking corrections, not neces-
sarily just to big values of the Δ2ðωÞ=Δ1ðωÞ ratio of
leading to subleading IW functions, but also to the fact

that the Δ2ðωÞ form factor accounts for an S-wave term to
the Λb → Λ�

c;1=2− decay amplitude, while after having not
considered OðΛQCD=mbÞ corrections, the Λb → Λ�

c;3=2−

semileptonic decay proceeds necessarily at least in P
wave, and it is therefore suppressed by a factor ðω2 −
1Þ3=2 at zero recoil.
One might wonder if the S-wave term, proportional

to l̃V4
, which we have neglected in Λb → Λ�

c;3=2−

decay, can change this conclusion. From the general
analytical expressions given in Appendix B of Ref. [41],
we find

dΓ½Λb → Λ�
c;1=2−lν̄l�=dω

dΓ½Λb → Λ�
c;3=2−lν̄l�=dω

				
ω¼1

¼ 3d̃2V1
ð1Þ

2l̃2V4
ð1Þ

�
1þ ðd̃A1

þ d̃A2
þ d̃A3

Þ2=d̃2V1

1þ 2ðmΛb−mΛ�c
ml

Þ2
�
ω¼1

≥
3d̃2V1

ð1Þ
2l̃2V4

ð1Þ ∼
9

8

m2
b

m2
c

�
1 −

mc

3mb

�
2

> 10; ð27Þ

where in the last equality we have made use of Eqs. (27c)
and (28f) of Ref. [7] to estimate the d̃V1

ð1Þ=l̃V4
ð1Þ ratio.

The result above does not modify, but it instead reinforces,
the theoretical expectation of finding large deviations
from 1=2 for the ratio of differential decay rates in the
vicinity of zero recoil.7 When Δ2 and Ω2 are set to zero,
we recover within errors the value of 1=2 for the ratio of

FIG. 8. SM dΓ½Λb → Λcð2595Þþτν̄τ�=dω and dΓ½Λb → Λcð2625Þþτν̄τ�=dω differential decay widths, as functions of ω. We show
distributions obtained using the full set of LQCD form factors computed in Ref. [31] (LQCD) and the expressions (HQET) of Eqs. (20)
and (21), employing the Δ1;2 and Ω1;2 functions determined in Eq. (24). For the latter scheme, in the right panel, we compare the full
Oðαs;ΛQCD=mcÞ HQET results with those obtained after setting to zero the subleading Δ2 and Ω2 functions.

6The authors of Refs. [7,31] pointed out that such large HQSS-
violating terms cannot persist uniformly over the full recoil
spectrum, as they would be incompatible with the measurement
of the ratio of total decay rates in the muon mode [48]

Γ½Λb → Λ�
c;1=2−μν̄μ�

Γ½Λb → Λ�
c;3=2−μν̄μ�

¼ 0.6� 0.2þ0.5
−0.3 : ð26Þ

7Note that from Eq. (28f) of Ref. [7], l̃V4
ð1Þ ¼ 2ðΛ̄0 − Λ̄Þσð1Þ=

ð2mbÞ ∼ 0.06σð1Þ, which is in good agreement with the LQCD
results depicted here in the left-bottom plot of Fig. 3. This
nonzero value for l̃V4

ð1Þ explains the differences observed in
Fig. 8 between the 1=2þ → 3=2− distributions obtained using the
full set of LQCD form factors and the Oðαs;ΛQCD=mcÞ HQET
expressions derived in our approach.
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differential decay widths, see right plot of Fig. 8. This is so
because, taking into account uncertainties, Δ1ðωÞ ∼
−Ω1ðωÞ even in the presence of OðΛQCD=mcÞ corrections
to these leading IW functions (see top left panel of Fig. 7).
This is in accordance with the Λcð2595Þþ and Λcð2625Þþ
being HQSS partners.
As a final comment, we just mention that we have also

carried out the present analysis using the first LQCD
results obtained in [6], where the relations among the
different form factors at zero recoil which follow from
rotational symmetry [31] were not imposed. The results
for the helicity form factors and differential rates are
similar to those obtained from the updated LQCD sim-
ulation and presented above. However, some of the d̃i and
l̃i (specifically, d̃Vi¼2;3

, d̃Ti¼1;2;3
and l̃Vi¼1;2;3

, l̃Ai¼2;3
, l̃Ti¼1;2;3

)
form factors and the subleading Ω2 IW do not converge at
ω ¼ 1, which introduces large uncertainties near the zero-
recoil point.

V. SUMMARY

We have used the OðΛQCD=mcÞ HQET scheme
derived in Ref. [25], in which invariance under rota-
tions of the spin of the b quark is preserved, to study
the matrix elements of the scalar, pseudoscalar, vector,
axial-vector and tensor currents between the Λb ground
state and the odd parity charm Λcð2595Þþ and
Λcð2625Þþ resonances. In this work, we have addi-
tionally included short-distance radiative corrections,
and thus only OðΛQCD=mbÞ corrections are neglected.
There are only four independent functions Δ1;2ðωÞ and
Ω1;2ðωÞ for the Λb → Λ�

c;1=2− and Λb → Λ�
c;3=2− semi-

leptonic decays, respectively, which are determined
from a recent LQCD computation of the corresponding
helicity form factors [6,31]. We have shown that in the
near-zero recoil regime, this Oðαs;ΛQCD=mcÞ HQET
scheme describes reasonably well, taking into account
systematic uncertainties, the results for the total of 24
form factors obtained in the LQCD studies of
Refs. [6,31].
We have found that the differences between Δ1 and

−Ω1 are small compared to any, Δ1 or Ω1, of these
leading IW functions, and can be naturally attributed to
OðΛQCD=mcÞ contributions. This gives some support, or
at least does not contradict, to the scenario in which the
Λcð2595Þþ and Λcð2625Þþ resonances might form the

lowest-lying HQSS jPldof ¼ 1− doublet. However, we
have argued that the available LQCD description of
these two resonances is not accurate enough to disen-
tangle the possible effects of the Σcπ and Σ�

cπ thresh-
olds, located only a few MeV above the position of
these excited states, especially in the case
of the Λcð2595Þþ and Σcπ [27]. The claim made in
this latter reference that the Λcð2595Þþ and Λcð2625Þþ
resonances are not HQSS partners cannot be discarded
using the LQCD data studied here. To clarify this
problem, new and more precise LQCD simulations
capable of elucidating the role played by the Σcπ and
Σ�
cπ channels and that make use, not only of three-quark

interpolating fields, but also of other operators with
larger overlaps to hadron-molecular degrees of freedom
will be required.
Finally, we have naturally given an explanation to the

large deviations, near zero recoil, of the
dΓ½Λb→Λ�

c;1=2− �=dω
dΓ½Λb→Λ�

c;3=2− �=dω
ratio from 1=2, value predicted in the mQ → ∞ limit
assuming that the Λ�

c;1=2− and Λ�
c;3=2− are the two members

of the jPldof ¼ 1− HQSS doublet. We have related these huge
HQSS breaking corrections, not necessarily to just big
values of the Δ2ðωÞ=Δ1ðωÞ ratio of subleading to leading
IW functions, but also to the S-wave character of the
contributions to the Λb → Λ�

c;1=2− decay amplitude driven
by Δ2ðωÞ.
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APPENDIX A: LQCD FORM FACTORS

The relations between the form factors in Eqs. (1) and (2)
and the LQCD ones computed in Ref. [31] are for
Λb → Λcð2595Þþ,
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where q ¼ p − p0, s� ¼ ðmΛb
�mΛ�

c
Þ2 − q2 and mbðmcÞ is the mass of the bðcÞ quark. The equations of motion of the

heavy quarks have been used to derive the scalar and pseudoscalar form factors.

APPENDIX B: HQET PREDICTIONS FOR THE FORM FACTORS

The nonvanishing form factors in HQET up to Oðαs;ΛQCD=mcÞ read
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α̂sÞΩ1 þ ðω − 1ÞΩ2: ðB1Þ
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The numerical inputs for the radiative corrections are
αð ffiffiffiffiffiffiffiffiffiffiffiffi

mbmc
p Þ ¼ 0.26 and z ¼ mc=mb ¼ 1.38=4.78 ∼ 0.29

as in Ref. [7]. The form factors not listed above, i.e.,
l̃V4

, l̃A4
, l̃T1

, l̃T5
, l̃T6

, vanish at this order. The radiative

corrections produce small effects, of the order of few
percent, in the HQET predictions. To illustrate this, we
give in Table I the values of α̂sCΓi

ðω ¼ 1Þ obtained from
Appendix A of Ref. [42].
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