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Matching the B-meson quasidistribution amplitude in the RI/MOM scheme
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Within the framework of large-momentum effective theory, the light-cone distribution amplitude
(LCDA) of the B meson in heavy-quark effective theory can be extracted from lattice calculations of the
quasidistribution amplitude through the hard-collinear factorization formula. This quasiquantity can be
renormalized in a regularization-independent momentum subtraction (RI/MOM) scheme. In this work, we
derive the matching coefficient which connects the renormalized quasidistribution amplitude in the
RI/MOM scheme and the standard LCDA in the MS scheme at one-loop accuracy. Our numerical analysis
verifies the feasibility of the RI/MOM scheme for renormalizing the B-meson quasidistribution amplitude.
These results will be crucial for exploring the partonic structure of heavy-quark hadrons.

DOI: 10.1103/PhysRevD.106.114019

I. INTRODUCTION

B-meson light-cone distribution amplitudes (LCDAs)
in heavy-quark effective theory (HQET) are the indispen-
sable ingredients for establishing QCD factorization
theorems of exclusive B-meson decay amplitudes and
for experimental data analysis [1-5]. Defined as the light-
cone matrix elements of the nonlocal HQET quark-gluon
operators, they describe the nonperturbative strong inter-
action dynamics of the B-meson system. Although there
has been much progress in perturbative calculations
concerning B-meson decays in recent years [6—16], our
limited knowledge of B-meson LCDASs has become the
major stumbling block for precision predictions of the
B-meson decay observables. Therefore, currently, a sig-
nificant task in B physics is improving the accuracy of
B-meson LCDAs.

Despite its importance, calculating LCDAs from the first
principles of QCD has been a challenge. Model-indepen-
dent properties of the leading-twist B-meson LCDA
&7 (w, p) and its first inverse moment A3 (1) have received
considerable attention lately [17-21]. By contrast, non-
perturbative determinations of ¢} (w, u) have been mainly
performed in the framework of QCD sum rules or the
Dyson-Schwinger equation (DSE) [22,23], whereas both
theories have their own drawbacks. In the former, the light-
cone separation between the effective heavy-quark field
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and the light-antiquark field needs to be sufficiently small
to guarantee the validity of the local operator product
expansion for the HQET correlation function under dis-
cussion. In the latter, the DSEs are essentially equations of
motion corresponding to the Green’s function whose
solution requires accurate knowledge of the B-meson wave
function. Therefore, it is evident that determining the
momentum dependence of B-meson LCDAs with model-
independent techniques is of top priority in B physics.
Being nonperturbative in nature, LCDAs intrinsically con-
tain low-energy degrees of freedom and thus cannot be
evaluated in perturbation theory.

Nonperturbative methods such as lattice QCD offer an
alternative way out. Based on first principles, lattice field
theory uses the QCD Lagrangian to simulate the strong
interaction using Markov chain Monte Carlo methods. In
the heavy-quark sector, the relatively large mass of the
bottom quark (m;, ~5 GeV) makes it rather difficult to
perform conventional lattice simulations since practical
limitations usually cannot permit the use of a sufficiently
small lattice spacing a to properly control discretization
errors, which necessitates the use of effective field theories
such as HQET and nonrelativistic QCD approaches to
lattice calculations of the properties of hadrons containing
heavy quarks [24,25]. Thanks to long-term efforts from the
community, a complete and practical method is known to
nonperturbatively renormalize the HQET and match it to
QCD in lattice gauge field theory [26-30]. The encourag-
ing results already obtained with the lattice HQET tech-
nique bring us confidence for performing the numerical
simulation of the leading-twist B-meson LCDA ¢ (w, ).
However, the dependence of the LCDA correlator on the
light-cone coordinate makes it essentially unfeasible to
directly calculate it on the lattice, which is constructed in
Euclidean space with imaginary time.
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A promising approach to circumvent this problem
was proposed under the name of large-momentum
effective theory (LaMET) [31,32]. The essential strategy
of this novel proposal resides in the construction of a
time-independent quasiquantity which, on the one hand,
can be readily computed on a Euclidean lattice and, on
the other hand, approaches the original hadronic dis-
tribution amplitude on the light cone under a Lorentz
boost. The encouraging results obtained in the frame of
LaMET indicate that this formalism allows for a bright
future to systematically compute a wide range of
“parton observables” with the demanding computational
resources and the tremendous development of new
techniques and algorithms [33-63]. In view of the
significance of B-meson LCDAs and the validity of
LaMET, more attentions should be devoted to determin-
ing B-meson LCDAs in the frame of LaMET, and there
have been some preliminary researches [64—66].

Based on LaMET, the procedure of calculating the
B-meson LCDA from lattice QCD can be divided into
three steps: 1) lattice simulation on the B-meson
quasidistribution amplitude; 2. renormalize the quasidis-
tribution amplitude in a specific scheme; 3. match the
renormalized quasidistribution amplitude to the LCDA
which is usually renormalized in the MS scheme. In this
paper, we focus on the second and third steps. With
increasing computational resources, the renormalization
process will be a key factor to improve the precision of
the B-meson quasidistribution amplitude. The authors of
Ref. [64] constructed the quasidistribution amplitude
@} (&, ) and renormalized it in the MS scheme. One of
the standard methods to renormalize operators in lattice
QCD is the regularization-independent momentum sub-
traction (RI/MOM) scheme which essentially belongs to
momentum subtraction schemes in quantum field theory.
As a nonperturbative method, it has proven to be
practical in the frame of LaMET and gained great
popularity in recent years [67-70] (see Refs. [71-74]
for other practical approaches). The multiplicative renor-
malizability of the constructed quasi-HQET operator to
all orders in perturbation theory has been demonstrated,
which enables a nonperturbative renormalization such as
the RI/MOM scheme. This is a crucial step in the
application of extracting the B-meson LCDA in lattice
simulations. After being renormalized in the RI/MOM
scheme, the B-meson quasidistribution amplitude can be
matched to the usual B-meson LCDA through the
factorization formula. A perturbative matching coeffi-
cient appearing in the formula that converts the B-meson
quasidistribution amplitude in the RI/MOM scheme to
the B-meson LCDA in the MS scheme is not available

yet. One of the main motives of this paper is to calculate
this coefficient at one-loop accuracy.

Our work is an extension of a series of previous
works. The B-meson quasidistribution amplitude ¢} (&, 1)
renormalized in the RI/MOM scheme and the perturbative
matching coefficient entering the hard-collinear factori-
zation formula are presented. Since the renormalized
matrix elements in the RI/MOM scheme are independent
of UV-regularization choices, we carry out this matching
calculation with dimensional regularization for conven-
ience. These results will be crucial to exploring
the partonic structure of heavy-quark hadrons in the static
limit.

The rest of this paper is organized as follows. In Sec. II
the leading-twist (twist-2) LCDA and quasi-DA as well as
the RI/MOM scheme are briefly reviewed. In Sec. Il we
present the factorization formula, followed by the calcu-
lation of the renormalized quasidistribution amplitude and
the derived matching coefficient. In Sec. IV we analyze
these results and give perspectives for lattice calculations; a
numerical comparison between the B-meson quasidistri-
bution amplitude obtained in the RI/MOM scheme and a
modeled B-meson LCDA is presented. We conclude in
Sec. V. A few more details about the calculation of the
renormalized quasidistribution amplitude are included in
the Appendix.

II. B-MESON (QUASI)DISTRIBUTION
AMPLITUDES AND RI/MOM SCHEME

The momentum-space distribution function of the
leading-twist LCDA ¢} (w, ) can be deduced from the
Fourier transformation of its form in coordinate space [22],

1 [+o ,
titon) =, [ dnem i -ien). (1)

where 7 is the light-cone coordinate with 7> =0, and
&5 (. 1) is the leading-twist LCDA in coordinate space
with the definition

if5()mpds (n. p)
= (0/(gW..)(na)itys(Wih,)(0)|B(v)). (2)

The soft light-cone Wilson line is given by W, (yi) =
P{Explig, ["., dxii - A(xit)]} and fp(u) is the static decay
constant of the B meson [75].

We employ the following definition of the B-meson
quasidistribution amplitude:
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ifg(it)ympof (&, 1)
= /_:o ;l—;ein:~v57(0|(C_]WC)(TVLZ)#ZVS(WIhL,)(0)|B(U)>_
(3)

Here [i is a renormalization scale for the quasidistribution
amplitude whose definition depends on the renormalization
scheme we choose. One can see that ¢}, (&, fi) is constructed
from the spatial correlation function of two collinear
(effective) quark fields with n, = (0,0,0, 1), and we work
in a Lorentz-boosted frame of the B meson in which
ii-v>n-vandset v;, = 0. Unlike the B-meson LCDA
defined in Eq. (1), which is invariant under a boost along
the z direction, the quasidistribution amplitude changes

|

Zo (@ kg s M) {01 (@W ) (zn )t ys (Wi, ) (0)1bg (k) e, = (O1@W ) (xn ) ys(WEh, ) (0)16G (ki) s

where pp is the renormalization scale. For convenience,
hereafter we simply denote {fi} = {k* = —u%, k* = ki }. It
should be stressed that the renormalization condition is
applied to the matrix element, not the quasidistribution
itself. In order to get the renormalized quasidistribution,
one needs to Fourier transform this matrix element after-
wards. The operator in Eq. (4) is not O(4) covariant;
therefore, in addition to ug, one needs another scale
parameter k to pin down the renormalization condition.
A denotes the UV cutoff, in the case of dimensional
regularization A = 1/e.

We denote the bare correlator for the B meson on the
lattice as

hp(z.k5,1/€) = (01(g, W) (zn)b.ys(Wih, ) (0)[b (k).
(5)

which is renormalized as

hi(. ke {RY) = Zoy (. {fi}, 1/€)hy(z.k%, 1/e). (6)

One advantage of the RI/MOM scheme is that, although the
bare matrix element and the renormalization factor Zgy,
depend on the choice of regularization scheme, the renor-
malized matrix element does not. Besides, the logarithmic
UV divergence related to the self-energy of the quark and
the linear divergence arising from the self-energy of the
Wilson line have been delicately discussed in Ref. [42]. All
of the UV cutoff dependence cancels out in Eq. (6) due to
the multiplicative renormalizability of the quasidistribution
amplitude.

dynamically under such a boost, which is encoded in its
nontrivial dependence on the heavy-quark velocity ».

It is of vital importance to show that the nonlocal matrix
element in Eq. (3) will renormalize multiplicatively to all
orders in perturbation theory when applying the lattice
regularization scheme since this feature will facilitate the
lattice QCD simulation substantially. The authors of
Ref. [64] demonstrated this multiplicative renormalizabil-
ity, which enables the RI/MOM scheme to be utilized in the
B-meson quasidistribution amplitude ¢ (&, it). Following
the strategy in Refs. [49,50], the RI/MOM renormalization
factor Zgy; is determined nonperturbatively on the lattice
by imposing the condition that the quantum corrections of
the correlator in an off-shell quark state vanish at the scales
k? = —u% and k* = k&,

(4)

K=k

|

Afterwards, by Fourier transforming the renormalized
matrix element /g(7, k%, {i}) to momentum space, one
can work out the RI/MOM matching coefficient. This
issue will be elaborately discussed in the next section.

III. MATCHING BETWEEN QUASIDISTRIBUTION
AMPLITUDE AND LIGHT-CONE
DISTRIBUTION AMPLITUDE

We now proceed to determine the perturbative match-
ing coefficient that converts the renormalized B-meson
quasidistribution amplitude in the RI/MOM scheme to
the renormalized B-meson LCDA in the MS scheme.
Following the construction in Ref. [64], the hard-
collinear factorization formula is

ob (& 5) = / ® doH(Eo.n, - v 7)) (0.0)

+0 (—AQCD ) .
n, - vé

For convenience, hereafter we subsequently denote n, - v
as v°. The matching coefficient H denotes the difference
in the UV behavior of the quasiquantity and the light-
cone one (one can resort to the recent reviews in
Refs. [55,56] for more details). Thanks to the asymp-
totic freedom, this difference can be calculated using
perturbation theory in QCD, which makes it possible to
extract light-cone parton physics from quasiquantities.
Notably, the matching coefficient H depends on the
choice of the renormalization scheme for the quasidis-
tribution amplitude.

(7)
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FIG. 1. One-loop corrections to the quasidistribution amplitude @} (&, u): the effective HQET bottom quark is represented by the
double line, and the spacelike Wilson line is indicated by the dashed line.

To determine the matching coefficient at the one-loop level, we replace the B-meson state with a heavy b quark plus an
off-shell light-quark state in Eqs. (2) and (3). Then, the matrix elements with the quark state as the initial
state can be calculated in perturbation theory. We carry out the calculation using the off-shellness of the light quark
as an IR regulator and dimensional regularization with d = 4 — 2¢ as the UV regulator.

The one-loop corrections to the quasidistribution amplitude of ¢} (&, i) are shown in Fig. 1. The result at tree level is

%T(O)(g) = 6(£ — k), where k = k?/v7. We denote the result for the bare quasidistribution amplitude at one loop as

(p;‘ga)re(f, u), which was calculated in Ref. [64]:

<,;(§ )< k+2&In = ) [ ] +[ﬁ<%—ln4+lnﬁ>]@ (6 <0)

+(1) _aCp 1 7 4R 2 7
goB,baIe(gnu) _? l}(f—l}) (25—]{—211’1 ) ) + |:]~(—_§:|®+ §—k<——ln4—|—ln 2( e ) o (0 < ‘f< k)
1 7 & 2 2 7
e (k 2§1n§_1~{> + [{:_4 + {( +1In4 +21In 0% 4 In o= k)> . (E>k)
a,C ~
+ = f(@)5(& k). (8)
v

Here we assign v# = (¢°,0,0, v%), with »* > 1. Applying the default power-counting scheme, one can readily identify
that the hard correction from the one-loop box diagram in Fig. 1(d) is power suppressed. Recall that we have used the
off-shellness of the light quark —k? as an IR regulator; this logarithmic IR singularity is identical for both quasidistribution
amplitude and LCDA, leaving the matching coefficient H independent of —k?, as it should be.

The plus distribution is defined by (with a > 1)

(F(£.0)}g = F(&.) - 5(¢ - o) / “ diF(e.1). 9)

The subtraction-scheme-dependent term in Eq. (8),

fla) = -2(1 +1n (4(a — 1)p2)) 2 —”;+ 4(In2)? +In 138 +(Ina—1y

+2Ilna+Inv?(3 +2In4 +Inv?) + In(4v??)(3In(a — 1) — 2Ina)

_R2 y_ 2
+HPL[{—,+},-1] — 21117{—]; (1 +In py ) + lni—( +1n(4(a - 1)v%2)), (10)

will compensate the same scheme dependence of the newly introduced plus distribution for the convolution of the hard function H
with a smooth test function. An advantage of introducing the above-mentioned plus function is that it allows to implement both the
ultraviolet and infrared subtractions for the perturbative matching procedure simultaneously.
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Having the bare result in hand, we next discuss the
RI/MOM renormalization of ¢} (&, fi). The renormalized
correlator fig(z, k%, {ji}) was already given in Eq. (6),
which must be Fourier transformed into £ space to obtain
the distribution F (&, k%, {ji}):

Fleke i) = [ SEe ek, @) (11

V(k?, {ji}) is the local correspondence of F(& k%, {fi}),
which is given by hg at 7 = 0,

V(ke {ii}) = hg(r = 0.k, {Ai}). (12)

With F (&, k%, {ii}) and V(k?, {ji}) calculated on the lattice,
the B-meson quasidistribution amplitude can be obtained as

(e (1)
(e = 0.8 (i)

The calculation procedure of the renormalization factor
Zowm 1s similar to the previous one in Ref. [64] but a bit
more complicated, since the Feynman diagrams in Fig. 1
are calculated at a specific scale {i}. We then proceed to
derive the expression for the renormalized quasidistribution
amplitude @ (&, i) from Eq. (13). Taking advantage of
Eq. (6), we have

o fdr e om(z. {fi}, 1/e€) hg(z, k3, 1/€)
ph (&) =v /2”6 s ZOM(Ov IRTEIROURTE
(14)

d
oiten = [ Srer (13)

o= [ (i

Zofv[(o’ {/4}7 1/5)

The renormalization constant is determined by the renorm-
alization condition in Eq. (4),

Zow(w. {A}.1/€) hy(z. {A}.1/€) _ hp(z.{fi}. 1/¢)
Zom(0.{}. 1/€) hg(0. {7} 1/€)  hg(0. {7} 1/€)] e
= ek, (15)

in which

Foe A} 1/O) [y e
o= [ e g ). a6)
Here ¢} - is the additive counterterm contribution of the
quasidistribution amplitude, as will be clearly seen sub-
sequently. Substitute Eq. (16) into Eq. (15), one immedi-
ately obtains the ratio of the nonlocal and local
renormalization constants at one loop,

(Zah(r, {A}, 1/e>) W
Zom(0.{a}. 1/e)

- / de e R i (& a7y, (17)

Zoy(t i (0)
as well as (ZS'MEO?;B)

Finally, the renormalized quasidistribution amplitude in
Eq. (14) can be expanded at one-loop order,

=1 at tree level.

) GEEE) (i) )

dT ! 1 i —ik*t
“”Z/ ¢ 5/ de e E k) U (& (7)) e T + i) (& k)

1 ~ ~
= (p;.(bla)re(é’ kz) - (p;(C)I‘(é + kR -k, rR)'

Here kg = k%/v° and we define the dimensionless ratio
2
H
rg="%. (19)
kg

It is worth stressing the difference between rp and
p=—k>/k%. As indicated, we keep —k> small as the IR
regulator, i.e., p < 1. Thus, we can identify the logarithmic
IR divergences by Taylor expanding in p, making
the calculation much more convenient. However, the

(18)

|

renormalization scale up is not necessarily small, which
makes a Taylor expansion in rp unfeasible when calculat-
ing the renormalized quasidistribution amplitude, i.e.,
calculating the counterterm of the bare quasidistribution
amplitude. More pertinent details on this issue can be found
in the Appendix.

Next, we consider the B-meson LCDA ¢ (w, i) whose
IR divergence is regulated by the same light-quark off-
shellness —k?. With the definition in Eq. (1), one can get the
renormalized ¢} (w, u) at one loop in the MS scheme:
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0 (0 <0)
® 2]}2 ~
+(1) _ a;Cr |:_ (w—k)k w(ic—lla))(—kz):| (0 o< k)
$p (@, p) o ®
2 ~
—LIn (w’i %)2] (w > k)
®
a,C 5221
> 24+ —+=(1 -1 Ina)? + Liy(1 —
k2 Sk S n(a= D 4 () 4 Lis(1 -
IS ap’ 2% .
+ (Ina—1)In <_k2> —In(a—=1)In <_k2> + (ln) ]5((0 — k). (20)
u

The results shown in Egs. (20) and (8) do not contain the
contribution of the box diagram since the collinear con-
tribution to the bare quasidistribution amplitude in the box
diagram is precisely reproduced by the corresponding
diagram for the B-meson LCDA at one loop, i.e., in the
unphysical region (¢ < 0) the contribution of the box
diagram to the quasiquantity is suppressed by 1/v2, and
in the physical region (@ > 0) the contributions to both the
quasiquantity and LCDA are exactly the same. As for the
counterterm in the box diagram for the quasidistribution
amplitude in the RI/MOM scheme, as long as we work in
the region v?2£>> 1/ry the contribution can be disre-
garded. In fact, it has also been demonstrated that the
box diagram does not contribute in the pseudodistribution
approach either [76].

Considering the hard-collinear factorization formula in
Eq. (7), the matching coefficient H is then determined
by the difference between the momentum-space quasi-
distribution amplitude and the LCDA. We expand

|

H(E w,v5,u,{i}) =6(E—w)+ g1 (& w,u) —

@& w {i})+ SCFln V3 <3+4ln

¢ (& 1), ¢ (0. p), and H(E 0, 0% u, {i}) in series of
ay up to the one-loop level:

i) = 8E=K) + 0y (E0) + O(),

i (w.p) = 8(0 = &) + ¢ (0.p) + O(?),

H(E o, 0%, p, {i}) = 6(€ — @) + HY (&, w, v*, u, {fi})
+ O(a?). (21)

Substituting the expressions above into Eq. (7),

(& .07 ATyt = 05 () = b5 (@40

(22)

The renormalized (p#])(f,ﬁ) and 45;(])(0), u) have
already been calculated, and therefore the matching coef-
ficient can be derived from Eq. (22),

P LCEONC)

where
g (0 - 26 %) <0
g (& wp) = aZiF [w(l %) <a) 2§ +2¢In e uw §)> o 0<é<w) (24)
[a,((,}_& ( w+ 2wln( 7+ 20 w)L &> )
and
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1
w—&

A CF

96w, {i}) =

Bl

As expected, H does not depend on the IR regulator —k?
since the logarithmic IR singularities cancel between the
quasidistribution amplitude and the LCDA. The O(1/v%?)
contributions to the matching coefficient H are dropped,
and the »* expansion is subtle and thus should be treated
carefully and systematically. One can tell that the expres-
sion for H is more complicated than that in Ref. [64] where
the quasidistribution amplitude was renormalized in the MS
scheme; this is natural since the renormalization condition
in the R/MOM scheme has introduced new momentum
scales {fi}. In Sec. IV we will make a comparison between
these two matching coefficients.

IV. PERSPECTIVES FOR LATTICE
CALCULATIONS

We discuss the perspectives for lattice calculations based
on numerical analysis. An important step in obtaining the
B-meson LCDA in HQET based upon LaMET is to
perform the lattice simulation of the quasidistribution
amplitude @} (&, /i) in the moving B-meson frame with
v* > 1. To this end, it will be instructive to study how the
matching coefficient in Eq. (23) changes the LCDA, which
is helpful for understanding the characteristic feature of
@3 (&, i1). We start with a well-known phenomenological
model of ¢} (w,u) motivated by the HQET sum rule
calculation [1],

¢1J§<w7/l =1.5 GeV) = %g_w/wo’ (26)
o

where the reference value of the logarithmic inverse
moment @y, = 350 MeV is taken for illustrative purposes.
With the expression for ¢} (w, #) above and the factoriza-
tion formula in Eq. (7), we can depict the shape of the
quasidistribution amplitude ¢ (&, iz). For our study, we set
the default values kj =2 GeV, y = 1.5 GeV, and rg = 2.
The factorization formula in Eq. (7) requires a large v° in
order to suppress the O(1/v%?) corrections; here, we take
v* = 10. Figure 2 shows comparisons between the RI/
MOM quasidistribution amplitude (blue dashed line), the
MS quasidistribution amplitude (orange dashed line), and
the modeled LCDA of the B meson (red solid line). One can
see that both the RI/MOM and MS quasidistribution

i —(4v* (¢ —w) — kix(rg — 4)) 1H%)]

(§<CO—]~<R)

Lk;\/ﬁ(w—a (_2\/ I —rg(ki +20°(§ — )

52

|
amplitudes are close to the B-meson LCDA, and the
radiative tail at large and negative momentum ¢ that
develops in the MS quasidistribution amplitude does not
emerge in the RI/MOM quasidistribution amplitude, which
is encouraging on account of the convergence of perturba-
tion theory in the RI/MOM scheme. In addition, in contrast
to the quasiparton distribution function in Ref. [42],
no peaks arise in the momentum region £ < 0. Next,
we consider the dependence of the RI/MOM quasidistri-
bution amplitude on rg and kj. We fix ki =2 GeV,
u=15GeV, and »* =10 and vary the parameter
rg = {1.5,4,12} in the upper panel of Fig. 3. One can
tell that the quasidistribution amplitude is pretty sensitive to
the variation of rp. It seems that with larger rg, the
quasidistribution amplitude moves away from LCDA. In
the lower panel of Fig. 3 we vary k; = {1,2,4} GeV with
fixed values of rg = 2,4 = 1.5 GeV, and v* = 10.

LCDA

quasi DA (MS)

quasi DA (RI/MOM)

-0.5E i i i a |
-1 0 1 2 3 4 5

w(GeV)

FIG. 2. Shapes of the B-meson quasidistribution amplitude
@4 (& = w, k% =2.0 GeV, rg = 2) in HQET obtained from the
hard-collinear factorization theorem in Eq. (7) and from the
nonperturbative model of ¢} (w,u = 1.5 GeV) presented in
Eq. (26). The red solid line represents the nonperturbative model
of ¢}, whereas the corresponding quasidistribution amplitudes
@3 normalized in the MS and RI/MOM schemes are represented
by the orange dashed and blue dashed lines, respectively. The
shadow region of |w| <200 MeV is excluded due to the
inapplicability of the hard-collinear factorization formula for
[v*w| < 2.0 GeV.
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15l — LCDA
7>
N .
,’l 2 quasi DA (rg=1.5)
I N\
1.0} F \
[l W mm——— quasi DA (rr=4)
i/
\\\ ----- _ . -
osl \\\ quasi DA (rg=12)
i ‘\‘\\
N
\—‘:; ‘\.\\\
0.0}f= Tl T ——
0.0 0.5 1.0 1.5 2.0 2.5
w(GeV)
15l — LCDA
AN
i’ N quasi DA (ki=1 GeV)
1.0} [ % 1
v/ X - quasi DA (ki=2 GeV)
o5} [
l
0.0
0.0 0.5 1.0 1.5 2.0 2.5
w(GeV)
FIG. 3. Comparisons between the LCDA and the quasidistri-

bution amplitude obtained at different rz’s (upper panel) and k3’s
(lower panel).

Finally, we discuss the dependence on the heavy-quark
velocity v°. We hold k} =2 GeV, p =15 GeV, and
rg = 2 and vary v* = {3, 10,20} in Fig. 4. The differences
between quasidistribution amplitudes depicted with differ-
ent v° values decreases rapidly as w increases. When

15} ,."\\ ) " —— LCDA
,',I‘\“
] \‘\ quasi DA (vZ=3)
ol 8 XY
10} [} \
l, \g H Z
w/ N @ TTm== quasi DA (v*=10)
I.! W\ =e=- = quasi DA (v?=20)
0.5} , \
N\,
0.0 0.5 1.0 1.5 2.0 2.5
w(GeV)

FIG. 4. Comparisons between the LCDA and the quasidistri-
bution amplitude obtained at »* = 3 (orange dashed), v* = 10
(blue dashed), and »* = 20 (purple dashed).

@ > 0.8 the three lines almost merge into one, which
was also observed in the study of the quasiparton distri-
bution function using different P* values [42], suggesting
that the RI/MOM scheme is a promising approach with
favorable convergence at large .

It should be stressed here that the current lattice HQET
studies mainly focus on the spectroscopy, decay constants,
and transition form factors of heavy mesons. For the case of
nonlocal heavy-light currents, the situation could be more
complicated. On the one hand, we should construct a fully
nonperturbative renormalization program for the currents
(this is what this work is trying to partially address). On the
other hand, quantifying the size of discretization errors
beyond the naive power-counting analysis is also called for,
especially when we need a rather large momentum for the
heavy meson. This is an issue that should be studied further
in the future.

In addition, with increasing computational resources,
one can further decrease the lattice spacing to
a <0.044 fm, at which point even bottom quarks could
be simulated with the same action as up/down quarks, in
principle, although this would be relatively computation-
ally expensive. Thus, we can pursue an alternative deter-
mination of the B-meson distribution amplitude ¢} (w, 1)
from the numerical simulation of the following Euclidean
quantity directly in QCD:

ifsmpyi (x. p)
— /_+oo ﬂein:-pxr<0|(Z]WC)(Tnz)yiz}/s(WIb)(O)|B(p)>_

o 27
(27)

From the perspective of continuum QCD, the newly
introduced distribution amplitude y (x, 1) can be further
matched onto the Euclidean HQET quantity ¢ (&, u) by
integrating out the short-distance fluctuations at the heavy-
quark mass scale, in analogy to the hard-collinear factori-
zation formula obtained in Refs. [12,77].

In conclusion, the numerical analysis in this section
indicates that the RI/MOM scheme is suitable for renorm-
alizing the B-meson quasidistribution amplitude. The
derived one-loop matching coefficient yields only a rela-
tively small effect on the modeled B-meson LCDA, which
provides more confidence about extracting the B-meson
LCDA perturbatively and model independently in the
future. It should be stressed here that our major objective
is to explore the opportunity of accessing the light-cone
dynamics of the B-meson leading-twist distribution ampli-
tude by simulating the RI/MOM quasidistribution ampli-
tude on the lattice. This is a rather preliminary attempt,
and the numerical simulations of such quasidistribution
amplitudes are still at an exploratory stage, even for the
ones suitable for the determination of the light-meson
distribution amplitude. Improved methodologies to control
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both the statistical errors and systematic uncertainties
are called for, as well as further development of new
algorithms and computing techniques on the lattice (see
Refs. [55,56,78,79] for details on lattice calculations). We
would also like to remind the reader that a hybrid
renormalization procedure was recently proposed for the
quasiparton distribution function, which utilizes the advan-
tages of the RI/MOM and ratio schemes at short and large
distances simultaneously [51]. The study of the feasibility
of this renormalization procedure applied to the B-meson
quasidistribution amplitude deserves more attention.

V. CONCLUSION

LaMET theory has provided a natural way to calculate
parton distributions in an interval of momentum scales,
similar to extracting parton distributions from experimental
data at finite energies. Within the framework of LaMET,
we derived the matching coefficient which connects the
renormalized quasidistribution amplitude in the R'MOM
scheme and the standard LCDA in the MS scheme. Our
numerical analysis indicates that the one-loop matching has
a nice UV convergence and reasonable magnitude as a
perturbative correction, which shows that the theoretical
uncertainty caused by perturbative matching is control-
lable, thus making the RI/MOM scheme feasible in lattice
applications. We believe that our result has the potential to
considerably improve the convenience and accuracy of
extracting the B-meson LCDA from quasiquantities, and
hence to promote the development of a first-principles
determination of the highly desired B-meson LCDA, which
is undoubtedly of the highest importance for exploring the
delicate flavor structure of the Standard Model and beyond
at the LHCb and Belle II experiments.

To further increase the accuracy of our results, one
can study the yet unavailable higher-order perturbative
corrections to the short-distance matching coefficient
and construct the subleading-power factorization formula
for the quasidistribution amplitude, which we leave for
future works.
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APPENDIX: RENORMALIZATION OF B-MESON
QUASIDISTRIBUTION AMPLITUDE

First, consider the amplitude of the heavy-quark sail
diagram in Fig. 1(b),

dg 11 1

b 7 ~2€,.,2 q

() = I CrE0 / 2 g
( _

d 2
X (8(&—k+ q°) = 6(& - k).

Here the delta functions §(& — k + ¢%) and 6(£ — k) in the
parentheses in Eq. (Al) come from the Fourier trans-
formation with respect to the variable 7 in the “real” and
“virtual” diagrams, respectively. Notably, all of the k&
dependence comes from the delta function, while the other
part of the integrand is independent of k* and p = —k?/ k%,

(A1)

indicating that the corresponding counterterm (p;(g%(cf +

kg —k, rg) in Eq. (18) remains unchanged when the
RI/MOM renormalization condition is imposed at the
specific scale {ji},

d

~ - ) . d
(p;’(é’%(é: + kR - k, rR) = lg%CFﬂZE’UZ /

X
—
O
—~
e
|
bl
_|_
_Q
N
~—
|
=
—
e
|
bl
~—
~—

Therefore, the contribution of the heavy-quark sail diagram
cancels out after renormalization. This feature which
appears in the RI/MOM B-meson quasidistribution ampli-
tude considerably simplifies our calculation and facilitates
a relatively small effect of the final one-loop matching
coefficient. A similar cancelation also appears in the
Wilson line self-energy diagram in Fig. 1(c),

dig 11

@i pre (6 1) = =i i / T

X(6(E—k+q°)—06(E—k)). (A3
Once again, except for the delta function, the integrand in
Eq. (A3) is independent of k° and p, indicating that the
contributions of the bare term and counterterm cancel out
after RIMOM renormalization.

As for the box diagram in Fig. 1(d), the result for the bare
quasidistribution amplitude reads

w}ﬁL@JO=522F{—%@€ffn§f%e@—%)
+$1n_~—k29(0 <&E<k)+(0)0(E< 0)}
k(k—¢) " ¥
+O(1/022). (A4)

It is worth noting that the contribution to the bare
quasidistribution amplitude in the box diagram in the
physical region [0(£—k) and (0 < & < k)] is exactly
the same as the corresponding box diagram for the B-
meson LCDA, and the contribution in the unphysical
region (& < 0) is suppressed by 1/v? (the contribution of
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the B-meson LCDA in the unphysical region is 0). Besides,
the box diagram does not introduce any UV divergence and
therefore, despite of its intricate form, the corresponding
counterterm for the quasidistribution amplitude provides
only finite terms of O(1/v%?). To summarize the above, the
box diagram does not contribute to the matching coefficient
|

dig 11 1
22)" q* ¢* (q + k)*

(p;.(t;la)re(& /’t) = _lgs CF( ) / (

(k*(p - 2)

within O(1/9%) accuracy. In fact, it was already shown in
Refs. [64,66] that the box diagram does not contribute in
either the LaMET or pseudodistribution approach.

Finally, we consider the light-quark sail diagram in
Fig. 1(a). The expression for the bare quasidistribution
amplitude is

— G —q'\1=p)(8(E—k—qg*) =8 -k). (AS)

We have utilized a projection operator to deal with the Dirac matrix #(k)Cu,(p,) — Tr[l%/ M, $ys¥T’]. In addition to the
delta function, the other part of the integrand in Eq. (A5) has a k dependence. The result for the bare amplitude was already

calculated in Ref. [64].

As for the counterterm in the RUMOM scheme, it is determined by setting k> = —u% and k* = k%,

diq 1

a = = 1
¢§,%%(§+ kg =k, rg) = —ig;Cp(f)* /( )

1
2m) ¢

q* (q + kg)*

(K(re —=2) — " = ¢'\/1 = rg)(8( =k — ¢7) = 8(& — k).
(A6)

The r is not necessarily small, which makes a Taylor expansion in rp unfeasible in our calculations. After introducing the
Feynman parameter a and integrating the d — 1 dimensions of the integral momentum ¢, we have

BCT(5+kR_k rR)

2aSCF / /+oo

((ékq

S (¢ + k2 +alrg = 1) —rg) )T +€)

¢ (q% + 2k q7a + Kfa(a + rg — arg))rte

(A7)

Subsequently, we integrate out @ and ¢* and get the result for this counterterm, which will be incorporated into the final
result for the renormalized quasidistribution amplitude in Eq. (A8) below.

With all of the results shown above at one loop, the renormalized quasidistribution amplitude can be written as

- a,Cr -1 .
05 6) = 3(E =B+ (e F) = e, (1)) + S (3 4 Jate - B, (A8)
where
/2(51_12) <—i< + 2§1ngf> (6 <0)
- C ~ (2 ~
hi(€.k) = asz [1}(51—’?) (25 — k- 2§ln4’i—kz>} . (0<Eé<k) (A9)
[,.((;_%) (k - 251n;§1~{> . (&>k)
and
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1
£

=

1
E—k

5]

A7) (K — 4) + 40E(R - &) m£>

(& < k—kg)

[m (-2\/ 1- rR(k% + 27)Z(€ - ]}))

(F-fp<e<D) (A10)

5]

(&> k).

Inserting the renormalized quasidistribution amplitude ¢} (&, i) in Eq. (A8) and the renormalized LCDA ¢ (w, u) in
Eq. (20) into Eq. (22), we get the expected matching coefficient in Eq. (23).
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