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The dependence of the nucleon polarization in the reaction eþ þ e− → N þ N̄ þ π0 over different
invariant variables is derived for the nonresonant mechanism. The nucleon polarization is expressed in
terms of six invariant complex amplitudes, assuming the conservation of the hadron electromagnetic
currents and the P invariance of the hadron electromagnetic interaction. An inclusive experimental setup
when the proton (or the antiproton) and the pion are detected in coincidence is considered. Numerical
estimations are performed for the so-called normal polarization in the energy range from threshold up to
s ¼ 16 GeV2, using selected parametrizations of the nucleon electromagnetic form factors in frame of a
formalism derived in a previous work for the calculation of the unpolarized differential cross section.
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I. INTRODUCTION

The interaction between electrons and nucleons is
considered the cleanest probe to investigate the nonpertur-
bative aspects of quantum chromo dynamics (QCD), the
theory of the strong interaction. In a previous work [1], we
considered the reaction

eþðk1Þþe−ðk2Þ→Nðp1ÞþN̄ðp2Þþπ0ðkÞ; N¼p;n ð1Þ

that is currently accessible at BESIII [2]. This reaction
is the most simple “inelastic annihilation” reaction and is
very sensitive to the electromagnetic structure of the hadron
current. At electron accelerators, such as JLAB, MAMI,
and ELSA, huge experimental programs are based on
the reaction e− þ N → e− þ N þ π to determine the prop-
erties of baryon resonances and transition electromagnetic
form factors. All these experiments, including the crossing
symmetry related reactions induced by antiproton (that will

be investigated at PANDA (FAIR) [3]) and by pions (that is
the object of study at HADES [4]) bring strong constraints
on nucleon models.
The general formalism for the analysis of the annihilation

reactions (1) was derived in Ref. [1], assuming the con-
servation of the hadron electromagnetic currents and
the P invariance of the hadron electromagnetic interaction.
Under these assumptions, the matrix element, which is the
convolution of lepton and hadron currents, can be expressed
by six independent complex invariant amplitudes. This
statement remains true for different possible charge states
of the pion, nucleon, and antinucleon. The differential cross
sections and the different polarization observables including
single-spin beam asymmetry, the nucleon (antinucleon)
polarization, and the correlation between electron and
nucleon polarization states can be expressed, in the general
case, in terms of the bilinear combinations of these invariant
amplitudes. In Ref. [1], we thoroughly investigated the
contribution of the continuum (nonresonant mechanism; see
Fig. 1) to double and single differential distributions over
selected invariant variables in the case of unpolarized
particles. An important ingredient of these calculations is
the knowledge of nucleon form factors.
In the present work, this formalism is extended to

polarization observables. The earlier study of the phase
space in terms of invariant variables and the derived
analytical expressions for the corresponding invariant
amplitudes allow us to calculate also different polarization
observables. The importance of polarization observables
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cannot be overestimated, as shown by the proton form
factor measurements in the spacelike region. In the case of
elastic electron proton scattering the recoil polarization
method could be systematically applied only recently,
with the advent of high duty cycle, highly polarized
electron beams at Jefferson Laboratory [5]. This method,
suggested in Refs. [6,7] requires a longitudinally polarized
electron beam and the measurement of the transverse
polarization of a few GeV recoil proton (or of the spin
asymmetry with a transversely polarized target). The
precise determination of the electric to magnetic form
factor ratio, achieved by the JLab-GEP Collaboration
showed that the electric and magnetic distributions in
the proton are different, contrary to what was previously
assumed and gave rise to a deep revision of nucleon
models. In the timelike region, form factors are of
complex nature, and the study of polarization phenomena
is necessary for their full determination.
Much progress was recently done in this field: the near

threshold cross sections for the annihilation of eþe− into
proton-antiproton and neutron-antineutron were measured
at Novosibirsk [8,9]. Following the results obtained by the
BABAR Collaboration at SLAC [10,11] and the discovery
of periodic oscillations in the proton form factor in
Ref. [12], the BESIII Collaboration in Beijing enormously
contributed to several works, using initial-state radiation
[13,14] and the beam scan method [15]. Precise data in a
large q2 domain confirmed and completed the BABAR
data, providing also the first separation between electric
and magnetic form factors (in moduli) [15]. Precise data
on the neutron effective form factors have also been
published [16,17], highlighting similar oscillating behav-
ior, but shifted by a phase, in the neutron effective form
factors.
The magnitude of these oscillations is of the order of

10% above a smooth background that follows roughly a
dipole q2 dependence, as predicted by perturbative QCD.
The smallness of the oscillations and their regularity points
to an interference mechanism. Note, however, that two-and-
a-half damped oscillations are visible on the proton, while
the neutron data are less exhaustive. The nature of these
oscillations is not clarified yet: rescattering in the final state
[18], mixing of intermediate channels of different isotopic
spin [19], resonances [20], or interfering amplitudes [21].
Depending on their origin, it is not straightforward to state

if these oscillations play a visible role in the inelastic
channel of interest here.
In the present paper, we consider polarization phenom-

ena in the approximation of the nonresonant mechanism
(see Fig. 1), widely using the results of Ref. [1] concerning
the phase space of the final particles.
The hadron tensor for a longitudinally polarized

electron beam and polarized nucleon is explicitly
derived. In these conditions, we can investigate the
single-spin effects due to the polarization of the electron
beam (single-spin beam asymmetry) or to the polariza-
tion of the nucleon as well the double-spin observables,
i.e., the correlation between electron and nucleon
polarizations.

II. FORMALISM

In our analysis, we consider three different possible
independent polarization states of the nucleon which are
defined in Ref. [1] as longitudinal SL, transverse ST , and
normal SN . Our calculation follows different steps. First, we
obtain the full differential cross section over four invariant
variables

s1 ¼ ðkþ p1Þ2; s2 ¼ ðkþ p2Þ2;
t1 ¼ ðk1 − p1Þ2; t2 ¼ ðk2 − p2Þ2;

accounting also for the terms depending on the nucleon spin
states. Then, we perform the analytical integration over two
variables using the sets of limits defined in Ref. [1] and find
the spin-dependent double differential distributions over
the pairs ðs1; s2Þ; ðt2; s1Þ and ðs12; s1Þ; s12 ¼ ðp1 þ p2Þ2.
These distributions are derived taking explicitly into account
all particle masses (even the electron one).
The corresponding polarization of the nucleon

(longitudinal, transverse, or normal) is defined by the
ratio of the spin-dependent part of the cross section to the
spin-independent one. Performing one more integration,
we obtain the differential cross sections over one invari-
ant variable ðs1; s12; t2Þ and then the corresponding
single- and double-spin distributions for the nucleon
polarizations.
The full differential cross section of the process (1) can be

written in terms of the convolution of the leptonic and
hadronic tensors and of the final particle phase space as

FIG. 1. The simplest Feynman diagrams describing the continuum (nonresonant) contribution to the process (1): (a) with intermediate
nucleon and (b) with intermediate antinucleon.
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dσ ¼ α2

8π3q6
LμνHμνdR3;

dR3 ¼
d3p1

2E1

d3p2

2E2

d3k
2E

δðk1 þ k2 − p1 − p2 − kÞ; ð2Þ

where E1ðE2Þ is the nucleon (antinucleon) energy and E is
the pion one. It is possible to choose the coordinate system in
such a way that one of the final 3-momenta belongs to a
definite plane, for example, to the zx one. Such a choice, in
fact, corresponds to the integration over one azimuthal angle.
In this case, we can write the phase space dR3 in terms of the
invariant variables, namely, [22]

dR3 ¼
π

16ðs − 2m2
eÞ
dt1dt2ds1ds2ffiffiffiffiffiffiffi

−Δ
p ; ð3Þ

where Δ is the Gramian determinant (see Ref. [1] for the
details). Both the convolution of the tensors and the Gramian
determinant can be expressed through the variable q2 ¼ s
and the other invariants chosen for description of the phase
space. Moreover, the condition −Δ > 0 alone sets the
limiting range for these invariant variables.
The spin-dependent part of the hadronic tensor, in

the general case, has been obtained in Ref. [1] in terms
of the invariant amplitudes for the nonresonant mechanism.
We need to calculate its convolution with the leptonic
tensor, which contributes to single-spin effects. Using the
connection between the Dirac and Pauli form factors, F1

and F2, and the corresponding invariant amplitudes (see
Eqs. (26) in Ref. [1]), we have

LμνHðsÞ
μν ðSÞ ¼

4g2
π0NN̄Im½F1F�

2�
Mðk · q − p · q − q2Þ½ðk · qÞ2 − ðp · qÞ2�2 ½4k · qðk · qk1 · p − k · k1p · qÞðS1ðk1kqSÞ

þ S2ðk1pqSÞÞ þ S3ðkpqSÞ�; p ¼ p1 − p2; ðabcdÞ ¼ εμνλρaμbνcλdρ; ð4Þ

where S is the nucleon spin 4-vector, MðmÞ is the nucleon (neutral pion) mass, and

S1 ¼ q2ðq2 − p2 − 4M2Þ − 2k · qðq2 − 2M2Þ þ ðk · qÞ2 − ðp · qÞ2 − 4M2p · q;

S2 ¼ ðp · q − k · qÞ2 þm2q2;

S3 ¼ ðk · q − p · qÞfp · qðq2 þ p · qÞ½4ðk1 · kÞ2 þm2q2� þ ðk · qÞ2½4ðk1 · pÞ2 þ 4k1 · pk1 · qþ p2q2�
− k · q½q2k · pðq2 þ 2p · qÞ þ 4k1 · k½k1 · qp · qþ k1 · pðq2 þ 2p · qÞ��g
− q2k · qfðk · qÞ3 þ ðp · qÞ3 þ ðk · qÞ2ð4M2 − 2q2 − p · qÞ þm2q2p · q

þ k · q½q2ðq2 þ p2 − 4M2Þ − ðp · qÞ2 − 4M2p · q�g: ð5Þ

All the scalar products in Eq. (4) can be expressed via the invariant variables. Note also that

Im½F1F�
2� ¼

Im½GEG�
M�

τ − 1
; τ ¼ q2

4M2
: ð6Þ

Equation (6) shows that the nucleon polarization due to the nonresonant mechanism gives information about the phase
difference of the electric and magnetic form factors (GE and GM are the commonly used Sachs form factors [23], linearly
related to F1 and F2).
Let us consider the effect originated by the longitudinal polarization of the nucleon when the direction of its 3-vector

polarization (in the nucleon rest frame) is along n ¼ −q=jqj. In this case [1],

Sμ ¼ SLμ ¼ p1 · qp1μ −M2qμ
MK

; K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 · qÞ2 −M2q2

q
; ð7Þ

and the rhs of Eq. (4) simplifies as

LμνHðsÞ
μν ðSLÞ ¼ −

4g2
π0NN̄Im½F1F�

2�ðs1 þ s2 − 2M2Þðk1k2p1p2Þ
Kðs1 −M2Þ2ðs2 −M2Þ Iðs1; s2; t1; t2Þ; ð8Þ

with

Iðs1; s2; t1; t2Þ ¼ 2M4 þ ðs − 2m2
eÞðs1 þ s2Þ − 2s1s2 þ 2ðs1t1 þ s2t2Þ − 2M2ðsþ t1 þ t2 − 2m2

eÞ:
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If the nucleon is polarized in such a way that the direction of the 3-vector polarization (in the nucleon rest frame) is along
½q × ½k × q��=j½q × ½k × q��j, we have

Sμ ¼ STμ ¼ ðq2k · p1 − q · p1k · qÞp̃μ
1 þ ½ðq · p1Þ2 − q2M2�k̃μ

KN
; ãμ ¼ aμ −

a · qqμ

q2
; ð9Þ

with

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðμkp1qÞðμkp1qÞ

p
; N2 ¼ 2k · qk · p1q · p1 − q2ðk · p1Þ2 −M2ðk · qÞ2 −m2ðq · p1Þ2 þ q2M2m2:

In this case,

LμνHðsÞ
μν ðSTÞ ¼

g2
π0NN̄Im½F1F�

2�ðs1 þ s2 − 2M2Þðk1k2p1p2Þ
MKNðs1 −M2Þ2ðs2 −M2Þ2 Jðs1; s2ÞIðs1; s2; t1; t2Þ; ð10Þ

and

Jðs1; s2Þ ¼ 3M6 −M4ðsþ s1 þ 4s2Þ þM2½sðs1 þ s2Þ þ s22 − 3m2s� þ ðs − s2Þðm2s − s1s2Þ:
In terms of invariant variables, the following relations hold:

K2 ¼ 1

4
½ðs − s2Þ2 − 2M2ðsþ s2Þ þM4�;

N2 ¼ 1

4
f−2M6 þM4ðsþ s1 þ s2 þm2Þ −M2½sðs1 þ s2Þ − 2s1s2 −m2ð2s − s1 − s2Þ�

þm2½sðs1 þ s2Þ þ s1s2 − s2� −m4sþ s1s2ðs − s1 − s2Þg: ð11Þ

In both cases, the convolution of the leptonic and hadronic
tensors contains the product ðk1k2p1p2ÞIðs1; s2; t1; t2Þ.
Therefore, all the dependence on the variables t1 and t2
of the spin-dependent part of the full differential cross
section is contained in the factor Iðs1; s2; t1; t2Þ because the
factor ðk1k2p1p2Þ just cancels the Gramian determinant in
the phase space.
To calculate the corresponding double differential

ðs1; s2Þ distribution, one needs to integrate with respect
t1 and t2. This results in

Zt1þ

t1−

dt1

Zt2þ

t2−

dt2Iðs1; s2; t1; t2Þ ¼ 0: ð12Þ

For t1� and t2�, see Eqs. (19) and (20) in Ref. [1]. The
ðs1; s2Þ distribution for the longitudinal and transverse
nucleon polarizations vanishes, but this is not the case
for the double ðt2; s1Þ distribution. Of course, after the
integration over t2, this last distribution also vanishes.
Here, we need to note that the factor ðk1k2p1p2Þ may be

expressed in terms of the considered variables up to the sign

only. To understand this problem, let us consider the center
of mass system (c.m.s.) of the initial particles with the z
axis along the direction k1 and p1 in the plane ðx; zÞ. In this
system,

ðk1k2p1p2Þ ¼
s
2
jp1j · jp2j sin θ1 sin θ2 sinϕ;

where θ1ðθ2Þ is the polar angle of the nucleon (antinucleon)
and ϕ is the azimuthal angle of the antinucleon. We can
express explicitly cosϕ in terms of invariant variables,
which gives the quantity sinϕ up to the sign only.
Let us consider the normal nucleon polarization

Sμ ¼ SNμ ¼ ðμkp1qÞ
N

: ð13Þ

In this case, the convolution of the tensors is more
complicated, and we report its expression in the
limit me → 0,

LμνHðsÞ
μν ðSNÞ ¼

g2
π0NN̄Im½F1F�

2�
Z

fð2M2 − s1 − s2ÞIðs1; s2; t1; t2Þ½ð3M4 þM2ðs1 − 3s2Þ − s1s2 þm2sÞC1

þ ðm2s − s1s2 þM2ðs1 þ s2Þ −M4ÞC2� þ 4ðs2 −M2ÞC3C4g; ð14Þ
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with

Z ¼ 4MNðs1 −M2Þ2ðs2 −M2Þ2ðsþM2 − s2Þ;
C1 ¼ ðs1 þ s2Þ½s1ðs2 − t1Þ − s2t2� þ s½s1ðt1 − t2 − 2s2Þ þ s2ðt2 − t1Þ�

þm2sð2s − s1 − s2 þ 2t1 þ 2t2Þ þ 2M6 −M4ð2sþ s1 þ s2 þ 2t1 þ 2t2Þ
þM2½−2m2s − 2s1s2 þ 2sðs1 þ s2Þ þ 3s1t1 þ s2t1 þ s1t2 þ 3s2t2�;

C2 ¼ s21ðt1 − s2Þ þ ð2s − s2Þ½sðt1 − t2Þ þ s2t2� þ s1½s22 þ sðt2 − 3t1Þ þ s2ðt2 − t1Þ�
þm2sðs1 − s2 þ 2t1 − 2t2Þ þM2½−2sðs1 − s2 þ 2t1 − 2t2Þ − ðs1 − s2Þðt1 þ t2Þ� þM4ðs1 − s2Þ;

C3 ¼ s1s2ðs1 þ s2 − sÞ þm2½m2s −M4 þM2ðs1 þ s2 − 2sÞ þ s2 − s1s2 − sðs1 þ s2Þ�
þ 2M6 −M4ðsþ s1 þ s2Þ þM2½sðs1 þ s2Þ − 2s1s2�;

C4 ¼ m2½2sðs1 −M2ÞðM2 þ s − s2Þ� þ 2M8 − 2M6½3sþ 2ðt1 þ t2Þ�
þ 2M4½−2s1s2 þ 2s1t1 þ t21 þ 2s2t2 þ 2t1t2 þ t22 þ sð3s1 þ 2s2 þ 3t1 þ t2Þ�
−M2½ð2s2ðt1 − t2Þ þ 4ðt1 þ t2Þðs1ðt1 − s2Þ þ s2t2Þ þ sðs21 þ s22 þ 7s1t1 þ s2t1 þ 2t21 þ 3s1t2 þ 5s2t2 − 2t22Þ�
þ s2ðs1 þ s2Þðt1 − t2Þ þ 2½s1ðt1 − s2Þ þ s2t2�2
þ s½s21ð3t1 − 2s2Þ − s1s2ðt1 − 5t2Þ þ 2s1t1ðt1 − t2Þ þ s2t2ðs2 þ 2t1 − 2t2Þ�: ð15Þ

Note that in this case one has no problem with the
ambiguity, so further we focus on the normal polarization.

III. SINGLE-SPIN ASYMMETRY

The single-spin beam asymmetry is defined by the
convolution of the spin-dependent antisymmetrical part
of the leptonic tensor,

Lμν ¼LðsÞ
μν þLðaÞ

μν ; LðsÞ
μν ¼−q2gμνþ2ðk1μk2νþk1νk2μÞ;

LðaÞ
μν ¼ 2imeðμνηqÞ; ð16Þ

where me is the electron mass and η is the 4-vector of its
longitudinal polarization,

q¼ k1þk2; ðμνηqÞ¼ εμνλρηλqρ; ε0123 ¼þ1;

and the antisymmetrical spin-independent part of the
hadronic tensor,

Hμν ¼
1

2
ðHðsÞ

μν ð0Þ þHðaÞ
μν ð0ÞÞ þHðsÞ

μν ðSÞ þHðaÞ
μν ðSÞ: ð17Þ

where we use the same notations as in Ref. [1].
Both spin-independent and spin-dependent parts of the

hadronic tensor are defined in Ref. [1] in the general case in
terms of bilinear combinations of invariant amplitudes and
corresponding independent tensor structures. Note, that for
the nonresonant mechanism the spin-independent antisym-

metrical part vanishes: HðaÞ
μν ð0Þ ¼ 0. That is why in the

present paper we do not consider the single-spin beam
asymmetry. However, this situation is not general. For

example, the decay of the virtual photon into a real π0 and a
virtual vector meson V0, which interacts then with the real
nucleon-antinucleon pair (see Fig. 2), leads to a nonzero

value of HðaÞ
μν ð0Þ and, consequently, to nonzero single-spin

beam asymmetry.
Thus, the considered single-spin effect arises due

to the nucleon polarization and is defined by convolution
of the symmetrical spin-independent part of the leptonic
tensor and symmetrical spin-dependent part of the
hadronic one:

LðsÞμνHðsÞ
μν ðSÞ:

The double-spin effect is defined by

LðaÞμνHðaÞ
μν ðSÞ:

In this paper, we study only the single-spin effects due to
the nucleon polarization.

FIG. 2. The Feynman diagrams which describe the decay γ� →
π0 þ V0 with the subsequent transition V0 → N þ N̄.
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FIG. 3. Phase difference Arg½GEG�
M� (in radians) for two different parameterizations of the electric and magnetic nucleon form factors.

FIG. 4. First row: double differential distribution for the spin-dependent part of the cross section dσN in nb units over the
dimensionless invariant variables x1 ¼ s1=s and x4 ¼ t2=s. Second row: corresponding proton normal polarization PN in the process
eþ þ e− → π0 þ pþ p̄ for s ¼ 5, 6, 10, 16 GeV2 from left to right, respectively. Third and fourth rows: same as the first and second
rows but for the process eþ þ e− → π0 þ nþ n̄.
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IV. DOUBLE DIFFERENTIAL DISTRIBUTIONS

We consider the double differential distributions ðt2; s1Þ;
ðs1; s2Þ, and ðs1; s12Þ. We analyze the spin-dependent part
of the cross section dσN and the nucleon normal polari-
zation defined as

PN ¼ dσN

dσ
; ð18Þ

where dσ is the unpolarized differential cross section. We
obtain analytical expressions for these distributions, and we
list below only the ðs1; s2Þ one [see Eq. (19)]. The ðs1; s12Þ
distribution can be derived from this one by simple
algebraic exercise, and the expression for the ðt2; s1Þ
distribution is too lengthy to be given in this paper.
The corresponding numerical results are plotted in

Figs. 4–6 for both channels, π0pp̄− and π0nn̄−, using the
dimensionless invariant variables x4 ¼ t2=s, x1;2 ¼ s1;2=s,
and x12 ¼ s12=s.

Note that nucleon polarization depends on the single
combination of electromagnetic form factors Im½GEG�

M�
that is proportional to sin ðArg½GEG�

M�Þ. It means that the
corresponding measurements probe the phase difference
between electric and magnetic form factors. This phase
difference depends strongly on parametrization of the form
factors. In Fig. 3, we show the dependence of the
Arg½GEG�

M� on q2 for two different choices of form factors,
the one used in this paper and the one labeled in Ref. [1] as
the “new” version [24]. These plots show that the pre-
dictions for the nucleon polarizations in the processes (1)
depend radically on the form factor choice, which increases
the interest of their measurement.
To decrease the number of curves in the figures, we make

the choice of using the nucleon electromagnetic form
factors labeled in Ref. [1] as the “old” version (only in
the next section, we show plots of the polarization PN for
single differential distributions over x4, x1, and x12 calcu-
lated with the new version).

FIG. 5. The same as in Fig. 4 but for the double ðx1; x2Þ distribution.
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The double differential ðt2; s1Þ distribution of the spin-
independent part of the cross section is symmetrical under
the substitution t2 → t1, s1 → s2, but the spin-dependent
part loses this symmetry.
Consider now the ðs1; s2Þ and ðs1; s12Þ distributions.

After integrating over t1 and t2, the spin-dependent part of
the cross section simplifies,

dσN

ds1ds2
¼ g2

π0NN̄α
2MNðs1 þ s2 − 2M2 − 2m2ÞIm½GEG�

M�
3πs3ð4M2 − sÞðM2 − s1ÞðM2 − s2Þ

;

ð19Þ

in the limit me → 0 and where the quantity N is
defined in Eq. (9). This distribution is symmetrical under
the change s1 ⇄ s2. The corresponding ðs1; s12Þ distribu-
tion can be obtained from (19) by simple substitu-
tion s12 ¼ sþ 2M2 þm2 − s1 − s2.
In Figs. 5 and 6, the ðx1; x2Þ and the ðx1; x12Þ distribu-

tions are plotted for both nucleon channels.

V. SINGLE DIFFERENTIAL DISTRIBUTIONS

Let us consider the single differential distributions. In the
case of the s1 and the s12 distributions, the expressions of
the spin-dependent parts of the cross section are

dσN

ds12
¼ g2

π0NN̄α
2Mðs − s12 −m2ÞIm½GEG�

M�
6s3ðs − 4M2Þðs − s12 þm2Þ Z1;

Z1 ¼ −ðsþm2 − s12Þ
ffiffiffiffiffiffi
s12

p þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2½ðs − s12Þ2 þm4 − 2m2ðsþ s12Þ� þm2ss12

q
; ð20Þ

FIG. 6. The same as in Fig. 4 but for the ðx1; x12Þ double distribution.
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dσN

ds1
¼ g2

π0NN̄α
2MIm½GEG�

M�
48s3ðs − 4M2ÞðM2 − s1Þs3=21

Z2;

Z2 ¼ M8 − 2M6ðsþ 4s1 þm2Þ þM4½s2 þ 6ss1 þ 10s21 þm2ð4s − 2s1Þ þm4�
þ s21ðs2 þ 2ss1 − 3s21Þ − 2M2½ss1ðsþ 3s1Þ þm2ðs2 − 6ss1 þ 3s21 þm4ðs − 3s1Þ�
þm4ðs2 − 10ss1 − 7s21Þ − 2m2s1ðs2 − 5s21Þ
þ 8ðM2 þ 2m2 − s1Þs3=21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M6 − 2M4s1 þM2ðs21 − 3m2sÞ þm2sðs − s1 þm2Þ

q
: ð21Þ

In Figs. 7 and 8, we plot the spin-dependent part of the
cross section and the nucleon polarization for both chan-
nels, π0pp̄ and π0nn̄, as functions of the dimensionless
variables x12 and x1, respectively. The differential distri-
butions over x4 are plotted in Fig. 9.
In Fig. 10, we plot the single distributions of the

polarization PN with respect to the dimensionless variables
x1, x12, and x4 calculated with another choice of form
factors (new version in Ref. [1]). Comparing with the
corresponding curves in Figs. 7–9, one can see that the
predictions for PN depend essentially on form factors;
therefore, the measurement can give additional information
about proton and neutron electromagnetic form factors.

VI. DISCUSSION

A systematic investigation of the baryon resonances has
begun at the Beijing Electron-Positron Collider (BEPCII)
from the BESIII Collaboration [25,26]. Some results of
these experiments are compiled in Ref. [27]. A number of

experiments were devoted to the measurement of the
reaction eþ þ e− → pþ p̄þ π0. In Ref. [28], this reaction
was studied in the vicinity of the ψð3770Þ resonance. Later
on, the measurement of this reaction was performed at
higher energies, namely, for ð4.008 ≤

ffiffiffi
s

p
≤ 4.600Þ GeV,

in the vicinity of the Yð4260Þ resonance [29]. The Born
cross section of the reaction eþ þ e− → R → pþ p̄þ π0,
where R is the ψð3770Þ or Yð4260Þ resonance, is the sum of
two contributions: continuum (nonresonant) and resonant.
The parameters of the continuum and the resonance
(including the phase between the resonant and continuum
production amplitudes) are free parameters of a fit of
the data. Therefore, the precision of the determination of
the resonance parameters depends on the knowledge of the
continuum cross section. A number of single and double
differential distributions (in the case of unpolarized par-
ticles) were calculated [1] analytically, and numerical
estimates were given for the pp̄π0 and nn̄π0 channels,
for the nonresonant contribution, in the energy range from

FIG. 7. First row: x12 distribution of the spin-dependent part of the cross section for the π0pp̄ channel (left panel) and π0nn̄ channel
(right panel) as defined by Eq. (20); the sign þð−Þ indicates that the corresponding quantity is positive (negative). Second row: the
corresponding nucleon normal polarization is plotted.
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FIG. 9. Differential distributions over x4 of the dσN and corresponding nucleon polarization dσN=dσ.

FIG. 8. The same as in Fig. 8 but for the x1 distribution as defined by Eq. (21).
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the threshold up to s ¼ 16 GeV2. Here, we consider the
contribution to the cross section from the polarization
of the nucleon. In the frame of the developed approach,
the longitudinal and transverse nucleon polarizations can
be obtained up to their signs only.
The nucleon spin-dependent states: longitudinal L, trans-

verse T, and normal N are defined in such a
way that, in the rest system, the nucleon spin 3-vector
belongs to the hadronic plane ðp1;kÞ for longitudinal and
transverse states, whereas in the case of the normal state,
it is perpendicular to this plane. In an arbitrary system, it is
convenient to express correspondingly the nucleon spin
4-vectors through the hadron momenta, giving the possibil-
ity to obtain all the nucleon polarizations in terms
of invariant variables. The corresponding nucleon spin
4-vectors SL, ST , and SN are given by Eqs. (7), (9), and (13).
We choose the coordinate system in such a way that one

of the final 3-momenta belongs to a definite plane (for
example, the zx one). Such a choice corresponds to
integration over one azimuthal angle. Then, the full differ-
ential cross section is determined by Eqs. (2) and (3). The
convolution of the symmetrical spin-independent part of

the leptonic tensor and symmetrical spin-dependent part of
the hadronic one is obtained analytically.
The different double and single differential distributions

of the normal polarization in the reaction eþ þ e− → pþ
p̄þ π0ðeþ þ e− → nþ n̄þ π0Þ on various invariant vari-
ables, in the frame of the nonresonant mechanism, is
derived. The numerical estimations are performed for
energies ranging from the threshold up to s ¼ 16 GeV2,
taking into account the contribution of the nonresonant
mechanism in the unpolarized case, which was investigated
earlier. The calculation is performed at different values of
the variable s (from 5 to 16 GeV2) using the nucleon
electromagnetic form factors labeled in Ref. [1] as the old
version. We plot the spin-dependent part of the cross
sections and the corresponding nucleon polarizations to
better understand the size of the cross section, which is
useful for evaluating the number of events to be collected.
The polarizations PNðx1Þ, PNðx12Þ, and PNðx4Þ change

(do not change) sign, increasing the energy near
s ¼ 8 GeV2, in the case of the π0pp̄ channel (π0nn̄
channel), but they do not change sign varying x1, x12,
and x4, respectively. The magnitude of all polarizations PN

FIG. 10. Differential distributions over x1, x12, and x4 of the nucleon polarization PN for both eþe− → pp̄π0 and eþe− → nn̄π0

channels calculated with form factors labeled in Ref. [1] as the new version.
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is approximately the same for both channels except for the
abnormally large proton polarizations at s ¼ 16 GeV2,
which might be attributed to the smallness of the unpo-
larized cross section in this kinematics.
The spin-dependent part of the cross section dσN=dx12

has a bell-like form, and the width of the peak becomes
larger when s increases. The magnitude of this quantity for
the nn̄π0 channel is larger than for the pp̄π0 channel. The
polarization PN for nn̄π0 is larger than PN for pp̄π0. The
quantity dσN=dx12 is positive for nn̄π0 and changes sign at
s ≈ 8 GeV2 for the pp̄π0 channel. The polarization PN is
positive for the nn̄π0 channel and changes sign for the
pp̄π0 channel.
The dependences of dσN=dx1 and of the polarization PN

on the variable x1 are similar to the cases above (for the
variable x12). The differential cross section dσN=dx4 and
the polarization PNðx4Þ do not change sign as a function of
the variable x4, but they change sign as a function of the
variable s for the pp̄π0 channel.

VII. CONCLUSIONS

The normal nucleon polarization in the reactions eþ þ
e− → pþ p̄þ π0 and eþ þ e− → nþ n̄þ π0 is calculated
in frame of the nonresonant mechanism. The corresponding
contribution is illustrated in Fig. 1, in which the pion is
emitted by the nucleon or the antinucleon. The present
work extends the calculation of Ref. [1], in which the
general analysis of the differential cross section and of
different polarization observables was performed in the
one-photon-annihilation approximation, taking into
account the conservation of the hadron electromagnetic
current and the P invariance of the hadron electromagnetic
interaction.
We define the nucleon polarizations as the ratio of the

spin-dependent parts of the cross section to the unpolarized
cross section and study in detail their double and single

distributions over selected invariant variables. The longi-
tudinal and transverse polarizations are proportional to the
factor ðk1k2p1p2Þ, which can be expressed in terms of
invariant variables up to the sign only; therefore, we do not
give any numerical results for these observables.
The spin-dependent part of the cross section is driven by

the factor Im½GEG�
M�. The numerical results on the normal

polarization depend on the choice of the nucleon electro-
magnetic form factors. In particular, this observable gives
additional information about the phase difference between
the electric and magnetic form factors and strongly con-
strains nucleon models.
Several parametrizations of form factors exist (for a

review, see Ref. [30]). We choose here two parametriza-
tions based on vector meson dominance [24,31]. They
contain a small number of parameters that are fitted to
reproduce the data (known at that time) both for proton and
neutron, in spacelike as well as in timelike regions, but it
turns out that they also reproduce qualitatively the most
recent data on the proton timelike electric and magnetic
form factors (in moduli) [32]. It is also noticeable that, by
construction, an imaginary part arises naturally by analyti-
cal prolongation in the timelike region and that the large-q2

behavior predicted by perturbative QCD is fulfilled.
Choosing two versions of this vector meson dominance
model allows us to point out the effect of the relative phase
of electric and magnetic form factors.
The present work is useful for modeling the background

contribution in the study of nucleon resonances driving
Monte Carlo simulations in the experimental analysis.
The complexity of these analysis is due to the fact that
the final particles can be produced in different intermediate
states. An interplay among experimental distributions
and Monte Carlo input, following chosen physics-driven
assumptions, is necessary [28]. The significance of the
normal polarization pointed out in the present paper suggests
future experiments including final hadron polarimetry.
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