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We revisit the most general effective Lagrangian within chiral perturbation theory at nonzero isospin
chemical potential μI up to Oðp4Þ. In addition to the contributions already considered in the literature, we
discuss the effects of new terms allowed by the symmetries derived within the external source method
including spurion fields, as well as linear-field corrections relevant to Oðp4Þ. We study the influence of
those new contributions to the free energy density at zero temperature and observables derived from it, such
as the pion and quark condensates and the isospin density. Corrections are shown to be compatible with
lattice results, which favor nonzero values for the low-energy constants (LECs) multiplying the newOðp2Þ
and Oðp4Þ field operators in the Lagrangian. In particular, the Oðp4Þ LECs are renormalized to render the
free energy density finite. Constraints on the LECs arise from preserving the physical condition
nIðμI < μcÞ ¼ 0, while μc ¼ Mπ still holds to leading order and can be maintained to next-to-leading
order through an additional constraint requiring the new LECs.

DOI: 10.1103/PhysRevD.106.114017

I. INTRODUCTION

The study of the QCD phase diagram has experienced
a notable boost over the last decade, due to the advance
of both lattice field theory at nonzero temperature and
chemical potentials [1–6] and experimental data of rela-
tivistic heavy-ion collisions (RHICs) within the so-called
Beam Energy Scan program probing the transition at
chemical freeze-out [7,8].
Regarding chemical potentials, the main interest has

been focused on the baryon chemical potential μB, moti-
vated mostly by the possible existence of a critical point
separating the μB ¼ 0 crossover transition from a first-order
one [5,6]. However, the difficulties for the lattice analyses
at μB ≠ 0 associated with the sign problem [4,9–12] have
motivated the study of QCD when chemical potentials
associated with additional, physically relevant charges
are present, which do not present such a sign problem.
This is the case of isospin μI and strangeness μS chemical
potentials, which are actually relevant phenomenological
quantities at RHICs at chemical freeze-out, related to
electric charge and strangeness conservation [8,13].
Another example is the chemical potential μ5 associated

with chiral imbalance, which has been explored recently
both in the lattice [14–16] and within effective theories
[17,18]. The latter has been mainly motivated by the
possible existence of local P-breaking regions within
RHICs and related phenomena such as the chiral magnetic
effect [19].
The case of isospin chemical potential μI has become

particularly interesting. As it was first shown in [20] within
a leading-order (LO) chiral perturbation theory (ChPT)
effective theory approach, QCD at increasing μI exhibits a
second-order phase transition from the normal vacuum
phase to a Bose-Einstein condensation (BEC) phase for the
charged pion modes. The transition point μc predicted by
ChPT analyses is at the physical pion mass, including next-
to-leading-order (NLO) corrections [21,22] which have
extended to three flavors in [23]. For high enough μI , the
system would enter a BCS-like phase [20] where effective
theory approaches based on the low-density regime, such as
ChPT, are expected to break down [24,25].
Other recent analyses at μI ≠ 0 have included finite

temperature corrections, allowing one to study the effects
on the QCD transition [22,26–29]. Temperature effects are
expected to smooth out the BEC transition, increasing the
value of the critical μI value for BEC, and setting an upper
temperature limit for which the BEC phase no longer takes
place. In addition, the QCD transition temperature Tc is
expected to drop with increasing μI . Other effects consid-
ered in this context have been μB ≠ 0 [30] and μS ≠ 0
[31,32] corrections. A recent analysis within the Nambu-
Jona-Lasinio (NJL) model confirms the ChPT results
showing some deviations for μI ≳ 2Mπ [33].
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Lattice works are consistent with the previous findings.
In particular, in [25] the free energy density as a function
of the isospin density nI, as well as nI versus μI were
investigated at a small but nonzero temperature of around
T ∼ 20 MeV. Significant deviations from the ChPT pre-
diction take place for μI ≳ 2Mπ and the ratio of the free
energy density with the Stefan-Boltzmann free energy
density corresponding to free quarks exhibits a maximum
around μI ≃ 1.3 Mπ , which was interpreted in [25] as the
onset of the BEC phase. Such a peak behavior is well
reproduced both within the ChPTand NJL approaches [33].
The apparent plateau of that ratio above μI ¼ 3Mπ might
indicate a BEC-BCS crossover. On the other hand, lattice
simulations at finite temperature and nonzero isospin
chemical potential confirm the decreasing behavior of Tc
with μI as well as the increase of the BEC onset with the
temperature [34,35]. Recent analyses provide results for
the pion and quark condensates from T ¼ 113 MeV up to
the QCD transition temperature, confirming those trends
for the T − μI phase diagram [36,37]. Lattice results for nI
as a function of μI for low temperatures are provided in
[38]. Recent comparisons between lattice data and the
ChPT and NJL model approaches can be found, respec-
tively, in [39] and [40].
In the context of lattice analyses, it is worth pointing out

that the present uncertainties do not allow one to pin down
μc around Mπ . For instance, in [37] μc ¼ Mπ is actually
imposed instead from the ChPT result commented above,
in order to reduce uncertainties around the critical value.
On the other hand, the results in [38] are compatible with
a nonzero value for the isospin density below μI ¼ Mπ,
which would call for μc < Mπ.
In this work, we will discuss some new relevant aspects

related to the formulation of the effective ChPT Lagrangian
at nonzero isospin density. The usual approach to construct
the effective Lagrangian follows from considering the
isospin contribution in the QCD Lagrangian as an external
constant vector source in the τ3 direction and using the
well-known external source method [41,42] so that the
chemical potential enters through covariant derivatives
rendering the theory locally invariant under the chiral
symmetry. However, since the μI term in QCD is not
invariant under isospin rotations in the τ1;2 directions, the
most general effective Lagrangian may include additional
terms with such a symmetry-breaking pattern, which would
be multiplied by additional low-energy constants (LECs).
A systematic procedure to account for all the possible terms
of such a type is provided by the so-called spurion method,
which is an extension of the external source method
developed originally to include correctly the effects of
the electromagnetic field in the chiral Lagrangian [43–46].
Following similar ideas, the most general chiral Lagrangian
for μ5 ≠ 0 has been derived up to Oðp4Þ in [18]. In
addition, we will see that certain terms coming from
contributions linear in the pion fields at μi ≠ 0 do actually

provide a new contribution to the free energy density at the
order considered here.
Thus, the plan of the paper is as follows. In Sec. II, we will

revisit the construction of the most general μI ≠ 0 effective
Lagrangian up toOðp4Þ including possible new terms of the
type commented above. In Sec. III, we will calculate the free
energy density up to NLO in the chiral expansion including
the new terms in theOðp2Þ andOðp4Þ Lagrangians, as well
as the new correction coming from the linear terms in the
effective Lagrangian, not considered before, which also
arises to NLO. Thus, in Sec. III A, we will analyze the
contributions coming from the second-order Lagrangian L2,
a first estimate of the numerical effect of the new corrections
is carried out in Sec. III B, fitting the only undetermined
parameter in L2 to lattice points, while in Sec. III C, all the
NLO corrections to the free energy density will be included,
both from theOðp4Þ Lagrangian and from the linear term. In
Sec. IV, we will analyze the constraints on the new LEC
imposed by the vanishing of the isospin density below the
critical point, as well as to what extent the condition μc ¼
Mπ is affected by the new terms up to NLO. Finally, in
Sec. V, we will evaluate numerically our NLO results for the
different observables obtained from the free energy density,
calibrating the corrections coming from the new LEC and
from the linear term, compared to lattice results.
In this paper, wewill work for SUð2Þ at T ¼ 0 to obtain a

first glance of those new effects, leaving the finite temper-
ature and strangeness corrections for future work.

II. CHIRAL LAGRANGIAN INCLUDING EXPLICIT
ISOSPIN-BREAKING OPERATORS

We start from the QCD Lagrangian including a nonzero
isospin chemical potential corresponding to the grand-
canonical partition function. The fermionic part of the
Lagrangian reads

LQCD ¼ q̄ði=D −MÞqþ μI
2
q̄γ0τ3q ð1Þ

with qT ¼ ðu; dÞ, =D is the covariant derivative correspond-
ing to the gluon field, M is the quark mass matrix, which
here we take as M ¼ m1 with m ¼ mu ¼ md, and τk are
the Pauli matrices.
The μI ¼ 0 Lagrangian is chiral invariant SUð2ÞL ×

SUð2ÞR for M ¼ 0 (chiral limit) which reduces to the
isospin symmetry SUð2ÞV with V ¼ L ¼ R for nonzero
quark masses. However, for nonzero μI , the latter symmetry
breaks down to Uð1ÞI3 since the μI term is only invariant
under vector transformations in the τ3 direction. Note also
that Lorentz invariance is also broken by the inclusion of
the μI term, as a consequence of the preferred reference
frame of the thermal bath at rest. In addition, the isospin
chemical potential term breaks C invariance, since it is
essentially a charge operator. Therefore, the low-energy
effective Lagrangian must share the above symmetry
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requirements in the most general way. That is, at a given
order in the chiral (low-energy) power counting, one
must include all possible operators compatible with the
symmetries and their breaking. This can be ensured by
following the external source method, where the scalar,
pseudoscalar, vector, and axial vector sources are space-
time dependent to ensure local chiral invariance, as well
as Lorentz, P, C invariance, of the QCD Lagrangian. The
effective Lagrangian is then constructed out of the most
general set of operators satisfying such an invariance at a
given order in the generic momentum scale p, which
accounts for meson masses and derivatives, as well as μI ¼
OðpÞ which limits the ChPT analysis to low and moderate
values of μI, as discussed below.
An important comment is in order here. The building

blocks for constructing such operators are in principle the
Goldstone boson (GB) field operator codified in an SUð2Þ
matrix field U, its covariant derivative dμU including the
external sources, as well as the flavor matrices entering
those external sources, which in the case given by (1) are
the mass matrix M and μI

2
τ3. The latter point, i.e., the fact

that one can have additional operators including μI
2
τ3 in a

compatible way with the symmetry pattern, is actually one
of the main novelties of our present work. One can easily
understand this by considering all possible operators to
order Oðp2Þ. In addition to the standard terms

Tr½dμUdμU†�;Tr½MðU þ U†Þ�; ð2Þ

the following independent term

Tr½Uτ3U†τ3� ð3Þ

is also allowed since it breaks chiral symmetry but preserves
Uð1ÞI3 (see details below). Similarly, at Oðp4Þ there will be
new operators allowed. The philosophy to include such
additional terms is the same as when introducing electro-
magnetic corrections to the chiral Lagrangian [43] and the
systematic procedure to account for all those terms consists
of introducing the so-called “spurion” fields QL;RðxÞ as
additional space-dependent external sources transforming
suitably under chiral transformations [18,43–46].
Let us explain this procedure in more detail for our

present case. For that purpose, we cast the Lagrangian (1) in
terms of external sources as

LQCD½vμ; AμQ; s� ¼ iq̄=Dqþ q̄f½vμðxÞ þ AμðxÞQðxÞ�γμ
− sðxÞ þ iγ5pðxÞgq; ð4Þ

where vμ ∈ SUð2Þ. The above Lagrangian corresponds to
the choice relevant for this work, QL ¼ QR ¼ Q, and we
have set the axial source aμ ¼ 0 with respect to the general
source Lagrangian considered in [18,44–46], where we
have kept a nonzero pseudoscalar source pðxÞ in order to

derive expectation values of pionic fields, such as the pion
condensate.
The Lagrangian in (1) corresponds to the particular

choice vμ þ AμQ ¼ μI
2
τ3, s ¼ M, and p ¼ 0. Thus, after

the general effective Lagrangian is constructed, we will
choose, without loss of generality,

vμ ¼ 0; Aμ ¼ Λδμ0; Q ¼ μI
2Λ

τ3; ð5Þ

consistent with our power counting as long as μI ≪ Λ. The
choice of the parameterΛ is irrelevant, as it should be, since
it will be absorbed in the new independent LEC involved,
which will have to be determined. The important point is
to include μI in the Q contribution, consistent with the
counting μI ¼ OðpÞ. In addition, as customary we will
write pðxÞ ¼ jτ1 so that taking derivatives with respect to j
we reproduce expectation values of the π1 field, which is
the direction we have chosen for the condensed field.
The Lagrangian (4) can be made locally invariant under

chiral SUð2ÞL × SUð2ÞR rotations of the quark and source
fields. Here, it is enough to restrict to the vector subgroup
gL ¼ gR ¼ g ∈ SUð2Þ, under which the Lagrangian in (4)
can be made invariant by considering the following
transformations:

qðxÞ → gðxÞqðxÞ;
χðxÞ → gðxÞχðxÞg†ðxÞ;
vμðxÞ → gðxÞvμðxÞgðxÞ† þ igðxÞ∂μgðxÞ†;
QðxÞ → gðxÞ½QðxÞ�g†ðxÞ ð6Þ

with χðxÞ ¼ 2B0½sðxÞ þ ipðxÞ�. The constant B0 was intro-
duced in [41] and, as is customary, it is given by the relation
B0 ¼ M2=ð2mÞ with M the tree-level pion mass and m the
quark mass.B0 is also related to the quark condensate through
the Gell-Mann-Oakes-Renner relation. In addition, one has to
consider the C and P transformations of those fields given in
[18,44–46] leading to a C and P invariant lagrangian.
The key point here is that the vμ and AμQ sources can

be transformed independently (we choose here to leave Aμ

invariant for simplicity, which does not affect our argu-
ments). As we are about to see, those spurion transforma-
tions are essential to ensure that all possible operators are
accounted for.
Now, the chiral Lagrangian can be constructed order by

order in the chiral expansion. The building blocks and their
chiral counting are the pseudo-GB field U ∈ SUð2Þ, which
is Oð1Þ, its covariant derivative

dμU ¼ ∂μU þ i½U; vμ þ AμQ�; ð7Þ

which is OðpÞ, and the external fields, which in this case
are χ ¼ Oðp2Þ and vμ ¼ OðpÞ, AμQ ¼ OðpÞ, where we
follow the same convention as in [18,44–46] assigning the
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counting Aμ ¼ Oð1Þ, Q ¼ OðpÞ as commented above. In
addition, the following covariant derivative of the Q field

cμQ ¼ ∂μQ − i½vμ; Q�; ð8Þ

which is Oðp2Þ, has to be formally considered, although in
practice it will not enter our effective Lagrangian at the
order considered here.
The chiral transformations of the U field, i.e., U →

gRUg†L, as well as those of the external sources and the
covariant derivatives, and their C and P transformations,
allow us to construct the most general effective Lagrangian
which is locally chiral, C and P invariant for our present
case. In particular, regarding the external sources, in
addition to the usual corrections coming from the covariant
derivative (7), which depends only on vμ þ AμQ, such as
the first term in (2), additional terms are allowed, such as
(3). That term comes from the invariant operator

Tr½QUQU†�;

which will be therefore multiplied by μ2I times an inde-
pendent LEC.
Let us now proceed order by order within this scheme

following the discussion in [18], which considers all possible
terms coming from arbitrary constant QL;R fields. It is
important to take into account that at the Lagrangian level,
as customary, we will keep the OðpnÞ notation to indicate
the order of the field operators involved according to the
counting we have just discussed. We will then classify the
possible operators according to that counting, up to Oðp4Þ.
However, when referring to the free energy density and
observables derived from it, we will use the equivalent
parametric counting in inverse powers of F2, where F is the
tree-level pion decay constant. This distinction is pertinent
because we will see below that physical constraints, such as
the vanishing of the isospin density below μc, imply that
certain low-energy constants or combinations of them are
suppressed to a given order, which means that they do not
count as the naive Oð1Þ in the 1=F2 counting. Therefore,
contributions to the free energy density multiplied by those
constants will be formally of higher order, as we will see.
Thus, at the lowest Oðp0Þ order, only trivial μI-independent
terms can be constructed out of the U fields. At OðpÞ the
only allowed structure is TrðQÞ, which vanishes with the
choice (5). To Oðp2Þ, in addition to the structures (2) and
(3), the terms TrðQ2Þ and ðTrQÞ2 are also allowed, the latter
vanishing with our choice (5). Therefore, the most general
Oðp2Þ Lagrangian at nonzero μI is given by

L2 ¼
F2

4
Tr

�
dμUdμU† þ χ†U þ χU† þ 1

2
a1μ2IUτ3U†τ3

�

þ 1

4
a2F2μ2I ; ð9Þ

where a1 and a2 are new low-energy constants to be
determined below, and we have included an F2 factor in
front of the new terms just to render the new LEC
dimensionless. As our analysis in Sec. IVA below will
show, physical constraints imply that the actual chiral
order of those constants has to be parametrically a1;2 ¼
Oð1=F2Þ so that, as we just have explained, the contri-
butions proportional to those constants will be formally
of NLO.
It is also important to stress that, for the reasons already

explained in terms of symmetry transformations, the
Lagrangian contributions corresponding to the a1;2 terms
above are allowed independently. Actually, note that those
two structures already appear in the derivative term through
the covariant derivative, namely,

Tr½dμU†dμU� ¼ Tr½∂μU†
∂
μU� þ iμITrf½∂0U†; U�τ3g

−
μ2I
2
Tr½U†τ3Uτ3 − τ23�; ð10Þ

where in the μ2I term we recognize the a1 and a2 structures,
respectively. However, as explained, this does not
prevent those terms to be present independently in the
Lagrangian, for the same reason as in the electromagnetic
(EM) case, where the equivalent to the a1 term gives rise
to the EM pion mass difference. Actually, within the
external field method with spurions, the origin of the a1;2
new terms and those coming from the covariant derivative
is completely different. Thus, while the a1;2 terms contain
explicitly the charge field Q but not the gauge field Aμ,
only the combination AμQ enters in the covariant deriva-
tive term. It is only after making the replacement (5) that
they have the same form.
In fact, the symmetry properties of the different terms

in (10) are quite different. While the μI ¼ 0 and the
U-independent terms are chiral invariant, the remaining
ones are not, but remain Uð1ÞI3 invariant. In addition,
the term linear in μI breaks Lorentz covariance coming
from Aμ and precisely the Lorentz structure of that
term prevents it from being independently considered
in the Lagrangian, which is not difficult to see following
our derivation above. Other structures allowed within
this formalism such as TrFμνFμν vanish for a constant
Aμ field.
Note also that the equations of motion (EOM) derived

from the above Lagrangian are modified with respect to the
μI ¼ 0 case as

ðdμdμU†ÞU − U†dμdμU ¼ χ†U − U†χ þ 1

2
Tr½U†χ − χ†U�

−
1

2
a1ðU†τ3Uτ3 − τ3U†τ3UÞ:

ð11Þ
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The above Oðp2Þ EOM can be used in the construction
of the Oðp4Þ Lagrangian to eliminate some operators in
favor of a minimal set [44] together with standard SUð2Þ
operator identities.
In principle, the following Oðp3Þ operators are also

allowed [18]:

Trðχ†U þ χU†ÞTrðQÞ; TrðdμUdμU†ÞTrðQÞ;
TrðQUQU†ÞTrðQÞ; TrðQ2ÞTrðQÞ; ½TrðQÞ�3; ð12Þ

Tr½QðdμUdμU† þ dμU†dμUÞ�; Tr½Q2ðUQU† þU†QUÞ�;
Tr½Qðχ†Uþ χU† þUχ† þU†χÞ�: ð13Þ

The five operators in (12) vanish trivially with Q in (5).
In addition, one can check that the operators in (13) also
vanish for dμU and U in SUð2Þ and Q in (5) as long as we
remain in the isospin limit mu ¼ md, as we will do here
consistently with isospin conservation. The last term in (13)
is actually proportional to Trðτ3MÞ ¼ mu −md.
As for theOðp4Þ Lagrangian, following the derivation in

[18], we have in our present case

L4 ¼ L0
4 þ LQ

4 ;

L0
4 ¼

l1
4
½TrðdμUdμU†Þ�2 þ l2

4
TrðdμUdνU†ÞTrðdμUdνU†Þ þ l3 þ l4

16
½Trðχ†U þ χU†Þ�2 þ l4

8
TrðdμUdμU†ÞTrðχ†U þ χU†Þ

−
l7
16

½Trðχ†U − χU†Þ�2 þ h1 þ h3 − l4
4

Trðχ†χÞ þ h1 − h3 − l4
2

Re det χ; ð14Þ

LQ
4 ¼ q1Λ2TrðdμUdμU†ÞTrðQ2Þ þ q2Λ2TrðdμUdμU†ÞTrðQUQU†Þ þ q3Λ2½TrðdμUQU†ÞTrðdμUQU†Þ

þ TrðdμU†QUÞTrðdμU†QUÞ� þ q4Λ2TrðdμU†QUÞTrðdμUQU†Þ þ q5Λ2Trðχ†U þ χU†ÞTrðQ2Þ
þ q6Λ2Trðχ†U þ χU†ÞTrðQUQU†Þ þ q7Λ2Tr½ðχ†U −U†χÞQU†QU þ ðχU† − Uχ†ÞQUQU†�
þ q8Λ4½TrðQ2Þ�2 þ q9Λ4TrðQUQU†ÞTrðQ2Þ þ q10Λ4½TrðQUQU†Þ�2 ð15Þ

with Q in (5). The usual terms considered in the literature
are included in the L0

4 Lagrangian, for which we have used
the basis in [47],1 whereas LQ

4 contains all possible
operators including explicitly the Q field and whose
influence on different observables will be analyzed in
detail in Sec. III C. With respect to the basis considered
in [21,22,29], the h1 constant considered in those papers
corresponds to h1 − l4 here.
We emphasize that the additional terms in the

Lagrangian in (9) and (15) are allowed for any physical
system sharing the same symmetry pattern, like, e.g., the
EM case. As we will see in Sec. IV, there are physical
conditions which are specific to the μI ≠ 0 case which will
give rise to constraints for those LECs. This is similar to
other effective Lagrangian analyses which yield conditions
for the LEC arising from different physical approximations,
like vector meson dominance [43] or large Nc [42,48],
which yield relations between LECs up to a given order.
Now, following also the derivation in [20–22,29], we

allow for a nontrivial vacuum configuration of the GB field,
which will parametrize the pion condensed phase. Namely,
we write

UðxÞ ¼ A exp

�
i
τaπaðxÞ

F

�
A

A ¼ cosðα=2Þ1þ i sinðα=2Þτ1 ð16Þ

with πa the pion fields, so that the condensed phase is
characterized by a nonzero value of the α angle, which is
determined by minimizing the free energy density at a
given chiral order, from which we will actually obtain
the main properties of interest here. In the present work,
we are interested in the free energy density at zero
temperature, i.e.,

ϵðμI; jÞ ¼ − lim
T→0;V→∞

T
V
logZðT; μI; jÞ ¼ ϵ2 þ ϵ4 þ � � � ;

ð17Þ

where ZðT; μ5Þ is the Euclidean partition function con-
structed out of the effective Lagrangian for nonzero μI , and
ϵn is parametricallyOðF4−nÞ. Here we will consider it up to
NLO, i.e., ϵ2 þ ϵ4. The above definition of the free energy
density is equivalent to the effective potential considered in
[20–22,29].
The observables of interest we can calculate in both

phases are the quark and pion condensates and the isospin
density, which are given, respectively, by

1In the basis used in [18], there is a typo in the LEC
multiplying the ½Trðχ†U − χU†Þ�2 operator in Eq. (4.1) in that
paper, which should read −ðl4 þ l7Þ=16.
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hq̄qiðμIÞ ¼ hūuþ d̄di ¼ ∂ϵðμI; jÞ
∂m

¼ 2B0

∂ϵðμI; jÞ
∂M2

; ð18Þ

hiq̄γ5τ1qiðμIÞ ¼
∂ϵðμI; jÞ

∂j
ð19Þ

nIðμIÞ ¼ −
∂ϵðμI; jÞ

∂μI
: ð20Þ

III. FREE ENERGY DENSITY UP TO
NEXT-TO-LEADING ORDER

A. Contributions from L2

The lowest order of the free energy density ϵ2 is given
just by minus the constant part of the L2 Lagrangian in (9):

ϵ2ðμI; jÞ ¼ −
F2

4
½μ2I ð1þ a2 − ð1 − a1Þ cosð2αÞÞ

þ 4M2 cos αþ 8B0j sin α�: ð21Þ

At this order, the relevant observables can be calculated
explicitly. For instance, the value αLO0 minimizing the above
expression with respect to α is given for j ¼ 0 by

cos αð2Þ0 ¼
(
1 for μI < μc ¼ Mffiffiffiffiffiffiffiffi

1−a1
p ;

M2

ð1−a1Þμ2I
for μI > μc;

ð22Þ

where we use the (2) superscript to denote the contribution
coming from ϵ2 in (21). Therefore, the constant a1
displaces the critical BEC value μc from the pion mass.
We will see below that this is perfectly compatible, both
with the effective Lagrangian framework and with lattice
results, which will constrain the a1 value and its uncer-
tainty. In addition, as we will see in Sec. IV, μc ¼ M holds
formally to LO taking into account the chiral counting for
a1. Note also that the upper bound a1 < 1 arises here from
the very existence of a BEC phase.
The above result is also consistent with the modifications

of the pion dispersion relations stemming from the
μI-dependent Lagrangian above. In fact, let us consider
the linear and quadratic terms in the pion field from the L2

Lagrangian in (9):

Llin
2 ¼ −F sin α½M2 − ð1 − a1Þμ2I cos α�π1ðxÞ

þ FμI∂0π2ðxÞ sin αþ 2B0Fjπ1ðxÞ cos α; ð23Þ

Lquad
2 ¼ 1

2
∂μπ

a
∂
μπa þ

1

2
m12½π1ðxÞ∂0π2ðxÞ − π2ðxÞ∂0π1ðxÞ�

−
1

2
½m2

1π
2
1ðxÞ þm2

2π
2
2ðxÞ þm2

3π
2
3ðxÞ�; ð24Þ

where, following the notation in [21], we have

m12 ¼ 2μI cos α; ð25Þ

m2
1 ¼ M2 cos α − ð1 − a1Þμ2I cosð2αÞ þ 2B0j sin α; ð26Þ

m2
2 ¼ M2 cos α − ð1 − a1Þμ2I cos2 αþ 2B0j sin α; ð27Þ

m2
3 ¼ M2 cos αþ ð1 − a1Þμ2I sin2 αþ 2B0j sin α: ð28Þ

Now, we follow the same steps as in [21] to obtain the
pion dispersion relation in terms of the parameters
m12; m2

1;2;3. Note that to leading order, we can replace

α ¼ αð2Þ0 , which in particular cancels the contribution
proportional to π1ðxÞ in (23) so that such a linear
Lagrangian becomes a total derivative in the condensed
phase and vanishes in the normal phase. Therefore, at this
order, the linear Lagrangian does not play any role for the
dispersion relation or in the free energy density. As we will
discuss in Sec. III C 3, this no longer holds when all the
NLO corrections are properly accounted for, so that term
will have to be included.
At this order, we then get for the dispersion relation of

charged and neutral pions, respectively,

E2
�ðpÞ ¼ p2 þ 1

2
ðm2

1 þm2
2 þm2

12Þ

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2m2

12 þ ðm2
1 þm2

2 þm2
12Þ2 − 4m2

1m
2
2

q
;

ð29Þ

E2
0ðpÞ ¼ p2 þm2

3; ð30Þ

where p≡ jp⃗j. Now, setting α ¼ αð2Þ0 given in (22) and
p ¼ 0, we get then the dependence of the static pion masses
on the isospin chemical potential, now including the
correction from the a1 term, which for j ¼ 0 read

�
M2

� ¼ M2 þ ð1þ a1Þμ2I � 2μI
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ a1μ2I

p
;

M2
0 ¼ M2;

μI < μc;

ð31Þ
8>><
>>:

M2þ ¼ ð1 − a1Þμ2I þ 3þa1
ð1−a1Þ2

M4

μ2I
;

M2
− ¼ 0;

M2
0 ¼ ð1 − a1Þμ2I :

μI > μc; ð32Þ

In fact, from the previous analysis of the dispersion
relation, we realize that the displacement of the critical
point produced by the a1 term can be understood as
follows, consistent within the effective Lagrangian frame-
work. The usual condition for BEC reads μc ¼ M̃− with
M̃− ¼ Ẽ−ðp ¼ 0Þ and Ẽ−ðpÞ the π− particle mass and
energy, respectively, below the critical point, for which
the Bose-Einstein distribution diverges. In other words,
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M−ðμcÞ ¼ 0 with M−ðμIÞ ¼ M̃ − μI . However, within the
effective Lagrangian framework, one has μI-dependent
interactions, which in particular enter in the particle
dispersion relation and may then modify the critical point.
This is the case for a1 ≠ 0, for which we expect the same
modification in the charged pion mass as in the case of
EM interactions. Actually, from (31), we see that the effect
of the new a1 term below μc amounts to the shift
M2 → M2 þ a1μ2I , which we readily recognize as the same
effect as the charged pion mass shift M2 → M2 þ 2C e2

F2

which takes place when EM interactions are included,
coming from the term ΔLEM

2 ¼ CTrðQUQU†Þ with Q the
quark charge matrix [43–46]. The origin of that mass shift
is in both cases the Lagrangian contribution breaking
isospin only in the charged pion directions, so it does
not affect the neutral pion mass. Therefore, from M2 þ
a1μ2c ¼ μ2c we would readily have the shifted μc ¼
M=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a1

p
. Actually, one can check that M−ðμcÞ ¼ 0

withM− in (31) for any a1. Thus, as in the a1 ¼ 0 case, the
vanishing mass of one of the charged pions signals the
onset of BEC condensation as a Goldstone mode corre-
sponding to the Uð1ÞI3 spontaneous symmetry breaking of
the vacuum in that phase, i.e., with a nonzero pion
expectation value. The above mass dependence is plotted
in Fig. 1 for a sample value of a1 ¼ −0.1 compared to the

a1 ¼ 0 case, the qualitative dependence with μI being quite
similar, although note that a1 introduces a nonpolynomial
dependence below μc.
From the free energy density in (21), we also get the

quark and pion condensates, as well as the isospin density.
Namely, from (18)–(20), we get, replacing α ¼ α0 and for
j ¼ 0,

hq̄qið2ÞðμIÞ ¼
(
−2B0F2; μI < μc;
−2B0F2M2

ð1−a1Þμ2I
; μI > μc:

ð33Þ

hiq̄γ5τ1qið2ÞðμIÞ ¼
(
0; μI < μc;

−2B0F2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − M4

ð1−a1Þ2μ4I

q
; μI > μc;

ð34Þ

nð2ÞI ðμIÞ ¼
8<
:

1
2
ða1 þ a2ÞF2μI; μI < μc;

1
2
F2μI

�
2 − a1 þ a2 − 2M4

ð1−a1Þμ4I

�
; μI > μc:

ð35Þ

Note that the only dependence with a2 shows up in the
pion density, which should remain zero below the BEC
point. Therefore, with that physical requirement, we fix

FIG. 1. Dependence of pion masses with isospin chemical potential to leading order in ChPT with and without the extra term, for a
sample value a1 ¼ −0.1.
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a2 ¼ −a1 þOð1=F2Þ ð36Þ

up to higher-order corrections, which leaves us only with
one free parameter at this order.
The condition (36) is an example of the physical

conditions implying LEC relations mentioned in Sec. II.
It has to be understood as a constraint on the a1;2 relative
size under the chiral power counting. As explained, this is
not contradictory to the effective Lagrangian framework,
where at the Lagrangian level the field operators corre-
sponding to a1;2 are indeed independent. In Sec. IV, we will
discuss additional constraints at NLO. In fact, as already
commented, we will see that when all contributions from ϵ4
are properly taken into account, one gets actually a1;2 ¼
Oð1=F2Þ so that all a1 corrections to the free energy density
fall formally into the NLO.
In turn, note that the coefficients in front of the two μ2I

terms in (10) are of opposite sign. This is a consequence of
the covariant derivative structure ½Q;U�½Q;U†� entering
that term and leading in particular to Dμ1 ¼ 0 so that they
do not contribute to the free energy density in the normal
vacuum. Since the a1;2 terms do not come from the
covariant derivative, the condition (36) has to be fulfilled.
An alternative way to understand the condition (36) is that
only the difference of those two operators is allowed to
leading order, as they actually appear in the μ2I covariant
derivative term in (10), and so on for the NLO operator
combinations arising from the constraints that we will
discuss in Sec. IV.

B. Comparison with lattice

Before proceeding to the ϵ4 calculation, and in order to
have a first and more quantitative idea of the effect of the
new terms, we will compare the results in Sec. III A with
those obtained in the lattice.
Using only the ϵ2 results simplifies the analysis since the

only undetermined constant is a1, which we will fit here to
the lattice points. This will allow us, on the one hand, to
have a neater comparison with previous works [22] where
the main contribution to the different observables comes
from ϵ2. On the other hand, it is important to discern
whether a1 ≠ 0 is preferred for lattice results, since, in
principle, as commented in the Introduction, lattice points
are compatible with μc < Mπ , which would call for a1 < 0
according to (22). In addition, as we are about to see, this
analysis will support numerically the idea that the a1
corrections are parametrically much smaller than the rest
of the contributions coming from ϵ2, which is confirmed by
our analysis in Sec. IV, and which in particular implies that
to LO, one still has formally μc ¼ M. Once we include
properly all the ϵ4 contributions, for the rest of undeter-
mined constants arising from the LQ

4 Lagrangian in (15) we
will consider natural values, as discussed below.

For that purpose, we will consider for the quark and pion
condensates the recent lattice results provided in [22] at
T ¼ 0 coming from the collaboration [38]. The latter are
given for a finite pionic source. We take j¼0.00517054Mπ ,
one of the two values considered in [22]. As for the isospin
density, we compare with the results quoted in [38] for
j ¼ 0 and T small enough to provide an accurate enough
description of the T ¼ 0 case.
We also fix, as in [22,38],

Mπ ¼ 131 MeV; M ¼ 132.49 MeV;

Fπ ¼ 90.51 MeV; F ¼ 84.93 MeV;

m ¼ 3.47 MeV; B0 ¼ 2529.34 MeV; ð37Þ

where, for the sake of comparison with the lattice, we have
used their physical Mπ , Fπ values, which using the one-
loop standard ChPTexpressions [41], give rise to the values
of the tree-levelM, F quoted in (37). In addition, we assign
a characteristic uncertainty of 5% to the lattice data,
following again [22,38]. Thus, we show here the results
of three different fits, which are summarized in Table I and
Figs. 2–4. The uncertainty bands in the figures and the
uncertainty range for the a1 parameter correspond to the
95% confidence level.
Those results lead to the following partial conclusions.

First, the quark and pion condensates can be reasonably
fitted with a1 ¼ 0 within the uncertainties considered
(fit 1). Fitting only the quark (pion) condensate favors a
positive (negative) a1 value, still compatible with zero.
However, the conclusion is very different when fitting the
isospin density in fit 2, for which we have included only the
lattice points with μI > Mπ . As explained in [38], the lattice
uncertainty for μI ∼Mπ is actually much higher, although
we have still plotted the first lattice point below μI and
given in [38]. Note that such a point lies below Mπ with a
nonzero isospin density central value, which is actually
favored by our present analysis with negative a1. In fact, as
can be seen from the results in Table I, the lattice results for
nI are much better fitted with a negative value for a1 than
for a1 ¼ 0, as the values of the corresponding χ2=d:o:f:
clearly show. The same conclusion is reached when
performing a combined fit of the three observables (fit 3).
Note also that fits 2 and 3 for nI reproduce quite well the
two ends of the lattice points, i.e., the closest points to

TABLE I. Results for the a1 constant in different fits to quark
and pion condensates and isospin density.

Fit a1 χ2=d:o:f:
χ2=d:o:f:,
a1 ¼ 0

1: hiq̄γ5τ1qi, hq̄qi 0.000þ0.036
−0.038 0.64 0.64

2: nI −0.020� 0.007 1.39 7.30
3: hiq̄γ5τ1qi, hq̄qi, nI −0.019� 0.007 0.84 2.03
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μI ¼ Mπ and those for larger μI > Mπ, improving over the
a1 ¼ 0 case. As for the numerical value of a1 obtained in
the fits, we confirm what we had already advanced, i.e.,
ja1j ≪ 1, which supports the idea that a1 should be
parametrically included in the NLO corrections, as we
will formally prove in Sec. IV.

To end this section, we show the results for αð2Þ0 (Fig. 5),
i.e., the solution of the equation ∂ϵ2

∂α ¼ 0, for the value of a1
obtained in the joint fit 3, both for j ¼ 0 and for the value of

j used here. The explicit expression of αð2Þ0 is given in (22).
While for j ¼ 0, the a1 contribution changes the transition
point, as already commented, for j ≠ 0 the transition is a
crossover, and a1 merely modifies the inflection point of

the αð2Þ0 function.
To summarize this section, lattice results are compatible

with a1 < 0 and parametrically small, improving the
description of the isospin density and the overall descrip-
tion of nI and the two condensates.

C. Fourth-order contributions

The next-to-leading corrections ϵ4 to the free energy
density come from three different sources, which we will
analyze separately below.

(i) Loop corrections coming from the quadratic field
terms (24) in the L2 Lagrangian, which can be
obtained in a similar fashion to the standard free-
field contributions to the partition function in vac-
uum, including now the μI corrections to the pion
dispersion relation [21].

(ii) The constant terms coming from the L4 Lagrangian
in (14) and (15). The LEC coming from this
contribution, including the new ones coming from
LQ
4 , will be renormalized to absorb the loop diver-

gences.
(iii) The linear-field terms coming from L2 and given in

(23) will also contribute as long as the minimizing

angle αNLO0 ≠ αð2Þ0 . This contribution has not been
considered in previous works on this subject and is
discussed below.

1. Loop contributions

Following the same steps as in previous works [21], we
can write the one-loop contribution to the free energy
density as

ϵloop4 ¼ 1

2

Z
p
½EþðpÞ þ E−ðpÞ� þ

1

2

Z
p
E0ðpÞ ð38Þ

with E�ðpÞ and E0ðpÞ in (29) and (30) and, following the
notation in [21],

Z
p
¼ μ2ϵ

Z
dD−1p
ð2πÞD−1 ð39Þ

with D ¼ 4 − 2ϵ and ϵ → 0þ and μ the dimensional
regularization (DR) scale.

FIG. 3. Fit of the isospin density for j ¼ 0. Lattice points are
taken from [38].

FIG. 2. Combined fit of the quark condensate (left) and the pion condensate (right) for j ¼ 0.00517054Mπ. Lattice points are taken
from [22].
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The treatment of the above integrals separating their
UV divergent contribution in DR follows the same
steps as in [21] except for the modifications proportional
to a1 in Eqs. (25)–(28). The contribution from the
charged pions to the one-loop free energy density can
be written as

1

2

Z
p
½EþðpÞ þ E−ðpÞ� ¼ ϵdiv4;þ− þ ϵfin4;þ− ð40Þ

with

ϵdiv4;þ− ¼ 1

2

Z
p
½E1ðpÞ þ E2ðpÞ�; ð41Þ

FIG. 4. Combined fit of the quark condensate (upper left panel), the pion condensate (upper right panel), and the isospin density (lower
panel). Lattice points are the same as in Figs. 2 and 3.

FIG. 5. αð2Þ0 as a function of μI=M for j ¼ 0 (left) and j ¼ 0.00517054Mπ (right).
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ϵfin4;þ− ¼ 1

2

Z
p
½EþðpÞ þ E−ðpÞ − E1ðpÞ − E2ðpÞ�; ð42Þ

and where we have introduced the quantities E1;2ðpÞ
given by

E1;2ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ m̂2

1;2

q
;

m̂2
1 ¼ ðM2 þ μ2I cos αÞ cos α − ð1 − a1Þμ2I cos 2α

þ 2B0j sin α;

m̂2
2 ¼ ðM2 þ a1μ2I cos αÞ cos αþ 2B0j sin α;

m̂2
3 ¼ m2

3 ¼ M2 cos αþ ð1 − a1Þμ2I sin2αþ 2B0j sin α:

ð43Þ

Separating in this way the divergent part of the charged
contribution, ϵdiv4;þ− in (41) has the form of the neutral part
in (38) and is easier to handle in DR. Actually, note that
the large-p behavior of E1 þ E2 is the same as the sum
Eþ þ E−. The finite contribution (subtraction integral)
ϵfin4;þ− can be calculated numerically. Thus, in DR we get
for the full divergent part

ðϵloop4 Þdiv ¼
1

2

Z
p
½E1ðpÞ þ E2ðpÞ� þ

1

2

Z
p
E0ðpÞ

¼ −
X3
i¼1

m̂4
i

4ð4πÞ2
�
Nϵ þ

3

2
þ log

�
μ2

m̂2
i

	�
ð44Þ

with Nϵ ¼ 1
ϵ − γ þ logð4πÞ and γ the Euler constant.

2. Oðp4Þ Lagrangian and renormalization

The contributions to the free energy density coming from
the constant part in theOðp4Þ Lagrangian (14) and (15) are,
respectively, given by

ϵ404 ¼ −ðl1 − l2Þμ4I sin4 α − l4M2μ2I cos αþ l4M2μ2I cos
3 α

− 2l4B0μ
2
I j sin αþ 2l4B0μ

2
I j sin α cos

2 α

− ðh1 − l4ÞM4 − ðl3 þ l4ÞM4 cos2 α

− 2B0jðl3 þ l4ÞM2 sinð2αÞ
− 4B2

0j
2½h1 − l4 þ ðl3 þ l4Þ sin2 α�; ð45Þ

ϵ4Q4 ¼ −q̂1μ4I sin4 α −
1

2
q̂2M2μ2I cos α −

1

2
q̂3M2μ2I cos

3 α

− q̂4B0μ
2
I j sin α − q̂5B0μ

2
I j sin α cos

2 α

− q̂6μ4I cos
2 α − q̂7μ4I ð46Þ

with

q̂1 ¼ q10 − 2q2 − 2q3 − q4; q̂5 ¼ 8ðq6 þ q7Þ;

q̂2 ¼ 4q5 − 2q6 − 8q7; q̂6 ¼
1

2
ð−2q1 þ 2q10 − 2q2 þ q9Þ;

q̂3 ¼ 4ðq6 þ 2q7Þ; q̂7 ¼
1

4
ð4q1 − 3q10 þ 4q2 þ q8 − q9Þ;

q̂4 ¼ 4ðq5 − q6Þ:

Comparing (46) with (45), we see that new terms
introduce μI-dependent corrections as follows: q̂1 shifts
the ðl1 − l2Þμ4I contribution, q̂2;3;4;5 modify, respectively,
the four l4μ2I terms, whereas q̂6;7 introduce new μ6I terms.
Of those new seven independent LECs appearing in the free
energy density, q̂4 and q̂5 will not contribute for j ¼ 0, and

the q̂7 term is independent of α, so it does not contribute to
the free energy density minimum.
The new LECs will precisely absorb the new loop diver-

gences dependent on a1 included in (44). Thus, the renor-
malized free energy density at NLO resulting from adding all
the contributions mentioned before can be written as
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ϵloop4 þ ϵ404 þ ϵ4Q4 ¼ −
1

ð4πÞ2
�
3

2
− l̄3 þ 4l̄4 þ log

�
M2

m̂2
2

	
þ 2 log

�
M2

m̂2
3

	��
1

4
M4cos2αþ B2

0j
2sin2αþ 1

2
M2B0j sinð2αÞ

�

−
1

2ð4πÞ2
�
1

2
þ 1

3
l̄1 þ

2

3
l̄2 þ 2ð4πÞ2q̂r1 −

a1
2

�
3ð1 − a1Þ þ 4ð1 − a1Þ log

�
μ2

m̂2
1

	
− a1 log

�
μ2

m̂2
2

	

þ ð2 − a1Þ log
�
μ2

m2
3

	�
þ log

�
M2

m2
3

	

μ4I sin

4α −
1

ð4πÞ2
�
1

2
þ l̄4 þ

ð4πÞ2
2

q̂r2 −
a1
2

�
1þ log

�
μ2

m̂2
1

	

þ log

�
μ2

m2
3

	�
þ log

�
M2

m2
3

	

M2μ2I cos αþ 1

ð4πÞ2
�
1

2
þ l̄4 −

ð4πÞ2
2

q̂r3 −
a1
2

�
2þ 2 log

�
μ2

m̂2
1

	

þ log

�
μ2

m̂2
2

	
þ log

�
μ2

m2
3

	�
þ log

�
M2

m2
3

	

M2μ2I cos

3α −
2

ð4πÞ2
�
1

2
þ l̄4 þ

ð4πÞ2
2

q̂r4

−
a1
2

�
1þ log

�
μ2

m̂2
1

	
þ log

�
μ2

m2
3

	�
þ log

�
M2

m2
3

	

B0jμ2I sin αþ 2

ð4πÞ2
�
1

2
þ l̄4 −

ð4πÞ2
2

q̂r5

−
a1
2

�
2þ 2 log

�
μ2

m̂2
1

	
þ log

�
μ2

m̂2
2

	
þ log

�
μ2

m2
3

	�
þ log

�
M2

m2
3

	

B0jμ2I sin αcos

2α

−
1

2ð4πÞ2 f2ð4πÞ
2q̂r6 −

a1
2

�
1 − 3a1 þ 2ð1 − 2a1Þ log

�
μ2

m̂2
1

	
− 2a1 log

�
μ2

m̂2
2

	�

μ4I cos

2α

−
1

2ð4πÞ2 f2ð4πÞ
2q̂r7 þ

a1
2

�
1 − 2a1 þ ð2 − 3a1Þ log

�
μ2

m̂2
1

	
− a1 log

�
μ2

m̂2
2

	�

μ4I

−
1

ð4πÞ2 ðh̄1 − l̄4Þ½M2 þ 4B2
0j

2� þ ϵfin4;þ−; ð47Þ

where the renormalized and scale-independent l̄i; h̄i are the
standard ones given in [22,41], while the new LECs are
renormalized as

q̂i ¼ q̂ri ðμÞ − ηi
μ−2ϵ

2ð4πÞ2 ½Nϵ þ 1� ð48Þ

with

η1 ¼ −3a1 þ 3a21; η5 ¼ 8a1;

η2 ¼ −4a1; η6 ¼ −a1 þ 3a21;

η3 ¼ 8a1; η7 ¼ a1 − 2a21;

η4 ¼ −4a1; ð49Þ

where, as usual, the μ dependence of the renormalized
LECs cancels with that of the loops, rendering the free
energy density finite and scale independent. In the follow-
ing sections, we will analyze the effect of these new LECs
on the μI dependence of the different observables obtained
from the free energy density.
The numerical values we will use for the l̄i will be the

same as the previous works on this subject [22,39] for an
easier comparison. Thus, we will take the central values of
the l̄i; h̄i from [49]:

l̄1 ¼ −0.4; l̄2 ¼ 4.3; l̄3 ¼ 2.9;

l̄4 ¼ 4.4; h̄1 − l̄4 ¼ −1.5; ð50Þ

which have been used to study the quark and pion
condensates in [22] and the isospin density in [39] at zero
temperature.
Recall that the l̄i; h̄i, although scale independent are mass

dependent, and therefore, there might be slight numerical
variations from the values (50) when taking the masses in
(37). Those variations are logarithmic and therefore numeri-
cally negligible, so for our purposes of comparing with
previous works, we will still use the values in (50).
As for the q̂i constants, for simplicity we will consider

them within natural values defined from a characteristic
ChPT uncertainty range [45,46] as

jq̂ri j ≤
1

16π2
ð51Þ

at a typical chiral scale, which we will set as μ ¼ Mρ ≃
770 MeV from now on. Recall that all our results are
independent of the scale μ.

3. Linear terms

The solution for the angle minimizing ϵ2 given in (22) for
j ¼ 0 is such that the linear term in (23) proportional to
π1ðxÞ vanishes, so the linear terms can be ignored since the
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derivative term in (23) does not contribute to ϵ2. However,
this is not necessarily true to higher orders. Thus, let us

consider values of α perturbatively close to αð2Þ0 , around
which the minimum of ϵ2 þ ϵ4 will be, i.e.,

α ¼ αð2Þ0 þ δα0 ð52Þ

with αð2Þ0 ¼ Oð1Þ, δα0 ¼ Oð1=FÞ in the chiral expansion,
Then we can write

Llin
2 ¼ f0ðαð2Þ0 Þðα − αð2Þ0 Þπ1ðxÞ þOð1=FÞ þ…; ð53Þ

where the dots denote derivative terms and, according to
(23),

fðαÞ ¼ −F sin α½M2 − ð1 − a1Þμ2I cos α� þ 2B0Fj cos α:

ð54Þ

The above linear contribution to NLO can be reabsorbed
into a redefinition of the π1 field, over which we are
integrating to get the free energy density. Namely,

π1 → π1 þ
f0ðαð2Þ0 Þ
m2

1ðαð2Þ0 Þ
ðα − αð2Þ0 Þ: ð55Þ

The above shift eliminates the linear term at this order
and completing squares generates the following additional
Oð1Þ perturbative contribution to the NLO free energy
density:

ϵlin4 ¼ −
1

2

½f0ðαð2Þ0 Þ�2

m2
1ðαð2Þ0 Þ

ðα − αð2Þ0 Þ2 ð56Þ

with m2
1 in (26). The contribution (56) has to be added to

those in (47) to get the full ϵ4. Minimizing now ϵ2 þ ϵ4 with
respect to α will give rise to the new minimum, which we

denote αNLO0 lying perturbatively around αð2Þ0 . Note that the
linear contribution (56) arises even for a1 ¼ 0, its con-
tribution to the different observables being

Δhq̄qiNLOlin ¼ ∂ϵlin4
∂m

¼ −B0F2 cosðαð2Þ0 Þðα − αð2Þ0 Þ2; ð57Þ

Δhiq̄γ5τ1qiNLOlin ¼ ∂ϵlin4
∂j

¼ −B0F2 sinðαð2Þ0 Þðα − αð2Þ0 Þ2;

ð58Þ

ΔðnIÞNLOlin ¼ −
∂ϵlin4
∂μI

¼ −μIF2ð1− a1Þ cosð2αð2Þ0 Þðα− αð2Þ0 Þ2:

ð59Þ

To have a more quantitative idea of the effect of this
correction, we have plotted in Fig. 6 the result for the

minimizing angle α0, comparing αð2Þ0 with αNLO0 , with and
without including the linear term contribution (56). For
easier comparison with previous works, we have not
included in that plot the new contributions coming from
the a1 and q̂i terms. We consider both the j ¼ 0 and j ≠ 0
situations. As we can see in that figure, the inclusion of the
linear term may generate sizable differences between
the NLO and LO results. Actually, for some values of the
constants involved, those linear corrections can be such that
the effective potential stops having a minimum above a
certain μI value. We can actually see this behavior in the
plot shown in Fig. 6 for which that limiting value is μI ≃
300 MeV for j ¼ 0 and μI ≃ 340 MeV for the j ≠ 0 value
considered. The deviations with respect to the LO indicate
that we are reaching the borderline of the ChPT validity
limit where, in particular, the very same approximation
followed in (52) and (53) would fail. This is actually
consistent with lattice analyses showing that deviations
from ChPT around those μI values signal the onset of the
BCS phase [25]. Nevertheless, it should be taken into

FIG. 6. Effect of the linear term in the minimizing angle α0 for j ¼ 0 (left) and j ≠ 0 (right). The LO here refers to αð2Þ0 in (22).
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account that the actual value of such a validity limit
depends also on the rest of the LEC involved, as we will
discuss in detail below.

IV. PHYSICAL CONSTRAINTS

A. Constraints on the LEC from the isospin density

First, let us discuss the constraints arising from the
condition of vanishing isospin density for μI < μc and
j ¼ 0, i.e., the extension of the constraint (36) to include

the NLO Oð1=F2Þ corrections. Let us denote μð2Þc ¼ Mffiffiffiffiffiffiffiffi
1−a1

p

and μNLOc the NLO value for μc which will be determined in
Sec. IV B below and which depends on the q̂ri constants.
We obtain the isospin density below μNLOc by taking the
derivative of ϵ2 þ ϵ4 with respect to μI and setting j ¼
α ¼ 0 [note that by definition, αNLO0 ðμI < μNLOc Þ ¼ 0]. In

doing so, we must be careful with the linear contribution

(56). Such a contribution vanishes for α ¼ 0 and μI <

μð2Þc ¼ Mffiffiffiffiffiffiffiffi
1−a1

p since αð2Þ0 ðμI < μð2Þc Þ ¼ 0. However, it would

contribute for μð2Þc < μI < μNLOc if μð2Þc < μNLOc . Thus,
we get

(i) If μð2Þc > μNLOc ⇒ nIðμI < μNLOc Þ ¼ n0ðμIÞ
(ii) If

μð2Þc < μNLOc ⇒ nIðμI < μNLOc Þ

¼
(
n0ðμIÞ þ n1ðμIÞ μð2Þc < μI < μNLOc ;

n0ðμIÞm μI < μð2Þc

with

n0ðμIÞ ¼
F2

2
ða1 þ a2ÞμI þM2ðq̂r2 þ q̂r3ÞμI þ 4ðq̂r6 þ q̂r7Þμ3I þ

a1
8π2ðM2 þ a1μ2I Þ

×

�
M4

4
μI þ ðM2 þ a1μ2I Þ2 log

�
μ2

M2 þ a1μ2I

	�
þO

�
1

F2

	
;

n1ðμIÞ ¼
1

2

∂

∂μI

�
αð2Þ0 ðμIÞf00½αð2Þ0 ðμIÞ�

m1ðμIÞ
�2

þO
�

1

F2

	
; ð60Þ

where f0 stands for the function f in (54) for j ¼ 0, and we
have followed [21] for the calculation of the loop integrals.
Thus, since the μI dependence of the n1 function above
(coming from the linear term) is nonpolynomical, the only
way to ensure that nI vanishes for all μI below μNLOc is that
the q̂ri satisfy the constraint

μNLOc ðq̂ri Þ < μð2Þc : ð61Þ

On the other hand, the condition that the n0 function in
(60) vanishes at this order, together with (36), implies the
following additional constraints:

a1; a2 ¼ O
�

1

F2

	
; ð62Þ

a1 þ a2 ¼ −
2M2

F2
½q̂r2ðμÞ þ q̂r3ðμÞ� þO

�
1

F4

	
; ð63Þ

q̂r6ðμÞ þ q̂r7ðμÞ ¼ O
�

1

F2

	
: ð64Þ

We remark that the condition (62) is fully consistent with
having obtained a numerical value ja1j ≪ 1 in our fit study
in Sec. III B. The situation is similar to the EM corrections
in ChPT, where there are operators which are formally

Oðp2Þ, such as (3), but multiplied by e2 which is a
numerically small parameter. Actually, in view of the above
considerations, if we had normalized a1;2 ¼ M2

F2 â1;2 so that
the âi would be parametrically of the same order as the q̂i,
then conditions such as (63) or (69) below would translate
into mass-independent relations. As commented in Sec. II,
we are following the standard convention of ordering the
Lagrangians according to the chiral order of the field
operators, but from the above results, we could have
equivalently considered formally the a1;2 terms as part
of the Oðp4Þ Lagrangian. On the other hand, Eq. (63)
provides the explicit expression for the Oð1=F2Þ correc-
tions in (36) and allows us to eliminate the dependence on
a2, while the condition (64) will be applied in what follows
to eliminate the dependence on q̂r7.

B. The critical BEC value at NLO

Once all the contributions to the free energy density ϵ2 þ
ϵ4 have been considered, the critical value μNLOc can be
determined as the value for which α ¼ 0 flips from a local
minimum to a local maximum, since ∂ϵNLO

∂α jα¼0 ¼ 0.
Therefore, expanding the free energy density around α ¼ 0,

ϵ2 þ ϵ4 ¼ β0ðμIÞ þ β2ðμIÞα2 þOðα4Þ; ð65Þ

we have
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β2ðμIÞjμI¼μNLOc
¼ 0: ð66Þ

From the free energy density calculated above, we find

β2ðμIÞ ¼
1

2
F2
π½M2

π − ð1 − a1Þμ2I �

þ 1

4
μ2I ½M2ðq̂r2 þ 3q̂r3Þ þ 4q̂r6μ

2
I �

−
F2ðμ4I −M4Þ

2μ2I
þO

�
1

F2

	
; ð67Þ

where Mπ and Fπ are the NLO ChPT pion decay constant
and mass, respectively, [41] and where we have made use of
the condition (62) so that the a1 dependence in the NLO has
been ignored. The last term in (67), proportional to F2,
comes from the linear-field contribution (56). Note that
we are interested in the expansion around α ¼ 0 only in

order to determine μNLOc . Therefore, μI lies around μð2Þc ¼
M½1þOðF−2Þ� so that the linear-field contribution just
mentioned remains of NLO, as it should.
From the previous expression, we see that only q̂r2;3;6 and

a1 modify the critical BEC value. We show in Table II the
value of μNLOc expected within the range of natural values
for those constants in (51) and taking a1 ¼ −0.019, the
central value of fit 3 to lattice results in Sec. III B. In
addition, we have highlighted in the table the values for
which the condition (61) holds. As explained, q̂ri values not
satisfying that condition are not acceptable, since they give
rise to a nonzero isospin density below the critical value.
Note that, as happened in the Oðp2Þ analysis in Secs. III A
and III C, our results support μc < Mπ , which, as shown in
Sec. III B, is compatible with lattice results.
Anyhow, we remark that, due to the condition (62),

parametrically we have at leading order

μLOc ¼ M þO
�

1

F2

	
¼ Mπ þO

�
1

F2

	
; ð68Þ

while at next-to-leading order, from (67), the condition
μc ¼ Mπ could be satisfied by imposing an additional
constraint relating q̂r2;3;6 and a1, namely,

μNLOc ¼ Mπ ⇒ a1F2
π þ

M2
π

2

�
q̂r2 þ 3q̂r3 þ 4q̂r6 þ

l̄3
8π2

�

¼ O
�

1

F2

	
; ð69Þ

where l̄3 arises from the M2
π −M2 difference [41], and we

have replaced M by Mπ in the NLO when the difference is
of higher order. Since Mπ < M, the consistency condition
in Eq. (61) is compatible with (69), ensuring a vanishing
isospin density below μc. If the constraint (69) is imposed, a
further LEC could be eliminated.
It is important to observe from (69) that maintaining

μNLOc ¼ Mπ requires at least one nonzero value for the new
LEC a1; q̂i, which comes from the fact that β2ðμc ¼ MπÞ ≠
0 for a1 ¼ q̂i ¼ 0, with β2 in (67) due to the linear term
contribution. That is, taking into account also the results in
Sec. IVA, the presence of the linear term implies that the
conditions nIðμI < μcÞ ¼ 0 and μπ ¼ Mπ can be mutually
satisfied at NLO only if the new terms considered here are
taken into account. Recall that in previous ChPT studies
[21,22], those conditions hold but the linear term was not
considered.
As explained in Sec. III A, μc ≠ Mπ is theoretically

allowed when interactions are included within the most
general effective Lagrangian formalism, and is indeed
consistent with the lattice. Nevertheless, we will evaluate
numerically the different observables to NLO in the
following section with and without using the constraint
(69), which physically amounts to imposing that the system
still behaves as a noninteracting Bose gas as far as the
critical point is concerned. In any case, deviations will be
small, consistent with (68).

V. NUMERICAL RESULTS

We will consider now the NLO evolution of chiral
observables for nonzero μI, regarding in particular the role
of the q̂ri LEC and the comparison with lattice analyses.
From the results in the previous sections, we see that the
NLO free energy density depends on seven independent
new LECs, namely, a1; q̂r1−6 whose numerical values will
then influence the μI dependence of the observables. Note
that all the observables considered depend on q̂r1−6 since, in
addition to the explicit q̂ri dependence, one must consider
that in αNLO0 . We will represent our results for the range of
natural values (51) at the scale μ ¼ Mρ and setting a1 ¼
−0.019 (the mean value obtained in fit 3 in Sec. III B).
Thus, we have 36 points for each μI , corresponding to the
three values 0;�1=ð16π2Þ. In doing so, we discard those q̂ri
violating the condition (61), and we calculate the mean
square error of the results which provides a dispersion
estimation. Note that, as commented in Sec. III C 3, due to
the linear term, the minimum could disappear above a given
μI . Thus, the uncertainty bands in the following figures for
a given μI > μc correspond to those q̂ri combinations for

TABLE II. Critical value of the BEC transition for natural
values of q̂r2, q̂r3, and q̂r6. The highlighted values are those
fulfilling the condition (61).

q̂r6 ¼ 1
16π2

q̂r6 ¼ − 1
16π2

μNLOc =Mπ q̂r3 ¼ 1
16π2

q̂r3 ¼ − 1
16π2

q̂r3 ¼ 1
16π2

q̂r3 ¼ − 1
16π2

q̂r2 ¼ 1
16π2

1.007 0.935 0.916 0.803
q̂r2 ¼ − 1

16π2
1.005 0.873 0.874 0.773
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which the minimum exists. The effect of the linear term
will be actually shown separately in the figures in order
to calibrate better its effect. In addition, as we have just
mentioned in Sec. IV B, we will show separately the results
with and without imposing the NLO condition μc ¼ Mπ in
(69). For an easier comparison with our analysis in previous
sections, we also plot in the following figures the curves
obtained in the fit of Sec. III B, which we denote as LO,
although, as commented above, they contain a1 which is
formally a NLO contribution.
First, in Fig. 7, we show αNLO0 , i.e., the angle minimizing

the free energy density including NLO corrections. We see
that including all the corrections discussed here implies
sizable deviations above μc with respect to the LO, larger
than in previous analyses [21,22]. Note in particular the tail
below μI ¼ Mπ coming from the reduction in the numerical
value of μNLOc as Table II shows.

We plot in Fig. 8 the quark and pion condensate
deviations (as defined in [22]) at NLO for natural values
of q̂ri with and without a linear term, comparing with lattice
results. The NLO corrections are again significant and
remain within the uncertainties of lattice points, taking into
account that we are not performing a complete NLO fit with
all the free parameters, so there would be still room for
improvement. For high μI values, the NLO corrections
actually improve over the LO fit in Sec. III B for the pion
condensate, whereas in the case of the quark condensate,
with the inclusion of the linear term, the theoretical curve
seems to depart from the lattice points with respect to
the LO.
Finally, we study the isospin density at NLO for j ¼ 0.

The result, including the uncertainty bands of q̂ri natural
values, is shown in Fig. 9. As for previous observables, the
NLO with the new terms considered in this work provides

FIG. 7. Results for the minimizing angle α0 at NLO for finite source j ¼ 0 (left) and j ¼ 0.005170554Mπ (right), with a1 ¼ −0.019
and natural values for q̂r1−6. The LO refers to αð2Þ0 in (22).

FIG. 8. Results for the quark condensate deviation (left) and pion condensate deviation (right) as a function of μI=Mπ at NLO for finite
source j ¼ 0.005170554Mπ , a1 ¼ −0.019, and natural values for q̂ri . The lattice data are from [22]. The LO refers to hq̄qið2Þ and
hiq̄γ5τ1qið2Þ in (33) and (34), respectively.
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significant deviations from the LO as μI increases, still
accommodating the lattice results.
As explained above, for the NLO analysis we have fixed

a1 to the LO fit and consider the new q̂ri within natural
values. In view of the results in Figs. 8 and 9, we would
surely have obtained a much better description of lattice
results by keeping a1 and the q̂ri as fit parameters with the
NLO curves, but such a precision analysis is outside the
scope of this work.
Finally, in Fig. 10 we show the same observables as in

Figs. 8 and 9 but using Eq. (69) to fix μc ¼ Mπ and
eliminate the constant q̂r3 in terms of a1, q̂r2, and q̂r6. The
pion and quark condensate corrections at NLO fixing μc ¼
Mπ remain very close to the corrections calculated without
setting the critical value and, as in that case, most of the
lattice data fall into the uncertainty bands. As for the
isospin density, fixing μc ¼ Mπ narrows the uncertainty
band around the pion mass since nI vanishes in that case
below Mπ, remaining compatible with lattice data except
for the lattice point below Mπ.

FIG. 9. Normalized isospin density as a function of μI=Mπ at
NLO with and without the linear term. Lattice points are taken

from [38]. The LO refers to nð2ÞI in (35).

FIG. 10. Results for the quark condensate (upper left panel), pion condensate (upper right panel), and isospin density (lower panel)
deviations as a function of μI=Mπ at NLO for a1 ¼ −0.019 and fixing μI ¼ Mπ . We show the expected uncertainty bands within the
range of natural values for q̂r1;2;4;5;6 and q̂

r
3 fixed by the constraint given in (69). The value of j for the quark and pion condensates is the

same as in Fig. 8. The lattice data are from [22]. The LO refers to hq̄qið2Þ, hiq̄γ5τ1qið2Þ, and nð2ÞI .
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VI. CONCLUSIONS

In the present work, we have analyzed the most general
effective chiral Lagrangian for nonzero isospin chemical
potential for two light flavors up to Oðp4Þ. We have
followed the technique of external sources including
spurion fields, which allows us to account for all possible
operators respecting the symmetry-breaking problem at
hand. The effect of the new Lagrangian terms in the free
energy density has been calculated up to next-to-leading
order. In addition, we have calculated a new NLO con-
tribution to the free energy density coming from terms
linear in the pion fields.
In the second-order Lagrangian L2, two new indepen-

dent terms have to be considered, whose corresponding
low-energy constants a1, a2 are related from the constraint
of vanishing isospin density below the critical BEC value
μc. The constant a1 contributes in particular to a shift in μc
with respect to the pion mass, although our complete NLO
analysis shows that parametrically μc ¼ Mπ still holds at
leading order. To estimate the preferred value of a1, we
have performed several fits to lattice results for the quark
and pion condensates (for nonzero pionic source j) as well
as for the isospin density (for j ¼ 0), which favor a1 < 0
(and therefore, μc < Mπ) with ja1j ≪ 1, consistent with its
parametric NLO dependence. When comparing to the a1 ¼
0 results, a small nonzero negative value for a1 improves
the description of lattice results, especially for the isospin
density.
The Oðp4Þ Lagrangian L4 contains seven new terms

with new low-energy constants q̂i, which we have con-
sistently renormalized to absorb the divergences coming
from loops with vertices of the newL2 terms. As mentioned
above, the NLO free energy density includes also an
additional contribution coming from a term in L2 linear
in the pion fields. That term comes from the NLO
corrections to the angle minimizing the free energy density.
The effect of the linear term is qualitatively important, since

it eventually makes the minimum of the free energy density
disappear, which sets a natural limit of validity for the
ChPT framework consistent with lattice analyses.
Imposing that the isospin density vanishes below μc to

NLO gives rise to additional constraints, involving now the
a1; a2; q̂ri LECs. Those constraints imply, on the one hand,
that the a1;2 contributions belonging are parametrically to
the NLO, consistent with the small value for a1 found in
our fits. On the other hand, the dependence on one of the
seven new LECs can be eliminated. In addition, the critical
BEC value to NLO must remain below the LO one, which
restricts further the admissible values for the q̂ri . If μc ¼ Mπ

is demanded also to NLO, a further constraint arises, which
could not be satisfied if all the new LECs would vanish, due
to the correction to μc coming from the linear term.
We have estimated the effect of the new LECs and the

linear term to NLO by keeping the q̂ri within natural values
and using for a1 our fitted value. The results for the
different observables show again consistency with the
lattice points, leaving room for improvement with respect
to the LO within the q̂ri uncertainty.
In summary, our present analysis has established sys-

tematically the most general way to describe low-energy
QCD at nonzero isospin density, consistent with lattice
results and complementing previous theoretical analyses.
We believe that this work will be useful toward a better
understanding of the QCD phase diagram, and we leave
for future works its extension to three flavors and finite
temperature.
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