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We revisit the derivation of collinear factorization for Deep Inelastic Scattering at subasymptotic values
of the four-momentum transfer squared, where the masses of the particles participating in the interaction
cannot be neglected. By using an inclusive jet function to describe the scattered quark final state, we can
restrict the needed parton kinematic approximations just to the four-momentum conservation of the hard
scattering process, and explicitly expand the rest of the diagram in powers of the unobserved parton
transverse momenta rather than neglecting those. This procedure provides one with more flexibility in
fixing the virtuality of the scattered and recoiling partons than in the standard derivation, and naturally leads
to scaling variables that more faithfully represent the partonic kinematic at subasymptotic energy than the
Bjorken’s xB variable. We then verify the validity of the obtained factorization formula by considering a
diquark spectator model designed to reproduce the main features of electron-proton scattering at large xB in
Quantum Chromodynamics. In the model, the Deep Inelastic Scattering contribution to the cross section
can be explicitly isolated and analytically calculated, then compared to the factorized approximation.
Limiting ourselves to the leading twist contribution, we then show that use of the new scaling variables
maximizes the kinematic range of validity of collinear factorization, and highlight the intrinsic limitations
of this approach due to the unavoidably approximate treatment of four-momentum conservation in
factorized diagrams. Finally, we briefly discuss how these limitations may be overcome by including
higher-twist corrections to the factorized calculation.
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I. INTRODUCTION

A. Motivation

Unraveling the quark and gluon structure of the nucleon
still remains a major challenge in hadronic and particle
physics, notwithstanding the significant experimental and
theoretical advances made in this area throughout the last
decade [1–5].
The Large Hadron Collider can measure a large variety

of observables, especially at the energy frontier, and access
the proton structure at the smallest spatial scales. However

utilizing its data remains challenging due to tensions
between various observables, and its impact on the deter-
mination of unpolarized Parton Distribution Functions
(PDFs) is so far somewhat statistically limited [6–8].
Proton-proton collisions at the Relativistic Heavy Ion
Collider (RHIC) provide complementary access to PDFs
at lower energy scale and higher parton fractional momen-
tum, most notably in polarized collisions [9–11]. Use of
RHIC data in unpolarized PDF fits has however not
received much attention until very recently, despite its
potential for flavor separation of sea quarks via weak boson
production data [12,13] and gluon PDF determination
through jet observables. Lowering the collision energy
and changing reaction to electron-proton collisions, recent
data from the Jefferson Lab 6 GeV program and those being
collected at its 12 GeV upgrade [14,15], as well as those
expected from the future Electron Ion Collider [16,17] will
enable us to access quarks and gluons in unprecedented
ways, and to build an accurate, 3-dimensional picture of the
inner structure of the proton.
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In order to use high-energy scattering data to describe the
proton’s structure in terms of quark and gluon PDFs one
relies on QCD factorization theorems, such as Collinear
Factorization (CF) [18]. These theorems allow one to write
the cross sections of large momentum transfer scattering
processes such as Deep Inelastic Scattering (DIS) as a
convolution of a short distance matrix element, which can
be computed perturbatively and describes the quark and
gluon “hard” interaction with a probe, and long distance
nonperturbative matrix elements—the PDFs—that describe
the quark and gluon momentum distribution within the
proton.
In this paper we are interested in assessing the viability

of Collinear Factorization in describing DIS events with
large enough 4-momentum transfer to justify a perturbative
QCD (pQCD) analysis of the cross sections in terms of
quark and gluon interactions, but not large enough to
neglect any other mass or dynamical momentum scale
characterizing the process. For example, experiments at
Jefferson Lab with a 6 GeV energy beam involve low
photon virtualities Q2 that require control of 1=Q2 power
corrections to the calculation of cross sections. With the
12 GeV beam the accessible Q2 increases, without, how-
ever, reaching asymptotic values where other scales can be
neglected. In this subasymptotic regime, the mass of the
proton target and the mass of an observed hadron, collec-
tively denoted by μ, induce finite-Q2 corrections of order
μ2=Q2 which we call “Hadron Mass Corrections” (HMCs).
These can compete with experimental uncertainties at
Jefferson Lab energy and can also affect higher-energy
experiments such as HERMES and COMPASS, see
Refs. [19–22]. These papers take into account into account
the mass of the target and of the observed hadron through a
rescaling of the Bjorken variable xB, as already discussed
for example in [23–25].1 References [19–21] go a step
further, and argue that one also needs to take into account
the fact that the (unobserved) scattered parton needs to
have a virtuality substantially different from 0 in order to
fragment into a massive hadron, and show that this require-
ment can be implemented in a gauge invariant way through
a modified scaling variable. Numerical estimates at JLab
kinematics suggest large effects for semi-inclusive pion
production [19], and even more for kaons or heavier
hadrons [20]. In fact, HMCs implemented in this way
may even explain [21] the apparent large discrepancy
between the measurements of transverse momentum

integrated kaon multiplicities performed at HERMES [34]
and COMPASS [35,36].
Two subsequent papers from the COMPASS collabora-

tion have furthermore analyzed kaons and protons pro-
duced at even larger hadron momentum fractions than
reported before, highlighting strong departures from pQCD
calculations [37,38]. This discrepancy between theory and
experiment seems too large to be only due to the phase
space limitations induced by finite mass effects (which, as
argued in Refs. [20,21], can be treated as a correction to the
usual collinear pQCD calculations) and may indicate that
the factorization formalism is being applied in a kinematic
region where this is not a good approximation to the semi-
inclusive cross section. If the correct treatment of the
partonic kinematics and the very validity of QCD factori-
zation are under question at high-energy experiments such
as HERMES and COMPASS—and already for transverse
momentum integrated observables!—investigating these
issues becomes essential for a correct interpretation of
the upcoming semi-inclusive measurements at the JLab
12 GeV upgraded facility [14,15], that are largely focused
on the 3D imaging of nucleons and nuclei. Indeed,
the transverse momentum dependent cross sections are
naturally more sensitive to HMCs than their integrated
counterparts, and factorization encounters novel challenges
of its own [22,39–41].
Motivated by these considerations, in this paper we

revisit the “standard” derivation of collinear factorization in
DIS processes [42,43] with the goal of identifying under
what conditions this can be extended to the subasymptotic
kinematic region, and how one can maximize its regime of
applicability. As a first step, we will discuss inclusive DIS
scattering, where we can avoid purely technical complica-
tions due to the interplay of initial and final state kinematics
[20], and limit ourselves to Leading-Order (LO) perturba-
tive calculations, that do not require renormalization of
the quark fields and limit the final state to 2 particles.
Nonetheless, we will be able to address in full the need for,
and means of, an improved kinematic approximation. The
use of an inclusive jet function [32,44–46] to describe the
scattered quark final state will prove essential to our goals.
We will then validate the obtained factorization formula in
the framework of a QCD-like idealized field-theoretical
model describing a spin 1=2 idealized nucleon, which
contains an active quark as well as a scalar diquark
spectator that does not participate in the interaction [47,48],
and complete the analysis presented in Refs. [49,50]. In the
chosen “diquark spectator model,” one can perform fully
analytic calculations of the DIS cross section, as well as
collinear factorization with or without HMCs. The model is
designed to reproduce the main feature of the QCD process
at large xB, and a comparison of the full and collinearly
factorized cross sections will determine the validity of the
proposed HMC scheme, as well as test the limits of
collinear factorization itself. Furthermore, working within

1Many other papers have also dealt with HMCs, starting from
the seminal inclusive DIS analysis by Nachtmann [26] and
Georgi, Politzer and De Rujula in the operator product expansion
(OPE) formalism [27,28], and by Ellis, Furmanski and Petronzio
in collinear factorization [29]; see Ref. [30] for a review, and [31]
for a comparison of mass corrections methods. See also
Refs. [32,33] for recent proposals to address the “threshold”
problem within collinear and OPE approaches to target mass
corrections.
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an explicit model we will be able to investigate the role of
the parton’s transverse momentum, that is by necessity
neglected in the Leading-Twist calculation of the inclusive
DIS cross section, but contributes to Higher-twist (HT)
Oðhk2Ti=Q2Þ corrections. As we will very briefly discuss in
the closing section, we believe that an extension of our
HMC scheme to Next-to-Leading Order (NLO)—and,
in fact, also to Semi-Inclusive DIS (SIDIS)—should not
encounter essential difficulties.

B. Paper organization and overview of results

As this paper is quite long, it is worthwhile to provide the
readers with an overview of its structure, the philosophy
behind our approach and the novelties compared to the
standard derivation, and the main results of each section,
before delving into the details of calculations and
derivations.
In Sec. II, we discuss our proposal for performing

Collinear Factorization of the DIS structure functions at
subasymptotic hard scales Q2, and how one can account
for hadron masses and nonzero parton virtualities in the
treatment of partonic kinematics. Our central philosophy,
adopted from Ref. [51], is to minimize the number of
uncontrolled approximations needed to achieve the desired
factorization formula. In particular, we confine the needed
“pure” kinematic approximations just to the external legs
of the partonic hard-scattering, and perform a controlled
“twist” expansion of the rest of the diagram. Gauge
invariance is guaranteed by the use of an inclusive quark
jet function [32,44–46] to describe the scattered quark in
the DIS handbag diagram, rather than utilizing an on-shell
quark propagator as in standard derivations [42,43]. In fact,
our calculation parallels the analogous one for single
inclusive hadron production in SIDIS [43,52], and high-
lights how the parton’s transverse momentum needs not
be altogether neglected, but can be instead dynamically
included in higher-twist terms [29,53].
The end result is quite simple: at leading twist (LT), the

factorized formulas for the hadronic tensor, and therefore
for the cross section and its structure functions, are given
by their asymptotic (or massless) counterparts evaluated
at a suitably defined scaling variable x̄ instead of xB, see
Eqs. (29)–(33). The choice of the x̄ scaling variable is not
prescribed by the factorization procedure itself, but can be
guided by kinematic consideration at the parton level and
by respect of momentum and baryon number conservation
laws, see Sec. II E and in particular Eq. (42).
The use of a scaling variable is not a new concept,

as it has been proposed in a similar context, for
example, in Refs. [23,24,48,54,55] and even earlier in
Refs. [26,27,29,56]. Here we attempt, however, at a more
systematic treatment that avoids a priori parton model
considerations. In fact our end result cannot be interpreted
in parton model terms except in a well defined limit,
but, conversely, gives one enhanced freedom in devising

realistic kinematic approximations in the subasymptotic
regime. In particular, it turns out that the light-cone
virtualities v2 and v02 of the partons participating in the
initial and final state of hard-scattering process need not
be approximated to zero, and can be chosen differently for
the incoming and scattered quarks without breaking
gauge invariance. This added flexibility may also facilitate
the study of the transition from perturbative to nonpertur-
bative degrees of freedom in data beyond the deep in-
elastic regime, where the virtual photon excites proton
resonances [57] and may be sensitive to multiparton
nucleon substructures [58].
The theoretical results outlined above are compelling,

but call for a benchmark validation. To this end, in Sec. III
we present the diquark spectator model adopted for our
validation study, and use this to analytically calculate the
inelastic lepton-proton cross section at LO. We then show
how the cross section can be decomposed in a gauge
invariant way into DIS, proton resonance, and interference
contributions, and study in detail the proton’s FT and FL
transverse and longitudinal structure functions, as well
as their scaling properties with respect to the photon
virtuality Q2. The low-xB behavior of the model also turns
out to be interesting, even if the model is not designed to
provide one with a realistic description of experimental
measurements in that regime. Indeed, our explicit calcu-
lation will highlight a quite different Q2 scaling of the DIS
component of FL compared to simple dimensional argu-
ments and to what happens for FT. As we will explain,
this is however a general consequence of gauge invariance
rather than a model artifact. It may also explain the need
for phenomenologicalOð1=Q2Þ corrections in order for CF
calculation of FL to agree with recent HERA data at small
values of the Bjorken invariant xB [59].
Sections IV and V are devoted to the validation of the

subasymptotic factorization formulas (29)–(33) for the DIS
transverse structure function FDIS

T . The goal is to verify:
(i) to what extent the “internal” (i.e., unobserved) partonic
variables can be replaced in the factorized cross section by
the proposed subasymptotic kinematic approximations and
the use of a scaling variable; (ii) how large transverse
momentum corrections of order Oðhk2Ti=Q2Þ, with k2T the
parton’s transverse momentum, are since these cannot be
kinematically included in the scaling variables and dynami-
cally contribute to the factorized cross section starting only
at next-to-leading twist; and (iii) explore the intrinsic
limitations of collinear factorization. The conclusions we
will reach are rather robust versus variations of model
parameters, as demonstrated in the Appendix section, and
therefore indicative of what we may expect to happen
in QCD.
In Sec. IV, the accuracy to which the x̄ scaling variable

describes the internal partonic kinematics is investigated,
and this and the corresponding light-cone virtuality v̄ are
compared to the average parton momentum fraction and
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virtuality values calculated in the full model. In particular,
we find that one can approximate at the 90% level the
average parton fractional momentum by including all
external mass scales in the quark-mass-corrected
Nachtmann scaling variable ξq ¼ ξð1þm2

q=Q2Þ, where
mq is the quark mass and the Nachtmann variable ξ [26]
accounts for the proton mass; small corrections of order
Oðhk2Ti=Q2Þ account for the rest.
These conclusions are confirmed in Sec. V, where

we compare the full and factorized transverse FT structure
functions and show that only corrections of order
Oðhk2Ti=Q2Þ are needed to describe the full structure
functions after removing all mass corrections by using of
the ξq in our subasymptotic CF formula. These additional
corrections are not experimentally controllable in inclusive
measurements, but given their small size one can hope to
theoretically treat them in the twist expansion [29,53]
without resorting to the Transverse-Momentum Dependent
(TMD) factorization formalism [42,52], or phenomenologi-
cally by adding a power suppressed term to a PDF fit
analysis. A brief discussion of these issues is offered in
Sec. VI, and a detailed analysis is left for future work.
In Sec. V we also demonstrate the inherent limits of

collinear factorization, that breaks down at very large xB
because the kinematical approximations needed to factorize
the PDFs from the partonic hard scattering coefficient do
not respect four-momentum conservation in transverse
momentum, as already argued in Ref. [48]. Fortunately,
this effect can be circumscribed by simple kinematic cuts
on the invariant mass W of the final state, and our model
estimate indicates that factorization breaks down only in
the resonance region at W2 ≲ 4 GeV2.
Finally, in Sec. VII we summarize the many results of

our paper and their implications, and in the Appendices
we included a study of the dependence (or rather inde-
pendence) of our conclusions on the model parameters.
In the Appendix section, we also provide: a complete
discussion of the structure function projectors and their
small-xB limit; details of the subasymptotic kinematic
limits; an analytic calculation of the small-xB scaling
behavior of the model structure functions; and an explicit
illustration of resonant electron-nucleon scattering when
the masses of the constituents are smaller than the mass of
the target itself.

II. COLLINEAR FACTORIZATION AT
SUBASYMPTOTIC MOMENTUM TRANSFER

Deeply inclusive lepton-nucleon scattering on a proton
or neutron target is illustrated in Fig. 1, where the incident
lepton (with four-momentum momentum l) interacts with a
nucleon (p) through the exchange of a virtual photon (q).
At large values of the virtuality Q2 ¼ −qμqμ, the virtual
photon scatters, on a short time scale, on a quark of four-
momentum k belonging to the nucleon. In the final state,

one measures the recoil lepton momentum l0, while the
recoiled quark with four-momentum k0, as well as the
remnant X of the proton are unobserved. The remnant is a
system of many particles produced by the fragmentation
of the target after the photon extracted one of its quarks. In
fact, the colored quark and remnant are subject to QCD
confinement, and, on a much longer time scale compared
to the photon-quark scattering process, hadronize into a
system of color neutral hadrons. Far from kinematic
thresholds, unitarity arguments show that color neutrali-
zation can be ignored in an inclusive measurement such as
we are discussing, and the process calculated as if quarks
were asymptotic states, see the left panel of Fig. 1.
However, closer to the pion production threshold the
final state phase space shrinks, and one needs to take into
account the fact that on-shell quarks cannot be present in
the final state. In this regime, it is possible to consider the
diagram on the right panel of Fig. 1 where one includes a
quark remnant Y to account for quark hadronization.
Note that we are considering diagrams in which the
final state in the current direction, Y, does not interact
with the target remnant X. This assumption is indeed
justified at large enough values of the Bjorken invariant
xB ¼ Q2=2ðpμqμÞ, which is the focus of this paper,
because the finite value final state invariant mass W2 ¼
ð1 − 1=xBÞQ2 þM2 kinematically limits the transverse
momentum of particles produced in the quark’s direction,
squeezing these in a jetlike configuration aligned with the
quark’s momentum [60,61].

A. Kinematics

We parametrize the four-momenta of the proton,
photon and incoming quark in Fig. 1 in terms of light-
cone unit vectors n and n̄, which satisfy n2 ¼ n̄2 ¼ 0 and
n · n̄ ¼ 1 [29]. The “plus” and “minus” components of a
four-vector aμ are defined by aþ ¼ a · n ¼ ða0 þ azÞ= ffiffiffi

2
p

and a− ¼ a · n̄ ¼ ða0 − azÞ= ffiffiffi
2

p
. Then, one can decompose

aμ ¼ aþn̄μ þ a−nμ þ aμT ≡ ðaþ; a−; aTÞ; ð1Þ

l
l′

q

k

k′

p

l
l′

q

k

k′

p

pX

FIG. 1. Electron-proton DIS at leading order in the strong
coupling constant. Left: in the impulse approximation, far from
kinematic thresholds. Right: in the impulse approximation, with a
quark remnant Y accounting for the hadronization of the final
state quark.
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where aμT is the vector’s transverse four-momentum, which
satisfies aT · n ¼ aT · n̄ ¼ 0, with norm a2T ¼ −a2T , and
aT ≡ ðaTx; aTyÞ is the 2D Euclidean transverse momentum.
We will work in the “ðp; qÞ frames” class [19], in which

the initial proton momentum and virtual photon are
collinear in 3-dimensional space and oriented along the
z-direction. We can thus decompose them as

pμ ¼ pþn̄μ þ M2

2pþ nμ; ð2Þ

qμ ¼ −ξpþn̄μ þ Q2

2ξpþ nμ; ð3Þ

where ξ is the so-called Nachtmann variable and is
defined as

ξ≡ −
qþ

pþ ¼ 2xB
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4x2BM

2=Q2
p : ð4Þ

The pþ component of the nucleon’s momentum para-
metrizes the Lorentz boosts in the z direction, and inter-
polates between the nucleon rest frame (pþ ¼ M=

ffiffiffi
2

p
) and

the infinite momentum frame (pþ → ∞). The use of a
light-cone reference frame is justified for hard scattering at
large Q2, where the proton and scattered quark momenta
are dominated by their light-cone plus and minus compo-
nents, respectively. For the same reason, this is also the
frame used to perform collinear factorization, as discussed
more extensively in the rest of this section.
Both the target momentum p and the photon momentum

q are “external” variables, namely they are experimentally
measured in the process of interest. On the contrary, the
incoming and outgoing quark momenta are not even
in principle measurable and therefore we will consider
them “internal” variables. The parton momenta can be
decomposed as

kμ ¼ xpþn̄μ þ v2

2xpþ nμ þ kμT; ð5Þ

k0μ ¼ v02

2k0−
n̄μ þ k0−nμ þ k0μT; ð6Þ

where x≡ kþ
pþ is the light cone momentum fraction carried

by the parton. In Eq. (5), the struck quark’s “light-cone
virtuality”

v2 ¼ k2 þ k2T ð7Þ

is a mass scale that will be relevant to our derivation of
subasymptotic collinear factorization. The name is justified
by noticing that k− ¼ v2=ð2kþÞ, so that v2 quantifies
how far the quark momentum is from the light-cone plus
direction. As we will discuss, it is this scale, rather than the

quark’s virtuality k2 alone, that controls the partonic
kinematics in the diagram and determines the applicability
of collinear factorization assumptions. Similarly, the out-
going quark’s light-cone virtuality, v02, is defined as

v02 ¼ k02 þ k02T : ð8Þ

B. The DIS hadronic tensor at LO

The differential cross section for the inelastic scattering
of an unpolarized lepton from an unpolarized nucleon
target can be written in the Born approximation as

dσ
dxBdQ2

¼ πα2y2

Q6
Lμν2MWμν; ð9Þ

where α ¼ e2
4π is the fine structure constant, Q

2 ¼ −q · q is
the photon’s virtuality, xB ¼ Q2=ð2p · qÞ is the Bjorken
variable, and the Lorentz invariant y is defined as y ¼ p·l

p·q

(here and in the following we use the shorthand a · b≡
aμbμ for the Lorentz contraction of 2 four-vectors). The
leptonic Lμν tensor for unpolarized leptons can be directly
computed from QED and reads,

Lμνðl; l0Þ ¼ 2ðlμl0ν þ lνl0μ − l · l0gμνÞ: ð10Þ

The hadronic tensor Wμν, on the other hand, is an inclusive
tensor containing all the information on the structure of the
nucleon target. It is defined by summing the transition
matrix elements of the electromagnetic current operator Jμ

between the initial state nucleon and all possible unob-
served final states X ,

2MWμνðp;qÞ ¼ 1

2π

X
X

Z
d3pX

ð2πÞ32EX
ð2πÞ4δð4Þðpþq−pX Þ

× hNjJμð0ÞjXihX jJνð0ÞjNi; ð11Þ

where we have used the shorthand notation
d3pX=ð2πÞ32EX ¼Qi∈X d3pi=ð2πÞ32Ei, with pX the total
momentum of the unobserved hadrons. For a derivation of
these formulas, see for example Ref. [43] and the works
cited therein.
We now wish to factorize the hadronic tensor in terms

of a nonperturbative quark distribution function qðxÞ,
and a perturbatively calculable photon-quark hard scatter-
ing term Hμν, without relying on the assumption that Q2 is
asymptotically large—as done in most derivations, see for
example [42]—but still assuming that this is large enough
to resolve individual quarks within the target.
Working at LO in the coupling constant, we consider the

DIS handbag diagram shown in Fig. 2, where we have
included the customary quark correlator Φðp; kÞ in the
bottom part [42], and an “inclusive quark jet correlator”
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Ξðk0Þ in the top part [42,45,46,62]. In the context of
collinear factorization, the quark jet correlator was already
used in Refs. [32,48,51] in order to correctly handle the
external, hadron-level kinematic constraints in the DIS
endpoint region, while allowing one to perform the parton-
level momentum approximations needed to prove the
factorizability of the DIS hadronic tensor. As a field
theoretical object in its own right, the quark jet correlator
has also been recently studied in Refs. [45,46], where it was
used to derive a complete set of fragmentation function sum
rules and to provide a new way to study the dynamical
breaking of chiral symmetry in QCD. In our derivation of
factorization, we will incorporate insights from that analy-
sis. In fact, using the jet correlator, we will be able to
weaken the needed approximations on the quark’s trans-
verse momentum compared to other collinear factorization
derivations [42,48].
One can then write the hadronic tensor Eq. (11) as

2MWμν ¼ ð2πÞ3
Z

d4k d4k0 Tr½Φðp; kÞγμΞðk0Þγν�

× δð4Þðkþ q − k0Þ; ð12Þ

where the δ-function encodes 4-momentum conservation in
the photon quark hard-scattering vertex, indicated by red
circles in Fig. 2, and the factor ð2πÞ3 in front of the integral
comes from the phase space over the momentum of the Y
blob. Following Ref. [46], the quark-distribution correlator
Φ is defined as

Φðp;kÞ¼Disc
Z

d4ξ
ð2πÞ4e

ik·ξ hNðpÞjψ̄ð0ÞψðξÞjNðpÞi; ð13Þ

where ψ is the quark field operator and jNðpÞi single
nucleon state with momentum p. The quark-to-jet corre-
lator Ξðk0Þ is analogously defined as

Ξðk0Þ ¼ Disc
Z

d4η
ð2πÞ4 e

ik0·η hΩjψðηÞψ̄ð0ÞjΩi; ð14Þ

where jΩi is the interacting vacuum state, and can be
interpreted as the discontinuity of the quark propagator
[45,46]. For simplicity, we work in light-cone gauge and
therefore we can ignore the Wilson lines in the definition of
either Φ or Ξ. Nonetheless, the subasymptotic kinematic
assumptions we consider will only be made at the hard-
scattering vertex, and will not change the derivation of the
Wilson lines in QCD. Therefore, the results obtained in this
work can be extended to any gauge.

C. Factorization at asymptotic Q2

We start the discussion on factorization, by reviewing the
approximations taken in standard Collinear Factorization
derivations, performed in the Bjorken limit at asymptoti-
cally high values of Q2 [42,43,48]. This will help us
understanding where the assumption can be weakened if
one wants to extend the procedure to subasymptotic values
of the scale.
First of all, since the final state invariant mass is large, one

can sum Eq. (11) over a complete set of states X replacing
the jet correlator with a single quark line that passes the cut
and can be considered a particle of zero mass2:

ΞðkÞ → =k0δðk02Þ: ð15Þ

If one also immediately integrates over d4k0, this turns into
ð=kþ =qÞδððkþ qÞ2Þ. We have thus arrived at the starting
point of most standard CF derivations, which is only valid if
one assumes asymptotic values of Q2 from the outset [42].
Next, in order to decouple the hard scattering from the

soft quark dynamics in the target, one needs a suitable set of
kinematic approximations on the subleading components
of the unobserved initial state quark momentum k. For
an inclusive DIS cross section the goal is to reduce the
remaining 4-dimensional integral over k to a 1-dimensional
integral over the dominant kþ ∼Q component. This can be
done in two independent steps. Firstly, one can neglect
the quark’s transverse momentum and assume that kT ≈ 0.
In other words, the incoming quark’s 3-momentum is
assumed to be parallel, or “collinear” to the 3-momentum
of the target’s nucleon. This “collinear (kinematic) approxi-
mation” is certainly a valid approximation at asymptoticQ2

values because jkT j ∼ ΛQCD. Secondly, in order to preserve
gauge invariance at the hard scattering vertex, one also
needs to assume that k− ≈ 0, i.e., to also consider the
scattering quark to be on-shell with mq ¼ 0. This is a
justified kinematic approximation, as well, since k− ∼
Λ2
QCD=Q, and moreover agrees with the intuitive DIS

picture provided by Feynman’s parton model [63,64].

FIG. 2. Leading order inclusive DIS scattering handbag dia-
gram, including a jet correlator in the top part. The red circles
indicate the hard scattering vertex, where kinematic approxima-
tions will be performed (see Sec. II D for details).

2For light quarks, m2
q ≪ Q2 and quarks can indeed be

considered massless. However, this is not strictly necessary,
and one can treat the “massless” m2

q=Q2 limit independently of
the Bjorken limit. Hence the quark mass can be retained in the δ
function, see for example Ref. [48].
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We stress, nonetheless, that any assumption about the
virtuality of the quark is in addition to its being or not
collinear in 3-dimensional space to its parent hadron.3

Finally, applying the collinear approximation and setting
mq ¼ 0, one findsΦðkÞ ≈ kþγ− and the hadronic tensor can
be written as a 1-dimensional convolution:

2MWμν ¼
Z

dx
x
qðxÞ

�
1

4
xTr½=̄nγμ=nγν� δðx − xBÞ

�
; ð16Þ

where

qðxÞ ¼ 1

2

Z
dk− d2kT Tr½ΦðkÞγþ�kþ¼xpþ ð17Þ

is the quark’s light-cone plus momentum distribution,
usually called “collinear” quark PDF. As discussed above,
this name involves a mild abuse of language, the essential
feature being that it provides a 1-dimensional momentum
distribution, integrated over the transverse and light-cone
minus components. The rest of the integrand, enclosed in
curly brackets, can be interpreted as the tensor describing
the scattering of a virtual photon with a massless quark
traveling in the direction of its parent hadron (i.e., a
“collinear” parton) and Eq. (16) provides one with a
field-theoretical realization of Feynman’s parton model—
or, more accurately, it shows how the parton model emerges
in the large Q2 limit of QCD calculations.

D. Factorization at finite Q2

At subasymptotic values of Q2, we need to be more
careful with the kinematic approximations since now have
to deal with a set of hadrons in the final state’s current
region rather than a single on-shell quark. We then go back
to the starting point, Eq. (12), before integrating over k0 at
variance with what did in the previous subsection. In this,
we proceed similarly to derivations of factorization in
SIDIS processes [43], which we take as a template for
our derivation.
Since neither the k nor k0 momenta are directly meas-

urable, see Fig. 2, we treat them as internal variables. We
then need to approximate both the scattering and recoiled
k and k0 quark momenta appearing in the 4-momentum
conservation δ-function. Namely, we take

δð4Þðkþ q − k0Þ ≃ δð4Þðk̃þ q − ek0Þ; ð18Þ

with k̃ and k̃0 defined as

kμ ≈ k̃μ ¼
�
xpþ;

v2

2xpþ ; kT

�
ð19Þ

k0μ ≈ k̃0μ ¼
�

v̄02

2k0−
; k0−; k0T

�
; ð20Þ

and the approximate light cone v̄2 and v̄02 virtualities
ideally chosen such that they approximate the respective
averages, v̄2≈hv2i¼hk2þk2Ti and v̄02≈hv02i¼hk02þk02T i.
Note, that we are approximating only the sub-sub-leading
momentum components of the scattering and recoiled
partonic momenta, but we fully retain their individual
transverse components. In this respect, we depart from
the treatment of Refs. [42,48], and do not need further
kinematic assumptions.
Before carrying on with the derivation, it is important to

remark that the approximation (18) is only made at the hard
scattering vertex level, denoted with red circles in Fig. 2,
and that this is the only approximation we perform.4 Next,
instead of neglecting the transverse momenta as in the
standard derivation, we will perform a twist expansion of
the nonperturbative correlators, and only then we integrate
over the transverse transverse momenta. Finally (as in the
standard derivation) we will obtain the hadronic tensor
written as a 1-dimensional integral over the light-cone plus
direction. In this sense, with a mild abuse of language as
also discussed in the previous subsection, the factorized
result can still be considered “collinear.”
We can now carry on. In the approximated delta

function (18), the light-cone kþ and k0− momentum
components decouple from the transverse momenta,

δð4Þðk̃þ q − ek0Þ ¼ δð2ÞðkT − k0TÞδ
�
kþ þ qþ −

v02

2k0−

�
× δ

�
v̄2

2kþ
þ q− − k0−

�
; ð21Þ

and the integrations over dk− and dk0þ in Eq. (12) can
act directly on ΦðkÞ and Ξðk0Þ. Therefore, by defining
the TMD quark correlator as

Φðx; kTÞ≡
Z

dk−ΦðkÞ ð22Þ

and the TMD inclusive jet correlator [45] as

Jðk0−; k0TÞ≡ 1

2

Z
dk0þΞðk0Þ; ð23Þ

3In fact, collinear but virtuality-dependent quark distributions
have been discussed in Ref. [65].

4As already stressed in Refs. [51] and [42], working locally at
the level of the hard scattering vertex instead of globally at the
level of the whole Feynman diagram provides one with flexibility
to adjust the kinematic approximation to the situation under
discussion. In this paper we exploit this flexibility to address the
factorization of DIS at subasymptotic Q2 values, and we make
our approximations very explicit as recommended by Ref. [42].
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we can write the hadronic tensor as

2MWμν ¼ 2ð2πÞ3
Z

dxdk0−δ
�
x − ξ −

v̄02

2pþk0−

�
δ

�
v̄2

2xpþ þ q− − k0−
�Z

d2kTTr½Φðx; kTÞγμJðk0−; kTÞγν�: ð24Þ

Note that we havewritten the integral overdkþ in terms ofdx,
and that the integration over d2k0T has set k0T ¼ kT . The
remaining d2kT transverse momentum integration acts only
over the trace term, and the plus- and minus-direction delta
functions fix the values of the light cone fraction x and of the
dominant k0− component of the recoiled quark momentum,
respectively. One can here appreciate the importance of
approximating the quark light-cone virtualities rather than
their mass in Eqs. (19)–(20): in that case, wewould be able to
achieve delta function transverse decoupling only if we also
approximated to zero thequark transversemomenta.As itwill
become clear by the end of this subsection, this additional
approximation onkT is not necessary to achieve factorization.
We still need to decouple the quark and jet correlators in

the trace appearing in Eq. (24). To this end, we introduce the
“operational” twist expansion [43,66] for the TMD corre-
lators, Φðx; kTÞ and Jðk0−; k0TÞ. As with the kinematic
approximations discussed above, this dynamical expansion
is predicated on the existence of a hard scale determining a
large boost in the light cone direction such that the scattering
quark momentum component satisfy kþ ≫ jkTj ≫ k−, and
for the recoiled momentum k0− ≫ jk0T j ≫ k0þ. In DIS, such
a scale is provided by the photon’s virtuality Q2, and one
can consider pþ ∼ k0− ∼Q. The quark correlator can then
be expressed as a power expansion in M=pþ, where the
power counting scale M can be identified with the proton
mass [52]. Limiting ourselves to the unpolarized sector,
we write

Φðx;kTÞ ¼
1

2
qðx;kT2Þ=̄nþ

M
2pþ

�
eðx;kT2ÞIþq⊥ðx;kT2Þ

=kT
M

�
þO

�
M2

ðpþÞ2
�
; ð25Þ

where qðx; k2TÞ is the unintegrated unpolarized parton
distribution function, while eðx; k2TÞ and q⊥ðx; k2TÞ are
twist-3 level parton distributions. The latter describes the
nonperturbative dynamics of the quark’s intrinsic transverse
momentum. For the TMD inclusive jet correlator, the
power counting scale can be identified with the ΛQCD

confinement scale and the correlator expanded in powers
of ΛQCD=k0− [45,61]:

Jðk0−; k0TÞ ¼
1

2
αðk0−Þ=nþ ΛQCD

2k0−

�
ζðk0−ÞI þ αðk0−Þ =k0T

ΛQCD

�
þO

�Λ2
QCD

ðk0−Þ2
�
: ð26Þ

The leading twist coefficient αðk0−Þ ¼ θðk−Þ
2ð2πÞ3, independent

of k0T , is the analog of the unpolarized D1 fragmentation
function in SIDIS [52] but integrated over the detected
hadron momentum, and summed over all hadron flavors
(indeed we are considering inclusive DIS events, where
the final state remains undetected). The chiral-odd twist-3

coefficient ζðk0−Þ ¼ θðk−Þ
2ð2πÞ3 Mj=ΛQCD is also independent of

k0T , and Mj ¼ mq þmcorr includes perturbative and non-
perturbative “jet mass” contributions [46,61]; it is the analog
of the chiral-odd fragmentation function E [52]. The trans-
verse momentum thus appears explicitly as a kinematic
factor in the twist expansion (26).
We can now expand the trace appearing in Eq. (24),

which reads

2ð2πÞ3
Z

d2kTTr½Φðx; kTÞγμJðk0−; kTÞγν�

¼
Z

d2kT

�
1

4
qðx; kT2ÞTr½=̄nγμ=nγν� þ

MΛQCD

4pþk0−

�
Mj

ΛQCD
eðx; kT2ÞTr½γμγν� þ q⊥ðx; kT2Þ

Tr½=kTγμ=kTγν�
MΛQCD

��
¼ 1

4
qðxÞTr½=̄nγμ=nγν�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

twist 2

þMΛQCD

pþk0−

�
Mj

ΛQCD
eðxÞgμν þ 2M

ΛQCD
q⊥ð1ÞðxÞn̄fμnνg

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

twist 4

þO

�
M2

pþ2

�
þO

�Λ2
QCD

k0−2

�
þ HT; ð27Þ

up to higher-twist (HT) terms. At twist-2 level, and analogously to the asymptotic derivation outlined in Sec. II C, the
integration over d2kT acts only on the quark distribution and produces the standard collinear PDF
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qðxÞ≡
Z

d2kTqðx; k2TÞ: ð28Þ

Gauge invariance is guaranteed by qμTr½n̄γμ=nγν� ¼ 0

despite having assumed a different light-cone virtuality
v̄2 and v̄02 for the scattering and recoiled partons. This
result is only possible thanks to the twist expansion of the
jet correlator, introduced in the handbag diagram instead of
a single final-state quark line, and clearly goes beyond a
naive parton-model treatment of the process.
At twist-4, we find a contribution from the collinear

eðxÞ≡ R d2kTeðx; k2TÞ distribution multiplied by the
jet mass Mj, as well as from the first k2T moment of the

TMD q⊥ðx; k2TÞ distribution, q⊥ð1ÞðxÞ¼R dk2T k2T
2M2q⊥ðx;k2TÞ

[43,52]. One can thus explicitly see that the dynamics of
the parton transverse momentum is not neglected in this
approach, but rather included in twist-4 terms. The twist-4
terms appearing in Eq. (27) are, however, not gauge
invariant by themselves. Gauge invariance can nonetheless
be restored by properly summing these to contributions
stemming from the inclusion of 4-parton matrix elements
in the handbag diagram [29,53,67]. This is left for
future work.
We would also like to remark that the approach we

have followed here is not entirely new. In fact it closely
corresponds to the treatment of SIDIS cross sections in
terms of transverse-momentum-dependent PDFs [43,52],
and a detailed correspondence can be obtained through the
use of the fragmentation function sum rules developed
in [44–46]. The SIDIS formalism is, however, at present
fully developed only up to twist-3 level.
Finally, the factorized hadronic tensor at leading-twist

(LT) can be written as a convolution of a hard scattering
tensor Hμν and the collinear PDF qðxÞ,

2MWμνjLT ¼
Z

dx
x
Hμνðx; x̄ÞqðxÞ ð29Þ

with

Hμνðx; x̄Þ ¼ 1

4
xδðx − x̄ÞTr½n̄γμ=nγν� 1

jJx;k0− j
: ð30Þ

In this equation, x̄ arises from the manipulation of the delta
function appearing in Eq. (24),

x̄ ¼ ξ

2

 
1þ v̄02 − v̄2

Q2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ v̄02 − v̄2

Q2

�
2

þ 4
v̄2

Q2

s !
ð31Þ

¼ ξ

�
1þ v̄02

Q2
−
v̄2v̄02

Q4
þO

�
μ6

Q6

��
; ð32Þ

and depends on two mass scales, namely, the approximate
incoming and outgoing light cone parton virtualities v̄2

and v̄02, collectively denoted by μ2. Note that the incoming
parton’s virtuality v̄2 only contributes at Oð1=Q4Þ, and
can be parametrically neglected. The Jacobian factor
Jx;k0− ¼ 1 − v̄2v̄02

4ðxpþk0−Þ2, which also arises from manipulations

of the mentioned delta functions, reads

1

Jx;k0−
¼ 1þ v̄2v̄02

Q4

�
1

ðxξ þ v̄2

Q2Þ2 − v̄2v̄02
Q4

�
; ð33Þ

and deviates from 1 by a term scaling as the fourth inverse
power of Q. The (average) light-cone virtualities v̄2 and v̄02
are of nonperturbative origin, so in general they follow
v̄2 ∼ v̄02 ∼ Λ2

had, where Λhad is some hadronic scale. Using

this one finds that Jx;k0− ¼ 1þOðΛ4
had
Q4 Þ. Hence, the choice

of virtualities will play a secondary role in Jx;k0− compared
to the determination of x̄. However, they play a very
important role in the determination of x̄.

E. Kinematic approximations in QCD

As discussed in Sec. II D, collinear factorization requires
one to approximate the incoming and outgoing quark light-
cone virtualities, namely to take v2 ≈ v̄2 and v02 ≈ v̄02.
However, v2 and v02 are not observable and cannot be
experimentally controlled. One needs therefore to resort to
a physically or theoretically motivated Ansatz to choose
suitable v̄2 and v̄02 values. For this purpose, we will derive
kinematic bounds on v2 and v02 valid at any order in
perturbation theory, and use these to obtain good Ansätze
for v̄2 and v̄02. We will then test these in Sec. IV.

1. Choice of v̄02

We start by considering the jet subdiagram on top of
Fig. 2, in which the struck quark of momentum k0 is
fragmenting in a number of particles. By fermion number
conservation, the incoming quark line should also pass the
cut and appear in the final state. Thus, by 4-momentum
conservation,

v02 ¼ k02 þ k02T ≥ m2
q þ k02T : ð34Þ

In fact, the quark needs to fragment into at least one hadron
and therefore one should take into account the mass of the
lightest hadron the quark can quark hadronize into, that is,
the pion. Hence, a tighter bound is

v02 ≥ m2
π þ k02T : ð35Þ

We can then use the lower bound as a minimal approxi-
mation of the average hv02i. However, in a fully inclusive
scattering, the transverse k02T momentum cannot be exper-
imentally controlled. Therefore, we choose
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v̄02 ¼ m2
π: ð36Þ

Note that with this choice we depart from the standard
derivations of collinear factorization, where v̄02 is approxi-
mated to zero for light quarks. A similar argument for
flavor tagged inclusive measurements such as of the charm
structure function Fc

2 would lead to v̄02 ¼ m2
D ≈m2

c, with
mD the D meson mass and mc the c quark mass, and
eventually to scaling variables such as advocated in [23,55].
As QCD transitions from perturbative to nonperturbative

degrees of freedom at large xB it is also possible that the
virtual photon couple not to a single quark but to a
composite partonic substructure, and v̄02 could also be
considered to be the invariant mass of the latter [58].
Without a specific model to guide one’s choice, one could
treat v̄02 as a phenomenological parameter and determine
this for example in a global QCD analysis of inelastic data.
However, large values for this parameter, that Ref. [58]
would interpret as evidence for nucleonic substructure,
might instead emerge as the fit effectively subsumes the
dynamics of the quark hadronization process or the
kinematic shifts induced by the quark’s transverse momen-
tum into an effective v̄02 ≈ hm2

Yi þ hk2Ti parameter. We will
come back to these considerations when we discuss the
scaling variable x̄ at the end of this subsection.

2. Choice of v̄2

Considering now target fragmentation, i.e., the lower
vertex in the DIS diagrams of Fig. 1 right we find that

p2
X ¼ ðp − kÞ2 ¼ ð1 − xÞ

�
M2 −

k2 þ k2T
x

�
− k2T ; ð37Þ

hence the light cone virtuality v2 ¼ k2 þ k2T reads

v2 ¼ −
x

1 − x
½ðp2

X −M2Þ þ xM2 þ k2TÞ�: ð38Þ

Note that the light-cone virtuality vanishes as x → 0, and
becomes negative as x → 1. Imposing baryon number
conservation in the right diagram of Fig. 1 requires the
presence of at least one baryon in the final state. Assuming
the baryon number flows into the target jet, imposes that the
remnant X minimally contains a nucleon, p2

X ≥ m2
X ≥ M2.

Hence,

v2 ≤ −
x

1 − x
½xM2 þ k2T �; ð39Þ

with the upper bound representing the case in which the
target jet is made of just one nucleon. It is then reasonable
to choose

v̄2 ¼ −
x2

1 − x
M2 ð40Þ

as a minimal approximation of the average hv2i, where
we also neglected the internal variable k2T that cannot
be experimentally controlled in inclusive lepton-proton
scattering.
A simplified choice can be obtained by noticing that

in Eq. (32), the light-cone fraction x̄ ¼ ξð1þ v̄02=Q2 −
v̄2v̄02=Q4Þ þOðμ6=Q6Þ depends on v̄2 only starting at
order Oðμ4=Q4Þ and can be approximated in first instance
as x̄ ≈ ξð1þ v̄02

Q2Þ. This is equivalent to effectively choosing

v̄2 ¼ 0 ð41Þ

in Eq. (32). As one can expect from Eq. (38) and we will
numerically confirm in our model calculation, this is in fact a
good approximation for hv2i at not too large values of xB,
and as long as one considers small enough light-cone
virtualities v̄02. It is also the approximation taken in the
parton model, and in standard derivations of collinear
factorization, where k2 ≈m2

q ≈ 0 at the same time as kT ≈ 0.

3. Light cone fraction x̄

Having discussed possible choices for Ansätze for v̄2

and v̄02, we can focus our attention on the light-cone
fraction x̄ derived in Eq. (32).
Far from kinematic thresholds, namely for not too large

values of xB, one can choose v̄2 ¼ 0 for the scattering
quark, see Eq. (41). Using furthermore v̄02 ¼ m2

π from (36)
for the recoiling quark, one obtains5

x̄ ≈ ξ

�
1þm2

π

Q2

�
≡ ξπ: ð42Þ

Note that with a nonzero v̄02 like in Eq. (36) we are
more closely respecting the internal kinematics of the
handbag diagram than with v̄02 ¼ 0. Therefore, we can
expect that x̄ ¼ ξπ will provide a better approximation
to the nonfactorized diagram’s than in standard collinear
factorization.
At larger values of xB, i.e., closer to the kinematic

threshold, the virtuality (38) diverges to minus infinity, and
a different approximation may be needed. In this regime, a
suitable approximation to v2 that is valid in both the small-
xB and large-xB regimes is

v̄2ðx̄Þ ¼ −
x̄2

1 − x̄
M2; ð43Þ

5The ξπ variable is in fact analogous to the χ scaling variable
used in Refs. [23,55] to study charm production in charged
currentW þ s → c events. The derivation we offer here translates
naturally to charm production, by replacing π ⇝ D and approxi-
mating the mass of the D meson with the mass of the charm
quark, MD ≈mc.

JUAN V. GUERRERO and ALBERTO ACCARDI PHYS. REV. D 106, 114016 (2022)

114016-10



where we replaced x ¼ x̄ in Eq. (38). Substituting Eq. (43)
in Eq. (32), solving the resulting equation for x̄ perturba-
tively in powers of μ2=Q2, and finally setting v̄02 ¼ m2

π as in
Eq. (36), we find

x̄ ≈ ξ

�
1þm2

π

Q2
þ ξ2

1 − ξ

m2
πM2

Q4

�
≡ ξ�π ð44Þ

up to corrections of Oðμ6
Q6Þ. Note that at small xB the fourth

order term quickly vanishes, and one recovers Eq. (42).
Closer to the kinematic threshold, this new scaling varia-
bles accounts for the nonvanishing of the scattering quark’s
light-cone virtuality. The latter can be approximated by
substituting Eq. (44) back in Eq. (43) we can also obtain an
approximation for quark’s virtuality, and written purely in
terms of the external variables:

v̄2� ≡ v̄2ðξ�πÞ: ð45Þ

This is the best approximation to the unobserved scattering
parton’s virtuality we can obtain without measuring the
hadronic final state. However, as we will verify in Sec. IV,
using Eq. (44) instead of Eq. (42) has little effect on
calculations of the factorized cross section, and Eq. (42) is a
sufficient approximation.
As already noted earlier, the approximated v̄02 virtuality

could also be considered as a free parameter and deter-
mined in a PDF fit utilizing x̄ ¼ ξð1þ v̄02=Q2Þ instead of
the prescription (42). The interpretation of the obtained v̄02
value, however, may not be straightforward even if found
to be substantially larger than m2

π , which is, according to
our analysis, the minimum expected value. On the one
hand, Ref. [58] argues that any improvement in the fit
would signal the emergence of composite partonic sub-
structure in the nucleon target. On the other hand, the
quark can in general hadronize to more than one particle
and the fitted v̄02 can naturally be expected to be larger
than m2

π . Furthermore, even apart from hadronization
dynamics considerations, we will show in Sec. V that
an improvement in the CF description of a DIS structure
function can also emerge if the unobserved quark’s
transverse momentum is kinematically accounted for by
choosing v̄02 ¼ m2

π þ hk2Ti, with hk2Ti a free parameter of
OðΛ2

QCDÞ. Thus, large values of v̄02 may not necessarily
indicate the presence of nucleon substructures other than
asymptotically free partons.

F. Discussion

Despite its simplicity, formula (30) is nontrivial and it is
worthwhile summarizing under what conditions it has
been obtained.
First of all, we emphasize once more that the transverse

momentum is not approximated but rather included in
higher-order terms in the twist expansion, which provides a

controlled dynamical approximation. In fact, using the
quark field’s equation of motion relations, one can
show that the twist-3 PDF e can be decomposed as
xe ¼ xẽþ mq

M q, where ẽ correspond to a “pure” twist-3
dynamical contribution [52]. Similarly, the jet mass can
be decomposed as Mj ¼ mq þmcorr, where mcorr is the
dynamical mass of the jet [45,46]. Thus the twist expansion
(27) does not only provide an expansion in the transverse
momentum effects, but also in the quark mass contributions
in a way that is reminiscent of Ref. [68]. The quark mass
expansion is appropriate as long as the quarks are light
enough, otherwise one might want to include the term
proportional to m2

q in the LT partonic tensor.
The only uncontrolled approximation we have per-

formed is a purely kinematic one. Namely, we have fixed
the value of the quark light-cone virtualities v and v0 of the
initial and final state quarks, such that their subdominant
momentum components are approximated by k− ≈ v̄2=2kþ

and k0þ ≈ v̄02=2k0−. But, crucially, this approximation is
only taken inside the parton-level 4-momentum conserva-
tion delta function, which is part of the “hard scattering”
graphically identified by red circles in Fig. 2. Thus,
following the philosophy of [42], we have confined the
only needed noncontrolled approximation to the hard
interaction and kept the parton momenta otherwise unap-
proximated. The price to be paid for this approximation—
which is the minimal kinematic approximation compatible
with collinear factorization!—is that transverse momentum
conservation in the approximated hadronic tensor is effec-
tively broken, and this sets an inescapable limit to the
validity of the CF formula at large xB [48]. We will
numerically study this limit for the benchmark spectator
model in Sec. V B.
Clearly, Eq. (30) reduces to the parton model result for

light quarks in the v̄2 → 0 and v̄02 → 0 limit, in which the
partons are taken to approximately travel on the light cone.
But even then, the quarks need not be approximately
on their k2 ≈ k02 ≈m2

q ≈ 0 mass shell, as often stated in
literature, unless one further assumes—with no need—that
the quarks are real particles. For generic values of the
approximated v̄2 and v̄02 quark virtualities, a gauge invari-
ant factorized hadronic tensor can only be obtained if one
considers the jet diagram in Fig. 2 and its twist expansion.
Had weworked in the parton model from the outset, or even
in QCD but with a perturbative quark line instead of a jet
correlator in the top part of the handbag diagram of Fig. 2,
this would not have been possible.
We have thus found in Eqs. (29)–(32) a gauge invariant

generalization of the standard collinear factorization pro-
cedure for the hadronic tensor (12), which is now also valid
at subasymptotic values of Q2 and does not require one to
approximate to zero the virtuality of the scattering and
recoiling partons. With this added flexibility, in Sec. IV
we will study a range of choices for v̄2 and v̄02 in order to
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maximally extend the range of validity of the LT factori-
zation approximation towards large xB and low Q2 values.

III. VALIDATION FRAMEWORK:
THE DIQUARK SPECTATOR MODEL

As we discussed in Sec. II, deeply inelastic lepton-
nucleon scattering involves the fragmentation of the proton
or neutron target, as illustrated in the left panel of Fig. 1.
Target fragmentation in QCD is a complex, nonperturbative
process that cannot be computed exactly, as yet. Instead, we
wish to mimic this with a suitable proton-quark-meson
vertex in a model theory, where full analytical calculations
of the structure functions can be compared to their collinear
approximation and thus validate the subasymptotic CF
procedure derived in the previous section.
We then consider an idealized field-theoretical model

describing an electrically charged spin 1=2 particle of mass
M, that plays the role of a proton and contains a charged
active quark of mass mq and a neutral scalar diquark
spectator, ϕ, of mass mϕ [47,48]. In this model the proton’s
remnant X is mimicked by the spectator ϕ, with mϕ of the
order of the average remnant’s invariant mass hmXi, and we
can simulate eþ p collisions by studying the diagram
in Fig. 3.
For the proton-quark-diquark vertex we choose the

following structure:

Y ¼ igðk2Þ1; ð46Þ

where gðk2Þ generically denotes a form factor which takes
into account that a diquark is, in fact, a composite field. In
this paper, we choose for simplicity the dipolar form factor

gðk2Þ ¼ g
k2 −m2

q

jk2 − Λ2j2 ; ð47Þ

where g is a dimensionful coupling constant and Λ a
parameter. This vertex is infrared safe, and smoothly cuts
off ultraviolet modes in the quark leg when k2 is much
larger than Λ2. This is an effective way of simulating
confinement in the proton target, since the cutoff imposes a
length scale of order 1=Λ. The strong coupling constant g
does not play a significant role in our discussion, and we set
this to g ¼ 1 GeV2 for simplicity. The confinement scale Λ
and the spectator mass mϕ, are considered free parameters
of the model, and are meant to capture the salient non-
perturbative features of the DIS process. Other possible
choices of form factor, including an exponential form and a
combination of scalar and axial diquarks to simulate up and
down quarks have been discussed in Ref. [47].
The model parameters can be determined by fitting

the analytic calculations of parton distribution functions,
which are possible in the model due to the relative
simplicity of the vertex, to phenomenological extractions
from experimental data [1,4]. Here we adopt the values
fitted in Ref. [47] to the PDFs determined by the ZEUS
collaboration [69], namely,

mϕ ¼ 0.822 GeV; Λ ¼ 0.609 GeV; ð48Þ

with quark and proton masses kept fixed at

mq ¼ 0.3 GeV; M ¼ 0.939 GeV: ð49Þ

We will use these values as default, but we will also
consider variations around these numbers in order to study
the systematics of the subasymptotic collinear factorization
scheme to be discussed later. We also note that with these
mass parameters, mq þmϕ > M and the proton is a stable
particle as it happens in QCD.
In this work, we consider mq ≠ 0 in order to study the

kinematic dependence of the process on the mass generated
in the final state, and how to retain this in the collinear
factorization of the DIS cross section. Similar studies for
the inclusive DIS process have been performed in
Refs. [23,54,55] with a focus on heavy-quark production;
for semi-inclusive DIS in Refs. [20,21], that focused on
kinematic corrections induced by the mass of the detected
hadron; and in Ref. [58] with the aim of identifying
“clustered” substructures within the target. In all these
works, masses are taken into account by a suitable rescaling
of the struck quark’s momentum light-cone fraction x. In
this paper, we revisit the basis for these scaling approx-
imations utilized and test these against the full analytic
model calculation of the process. As in Ref. [48], we will
restrict our analysis to light quarks with mass much smaller
than the charm’s, mq ≪ mc, and in particular consider
values of the order of the strange quark mass, mq ∼ms.
Lastly, we would like to stress that mϕ and Λ are

“internal,” unobservable parameters of the model, in the
same way that the QCD confinement scale or the remnant

FIG. 3. Electron-proton DIS at leading order in the strong
coupling constant in the spectator model, where we replaced the
remnant by a scalar diquark ϕ of mass mϕ, assumed to be of the
order of the average remnant mass mX, and Y is the model’s
proton-quark-diquark vertex, with ultraviolet modes cut off
by a suitable form factor. The labels indicate the momenta of
the particles involved in the collision: q is the momentum
of the photon; p is the momentum target nucleon; k and k0 are
the momenta of the incoming and scattered quark participating
in the hard scattering; pϕ is the momentum of the spectator
diquark. The particle masses are also explicitly indicated.
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mass cannot be directly measured in electron-proton
scattering. Conversely, even in an inclusive measurement,
we treat the quark mass as a known “external” parameter. In
QCD, this would be akin to what happens in measurements
of the charmed structure function Fc

2 in DIS [70,71],
where the active charm quark can be tagged by identifying
a heavy flavor hadron in the hadronic final state, without
however measuring its momentum, or the momentum of
any other hadron.

A. Calculation of the hadronic tensor

As opposed to QCD, where the matrix elements in
Eq. (11) need to be parametrized because their nonpertur-
bative nature, in the spectator model the nucleon-quark-
diquark vertex is explicitly known, see Eqs. (46) and (47),
and one can analytically compute the hadronic tensor. At
leading order in the strong coupling constant, the involved
diagrams are collected in Fig. 4. Note that by electric
charge conservation, as stressed in Ref. [48], we need not
only to consider the coupling of the photon to the quark,
which is expected to dominate at large values of the
invariant mass squared W2 ¼ ðpþ qÞ2, but also the pho-
ton-proton coupling. The LO cross section is therefore
composed of 3 physical process that are observationally

indistinguishable but theoretically separable, as we will
discuss in the next subsection. The first one is photon-quark
scattering, and mimics deeply inelastic scattering on the
proton, see Fig. 4(a). The second one is the photo-induced
excitation of the proton, that subsequently decays into into
a quark and a diquark, see Fig. 4(c). This is akin to
resonance excitation and subsequent decay in QCD, except
the model as it stands does not include hadrons of higher
mass than the nucleon. Finally, the hadronic tensor also
receives a contribution from the interference of these two,
see Fig. 4(b).
The hadronic tensor can be written as a sum of these

three contributions:

Wμν ¼
X
ðjÞ

WðjÞ;μν ¼
X
ðjÞ

Z
Ωk

d4kWðjÞ;μνðkÞ

ðjÞ ¼ DIS; INT;RES; ð50Þ

where Ωk indicates the 4-D integration region in k
determined by four-momentum conservation and the exter-
nal kinematics. The individual, fully unintegrated contri-
bution of each diagram in Fig. 4, WðjÞ;μνðkÞ, can be
calculated using the Feynman rules of the model, and at
order Oðg2Þ read:

2MWDIS;μνðkÞ ¼ 1

2

g2ðk2Þ
ð2πÞ3

Tr½ð=pþMÞð=kþmqÞγμð=kþ =qþmqÞγνð=kþmqÞ�
ðk2 −m2

qÞ2
δððkþ qÞ2 −m2

qÞδððp − kÞ2 −m2
ϕÞ; ð51Þ

2MWINT;μνðkÞ¼1

2

2g2ðk2Þ
ð2πÞ3

Tr½ð=pþMÞð=kþmqÞγμð=kþ=qþmqÞð=pþ=qþMÞγν�
ððpþqÞ2−M2Þðk2−m2

qÞ
δððkþqÞ2−m2

qÞδððp−kÞ2−m2
ϕÞ; ð52Þ

2MWRES;μνðkÞ ¼ 1

2

g2ðk2Þ
ð2πÞ3

Tr½ð=pþMÞγμð=pþ =qþMÞð=kþ =qþmqÞð=pþ =qþMÞγν�
ððpþ qÞ2 −M2Þ2 δððkþ qÞ2 −m2

qÞδððp − kÞ2 −m2
ϕÞ:

ð53Þ

Note that, following Ref. [48], in the second and third equations we took the liberty of shifting the integration variable in
order for the δ-functions to match those appearing in the DIS diagram.
We remark from Eq. (52) that the interference term contribution is nominally suppressed by a 1=ðW2 −M2Þ factor

compared to the DIS term (51), due to the presence of one proton propagator. Similarly, the resonance term (53) contains
two proton propagators, and is nominally suppressed by one more power ofW2 −M2. As we will demonstrate explicitly in
Sec. III D, this scaling holds to a very good degree for transverse structure functions—hence the DIS term dominates the

FIG. 4. Diagrams contributing to eþ p scattering up to order Oðg2Þ in the strong coupling constant. Left: DIS contribution.
Center: Interference term. Right: Proton resonance.
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process at asymptotically largeQ2 or small Bjorken scaling
variable xB ¼ Q2=ð2p · qÞ, where W2 ∼Q2=xB. However,
this is not the case for the longitudinal structure function
where, due to the off-shellness of the quark and proton
propagators, all pieces are of similar magnitude and scale
with 1=Q2.
Finally, it is important to stress that the individual

contributions of the 3 diagrams considered in Fig. 4 to
the hadronic tensor are not gauge invariant by themselves,
but their sum (50) satisfies the electromagnetic Ward
identities [48]. Since, however, these diagrams contain
heuristically distinguishable processes, in the next sub-
section we propose a method to isolate their gauge invariant
parts, and to obtain a unique and physically meaningful
(although only theoretical) decomposition of the hadronic
tensor into a DIS, resonance, and interference contribu-
tions. This decomposition will also allow us to test in
Secs. IV and V the validity of the collinear factorization
procedure, that only purports to approximate the DIS
component of the eþ p scattering cross section. In this
respect, we differ from Ref. [48], where factorized calcu-
lations were compared to the full DISþ INTþ RES model
calculation.

B. Gauge invariant decomposition into DIS,
resonance, and interference processes

The strategy we follow to uniquely decompose a rank-2
tensor into a gauge invariant and a gauge breaking part is to
define a complete set of orthogonal rank-2 projectors,
fPμν

λ g, maximizing the number that satisfy the electromag-
netic Ward identity, q · Pλ ≡ qμP

μν
λ ¼ 0. Here we limit our

treatment to the parity invariant tensors, such as those
involved in unpolarized DIS, but will complete the dis-
cussion in Appendix A.
Following [23,32], we define longitudinal, transverse

and scalar polarization vectors with respect to a longi-
tudinal momentum p (in our case the proton’s momentum)
and a reference vector q (in our case the virtual photon’s
momentum) defining the longitudinal direction and the
transverse plane:

εμ0ðp; qÞ ¼
p̂μffiffiffiffiffi
p̂2

p
εμ�ðp; qÞ ¼

1ffiffiffi
2

p ð0;∓ 1;−i; 0Þ

εμqðp; qÞ ¼ qμffiffiffiffiffiffiffiffi
−q2

p ; ð54Þ

where p̂μ ≡ pμ − p·q
q2 q

μ. We note that the transverse ε�
polarization vectors indeed lie in the plane transverse to
both p and q (since p̂ · ε� ¼ q · ε� ¼ 0) and that the
“longitudinal” ε0 polarization vector is transverse to the
photon momentum (q · ε0 ¼ 0).

The polarization vectors form an orthogonal basis in
Minkowski space,

ελ · ελ0 ¼ 0 for λ ≠ λ0

ελ · ελ ¼ 1 for λ ¼ 0;þ;−

εq · εq ¼ −1; ð55Þ

and can be used to define parity invariant “helicity
projectors” for rank 2 tensors. In particular, we define
longitudinal, transverse, scalar, and mixed projectors Pμν

λ ,
with λ ¼ L; T; S; fLSg, as

Pμν
L ðp;qÞ¼ εμ0ðp;qÞεν�0 ðp;qÞ

Pμν
T ðp;qÞ¼ εμþðp;qÞεν�þ ðp;qÞþεμ−ðp;qÞεν�− ðp;qÞ

Pμν
S ðp;qÞ¼ εμqðp;qÞεν�q ðp;qÞ

Pμν
fLSgðp;qÞ¼ εμ0ðp;qÞεν�q ðp;qÞþεμqðp;qÞεν�0 ðp;qÞ: ð56Þ

Taking advantage of

εμþðp; qÞεν�þ ðp; qÞ þ εμ−ðp; qÞεν�− ðp; qÞ
¼ −gμν þ εμ0ðp; qÞεν�0 ðp; qÞ − εμqðp; qÞεν�q ðp; qÞ ð57Þ

and of the polarization vectors definition (54), the helicity
projectors can be written in a more compact and suggestive
way as

Pμν
L ðp; qÞ ¼ p̂μp̂ν

p̂2

Pμν
T ðp; qÞ ¼ −ĝμν þ p̂μp̂ν

p̂2

Pμν
S ðp; qÞ ¼ −

qμqν

q2

Pμν
fLSgðp; qÞ ¼

p̂μqν þ qμp̂νffiffiffiffiffiffiffiffiffiffiffiffiffi
−q2p̂2

p ; ð58Þ

where ĝμν ¼ gμν − qμqν

q2 is also transverse to the photon’s

momentum. In either representation, it is straightforward to
verify that these projectors are orthogonal. Indeed,

Pλ · Pλ0 ¼ 0 for λ ≠ λ0

Pλ · Pλ ¼ 1 for λ ¼ L; S

PT · PT ¼ 2

PfLSg · PfLSg ¼ −2; ð59Þ

where we have extended the use of the dot-product symbol
to rank-2 tensors: Pλ · Pλ0 ≡ Pμν

λ Pλ0;μν. From Eq. (58), it is
clear that the 4 defined projectors are also a complete
orthogonal basis for symmetric tensors Tμν ¼ Tμνðp; qÞ
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that depend on the proton and photon momenta p and q,
such as the hadronic tensor for inelastic eþ p scattering.
Given a generic symmetric tensor, Tμν ¼ Tμνðp; qÞ, we

can now define its helicity structure functions Fλ as the
projections of the tensor along the helicity basis defined
in Eq. (56) or (58):

FλðxB;Q2Þ≡ cλPλðp; qÞ · Tðp; qÞ; ð60Þ

with cλ ¼ 1=ðPλ · PλÞ. Thanks to the orthogonality and
completeness of the helicity projectors, the tensor T can
then be decomposed as Tμνðp; qÞ ¼Pλ FλðxB;Q2Þ×
Pμν
λ ðp; qÞ. One can also go a step further, and separate

this into a gauge invariant and gauge breaking components.
Indeed, the longitudinal and transverse projectors satisfy
the Ward identity,

q · PL;T ≡ qμP
μν
L;T ¼ 0; ð61Þ

and it is immediate to verify that no linear combination of
the scalar and mixed projectors can satisfy that condition,
either. Hence the longitudinal and transverse projectors
form a complete orthogonal basis for the space of gauge
invariant hadronic tensors. Similarly, the scalar and mixed
projectors form a complete orthogonal basis for maximally
gauge breaking tensors. As a result,

Tμνðp; qÞ ¼ Tμν
invðp; qÞ þ Tμν

g:b:ðp; qÞ; ð62Þ

where

Tμν
invðp; qÞ ¼ Pμν

T FTðxB;Q2Þ þ Pμν
L FLðxB;Q2Þ ð63Þ

Tμν
g:b:ðp; qÞ ¼ Pμν

S FSðxB;Q2Þ þ Pμν
fLSgFfLSg; ð64Þ

are, respectively, the gauge invariant (inv) and gauge break-
ing (g.b.) components of the tensor Tμν. Accordingly, we
also call FT and FL “gauge invariant structure functions,”
and FS and FfLSg “gauge breaking structure functions.”
Coming back to our model electron-proton scattering,

we can apply this decomposition to each of the 3 processes

represented in Fig. 5, and define their gauge invariant and
gauge breaking parts:

2MWðjÞ;μν
inv ðp; qÞ ¼ Pμν

T FðjÞ
T ðxB;Q2Þ þ Pμν

L FðjÞ
L ðxB;Q2Þ;

ð65Þ

2MWðjÞ;μν
g:b ðp; qÞ ¼ Pμν

S FðjÞ
S ðxB;Q2Þ þ Pμν

fLSgF
ðjÞ
fLSg; ð66Þ

for j ¼ DIS; INT;RES. The gauge invariance of the had-
ronic tensor (50) ensures that the sum of the gauge breaking
parts of each diagram in Fig. 5 vanishes,

Wμν
g:b ¼

X
ðjÞ

WðjÞ;μν
g:b ¼ 0 ðjÞ ¼ DIS; INT;RES ð67Þ

as one can also explicitly verify utilizing the algebraic
manipulations discussed in [48], even though the individual
terms in the sum are different from zero.
In summary, the gauge-invariant FT;L structure functions

of each individual diagram in Fig. 4 are physically mean-
ingful, and allow one to theoretically decompose each
eþ p scattering structure functions into DIS, resonance
and interference contributions. A more detailed discussion
of this decomposition in the context of the scalar diquark
model will be offered in Secs. III D and III E.

C. Kinematics

Like in eþ p scattering in QCD, the Bjorken invariant
in the model is bounded, as we discuss in more detail in
Appendix B:

0 < xB ≤
1

1þ ðmϕþmqÞ2−M2

Q2

≡ xB;max: ð68Þ

The lower bound is due to the fact that in an electron-proton
scattering the photon momentum is spacelike. The upper
bound, xB;max, is determined by the on-shell condition
for particles belonging to a minimal mass 2-particle
final state, and is analogous to the “pion threshold”

FIG. 5. Gauge invariant decomposition of the transverse structure function FT at Q2 ¼ 4 GeV2 (left plot) and Q2 ¼ 16 GeV2 (right
plot) for the model parameters specified in Sec. III [see Eqs. (48)–(49)]. The kinematic thresholds are xB;max ¼ 0.913 and 0.976,
respectively.
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xπ ¼ 1=½1þ ðMþmπÞ2−M2

Q2 � in inelastic eþ p collisions in

QCD. Likewise, the maximum transverse momentum
squared for the scattered quark, k2T;max, is determined by
the available invariant mass W2 and the masses of the
particles in the minimal mass final state, see Appendix B
for details:

0 ≤ k2T ≤
ðW2 − ðmϕ þmqÞ2ÞðW2 − ðmϕ −mqÞ2Þ

4W2
≡ k2T;max:

ð69Þ

It is interesting to note that the kinematic threshold in xB
can only be reached at zero quark transverse momentum.
Indeed, solving k2T;max ¼ 0 for xB one recovers the upper
limit in (68).
We can now explicitly write each of the contributions

to the hadronic tensor (50) as an integral over the parton’s
transverse and longitudinal momentum and virtuality:

WðjÞ;μνðxB;Q2Þ ¼
Z

k2T;max

0

dk2T

ZZ
dxdk2WðjÞ;μνðx; k2; k2TÞ

ð70Þ

where

WðjÞ;μνðx; k2; k2TÞ ¼
π

2x
WðjÞ;μνðkÞ ð71Þ

is the fully unintegrated hadronic tensor in the x, k2 and k2T
variables, and theWjðkÞ tensors on the right are defined in
Eqs. (51)–(53). It is important to note that the integral in
dk2T appearing in Eq. (70) is limited from above by the
maximum transverse momentum squared for the scattered
quark defined in Eq. (69).
At LO, due to the δ–functions in the unintegrated

hadronic tensors that originate, as mentioned, from the
upper and lower cuts in the diagrams of Fig. 4, the integrals
over dx and dk2 can be explicitly calculated, and we can
explicitly calculate the k2T-unintegrated (but x- and k−-
integrated) hadronic tensorWðk2TÞ ¼

R
dxdk2Wðx; k2; k2TÞ:

WðjÞ;μνðk2TÞ≡ π

2x
1

jJx;k2;k2T j
W̃ðjÞ;μνðkÞ






x¼xexðk2TÞ;k2¼k2exðk2TÞ

;

ð72Þ

where we notationally distinguished the integrated tensor
from the unintegrated one only by their arguments. The
Jacobian

Jx;k2;k2T ¼ ðξ − 1Þ ðk
2 þ k2TÞ
x2

þ
�
1 −

1

x

�
Q2

ξ
þ
�
1 −

ξ

x

�
M2

ð73Þ

arises from the manipulation of the delta functions, and the
tilde sign over the hadronic tensor symbol indicates the
removal of these from Eqs. (51)–(53). The whole expres-
sion (72) is then evaluated at x ¼ xexðk2TÞ and k ¼ k2exðk2TÞ,
which are the solutions of the said delta functions and are
explicitly derived in Appendix B 3, see Eqs. (B11)–(B12).
In Eq. (73) we have highlighted the role of the mass

scales: beside the external proton mass M2 and photon
virtuality Q2, the Jacobian also depends on the “light-cone
virtuality”

v2 ¼ k2 þ k2T ð74Þ

of the struck quark, already defined in Eq. (7).
It is now instructive to look in more detail at the internal

kinematics of the process. In fact, in an inclusive scattering,
the 4-momentum of the scattered quark is not measured,
and therefore neither x, nor k2, nor k2T can be experimen-
tally determined. Nonetheless, in the spectator model we do
have explicit control over these variables—a major theme
of this article—in particular through the analysis of the
momentum flow through the cuts in Fig. 4. For example,
the light-cone fraction x is determined by the cut of the
quark line in the top part of the diagrams, that gives rise to
the δððkþ qÞ2 −m2

qÞ function in Eqs. (51)–(53). This delta
function imposes

x ¼ ξ

2

 
1þm2

q − k2

Q2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þm2

q − k2

Q2

�
2

þ 4
k2 þ k2T
Q2

s !
ð75Þ

¼ ξ

�
1þm2

q þ k2T
Q2

−
v2ðm2

q þ k2TÞ
Q4

þO

�
μ6

Q6

��
: ð76Þ

In the second line, the constraint is expanded in inverse
powers of Q2 and acquires a suggestive form, that in fact
holds at any order in the expansion. In detail, in Eq. (76),
x depends only on two mass scales: the transverse mass
m2

qT ≡m2
q þ k2T of the scattered quark and the quark’s

light-cone virtuality v2, with no direct dependence on the
diquark mass. The light-cone virtuality is, instead, fixed by
the bottom cuts in Fig. 4:

v2 ¼ −
x

1 − x
½ðm2

ϕ −M2Þ þ xM2 þ k2T �; ð77Þ

which can be obtained by replacing p2
X ⇝ m2

ϕ in Eq. (38)
and depends on the target’s fragmentation dynamics,
encapsulated in mϕ. Notably, the light-cone virtuality
vanishes when x → 0, diverges to negative infinity as
x → 1, and is negative over the whole range in x for
physical choices of the mϕ parameter as can be expected of
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a bound particle.6 This also means that the quark is off
its k2 ¼ m2

q mass shell over the whole range of xB. This
analysis will be substantiated in Sec. IV, with an explicit
calculation of the average values of the internal kinematic
variables as a function of Bjorken’s xB.
It is finally important to note that the light-cone virtuality

enters Eq. (76) only starting at order Oð1=Q4Þ. Therefore,
x and v2 are coupled essentially only through the quark
transverse momentum squared k2T , which is the only
variable left free in the loop integrations (51)–(53).
Since, as discussed, v2 remains small except close to the
kinematic threshold, where it can become substantially
large and negative, truncating Eq. (76) to first order in the
1=Q2 expansion appears to be a meaningful approximation
over much of the inclusive scattering’s ðxB;Q2Þ phase
space. These considerations form the basis for the kin-
ematic approximations needed to perform collinear fac-
torization in DIS at subasymptotic energy, as discussed in
Sec. II and numerically tested in Sec. IV.

D. Transverse structure function

Having discussed the hadronic and partonic kinematics,
and isolated the gauge invariant part of the DIS, resonance,
and interference diagrams in Fig. 4 with the aid of Eqs. (65)
and the projections (60), we can study their individual
role in the eþ p scattering process. We focus first on the
transverse structure function FT , which, in our model, gives
the dominant contribution to the inelastic cross section, and
discuss FL in the next subsection.
As discussed in Sec. III B, the individual DIS, interfer-

ence and resonance structure functions can be obtained by
projecting the respective hadronic tensors:

FðjÞ
T ¼ MPμν

T WðjÞ
μν ðjÞ ¼ DIS; INT;RES: ð78Þ

In the case of the DIS contribution, FDIS
T describes the

scattering of a transversely polarized photon with a quark
emitted by the proton [see Fig. 4(a)]. Analogously, the
resonance FRES

T structure function describes a transverse
photon that scatters on the proton as a whole [see Fig. 4(c)].
Therefore we expect these structure functions to be
non-negative:

FDIS
T ∝ jMq

T j2 ≥ 0 ð79Þ

FRES
T ∝ jMp

T j2 ≥ 0; ð80Þ

where Mq;p
T are the scattering amplitude of the transverse

photon-quark and transverse photon-proton processes. This
is confirmed in Fig. 5, where we numerically evaluate all
components of FT in the spectator model at LO, and show
that FDIS

T and FRES
T are indeed positive at all values of xB

andQ2. In contrast, the interference structure function FINT
T

can have any sign, and in our model it turns out to be
negative definite—and not too small, either.
In the left panel of Fig. 5, we use a value of Q2 ¼

4 GeV2 and notice that at small xB the DIS contribution is
the dominant one. Nonetheless, the interference piece is
large and non-negligible even at intermediate and large xB,
and is largely responsible for the visible difference between
the DIS curve (blue) and the total contribution (black).
The resonance piece has an extended but small tail at

lower xB, and increases in magnitude as xB → 1, where in
principle it would diverge. However, this divergence is cut
off by the phase space, that limits xB < xmax

B < 1 when
mq þmϕ > M, as in our model. The interplay of the
resonance at xB ¼ 1 and phase space limitations produces
an asymmetric bump at xB ≲ xmax

B . This bump becomes
visually more prominent and narrow in the total contribu-
tion, that seems separated into an inelastic contribution at
xB ≲ 0.75 and a resonance peak at xB ≳ 0.75. However,
the trough at xB ≈ 0.75 is actually a combined effect of
the resonance and interference pieces, whose influence
extends beyond the edge of phase space, well into what
one may consider to be the deep inelastic region. In
Appendix C, we discuss for completeness the calculation
for the mq þmϕ < M case, where the resonant behavior of
the proton excitation is in full display (see Fig. 14).
In eþ p scattering, it is important to separate the DIS

contribution from the rest, because it is this one that can be
factorized into a perturbatively calculable photon-parton
hard scattering coefficient and a nonperturbative parton
distribution function, thus giving one access to the partonic
structure of the target:

FDIS
T ≈ FCF

T ¼ MPμν
T WμνjLT ¼ qðx̄Þ; ð81Þ

where WμνjLT is given in Eq. (29).
What the model shows, however, is that the needed

phenomenological separation of the DIS piece must be
done carefully, and cannot rely only on phenomenological
cuts (for example on W2) to eliminate the apparent
resonance “peak.” Instead, one needs to also exploit the
Q2 dependence of the structure function, since, as already
observed, the interference contribution is parametrically
suppressed by a factor 1

W2−M2 ∼ 1=Q2 compared to DIS,
and the resonance contribution is suppressed by 1

ðW2−M2Þ2 ∼
1=Q4. (In the latter case the parametric scaling does not
fully hold numerically, although the resonance piece is
still suppressed compared to the resonance contribution,
see Appendix D.)

6The only way the light-cone virtuality can become positive
and large is if mϕ ≪ M, such that v2 ≈ xM2 − k2T=ð1 − xÞ.
Evaluating this at k2T ∼ Λ2 ∼ 0.4M2, the maximum light-cone
virtuality remains nonetheless small, only reaching v2max ∼ 0.1M2

at x ∼ 0.4 before dropping below 0 as x → 1. This is, however, a
quite unphysical choice of diquark mass because ϕ represents the
proton’s remnant, and thus one would expect mϕ ∼M.
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To illustrate the Q2 suppression of the interference
and resonance contributions, we show our calculations
for Q2 ¼ 16 GeV2 in the right panel of Fig. 5. In this case
the interference term contribution is suppressed compared
to the plot in the left panel, but still still appreciable. The
resonance contribution is negligible except at very high xB
values closer to the kinematic threshold, that moved to
the right compared to the left panel. There it becomes the
dominant contribution, and, combined with the interfer-
ence, again gives rise to a narrow, but now smaller, “peak”.
Overall, the DIS piece dominates although a not yet
necessarily negligible interference contribution is visible
at intermediate xB. At yet higher Q2 values the DIS piece
would become the dominant contribution over most of
the available xB range, except right before the kinematic
threshold.
While an experimental measurement is only sensitive

to the full structure function, the scaling just described
allows to phenomenologically control, for example, just
the DIS component in a fit that includes power-suppressed
HðxÞ=Q2 terms, with HðxÞ a suitable polynomial in x,
and utilizes data in as large a ðxB;Q2Þ range as possible.
This was first tried in Ref. [72], and more recently
implemented in global fits of parton distributions by
the CTEQ-JLab collaboration [73–75], the JAM collabo-
ration [76], and by Alekhin and collaborators [77,78].
A similar fit utilizing data generated from the spectator
model goes beyond the scope of this paper, but will be
presented elsewhere [79]. Instead, in Secs. IV and V we
will compare the analytically isolated DIS component of
the model’s structure function to its factorized approxi-
mation to validate the latter.

E. Longitudinal structure function

For completeness, in Fig. 6 we present the model
calculation of the longitudinal structure function FL, even
though we will not discuss this further in the rest of the
paper, since in collinear factorization FCF

L ¼ 0 at LO.
The behavior of the longitudinal FL structure function,
illustrated in Fig. 6, changes drastically from what we
have discussed for its transverse FT counterpart in at least
two respects. Firstly, all 3 components scale approximately

as 1=Q2, instead of displaying the hierarchy discussed
for the transverse case. Secondly, FL → 0 also as xB → 0;
however, each one of the three components remains
different from zero, and, in fact, FDIS

L → FRES
L . We will

analytically study the highlighted features of FL in
Appendix D, and offer here a heuristic explanation
for these.
For the DIS component, the 1=Q2 scaling behavior

can be understood by noticing that, if the scattered quark
was on its mass shell, the Callan-Gross relation would be
satisfied and one would find FDIS

L ¼ 0. However, the quark
is virtual, and we can expect the Callan-Gross relation
to be broken by an amount proportional to the quark’s
average virtuality normalized by the scale of the process,
which is provided by the invariant mass W2: namely,
FDIS
L ∝ hk2i=W2 ∝ Λ2=Q2. Note that we have used

hk2i ¼ OðΛ2Þ, because this is the scale that determines
the behavior of proton vertex’s form factor Y, and therefore
determines the quark’s nonperturbative dynamics in the
model. This argument also justifies the much smaller size
of the DIS component of FL compared to that of FT . For
the resonance piece, the same argument can be applied to
the scattered proton, whose virtuality is equal to W2 by
four-momentum conservation. The only scale left to neu-
tralize this is Λ2, hence we can expect FRES

L ∝ 1
W4 × W2

Λ2 ∝
1=ðΛ2Q2Þ, where the fourth inverse power of the invariant
mass is due to the proton propagator, as evident from
Eq. (53). The confinement scale now appears at the
denominator, enhancing the resonance piece relative to
the DIS contribution (in the transverse case it was much
suppressed, instead). The interference piece is a mixture of

these two, and we can expect FL ∝ 1
W2 ×

ffiffiffiffiffi
Λ2

Q2

q ffiffiffiffiffi
W2

Λ2

q
∝ 1

Q2. In

all cases, the three components of the longitudinal structure
function scale as 1=Q2, as we will analytically corroborate
in Appendix D.
The limiting behavior of the full FL, which vanishes

as xB → 0, is a general consequence of gauge invariance.
Indeed, one can easily see that the longitudinal projector
satisfies

Pμν
L ðp; qÞ⟶

xB→0
Pμν
S ðp; qÞ: ð82Þ

FIG. 6. Gauge invariant decomposition of the longitudinal FL structure function at Q2 ¼ 4 GeV2 (left) and Q2 ¼ 16 GeV2 (right).
The kinematic thresholds are xB;max ¼ 0.913 and 0.976, respectively.
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Noticing that PS is one of the two gauge-breaking operators
discussed in Sec. III B, we obtain

FL ⟶
xB→0

2MPS ·W ¼ 2MPS ·Wg:b: ¼ 0: ð83Þ

The last equality is in fact valid for any gauge invariant
tensor, see Eq. (67), and therefore also for inelastic
scattering at LO in our model, as plotted in Fig. 6.
Unitarity then imposes specific small-xB constraints for
the resonance and interference components of FL:

FRES
L ⟶

xB→0
FDIS
L ; ð84Þ

FINT
L ⟶

xB→0
− 2FDIS

L : ð85Þ

Indeed, since the two individual eþ p scattering ampli-
tudes involving the longitudinal photon-quark and the
longitudinal photon-proton interactions are imaginary,
Mq;p

L ¼ iTq;p, the vanishing of FL in that limit imposes
T2
q þ T2

p − 2TqTp ¼ ðTq − TpÞ2 → 0.
Let us stress that Eqs. (83)–(85), are consequences of

electromagnetic gauge invariance rather than special fea-
tures of the model we have considered. What is not
constrained by general principles is the limiting behavior
of the DIS contribution, that at small xB could as well tend
to zero or diverge (in which case, we note that the
interference term should also diverge but with opposite
sign). The fact that it is, instead finite, is a feature of the
chosen spectator model, as wewill analytically demonstrate
in Appendix D, where we will also prove the common
1=Q2 scaling behavior.
In closing this section, we recall that the spectator model

we are considering is only designed to account for the
quark dynamics inside the proton, and therefore can only
mimic electron-proton scattering in the “valence quark
region” at large xB ≳ 0.2. In QCD, the DIS longitudinal
structure function at small xB is instead dominated by
photon-gluon fusion interactions, that the model as it stands
cannot describe.7 Nonetheless, the conclusion that FL → 0
as xB → 0 is a consequence of electromagnetic gauge
invariance, and as such is model independent. Therefore
we can also expect this to happen in nature. In fact, data on
inelastic eþ p scattering gathered at HERA [81–83] show
that FL first grows as xB decreases towards xB ∼ 10−4, then
falls off as xB becomes smaller than that value, contrary to
expectations from perturbation theory. Many explanations
have been advanced for this observation, including higher
twist effects [59,78,84–86] and deviations from perturba-
tive QCD [87–90]. Here, we are suggesting that a further
source of deviation from perturbative calculations of FL is

due to the limiting behavior of this structure function, that
is forced by gauge symmetry to vanish at small xB.

IV. TESTING THE KINEMATIC
APPROXIMATIONS

In deriving the factorized hadronic tensor (29) in Sec. II,
we have distinguished dynamical and kinematical approx-
imations, namely, the inclusion of the parton transverse
momentum loop integral contribution into the twist expan-
sion, and the choice of approximate light cone virtualities
v̄2 and v̄02 entering the calculation of the collinear hard
scattering tensor Hμν.
The twist expansion is controlled by powers of μ2=Q2

and can be calculated up to any desired order (although
each order eventually needs the introduction of one or more
new nonperturbative functions). The light cone virtualities,
instead, are not observable nor can they be experimentally
controlled. Thus, as discussed in Sec. II E, we can only
resort to a physically or theoretically motivated Ansatz
to choose suitable v̄2 and v̄02 values. Contrary to the twist
expansion, this approximation cannot be systematically
improved. In the spectator model, however, one also has
full control of the unobserved (or “internal”) variables,
and our choices can be in fact verified by comparing the
approximated internal variables with their average value.
Let us then define the average of a generic function

O ¼ Oðx; k2; k2TÞ of the internal variables as:

hOiðxB;Q2Þ

¼
R k2T;max
0 dk2Tdk

2dxOðx; k2; k2TÞFDIS
T ðx; k2; k2TÞxB;Q2R k2T;max

0 dk2Tdk
2dxFDIS

T ðx; k2; k2TÞxB;Q2

;

ð86Þ

where k2T;max was defined in Eq. (69), and the fully
unintegrated structure function FDIS

T is defined as the
transverse projection of the fully unintegrated DIS hadronic
tensor (51):

FDIS
T ðx; k2; k2TÞxB;Q2 ¼ MPμν

T WDIS
μν ðx; k2; k2TÞxB;Q2 : ð87Þ

The dependence of hOi on xB and Q2 is due to the hard
scattering delta function inside F T , and is symbolically
denoted in the subscript following the functional depend-
ence on the internal variables. The denominator at the right
hand side of Eq. (86) is easily recognized as the inclusive
DIS transverse function FDIS

T .
Furthermore, in the model one can calculate not only the

hard-scattering term, but also the PDFs themselves. Hence
one can perform a detailed comparison of the factorized vs.
full cross section test the range of validity of the collinear
factorization approximation. This will be discussed in
Sec. V. In the remaining of this Section we will focus

7A generalization of the model to include gluon dynamics has
been discussed in Ref. [80].
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on the validity of the kinematic approximations, to which
we now turn our attention.

A. Kinematic approximations in the model

In Sec. II E, we discussed a theoretical Ansatz to justify
the choice of the approximated v̄2 ≈ hv2i and v02 ≈ hv02i
parton light-cone virtualities, and of the approximate x̄
scaling variable that enter the collinear factorization for-
mula (29)–(32). That discussion, that was tailored to
QCD, can be repeated for the spectator model with simple
modifications.
To start with, we consider the approximate light-cone

virtuality of the scattered quark, v̄02 ≈ hk02 þ k02T i. In the
model, isolated quarks exist as asymptotic states. Hence the
virtuality k02 must be at least as large as m2

q, and since we
do not measure the quark’s transverse momentum in an
inclusive process we can only choose

v̄02 ¼ m2
q: ð88Þ

Next, we consider the scattering quark’s virtuality v̄2,
and notice that the target’s remnant is represented in the
model by the spectator ϕ. Thus, we can substitute pX ⇝ pϕ

and m2
X ⇝ m2

ϕ in Eq. (38), repeat the ensuing derivation,
and eventually find

v̄2 ¼ 0 ð89Þ

as our standard choice. Analogously to the QCD case,
we expect to be a good approximation for small enough xB
and not too large quark masses.
Finally, utilizing in Eq. (32) the light-cone virtuality

choices (88) and (89), one obtains

x̄ ≈ ξ

�
1þm2

q

Q2

�
≡ ξq: ð90Þ

With a nonzero v̄02 like in Eq. (88) we are more closely
respecting the internal kinematics of the handbag diagram
than with v̄02 ¼ 0. Therefore, we can expect x̄ ¼ ξq to
provide a better approximation to the nonfactorized dia-
gram’s than in standard collinear factorization. In fact, our
ξq is analogous to the χ scaling variable used for example
in Ref. [23] to study charm production in charged current
W þ s → c events, which was indeed found to capture
much of the heavy quark production kinematics even when
setting the quark masses equal to zero in the calculation of
the hard scattering coefficient [55].
As in QCD, the model’s virtuality diverges to minus

infinity at large values of xB, see Eq. (77), and a different
approximation may be needed. Analogously to the detailed
discussion in Sec. II E, a suitable approximation to the
model’s v2 that is valid in both the small and large-xB
regimes is

v̄2ðx̄Þ ¼ −
x̄

1 − x̄
ðm2

ϕ þ ðx̄ − 1ÞM2Þ: ð91Þ

Substituting Eq. (91) in Eq. (32), solving the resulting
equation for x̄ perturbatively in powers of μ2=Q2, and
finally setting v̄02 ¼ m2

q we find

x̄ ≈ ξ

�
1þm2

q

Q2
þ ξ

1 − ξ

m2
qðm2

ϕ þ ðξ − 1ÞM2Þ
Q4

�
≡ ξ�q ð92Þ

up to corrections of Oðμ6
Q6Þ. Note that at small xB the fourth

order term quickly vanishes, and one recovers Eq. (90).
Closer to the kinematic threshold, this new scaling varia-
bles accounts for the nonvanishing of the scattered quark’s
light-cone virtuality. Substituting this back in Eq. (91) we
can also write the corresponding virtuality purely in terms
of external variables:

v̄2� ≡ v̄2ðξ�qÞ: ð93Þ

The scaling variable we just obtained are suitable for
collinear factorization of inclusive scattering processes.
By necessity, however, they neglect the kinematic effect
of the internal transverse momentum, because no par-
ticles other than the scattered lepton is measured in the
final state, so that no measured scale is available to
control the size of hk2Ti. Nonetheless, Eq. (76), shows that
k2T contributes to the scaling variables at the same order
as m2

q, and it would be desirable to estimate the size of its
contribution.
Contrary to the QCD case, an estimate of the average

transverse momentum squared is actually possible in the
model, where hk2Ti can be explicitly calculated using
Eq. (86). The result is presented in Fig. 7 as a function
of xB at several values of Q2. The upper left panel utilizes
the default model parameter choices discussed in Sec. III,
and the other two panels increase, respectively, the values
of the target mass and the quark mass.8 A comprehensive
study of the systematic dependence on the model param-
eters is presented in Appendix E. As one can expect,
hk2Ti ¼ OðΛ2Þ is of nonperturbative origin and determined
by the “confinement” scale Λ, with a mild dependence
on the model parameters (see also Fig. 15). The average
transverse momentum squared is independent of the
scattering kinematics at small xB, then decreases at large
xB, where four-momentum conservation limits the amount
of invariant energy in the final state and forces this to
vanish: hk2Ti → 0 as xB → xmax

B (see Appendix B for more
detail). Leveraging the detailed calculations in Appendix B

8This layout will be used also when studying other internal
variables in this section, and for the study of factorized vs. full
structure function in Sec. V.
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we can then define theoretical, transverse-momentum-
improved scaling variables simply by substituting m2

q ⇝
m2

q þ hk2Ti and m2
ϕþðx−1ÞM2⇝m2

ϕþðx−1ÞM2þhk2Ti
in Eq. (92) and define:

ξ�qT ≡ ξ

�
1þm2

q þ hk2Ti
Q2

þ ξ

1 − ξ

ðm2
q þ hk2TiÞðm2

ϕ þ ðξ − 1ÞM2 þ hk2TiÞ
Q4

�
ð94Þ

v̄2�T ≡ v2ðξ�qTÞ: ð95Þ

With these we will theoretically estimate the importance
of including in the calculation the transverse momentum
dynamics, that is not included in collinear factorization if
one limits the analysis to leading twist level.

B. Numerical validation

In order to numerically study the validity of the kin-
ematic approximations discussed in Sec. IVA, we will
consider the sequence of x̄ scaling variables summarized
in Table I. Starting with Eq. (90), we neglect at first the
scattered quark virtuality as well as all external mass scales
(i.e., M ¼ 0; mq ¼ 0), then consecutively switch on the
target mass and the quark mass. Subsequently, we consider
the nonzero parton virtuality effects captured in Eq. (92).
Finally we analyze the kinematic impact of the parton
transverse momentum by utilizing Eq. (94).

We start from the average light-cone virtuality
hv2i ¼ hk2 þ k2Ti, shown as a black line in Fig. 8 and
compared to the 3 choices of approximated v̄2 defined
in Eqs. (89), (93) and (95). At small xB, all vanish and the
parton can be effectively considered collinear to the
nucleon in the plus light-cone direction. As xB increases,
however, the light cone virtuality becomes more and more
negative until the kinematic threshold xB;max is reached.
The only exception occurs at larger target mass values, for
which a modest rise with xB is followed again by a fast dive

FIG. 7. Average unobserved k2T of the incoming quark calculated in the full model as a function of xB at various Q2 values and for
different values of the model parametersM andmq. For scale comparison, the orange dot-dashed line indicates the model’s value ofm2

ϕ,
while the magenta dashed line indicates the model’s value of Λ2, see Eq. (48).

TABLE I. Sequence of kinematic approximations considered
for the validation of the x̄ scaling variables choices discussed in
Sec. IVA. A check mark indicates the inclusion of the particle
masses M or mq in (90), and the approximation used for the
internal v2 and k2T variables is indicated in the last two columns.
In the last line, slightly separated from the others, we included an
approximation that can be considered for benchmarking purposes
in the spectator model, where the dynamics of internal degrees of
freedom is explicitly known, but not in QCD. [The v̄2� and v̄2�T
light-cone virtualities are defined in Eqs. (93) and (95), respec-
tively, and the corresponding scaling variables in Eqs. (92)
and (94). The average transverse momentum hk2Ti is calculated
in the model according to Eq. (86).]

x̄ M mq v̄2 k2T

xB 0 0 0 0
ξ ✓ 0 0 0
ξq ✓ ✓ 0 0
ξ�q ✓ ✓ v̄2� 0

ξ�qT ✓ ✓ v̄2�T hk2Ti
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as xB approaches its threshold. This behavior was already
expected from the analysis of Eq. (77) offered in Sec. III C.
The deviation of hv2i from v̄2 ¼ 0 is qualitatively captured
by v̄2�, and the remaining small gap is closed if the
transverse momentum is taken into account by including
the calculated, but unobserved, hk2Ti into v̄2�T .
It is worthwhile remarking that the plots in Figs. 7 and 8,

combined, also show that the incoming quark virtuality
hk2i ¼ hv2i − hk2Ti is negative and of order OðΛ2Þ at all xB
values: the quark is indeed a bound state of the proton.
Clearly, the k2 ≈ 0 approximation utilized in many parton
model calculations and derivations of factorization formu-
las is not accurate, and should rather be replaced, by v2 ≈ 0.
Remarkably, as we will see, this approximation is quite
sufficient in describing the average value of the quark light-
cone momentum fraction x and there will be no need to
use a nonzero virtuality such as v̄2� in the calculation of
inclusive observables.
The average light-cone fraction hxi is another important

internal variable that can be calculated in the model but can
only be indirectly controlled experimentally by measuring
the Bjorken invariant xB. The comparison to the 5 approx-
imations listed in Table I is performed for clarity by plotting
the corresponding x̄=hxi ratios as a function of xB in Fig. 9,
where we adopted the same choice of kinematics and
model parameters as in the average light-cone virtuality
just discussed. One can immediately see that the standard
massless collinear approximation x̄ ¼ xB (blue line)
very poorly approximates the parton’s average fractional
momentum, and results in a x̄=hxi ratio that is very sensitive
to the model parameters. While this is not a problem at

small xB, where a small shift in the x value at which the
PDFs are calculated does not significantly alter the
cross section, this can lead to significant under- or over-
estimation of the structure functions at larger xB. On the
contrary, keeping into account the target’s mass inside the
x̄ ¼ ξ scaling variable stabilizes the large xB approxima-
tion, even though the new scaling variable can still
significantly underestimate hxi, especially if the quark is
heavy, see the green line. This is remedied by including the
quark mass inside x̄ ¼ ξq (red line), which produces a good
approximation for the model parameter values considered
in Fig. 9. In fact, the approximation degrades for higher
values of the “confinement” scale Λ or the spectator mass
mϕ, see Appendix E. The latter case is particularly mean-
ingful because, in reality, the proton’s remnant after the
hard scattering is a multiparticle state with a distribution in
invariant mass not fully captured by a fixed mϕ ∼ hmXi.
Finally, one can consider the effects of a nonvanishing
virtuality v̄2�, which however are suppressed by 1=Q4 and
do not improve much the approximation, see the purple line
compared to the red one.
In summary, there seems indeed to be a limit to what

any experimentally controllable inclusive DIS kinematic
approximation to hxi can achieve. However, as it was the
case for hv2i, if one was able to control the partonic k2T
accessed in the hard scattering reaction, the approximation
would become nearly perfect, as the orange dashed lines
representing ξ�qT=hxi shows. In Sec. VI we will briefly
discuss how this could in fact be achieved, either by
utilizing the TMD factorization formalism, or including
HT terms in the collinear calculation.

FIG. 8. Average light cone virtuality v2 ¼ k2 þ k2T calculated in the full model for Q2 ¼ 4 GeV2, compared to the v̄2 approximations
discussed in the text. In the top left panel, the default model parameters are used, and the other panels show the effect of increasing,
respectively, M from 0.939 to 1.2 GeV (top right panel) and mq to 0.3 to 0.8 GeV (bottom left panel).
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V. TESTING THE LIMITS OF FACTORIZATION

The model’s hadronic tensor can be factorized according
to Eqs. (29)–(33). It is then possible to compute the
factorized transverse structure function FCF

T by contracting
the tensor with the transverse projector PT of Eq. (58).
One finds:

FCF
T ðxB;Q2Þ ¼ qðx̄Þ; ð96Þ

which at LO coincides with the quark PDF evaluated at a
suitable x̄ variable, that replaces xB as scaling variable away
from the Bjorken limit. In the numerical analysis to follow,
the x̄ scaling variable chosen as summarized in Table I.
Working analogously with the longitudinal projector PL of
Eq. (58), the longitudinal structure function vanishes at
LO, FCF

L ¼ 0 and will not be further considered.
At variance with QCD, where qðxÞ is a nonperturbative

quantity and needs to be extracted from the data or from

lattice QCD measurements, the model’s quark PDF can
be analytically calculated, see for example Refs. [47,91].
From the definition (25), we find

ð97Þ

Using the model’s Feynman rules to calculate the contri-
bution of the diagram inside the trace, we obtain

qðxÞ ¼
Z

d2kTdk−

ð2πÞ4 g2ðk2Þ 1
2

Tr½ð=pþMÞð=kþmqÞ γ
þ
2
ð=kþmqÞ�

ðk2 −m2
qÞ2

ð2πÞδððp − kÞ2 −m2
ϕÞ ð98Þ

¼ g2

ð2πÞ2
½2ðmq þ xMÞ2 þ L2ðΛ2Þ�ð1 − xÞ3

24L6ðΛ2Þ ; ð99Þ

where

L2ðΛ2Þ ¼ xm2
ϕ þ ð1 − xÞΛ2 − xð1 − xÞM2: ð100Þ

In the model, we can therefore test the validity of the
proposed subasymptotic collinear factorization by compar-
ing the factorized and full calculations of the DIS transverse
structure functions. By also comparing kT-unintegrated

FIG. 9. Ratio of approximated x̄ parton light-cone momentum fraction to the full hxi calculated in the model at Q2 ¼ 4 GeV2. In the
top left panel, the default model parameters are used, and the other panels show the effect of increasing, respectively, M from 0.939 to
1.2 GeV (top right panel) and mq to 0.3 to 0.8 GeV (bottom left panel).
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structure functions, we will furthermore be able to numeri-
cally explore the conditions for the breakdown of this
approximation.

A. Validity of the factorization approximations

We first study to what degree collinear factorization
provides a good approximation of the DIS process in the
model by comparing the full FDIS

T calculated as in Eq. (78)
with the factorized FCF

T calculated with the model PDF (99)
according to Eq. (96). (The longitudinal structure function
identically vanishes at LO, and an analogous test would
require one to extend the model calculation to NLO, which
goes beyond the scope of this article.)
We do this first in Fig. 10, where FDIS

T is plotted as a
black line, and various factorized FCF

T structure functions
computed at Q2 ¼ 4 GeV2 with the scaling variables
collected in Table I are represented by colored lines. We
adopt the same choice of model parameters as in the study
of the internal kinematics performed in Sec. IV B, and
present a more detailed study of model parameter variations
in Appendix E.
One can immediately notice the same pattern observed

in Sec. IV B. Firstly, the asymptotic kinematic choice
x̄ ¼ xB (blue line) is very unstable with respect to the
model parameters, as already observed in Ref. [48] for
kT-dependent structure functions. Secondly, taking into
account mass corrections by using the x̄ ¼ ξq or x̄ ¼ ξ�q
scaling variables provides a much more stable and
numerically closer approximation of FDIS

T . Finally, the
k2T corrections theoretically estimated with x̄ ¼ ξ�qT (but

not controllable experimentally) explain most of the
remaining differences. One can also see that none of the
factorized cross sections respect the kinematic xB ≤ xB;max

bound (unless one worked strictly in the Bjorken Q2 → ∞
limit), which is a first illustration of the fact that the adopted
factorization approximation breaks 4-momentum conser-
vation, as already remarked in Sec. II.
The hierarchy of approximations just discussed can be

better appreciated in Fig. 11, where we show the ratio of
the FCF

T collinear structure functions to their exact FDIS
T

counterpart. The fact that FCF
T jx̄¼xB does not approximate

FDIS
T in any accurate way, can be traced to the failure

of xB to approximate the average partonic momentum
fraction hxi. For example looking at the blue line in
Fig. 11(a), where the default model parameters are utilized,
we see that the CF structure function overestimates the
exact DIS calculation at small xB, then suddenly drops
and underestimates it even down to the ∼50% level before
surging again closer to the kinematic threshold. This
behavior can be understood from Fig. 9(a), where the
choice x̄ ¼ xB first underestimates the average hxi at
xB ≲ 0.6 then overestimates it at xB ≳ 0.6, right around
the value where FCF

T jx̄¼xB becomes smaller than FDIS
T . This

clearly highlights the need of a more accurate kinematic
approximation, which is indeed reached by fully taking into
account the target and quark masses in x̄ ¼ ξq. The order
Oð1=Q4Þ corrections included in x̄ ¼ ξ�q do not qualita-
tively improve the agreement of FCF

T with FDIS
T .

In summary, it is clear that the use of the x̄ ¼ ξq scaling
variable effectively provides the closest FCF

T approximation

FIG. 10. Transverse FDIS
T structure function calculated in the model at Q2 ¼ 4 GeV2 compared to subasymptotic collinear

factorization FCF
T calculations that utilize the kinematic x̄ approximations listed in Table I. In the top left panel, the default model

parameters are used, and the other panels show the effect of increasing, respectively,M from 0.939 to 1.2 GeV (top right panel) and mq

to 0.3 to 0.8 GeV (bottom left panel).
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to the real one, and extends the kinematic range of validity
of CF to the largest xB value that can be achieved
considering only external variables. The validity of CF is
naturally extended at larger Q2, where mass effects are
suppressed by an inverse of power of the photon virtuality
and become sizable only in an increasingly narrow region
close to the kinematic threshold, see Fig. 12.
As observed many times, however, the CF cross section

at leading twist misses transverse momentum effects, which
are of the same order of magnitude, parametrically, as the
mass effects successfully incorporated in ξq. The “missing”
k2T corrections can nonetheless be theoretically estimated
by choosing x̄ ¼ ξ�q, and are shown as a dashed orange line
in Figs. 11 and 12. The model DIS calculation is largely
reproduced in this way, showing that maximizing the range
of validity of a factorized calculation requires one to control
transverse-motion-induced power corrections. Even though
these are beyond the scope of our leading twist calculation,

one can handle their contribution to the cross section either
by extending collinear factorization to higher-twist [29,53]
or by utilizing a TMD formalism, where these are taken
into account at parton distribution level [42,52]. We will
discuss this point more extensively in Sec. VI.

B. Breaking of collinear factorization

Even after considering transverse momentum contribu-
tions, one can notice in Figs. 11 and 12 that the ratio
FCF
T =FDIS

T strongly deviates from 1 at a Bjorken momentum
fraction xB larger than a scale-dependent, “factorization
breaking” threshold xB;break¼xB;breakðQ2Þ. Defining break-
ing of factorization as a ∼10% deviation of the CF structure
function from the exactly calculated one, we obtain the
values of xB;break collected in Table II, where we also
indicate the corresponding value of W2 in parentheses,
denoted byW2

break. A more complete study of the parameter
systematics can be found in Appendix E.

FIG. 11. Ratio of the factorized to exact DIS transverse structure functions presented in Fig. 10. In the top left panel, the default model
parameters are used, and the other panels show the effect of increasing, respectively,M from 0.939 to 1.2 GeV (top right panel) andmq to
0.3 to 0.8 GeV (bottom left panel).

FIG. 12. Ratio of the factorized to exact DIS structure functions calculated in the model for several Q2 values, and the default model
parameters. The subasymptotic collinear factorization calculation was performed utilizing the kinematic approximations listed in
Table I.
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Phenomenologically, one can notice that the dependence
of xB;break onQ2 and on the model parameters, both internal
and external, is largely determined by that of xB;max, derived
in Appendix B:

xB;max ¼
1

1þ ðmϕþmqÞ2−M2

Q2

: ð101Þ

Indeed, the larger the target massM the higher the xB value
where factorization breaks down, and the larger the quark
mass mq (or indeed the remnant’s mϕ) the smaller the
breaking threshold. We can thus see that breaking of
factorization is mostly a kinematic effect, and occurs when
the process is too close to the edge of phase space. As a rule
of thumb, we can see that this happens when

W2 ≲ 4 GeV2; ð102Þ
with the quoted numerical value being a slight overestimate
of the worst case combination of parameters shown here
or in Appendix E. Even if this value was obtained by a
numerical analysis of calculations performed in the adopted
spectator model, the parameters of latter have been chosen to
phenomenologically reproduce the PDFs extracted in QCD
by means of global fits and thus we can take the model to
be a fair proxy for the latter. This makes us hopeful that
the region of applicability of collinear factorization may
be controlled at least in first approximation by a simple
kinematic cuts even in QCD (and in that case, it looks like
one would simply need to neglect the hadron resonance
region, which is anyway removed from global QCD fits).
Theoretically, the breaking of factorization can be traced

back to the violation of momentum conservation in the
kinematic approximations (19)–(20), and in particular to
the lack of transverse momentum conservation in the
factorized diagram [48]. To see this explicitly, let us define
the kT-unintegrated DIS structure function

FDIS
T ðk2TÞ≡

ZZ
dxdk2FDIS

T ðx; k2; k2TÞxB;Q2 ; ð103Þ

where the fully unintegrated DIS structure function
appearing in the integrand was defined in Eqs. (87)
as the Pμν

T WDIS
μν ðkÞ projection of the fully unintegrated

DIS hadronic tensor. Similarly, we can define the
kT-unintegrated CF structure function as

FCF
T ðx; k2; k2TÞxB;Q2 ≡MPμν

T WCF
μν ðx; k2; k2TÞxB;Q2 ; ð104Þ

with the fully unintegrated collinearly factorized hadronic
tensor defined as

2MWCF
μν ðx; k2; k2TÞxB;Q2 ≡ π

2x
1

2kþ
Tr½=nΦðkÞ�Hμνðx; x̄Þ:

ð105Þ
In either the DIS or the CF case, the structure function can
then be obtained as an integral over dk2T:

FDIS
T ðxB;Q2Þ ¼

Z
k2T;max

0

dk2TF
DIS
T ðk2TÞxB;Q2 ð106Þ

FCF
T ðxB;Q2Þ ¼

Z
∞

0

dk2TF
CF
T ðk2TÞxB;Q2 ð107Þ

The crucial difference is the limit of integration: in the DIS
case, k2T is limited by four-momentum conservation at any
fixed value of the invariant massW2, and the integrand does
not have support beyond k2T;max; in the CF calculation, k2T
can run up to infinity after being effectively decoupled
from the light-cone plus and minus directions by the
approximations (19)–(20).
The difference between the handling of kT in the DIS

and the CF calculations is evident from Fig. 13, where the
kT-dependent F T structure functions are plotted as a
function of k2T for xB ¼ 0.6, Q2 ¼ 4 GeV2, and nominal
model parameter values.
At small k2T , we have a generally good enough approxi-

mation, except when using the x̄ ¼ xB scaling variable
(blue line) that consistently underestimates the transverse
structure function. On the contrary, taking into account
both the target and the quark mass in the x̄ ¼ ξq scaling
variable provides one with the best approximation achiev-
able considering only external variables. Nonetheless,
this calculation slightly overestimates the full one and
displays a less steep slope. This cannot be remedied
without handling the transverse motion of the quark in
detail, which one cannot do at LT in collinear factorization;
however, including the average hk2Ti in the theoretical
x̄ ¼ ξ�qT scaling variable, one can obtain a good description
on average of the full FDIS

T , slightly underestimating it at
small k2T values, and slightly overestimating it at inter-
mediate k2T values. This is the reason why the x̄ ¼ ξ�qT

TABLE II. Factorization breaking thresholds xB;break, the corresponding values of invariant mass W2
break (in parentheses) and of Rbreak

for the choices of target mass M and quark mass mq discussed in the main text and a selection of Q2 values.

Q2 ¼ 4 GeV2 Q2 ¼ 16 GeV2 Q2 ¼ 25 GeV2

M (GeV) mq (GeV) xB;break W2
break (GeV2) Rbreak xB;break W2

break (GeV2) Rbreak xB;break W2
break (GeV2) Rbreak

0.94 0.3 0.72 (2.4) 0.29 0.89 (2.9) 0.29 0.92 (3.1) 0.27
1.2 0.3 0.82 (2.3) 0.21
0.94 0.8 0.59 (3.7) 0.24
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choice gives the best approximation for the kT-integrated
FT previously discussed.
At even larger values of k2T the factorized calculation is

radically different: the black DIS curve displays an inte-
grable divergence at k2T;max, while the CF colored curves
have noticeable tails beyond that. At high Q2 values, this
happens at large enough k2T that he unintegrated F T ,
dropping approximately as an inverse power of k2T , does
not contribute much to the integrated FT . However, at
smaller Q2 values the CF tail exceeding the kinematic limit
provides a non-negligible contribution to FT . In order to
quantify this contribution, we define the ratio

RðxB;Q2Þ ¼
R
∞
k2T;max

dk2TF
CF
T ðk2TÞxB;Q2R∞

0 dk2TF
CF
T ðk2TÞxB;Q2

; ð108Þ

that provides one with the relative amount of integrated FCF
T

coming from the 4-momentum nonconserving k2T > k2T;max

region. In Table II, we collect the R values corresponding to
each xB;break and denote these by Rbreak. As a rule of thumb
we found that the CF calculation strongly deviates from the
full calculation and factorization breaks down for ðxB;Q2Þ
values such that 20% or more of the integrated FCF

T resides
in the tail at k2T > k2T;max.
The breaking of factorization just described is unavoid-

able, as it is rooted in the very approximation that allows
one to define the quark PDF as an integral of the quark
correlator Φ over the subleading parton momentum com-
ponents kT and kþ, and to factorize these from the parton-
level, hard scattering. Being rooted in kinematics, however,
the values xB andQ2 at which the breakdown occurs can be
at least qualitatively, if not semiquantitatively, controlled
by calculating the kinematic limits and estimating how far
from these one should safely stay. As argued in the previous
subsection in the context of our spectator model, a simple
cut in W2 may indeed be sufficient for inclusive structure
functions. However, similar issues appear and are amplified
in the case of semi-inclusive DIS measurements, and in
particular when the hadron’s transverse momentum is also
measured [39–41]. More refined analyses are urgently

called for, especially in the context of the Jefferson
Lab SIDIS program at the 12 GeV upgraded CEBAF
facility [14], where the kinematics is inherently subasymp-
totic due to the relatively low beam energy.

VI. THEORY AND PHENOMENOLOGY BEYOND
THE LEADING TWIST

Summarizing the numerical validation performed in
the last 2 sections, there is a limit to the degree of accuracy
with which a CF calculation can reproduce the inclusive
DIS structure functions. We have identified 2 main drivers
for this:

(i) There is an intrinsic limitation in the approximation
of high-kT scattering contributions, due to the
neglect of transverse momentum conservation in
the factorization of the nonperturbative parton cor-
relator;

(ii) the kinematic x̄ scaling variable in inclusive processes
can only be determined using external variables,
and cannot incorporate the unobserved transverse
momentum scale.

The first limitation is unavoidable, and one should try to
identify in what region of phase space this occurs, in order
to ensure that factorization is properly applied to describe
experimental data and, conversely, to accurately extract
parton distribution from these. In this paper, we suggest
that, at least for inclusive observables, a measure of control
over the validity of the factorized description of the
scattering can be reached by kinematic considerations,
and in particular by estimating xB;max. The latter can be
calculated exactly in the model, where all masses are
known and all particles are asymptotic states, but in
QCD one would would need some phenomenological input
to obtain useful estimates. Identifying the region of
applicability of factorization in semi-inclusive measure-
ments is, instead, significantly more intricate [39–41]. In
both cases, we believe this is an important endeavor and
more detailed studies are needed to avoid interpreting as
partonic features of the data that are not. This is of capital
importance, for example, to fully exploit the vast mess of
data expected from the Jefferson Lab 12 GeV program [14].

FIG. 13. kT-dependent transverse structure function for the default parameters of the model. The two panels correspond to a
low Q2 ¼ 4 GeV scale and a higher Q2 ¼ 16 GeV2 scale. Their respective factorization breaking thresholds, xB;break ¼ 0.72 and
xB;break ¼ 0.89 are chosen to maximize the difference between the factorized and full model calculations.
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Even within the region of validity of factorization, an
imperfect description of the DIS cross section at large xB
arises due to the neglect of transverse momentum in the
factorized calculation at leading twist, see Figs. 11, 12
and 18. However, after incorporating all external mass
scales in the x̄ ¼ ξq scaling variable, the difference between
the LT and the full cross section is small, and quite
independent of the Λ and mϕ internal parameters that
mimic the nonperturbative QCD dynamics of the target. As
demonstrated by incorporating in the scaling variable the
(unmeasured, but calculable in the model) hk2Ti=Q2 cor-
rections, the calculation seems systematically improvable.
The needed control of the partonic k2T accessed in the

hard scattering reaction can be theoretically achieved either
by utilizing the TMD factorization formalism, where parton
distributions themselves depend on kT [42,52], or by
performing collinear factorization up to higher twist level,
in which case the transverse momentum dynamics is
effectively included in multiparton matrix elements [53].
Remaining in the context of collinear factorization, on

can also try to absorb the contributions from the partonic
transverse momentum into a phenomenological HT term to
be fitted to the data:

FDIS
T ðxB;Q2Þ ≈ FCF

T ðxB;Q2Þ þHðxBÞ=Q2: ð109Þ

Given a large enough leverage in Q2, the HðxÞ coefficient
can clearly absorb the difference between the solid read and
dashed orange curves in, say, Fig. 12 and take care of the
missing Oðhk2Ti=Q2Þ transverse momentum corrections.
However, a fit to model pseudodata is needed to establish
the accuracy to which PDFs can be extracted given the still
imperfect, and not improvable, estimate of the internal
partonic kinematic provided by the ξq scaling variable,
see Fig. 9. We leave this phenomenological investigation,
as well as a determination of the level to which the DIS
contribution to the lepton-nucleon cross section can be
separated from the interference and resonance contributions
discussed in Sec. III D, to future work [79].

VII. SUMMARY AND CONCLUSIONS

In this work, we have revisited QCD factorization with
the aim to maximally extending its validity to subasymp-
totic values of the hard scale Q2, where particle masses and
other nonperturbative scales cannot be altogether neglected
as customarily done in the Bjorken limit [23,48,55]. We
have furthermore validated our findings by comparing
factorized and analytically calculable structure functions
in a spectator model designed to simulate the essential
aspects of lepton-proton scattering in QCD. The focus of
this paper has been on inclusive lepton-nucleon observables
as a first step towards collinear, and then transverse
momentum dependent semi-inclusive scattering processes.
The specific findings of our inclusive scattering analysis are

many faceted, and it is worthwhile reviewing them in some
detail before closing this paper.

A. Collinear factorization in DIS at subasymptotic Q2

In the context of inclusive DIS, we have rederived the
QCD factorization formula with the aid of a final state
quark jet function, explicitly separating the partonic inter-
nal kinematics, which need to be approximated, from the
hard scattering dynamics, that can be systematically
expanded in powers of jkT=Qj and, for light quarks, of
mq=Q. In particular, we have obtained a gauge invariant
factorized formula for the leading power (or “leading-
twist”) contribution to the DIS cross section, that in fact
coincides with the asymptotic formula evaluated at a
rescaled variable x̄ instead of xB. Using a jet diagram
proved essential for the gauge invariance of the result, and
no change in the operator definition of parton distributions
proved necessary.
While our proof has been obtained at LO, a generali-

zation to NLO should not present essential difficulties.
Indeed, any diagram at any order can be written as a trace
term multiplied by an overall 4-momentum conservation
delta function, as we have done in Eq. (12), thus isolating
the part of the cross section in need of kinematic approxi-
mation from the terms in which partonic dynamics comes
into play. The latter can be expanded in a power series
around collinear partons, and transverse momentum and
parton virtuality contributions are included in higher-twist
terms. Let us stress that this is the central idea of our
approach: isolating the kinematics of the external legs of
the hard scattering diagram from the rest, and performing a
minimal set of (uncontrolled) approximations only there.

B. Validation at leading twist

Working at leading twist level, the goodness of the
kinematic approximations was checked by utilizing a
detailed spectator model calculation, were we could sep-
arate the DIS lepton-quark scattering contribution from
resonance and interference contributions. The factorized
model transverse function, fully calculable analytically,
was the compared to the exact DIS model calculation.
As shown by the theoretical factorization analysis, the

choice of the scaling variable x̄ is arbitrary, in principle, but
can be guided by considering the kinematics of the hard
vertex. In particular, using the spectator model, we have

verified that choosing x̄ ¼ ξq with ξq ≡ ξð1þ m2
q

Q2Þ one can
reproduce the DIS cross section with only a relatively small
overestimation at the large values of xB close to the inelastic
scattering kinematic threshold. The variable ξq, advocated
for example in [23,55] for heavy quark production and
adapted here to scattering on light quarks, captures the
kinematic effect of the initial state target mass and of the
final state quark mass. It is also analogous to the SIDIS

scaling variable ξh ¼ ξð1þ m2
h

ζhQ2Þ proposed in [19,20] and
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successfully utilized in [21] to incorporate corrections
due to the mass of the observed h hadron in the final
state. The freedom of rescaling variable choice guaranteed
by our approach has also allowed us to explore the effects
of Oðμ4=Q4Þ mass corrections, which are not necessarily
small due to the parton becoming more and more offshell as
one approaches the boundary of phase space at large xB.
Fortunately, these corrections turn out to be small for
inclusive processes, unless the mass of the quark is
increased beyond the range suitable for our light-quark
treatment.
Finally, as already noticed by [48], we have explicitly

illustrated an inherent limitation of collinear factorization,
that breaks down at large xB due to the neglect of momentum
conservation in the transverse direction. Here, we suggest
that the region in xB and Q2 where this happens might be
semiquantitatively controlled by kinematic considerations,
and in fact a cut in invariant mass of the order of W2 ≳
4 GeV2 might circumscribe the factorization breaking
region. Given that in QCD the excluded region corresponds
to resonance excitations, which are outside the scope of the
DIS handbag diagram, such a requirement does not seem to
be an unduly restrictive condition.

C. Transverse momentum effects beyond leading twist

The remaining difference between the CF and full
calculation of the transverse structure function is mostly
explained by incorporating the average hk2Ti in the
scaling variable, and considering corrections only up to
Oðhk2Ti=Q2Þ. For inclusive observables, this study is only
possible in the model but we found that the result is stable
against variations of the internal confinement parameter Λ
and mass of the target remnant mϕ. This strongly suggests
that the range of validity of collinear factorization can be
maximized in the large-xB and low-Q2 region by extending
the calculations to twist-4 level, either theoretically (includ-
ing contributions from multiparton diagrams) or phenom-
enologically (by adding a fitting a HðxÞ=Q2 term to the LT
factorized calculation). A fit of model pseudodata is under
way [79] to verify if a phenomenological extraction of
PDFs can be pushed to as large values of xB as the
factorized calculation, which is still underestimating by
∼10% the values of hxi approximated by ξq.
A finer treatment of the partonic transverse momentum

can only be obtained in SIDIS processes, where this can be
controlled by a measurement of a final state hadron but
hadron mass corrections are more complex. Nevertheless,
the results of our paper are very encouraging regarding the
procedure advocated in Refs. [20,21] for SIDIS and in
Ref. [92] for semi-inclusive hadron annihilation in eþ þ e−

scattering. In those works the scattered quark virtuality is
bound by v02 ≥ m2

h=ζ (with mh the identified hadron mass
and ζ its light-cone fractional momentum) instead of
v02 ≥ m2

q as in the DIS case. It remains an important

exercise to perform a model validation for these two cases,
and study the range of validity of collinear factorization for
semi-inclusive processes, before extending our analysis to
kinematically more complex case of transverse momentum
dependent measurements [39–41].

D. Beyond deep inelastic scattering

The model used in this study has richer structure than
exploited in the validation of collinear factorization of
the cross section’s DIS component. Indeed the model also
includes eþ p resonant quasielastic scattering and the
interference between this and the DIS scattering.
(Suitably generalized to higher mass resonances, the model
may thus also prove to be a useful tool in the study of
quark-hadron duality [57], potentially allowing one to
access PDFs in lepton-proton scattering processes at even
higher xB than currently possible.)
With a gauge-invariant decomposition of the physical

process into DIS, resonance and interference processes,
we have shown that the interference and resonance con-
tribution to the transverse FT structure function exhibit an
approximate 1=Q2 and 1=Q4 scaling. Thus one can also
envision using model pseudodata to test how effectively a
phenomenological HT piece can decouple these from the
DIS contribution in a PDF fit [79].
The longitudinal FL structure function, instead, is further

constrained by gauge invariance and does not exhibit the
strongly ordered power-law scaling observed in the case of
FT . Rather, its DIS, resonance and interference components
are all of the same order of magnitude—an effect we traced
back to the small-xB behavior of the longitudinal Pμν

L
projector. This is therefore a model-independent result and
may have a bearing also for a CF analysis of real FL

measurements, with the factorized FCF
L free to increase as

an inverse power of xB at small values of the Bjorken
invariant while the full FL → 0 as xB → 0. In fact, recent
measurements at HERA [81–83] have revealed small-xB
tensions between data and CF calculations, part of which
may be explained by our observation. A more detailed CF
analysis of FL at small xB would require a NLO model
calculation that is outside of the scope of the present article
but remains an interesting exercise for the future.
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APPENDIX A: INVARIANT AND HELICITY
STRUCTURE FUNCTIONS, AND SYMMETRY

CONSTRAINTS AT SMALL xB

In Sec. III A, we discussed how to uniquely decompose
a rank-2 tensor, Tμν, into a gauge invariant and a gauge
breaking part. The procedure we adopted consists in
defining a complete set of orthogonal rank-2 projectors,
fPμν

λ g, maximizing the number that satisfies the electro-
magnetic Ward identity, qμP

μν
λ ¼ 0. For simplicity, in the

main text we focused only on the parity invariant tensors,
which are involved in neutral current exchanges such as in
the model. In this appendix we complete that discussion by
also considering the parity breaking tensors. We will also
examine the xB → 0 limit of the structure functions,
completing the analysis initiated in Sec. III E for the
longitudinal FL structure function.
We can now use the polarization vectors (54) to define the

parity breaking helicity projectors for rank two tensors as

Pμν
A ðp;qÞ¼ εμþðp;qÞεν�þ ðp;qÞ−εμ−ðp;qÞεν�− ðp;qÞ

Pμν
½LS�ðp;qÞ¼ εμ0ðp;qÞεν�q ðp;qÞ−εμqðp;qÞεν�0 ðp;qÞ: ðA1Þ

Using

εμþðp; qÞεν�þ ðp; qÞ − εμ−ðp; qÞεν�− ðp; qÞ ¼ −iεμναβpαqβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp · qÞ2 − p2q2

p
ðA2Þ

and the explicit polarization vectors definition (54), the
parity breaking projectors can be more compactly written in
“Lorentz” representation as

Pμν
A ðp; qÞ ¼ −iεμναβp̂αqβffiffiffiffiffiffiffiffiffiffiffiffiffi

−q2p̂2
p

Pμν
½LS�ðp; qÞ ¼

p̂μqν − qμp̂νffiffiffiffiffiffiffiffiffiffiffiffiffi
−q2p̂2

p ; ðA3Þ

where p̂μ ≡ pμ − p·q
q2 q

μ. In this form it is easy to verify that

these two projectors are orthogonal to each other. Moreover,
the parity breaking projectors are antisymmetric in the
indices, and therefore also orthogonal to the parity invariant
projectors (58), that are symmetric in the indices and we
report here for reading convenience:

Pμν
L ðp; qÞ ¼ p̂μp̂ν

p̂2

Pμν
T ðp; qÞ ¼ −ĝμν þ p̂μp̂ν

p̂2

Pμν
S ðp; qÞ ¼ −

qμqν

q2

Pμν
fLSgðp; qÞ ¼

p̂μqν þ qμp̂νffiffiffiffiffiffiffiffiffiffiffiffiffi
−q2p̂2

p ; ðA4Þ

with ĝμν ¼ gμν − qμqν

q2 . In summary,

Pλ · Pλ0 ¼ 0 for λ ≠ λ0

Pλ · Pλ ¼ 1 for λ ¼ L; S

Pλ · Pλ ¼ 2 for λ ¼ T

Pλ · Pλ ¼ −2 for λ ¼ A; fLSg; ½LS�: ðA5Þ

In the Lorentz representation (A3) and (A4), it is easy to
convince oneself that these 6 defined projectors are also a
complete orthogonal basis for the space of rank-2 tensors
Tμν ¼ Tμνðp; qÞ built of the proton and photon momenta
p and q, such as the hadronic tensor for inelastic eþ p
scattering.
Exploiting the completeness of this basis, and noticing

that the axial projector satisfies the Ward identity,

q · PA ≡ qμP
μν
A ¼ 0; ðA6Þ

we can extend to the antisymmetric sector the decom-
position (62) of a Tμν tensor into a gauge invariant and
maximally gauge breaking piece by defining

Tμν ¼ Tμν
inv þ Tμν

g:b:; ðA7Þ

with

Tμν
invðp; qÞ ¼ Pμν

T FTðxB;Q2Þ þ Pμν
L FLðxB;Q2Þ

þ Pμν
A FAðxB;Q2Þ ðA8Þ

Tμν
g:b:ðp; qÞ ¼ Pμν

S FSðxB;Q2Þ þ Pμν
fLSgFfLSgðxB;Q2Þ

þ Pμν
½LS�F½LS�ðxB;Q2Þ: ðA9Þ

The Fλ structure function are defined as in Eq. (60), i.e.,

FλðxB;Q2Þ≡ cλPλðp; qÞ · Tðp; qÞ; ðA10Þ

but with the index now ranging over the full range
λ ¼ L; T; A; S; fLSg; ½LS� and cλ ¼ 1=Pλ · Pλ.
As demonstrated in Sec. III E, it is instructive to

study the xB → 0 limit of the helicity projectors. Utilizing
p̂μ→−ðp ·q=q2Þqμ¼ð1=2xBÞqμ and p̂2→−ðp ·qÞ2=q2¼
−q2=ð2xBÞ2, it is easy to see that

Pμν
T ⟶

xB→0
− gμν

Pμν
L ⟶

xB→0
Pμν
S Pμν

fLSg⟶xB→0
− 2Pμν

S

Pμν
A ⟶

xB→0
0 Pμν

½LS�⟶xB→0
0: ðA11Þ

Therefore, all structure functions except FT are constrained
at small xB:
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FL⟶
xB→0

FS FfLSg⟶
xB→0

FS ðA12Þ

FA⟶
xB→0

0 F½LS�⟶
xB→0

0: ðA13Þ

For gauge conserving interactions, such as electromagnet-
ism, we furthermore find that

FL⟶
xB→0

0: ðA14Þ

An interesting consequence of this constraint, already
discussed in Sec. III E, is that

FDIS
L ⟶

xB→0
− Fnon-DIS

L ; ðA15Þ

which alters the usual scaling expectations based on pertur-
bative arguments, and introduces a novel source of “higher-
twist,” or rather inverse Q2 power corrections. In particular,
we have explicitly demonstrated for electromagnetic inter-
actions in our model that FDIS

L ∝ 1=Q2 in the small xB limit,
see also Appendix D. Let us stress that Eq. (A14) is purely a
consequence of gauge invariance, and therefore we expect
this remark to be important for the QCD interpretation of
small-xB measurements of the proton’s FL. Similar consid-
erations also apply to FA and F½LS�.

APPENDIX B: SUBASYMPTOTIC KINEMATICS
IN DETAIL

We discuss here in some detail the kinematics of the
model, and derive a number of bounds on relevant internal
and external variables. Note that the derivation of the
bounds does not rely on model peculiarities, nor it is
confined to LO diagrams. A generalization to QCD will
also be presented.

1. Limits on xB
We start by considering the total invariant mass, W2,

W2 ¼ ðpþ qÞ2 ¼ M2 þQ2

�
1

xB
− 1

�
: ðB1Þ

In the model, by four-momentum and lepton number
conservation we can write

W2 ≥ ðpϕ þ k0Þ2; ðB2Þ
where we have exploited the fact that a quark and a meson
are the minimal mass final state that can be produced in an
inelastic scattering. These particles are asymptotic states of
the model, and we can use p2

ϕ ¼ m2
ϕ, k

02 ¼ m2
q, and pϕ ·

k0 ≥ mϕmq to derive an upper limit for xB:

xB ≤
1

1þ ðmϕþmqÞ2−M2

Q2

≡ xB;max: ðB3Þ

The threshold xB;max corresponds to the production of the
scattered quark and spectator meson at rest in the target rest
frame. Note that the upper bound can be larger than 1 if the
nucleon is unstable, that is, if mϕ þmq < M. A resonance
will then appear in the scattering cross section at xB ¼ 1 as
shown, for example, in Fig. 14.
In QCD, the quark needs to minimally hadronize into a

pion, and by baryon number conservation a proton must
also be minimally present in the final state. The QCD
threshold value can then be obtained from Eq. (B3)
substituting mϕ ⇝ M and mq ⇝ mπ , and is known as
the “pion threshold” xπ:

xBjQCD ≤
1

1þ 2mπMþm2
π

Q2

≡ xπ: ðB4Þ

The proton in QCD is a stable particle, and the phase space
for inelastic scattering is indeed cut off before xBjQCD can
reach 1.

2. Limits on k2T
Given a finite final state invariant mass W2, the trans-

verse momentum squared of the scattered quark is also
limited. To derive its bounds, we consider the center of
mass frame, where k0 ¼ −pϕ and pϕ;T ¼ −k0T ¼ −kT .
Then,

W2 ≥ ðp0
ϕ þ k00Þ2 ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ þ k2T þ ðpz
ϕÞ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ k2T þ ðk0zÞ2
q �

2

ðB5Þ

≥
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
ϕ þ k2T

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ k2T

q �
2
; ðB6Þ

where we have used ðpz
ϕÞ2 ≥ 0 and ðk0zÞ2 ≥ 0. Now,

solving the last inequality imposes an upper limit in k2T ,

k2T ≤
ðW2 − ðmϕ þmqÞ2ÞðW2 − ðmϕ −mqÞ2Þ

4W2
≡ k2T;max:

ðB7Þ

Note that solving this for xB when k2T;max ¼ 0 one recovers
the upper limit Eq. (68). This is as it should, since xB;max

corresponds to the production of the recoiled quark and
spectator both at rest in the target rest frame.
As with the derivation of xB;max, the transverse

momentum bound in QCD can be obtained by substituting
mϕ ⇝ M and mq ⇝ mπ in Eq. (B7).
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3. Internal variables:
Parton fractional momentum and virtuality

At LO, the unintegrated hadronic tensor contains two
delta functions, see Eqs. (51)–(53), which originate from
the upper and lower cuts in the diagrams of Fig. 4. These
delta functions impose

ðkþ qÞ2 −m2
q ¼ 0 ðB8Þ

ðp − kÞ2 −m2
ϕ ¼ 0; ðB9Þ

and the exact solutions of this system of equations,
denoted by xex and k2ex, enter in the calculation of the
kT-unintegrated hadronic tensor (72). Note that Eqs. (B8)
and (B9) are coupled. However, as we already discussed
in the main text, the upper cut (B8) provides the main
constraint on the light cone fraction x, since k2 only
contributes to it at next to leading order in 1=Q4 (or rather
1=W4). The lower cut (B9) then constraints k2 as a function
of x.
In order to highlight the role of the W2 scale in

determining the kinematics of the process, we can express
the hard scattering invariant mass, ðkþ qÞ2, as

ðkþ qÞ2 ¼ W2 þ ðk − pÞ2 þ 2ðpþ qÞ · ðk − pÞ

¼ W2 þ ðk − pÞ2 þ ð1 − ξÞ
�
k2 þ k2T

x
−M2

�
þ x − 1

1 − ξ
W2; ðB10Þ

where in the last line we have used W2¼ð1−ξÞðM2þQ2

ξ Þ.
Substituting this in Eq. (B8), and solving the resulting
system, we obtain a relatively compact solution of
Eqs. (B8)–(B9):

xex ¼
1þ ξ

2
−
1 − ξ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðk2T;max − k2TÞ

W2

s
þ ð1 − ξÞðm2

q −m2
ϕÞ

2W2

ðB11Þ

k2ex ¼ xexM2 −
W2

2ð1 − ξÞ

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðk2T;max − k2TÞ

W2

s

−
m2

q þ ð1 − 2ξÞm2
ϕ

W2

#
; ðB12Þ

where k2T;max is given by Eq. (B7). Note that Eqs. (B11)
and (B12) highlight the role of the k2T;max transverse
momentum threshold, and explicitly show how the kin-
ematics of the process is determined by the W2 scale. It is
therefore interesting to study their expansion in powers
of 1=W2. Using

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðk2T;max − k2TÞ

W2

s
¼ 1 −

m2
q þm2

ϕ þ 2k2T
W2

−
2ðm2

q þ k2TÞðm2
ϕ þ k2TÞ

W4
þO

�
1

W6

�
;

ðB13Þ

we find

xex ¼ ξþ ð1 − ξÞm
2
q þ k2T
W2

þ ð1 − ξÞ ðm
2
q þ k2TÞðm2

ϕ þ k2TÞ
W4

þO

�
1

W6

�
ðB14Þ

k2ex ¼ ξM2 −
ξm2

ϕ þ k2T
1 − ξ

þO

�
1

W2

�
: ðB15Þ

We do not need to expand k2ex beyond the leading order
because, as mentioned, the parton virtuality plays a role
in the determination of xex only starting at Oð1=W4Þ. In the
high-energy W2 → ∞ limit (reached, for example, when
xB → 0 at fixed Q2, or when Q2 → ∞ at fixed xB or ξ) one
then easily sees that

xex ⟶
W2→∞

xB ðB16Þ

k2ex ⟶
W2→∞

xBM2 −
xBm2

ϕ þ k2T
1 − xB

: ðB17Þ

In other words, the quark’s light-cone momentum fraction
becomes independent of the internal partonic kinematics,
while the quark remains off its mass shell at any value of xB
(and by quite a large amount if xB ∼ 1).
A more compact expansion of xex can be obtained in

terms of a 1=Q2 instead of 1=W2 power series, and in terms
of the light-cone virtuality v2ex ¼ k2ex þ k2T instead of the
virtuality k2ex. Indeed,

xex¼ ξ

�
1þm2

qþk2T
Q2

−
ðm2

qþk2TÞv2ex
Q4

þO
�

1

Q6

��
; ðB18Þ

where

v2ex¼−
ξ

1−ξ
½ðm2

ϕ−M2ÞþξM2þk2T�þO

�
1

Q2

�
: ðB19Þ

Equation (B18) coincides with the expansion (76) dis-
cussed in the main text, and clearly shows that v2ex and
therefore k2ex only play a role at Oð1=Q4Þ or higher, as
mentioned at the beginning of this appendix.
Finally, note that the light-cone virtuality vanishes at

small Bjorken xB,
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v2ex⟶
xB→0

0; ðB20Þ

while the ordinary virtuality k2, as becomes a bound
particle, does not:

k2ex⟶
xB→0

− k2T : ðB21Þ

APPENDIX C: RESONANT SCATTERING
IN THE SPECTATOR MODEL

In the main text, we focused on studying the case in
which the target, as it also happens for a QCD proton, is a
stable particle and cannot in particular decay into a quark-
diquark pair.
For completeness, in Fig. 14, we show a calculation of

the DIS, resonance and interference contributions to the
structure function FT for a choice of parameters such that
mq þmϕ < M and the target is no longer stable. A peak
then appears around xB → 1 in both the resonance and
interference contributions, corresponding to the W2 → M2

photon-proton resonant scattering.
When simulating a stable proton in the main text, we

chose mq þmϕ > M and the peaks were kinematically cut
at xB;max, see Eq. (B3). The result was a small positive bump
in the total FT , which should not be mistaken for a higher
mass resonance such as the Δð1232Þ in QCD. Nevertheless,
it should not be difficult to conceive an extension of the
model that also takes into account such a possibility.

APPENDIX D: STRUCTURE FUNCTION
SCALING AT SMALL xB

In this appendix, we justify from an analytic point of
view the Q2 scaling and limiting small-xB behavior
observed numerically in Figs. 5 and 6 for the model’s

transverse and longitudinal structure functions. Namely, the
DIS, interference and resonance components of the trans-
verse FT are strongly ordered in the photon’s virtuality
at all values of xB, i.e., FDIS

T ∼Q2FINT
T ∼Q4FRES

T . On the
contrary, all components of FL are of order 1=Q2.
Moreover, FL → 0 as xB → 0, whereas FT shows no
small-xB constraint. As discussed in Appendix A, this
behavior of the longitudinal structure function is a general
consequence of gauge invariance, that ties together the
components of FL but leaves FT unconstrained.
Nonetheless, it is instructive to see how this explicitly
arises from the analytical model calculations.

1. Small-xB scaling of FL

To compute FðjÞ
L , we have to contract the longitudinal

tensor PL with the individual contributions to the hadronic
tensor,

FðjÞ
L ¼ 2MPμν

L WðjÞ
μν

¼ π

4ð2πÞ3
Z

k2T;max

0

dk2T

ZZ
dx
x
dk2g2ðk2ÞPL · TrðjÞ

DenðjÞ

1

jJx;k2;k2T j
δðx − xexÞδðk2 − k2exÞ; ðD1Þ

where TrðjÞ ¼ Tr½…γμ…:γν…� are the traces appearing in
Eqs. (51)–(53) for each j ¼ DIS; INT;RES, and DenðjÞ are
the respective denominators. Jx;k2;k2T is the Jacobian appear-
ing after rewriting the final state delta functions in terms of
xex and k2ex, see Eq. (73) and Appendix B 3.
We are now interested in studying Eq. (D1) as xB → 0 at

fixed values of Q2. We will also expand our results in
powers of 1=Q2 as needed. In this limit, we find that

k2 ⟶ −k2T ðD2Þ

xex ⟶ xB

�
1þ ω2

Q2

�
ðD3Þ

Jx;k2;k2T ⟶ −
Q2

xxB
ðD4Þ

gðk2Þ ⟶ −g
m2

q þ k2T
jΛ2 þ k2Tj2

≡ gðk2TÞ ðD5Þ

k2T;max ⟶
Q2

4xB
; ðD6Þ

FIG. 14. Same as Fig. 5 but for a choice of parameters such that
mq þmϕ < M, which places the kinematic threshold at xB ¼
xB;max ¼ 1.173. In this case the proton is an unstable particle,
and the FT structure function displays a resonance peak at xB ¼ 1.
This corresponds to a W2 ¼ M2 four momentum squared ex-
changed in the s channel, see the diagram (c) in Fig. 4. An
analogous divergence can be seen for the interference contribution.
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where we use ω2 ¼ m2
q − k2 ≈m2

q þ k2T as a convenient shorthand. The longitudinal structure function contributions
then read

FðjÞ
L ⟶

π

4ð2πÞ3
1

Q2

Z
k2T;max

0

dkT2g2ðkT2Þ
�
xB

PL · TrðjÞ
DenðjÞ

�
x¼xBð1þω2=Q2Þ;k2¼−k2T

: ðD7Þ

Since a factor 1
Q2 already appears explicitly in this equation, and the integrable g ¼ gðk2TÞ does not contribute additional

factors, the Q2 scaling behavior of FðjÞ
L is determined by the scaling of xBPL · TrðjÞ=DenðjÞ, which we will study case

by case.
We start with DIS contribution:

PL · TrDIS ¼
1

p̂2
Tr½ð=pþMÞð=kþmqÞ=̂pð=kþ =qþmqÞ=̂pð=kþmqÞ�

¼ 4ω2ð2k · p̂ − k · p − p · qÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼ ω2

2xB
þOðx0BÞ

þ 4mqM

�
2
ðk · p̂Þ2
p̂2

− k · q

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Oðx0BÞ

þ 4ð2k · pþMmqÞ
�
2
ðk · p̂Þ2
p̂2

− k · q − ðk2 −m2
qÞ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Oðx0BÞ

¼ 2
ω4

xB
þOðx0BÞ: ðD8Þ

Since the denominator in the DIS diagram is DenDIS ¼ ðk2 −m2
qÞ2 ¼ ω4, we obtain

xB
PL · TrDIS
DenDIS

¼ 2þOðxBÞ: ðD9Þ

This term doesn’t introduce any additional Q2 dependence in Eq. (D7), therefore FDIS
L scales as 1=Q2 at small xB as

observed numerically.
We can now repeat a similar calculation for the resonance contribution:

PL · TrRES ¼
1

p̂2
Tr½ð=pþMÞp̂ð=pþ =qþMÞð=kþ =qþmqÞð=pþ =qþMÞp̂�

¼ −4ðW2 −M2Þð2k · p̂ − k · p − p · qÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼ ω2

2xB
þOðx0BÞ

þ 4mqMð2p̂2 − p · qþW2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Oð1=x2BÞ

þ 4ð2ðkþ qÞ · ðpþ qÞ þMmqÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼W2−M2þOðx0BÞ

ð2p̂2 − p · qÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼ 1

2xB
ðW2−M2Þ

¼ 2
ðW2 −M2Þ2

xB
þO

�
1

x2B

�
; ðD10Þ

where ðW2 −M2Þ2 ¼ Q4=x2B þOð1=xBÞ in the leading
term cancels exactly the denominator DenRES ¼
ðW2 −M2Þ2. We then obtain

xB
PL · TrRES
DenRES

¼ 2þOðxBÞ; ðD11Þ

which corroborates the fact that FDIS
L → FRES

L when
xB → 0.

Inserting the trace terms (D9) and (D11) in Eq. (D7),
we find that

FDIS;RES
L →

π

2ð2πÞ3
ξ

xB

1

Q2

Z
∞

0

dk2Tg
2ðk2TÞ; ðD12Þ

which explains their common 1=Q2 scaling observed in
Fig. 5 at small xB. An analogous calculation can be done for
the interference contribution to show that
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FINT
L → −

π

ð2πÞ3
ξ

xB

1

Q2

Z
∞

0

dk2Tg
2ðk2TÞ; ðD13Þ

that explains why FL → 0 in the small-xB limit.

2. Small-xB scaling of FT

The calculation for FT is analogous to the one just
performed for FL, but we need to project the hadronic
tensor with PT :

FðjÞ
T ¼ π

8ð2πÞ3
ξ

Q2

Z
k2T;max

0

dk2T

×
ZZ

dxdk2g2ðk2ÞPT · TrðjÞ
DenðjÞ

δðx − xexÞδðk2 − k2exÞ:

ðD14Þ

Again, we need to focus on the Q2 scaling of
PL·TrðjÞ
DenðjÞ

. These

DIS, INT and RES contributions can be computed and
expanded in xB, and read

PT · TrDIS
DenDIS

¼ 4Q2

ω2xB
þOðx0BÞ ðD15Þ

PT · TrINT
DenINT

¼ −
8m2

q

ω2
þOðxBÞ ðD16Þ

PT · TrRES
DenRES

¼ 4ðω2 − 2M2Þ
Q2

þOðx2BÞ: ðD17Þ

Now, we can obtain the leading term for each of the
contributions to the transverse structure function in the
low–xB limit. The DIS and interference contributions to
the transverse structure function read

FDIS
T ⟶

π

2ð2πÞ3
Z

∞

0

dk2T
g2ðk2TÞ
ω2

ðD18Þ

FINT
T ⟶ −

π

ð2πÞ3
xB
Q2

m2
q

Z
∞

0

dk2T
g2ðk2TÞ
ω2

ðD19Þ

FRES
T ⟶

π

2ð2πÞ3
x2B
Q4

�Z
k2T;max

0

dk2Tg
2
ðm2

q þ k2TÞ3
ðΛ2 þ k2TÞ4

− 2M2

Z
∞

0

dk2Tg
2ðk2TÞ

�
: ðD20Þ

The interference FINT
T contribution is explicitly suppressed

by a factor 1=Q2 compared to the DIS term, as we
numerically observed in Fig. 5 and expected from the
structure of the hadronic tensor (52). Moreover, the factor
xB in the interference contribution explains why FINT

L → 0

when xB → 0.

The resonance FRES
T has an overall x2B=Q

4 factor, which
explains why this vanishes quicker than FINT

T at small xB.
However, the first term in square brackets is proportional to

logð Q2

4xBΛ2Þ and alters the naive 1
W2−M2 ∼ 1=Q4 scaling, as

first observed numerically in Fig. 5. Note that this loga-
rithmic term is a direct consequence of the choice of dipole
form factor used to simulate confinement; had we used an
exponential form factor the resonance contribution would
have followed the naive expectation.

APPENDIX E: MODEL SYSTEMATICS

In Secs. IVand V we tested the kinematic approximation
and investigated the region of validity of collinear factori-
zation for a selection of representative values of the target
mass M and the quark mq, both “external” parameters of
the model. In this appendix, complete the analysis of the
systematics of the model results, by also varying the
“internal” parameters of the model, which mimic physics
that can not be experimentally controlled in DIS: the
confinement scale Λ, and the proton remnant mass modeled
by the spectator mass mϕ ∼ hmXi. The results are pre-
sented, in Figs. 15–18, that share the same structure:

(i) the central panel corresponds to the default model
parameters, determined by a fit of the model PDF to
the quark PDFs of QCD phenomenologically fitted
to experimental data as discussed in Sec. III, and the
parameters are varied one by one in the horizontal,
vertical, and diagonal directions, respectively;

(ii) the horizontal and vertical rows show the variation
of the spectator mass mϕ, and confinement scale Λ,
respectively;

(iii) the two diagonal rows show variations of the
external target mass M and quark mass mq.

The plots in Fig. 15 show the behavior of hk2Ti as a
function of xB. As expected, hk2Ti ≈OðΛ2Þ is not a priori
negligible compared to the target and quark squared
masses, M2 and m2

q.
In Fig. 16, we present a comparison between the

average light-cone virtuality in the DIS process com-
pared to the v̄2 ¼ 0, v̄2 ¼ v̄2� [Eq. (45)], and v̄2 ¼ v̄2�T
[Eq. (95)] approximations. Clearly, the last two approxi-
mate hv2i at large x better. However, the light-cone
virtuality only contributes at Oð1=Q4Þ to the determi-
nation of the struck quark momentum fraction, see for
example Eq. (32), and these nonzero choices for v̄2 have
a minor impact on the calculation of the CF structure
functions (see also below).
In Fig. 17, we compare the average light-cone fraction

hxi to the collinear choices collected in Table I. As already
discussed in Sec. IV B, the choice x̄ ¼ xB approximation
provides an inaccurate description of the parton’s
longitudinal kinematics, while x ¼ ξq describes ∼95% of
the light-cone fraction, with only minor improvements
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FIG. 16. Average light cone virtuality v2 ¼ k2 þ k2T in the full model, compared to various collinear approximations. The center plot
corresponds to the default model parameters, while the others show variations of one parameter at a time.

FIG. 15. Average unobserved k2T of the incoming quark calculated in the full model as a function of xB for various choices ofQ2 (black
lines). For reference, the orange dot-dashed line marks the chosen model m2

q value, and the magenta dashed line Λ2. The center plot
corresponds to the default model parameters, while the others show variations of one parameter at a time.
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FIG. 17. Ratio of approximated x̄ parton light-cone momentum fraction to the full hxi calculated in the model at Q2 ¼ 4 GeV2. In the
center panel plot, the default model parameters are used, and the other panels show the effect of varying one parameter at a time.

FIG. 18. Ratio of the factorized to full DIS structure functions calculated in the model at Q2 ¼ 4 GeV2. In the center panel plot, the
default model parameters are used, and the other panels show the effect of varying one parameter at a time.
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obtained when including nonzero virtuality Oð1=Q4Þ
corrections in x̄ ¼ ξ�q. Only keeping into account the
partonic transverse dynamics through hk2Ti=Q2 corrections
in x̄ ¼ ξq can one obtain a fully accurate approximation.
Finally, in Fig. 18 we show the ratio of the collinear

structure functions to the exact one. These plots illustrate
that the conclusions made from Fig. 11 are not very
sensitive to the variation of Λ and mϕ: a factorized
calculation utilizing x̄ ¼ ξq provides nearly the best pos-
sible description of the full DIS structure function achiev-
able only considering external variables, and the quality
of this approximation is independent of the value of the
internal (unobservable) model parameters. Taking into

consideration the transverse momentum dynamics allows
one to maximize the kinematic range of validity of the CF
calculation before this unavoidably breaks down due to
neglect of momentum conservation.
In Table III we present for all cases discussed in this

appendix the xB;break factorization breaking thresholds, and
the corresponding invariant mass value. We also present the
corresponding Rbreak relative contribution of the k2T > k2T;max
tails to the factorized FT structure function. As a rough
summary, factorization breaks down at W2 ≲ 4 GeV2,
which is when 20% or more of the CF structure functions
originates from k2T values beyond the kinematic k2T;max
threshold imposed by four-momentum conservation.
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